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Paper 104
DIFFERENTIAL EQUATION
UNIT I
Linear second order ordinary differential equations with variable coefficients
1.1 Introduction : |

A linear ordinary differential equation of second order is of the form

Lie]

=3 + P% +Qy =R ---() whereP,Q,R are functions of x alone.

It is known that when P and Q are constants, the equation (1) can be solved. In fact,
an n” order linear ordinary differential equation , namely,

d" a"! d
Py dx:+Pl dx“'}lr+ ------ +i‘n_,§+Pﬂy:f{x} - =={2)
where f{x) is a function of x but the P,’s, i=0.1......... n are constants can also be solved.

Again a linear homogeneous ordinary differential equation of order n , of the form
n n-l

X Sy + Px™! L2
d.:[. n-1

d
ot By L+ Ry =glx). - ()
can be integrated . Because, the change of the independent variable x to another variable z
by the substitution z =logx renders the equation (3) to an equation of the form (2) with z
as independent variable, that is , an equation with constant coefficients. So it can be
solved.

However , when P and Q are any functions of x there is no general method for solving
an equation of the type (1) . There is even no guarantee that we can solve this equation (1)
in closed forms in terms of the elementary functions such as polynomials, trigonometric,
hyperbolic, exponential or logarithmic functions in x. Nevertheless, there are certain
procedures which at times yield a solution of the equation (1) when the functions P(x)
and Q(x) satisfy certain conditions. In what follows, we discuss these procedures towards
finding a solution of the equation (1).

1.2 Change of the dependent variable
Consider the second order linear differential equation with variable coefficients,

2
:K—g' & PEx}:l—y +Qx)y =R(x) ---(1)

For its solution we have to find y as a function of x which satisfies the equation (1)
identically. Here v is the dependent variable and x the independent variable.




For this purpose, we put y=uv where u=u(x), v=v(x) where u and v are not yet

We have now

2 2
mdl_:l_y=“dv+ﬂﬂ+d_vd_u+
2 dx? dx dx dx dx

d’u
P

On using these n:xpressipm for the derivatives of y, the equation (1) reduces to

2 2
O¥ L& ‘*__m )[u—+v——]+0(x)w R(x)

uU—

dx’ dx dx
@v [2d0, o Ndv 1fdu poodu R(x)
or, 'd? {u +P(x ]} +u{d.1[ "‘P{K]‘ +Q{ }} .
or, $+ﬁ,(x}g—:—+Ql{x]v=RE[x} ————— {2)
where
P,(x)= -11:3—: +P(x)
1]d '
Q.{x)=z{"&u P(x }—~+Q{x}u} —==(3)
and R,(x)=—X)
u

Now two cases arise as discussed below : --
Case I: when one integral of the complementary function is known.

Let u(x) be a known part of the complementary function of equation (1) i.e. uis a
solution of the equation

2
d”+r(x):x—"+q{x}y=u S (4)

So, d—“+P( ]—+Q{x}u 0 ie 0Q/x)=0

div dv
'd?— + Py(x) F ety R (x)

Then, equation (2) reduces to




On putting p = %,msequaﬁmmbmdmdm

L 4 BWp =R --=
This is a linear first order differential equation in p and so can be solved.
Its integrating factor is

2du ; o
LF. = e[ﬁ(n]dx = cf{u m+l’(1l}d1 _ ez'[_"- - r.f Pix)dx

= gf e x el ke uze!‘ﬂlm
Hence the solution of equation (5) is

puzejm = I[l{lu"ejm}dx + C, C being the arbitrary constant of integration

or = d_v = E_IM I'[Euzi:jm]dx + CE_IH:
: P~ & u? u : u?

Integrating this equation further with respect to x , we obtain

v ——I |E-J:th I[Ruc[m]d:]-h + CI{B-J:‘&]A: + D, where D is another constant of

integration.

So we have found v as a function of x with two arbitrary constants C and D. Having
found v we get y=uv involving two arbitrary constants and so it is the complete primitive
of the given second order ordinary differential equation (1).

Case 11 Removal of the first derivative(Reduction to normal form) .

If none of u and v is a part of the complementary function of equation (1), that is, a
solution of equation (4), then we choose u such that

P|(1)=§%+P{K}=U or, %=-—%P{x}dx or, sz ~==(6)

e L{rn
Now: - wly gl =e - NaE xi{_lh’dx}
dx dx dx | 2

= —é Pixje = = —% P(x)u




aml—.z- = —_pfx}ﬂ_lum
dx 2 dx 2 dx

. 3 P(x)du 1 d*u
= Qu(x) =Qx)+ R
—o-1 P(x} 1, du 1 dP(x)
Py P u.[ 2 e T2 & :r
=Q_lp2 _1E [_lh]_ld_P_{x_}
2 1_'_u 2 2 dx
2 4 24k
or, Ql(x]=Q_lp1_l£
R() i3 e A
and R,(x)=—>
 On substituting (6), the equation (2) can be reduced o
z
:x—+Q;(x}v— R,(x) ---(8) whereQ andR,arenow given by (7}

Thus by the particular choice of u(x), the first derivative in the equation (2)has been
removed. The reduced equation (8) is called the normal form of equation (2).

Further, if Q«,{x}:q-l ’—%%-ﬁa constant, the equation (2) becomes

2,

£y +ﬁv-—whmhlsahnmraquahonw:ﬂlmnmmmefﬁmmmandmmbe
u

solved.

. . A . .1 d:z‘h’ 11
Otherwise, if Q(x) = —, the equation (2) reduces to x o + Av=R—
X u

which is a homogeneous (also called Cauchy equation ) equation and can be solved.

The equation (1) is often written as

¥y +P(x)y’+Q(x)y =R(x) where y’=f3,y =3y

1.3 Search for a particular integral of

d'y  _dy
——+ P—=+(y = == -




Rule I y=¢™' isa solution if m*+Pm+Q=0

2
If y =™ ,then oy nm““,% = m’e™

Thus if y=¢™" is a solution , then
m?e™ + Pme™ +Qe™=0 or, m'+Pm+Q=0
Inparﬁmﬂar[i}w‘wiﬂbeamluﬁunif1+P+Q=ﬂ
and (i) y=¢™ will be a solution if 1 -P+ Q=0
Rule II : y=x"is a solution if m(m-1)+Pmx+Qx’=0

= m{m - )x™?

=", 2 = mx™, %}
Hence if y=x" is a solution, then m(m-1)x™>+Pmx™'+Qx™ =0 or, m(m-1)+Pmx+Qx’ =0
In particular (i) y=x will be a solution if Pix+ Qx? =0 or P+Qx=0
and (i) y=x* will be a solution if  2+2Px+Qx’ =0
and (iii) y=1/x is a solution if -1.(-2) - Px+Qx* =0 i.e. 2-Px+Qx"=0

In course of the following examples, we shall find some more functions which are
particular solutions of equation (1) under certain conditions to be satisfied by P and Q.

1.4 Solved examples.

dy 3dy 3
Example 1. — Ly —y=2x=-1 =-=-={1
p Solve — z xzy 2x m

Selution: Here P(x) = —>,Q(x) = —,R(x) = 2x -1
X X

WemthalP+Qx:-1+ii_n=ﬂ
X x

So y=x is a part of the complementary function (C.F.) of the given equation .

We take y = uv = xv, where u =x so that

2 3 2
Hotver, dly dv . dv dv_.dv dv

—+l—+x—
dx dx . e kA dy i




then the given equation becomes

Id—v+ xd—zv—i[v +X dvi|
dx  dx? x

or, X——+[2-3}—-=v+=v=2x-1
dx dx

o, —-——=2-—

---0

=
n
[
|
N|l—

1 1

L log —
lIisEF=e " * " ehEx _ o x o l
X

<. solution of equation (3) is p.l = I[Z——l]ldx +C, Cisaconstant of int. = 2logx +1+C
x x/x X
dv . a

or, p= o =2xlogx +1+Cx

Integrating with respect to x we get

v = IZx]agxdx+!dx +J-dex + D, D is another constant of integration

p Z[IngJ‘xdx—J‘{%jxdx}dx}+ X +cl‘zi+ D

1 ] 2

X I x X

—lng - =, —dx|+x+C—+D
2[2 . Ix 2 } " 2

1]

1 2

or,v=x'logx —— +x +C>—+ D
2 2
=x’logx + C,x? +x + D, Cl=—(c;n
,',y:x\rzleﬁgx+xz+(ljx3+1)x
which is the required solution.
Example 2 : Solve
2 JEE N USROG S, - LA
dx? dx

X

2
Solution_ Here P(x)=- gl LOx) = = 1ot ,R@) = [ﬂ.___.l.}h
X X




and we see that
_(2x+1}+l{x+l}=1_2__l+|+_1,=u.
X X

1+P+0Q =1
X X

sy=¢"isapartof the CF.
So, we choose y = uv = ¢&v, with u=¢"

dy dv  d%y dv dv  d*v
that —=e'v+et —, ——=¢e"(v+ ) +e’(—+—
$0 e'v B ( ) {l =)

dv  d%v
=e"v+ 22—+ —
e’ ( 1 )

‘Then the given equation reduces to

d’ d 2 du - i 1 1
I{} + P,(x}ﬁ = Ry(@), where P(x)==-—+P(x)=—e —@+5)=2-2-—=—

2 i Ix
R R ()
u X c X

i
A A
& 1. ~Ele g
e xp (x+1 x]c (2)

.‘.ip=Ii[x+l—l]ﬁ‘dx+ﬂ=j[l+-l-"iz]€'dx+c
X X X X X
"'] et e xe*—e

x { - d
=je dx+jim . };ix+C ‘.*E(ex

2
X

=¢" +Ii[e—}ix+c e T,
dxl x X

dv
p=—=xe"+e" +Cx

Integrating with respect to x,




v=|xe'dx+ je'dx+ |Cxdx+D=xe" - |le"dx + e'dx+C-—i+D
[xetdx+ fetdx+ Jretaxs | 5
=xe’ +Cx*+D

y=uv=e"v=C,x’e" + De* +xe™ is the required solution.

2

Emmple:!-:—;:—i—Etnnx%+3y=Zsmx -— = (1)

Solution : Comparing the given equation with
d’y d
= + P(x) <> + Q()y = R(x)
dx
we see that P(x) = -2tanx, Q(x)=3, R(x)=2secx

Leiu=sinx,thend—“= oS X, L = —sinx
dx dx?

Now putting ¥ = u = sinx in the L.H.S. of equation (1) we get

dg Ztanxdy+3}r:—5inx—2!;anx,m3x+3$inx=Esinx—2:%inx=ﬂ
dx dx

e R ; ; d’y dy 0
Thus y=u = sinx is a particular solution of E—Ztanxa-i-}y—ﬂ

For solving the equation (1) we take -y =u(x)v{x) = (sinx)v(x)

2
so that e .sinx +cosx.v(x) and --‘1-—1--:-[]—1"'-r inx+2£LCDSX - (sin x)v(x)
dx  dx dx®  dx dx

On substituting these , the equation (1) becomes

d?v '
dx_+P|{x} +Q]{x}y= R, (x) - =={2) where
Pl{x}-rz-gu—+P——£—xcosx—lianx—E[r:mx—tanx]
u dx sin x
Q{x)=0
Sl G A ST e K L 2D eeawis
51N X SN X COS X sin 2x

2

~.equation (2) becomes :x_: + 2(cot x — tan x) gy- = 4 cos ec2x

X




0r,unpruﬂ.ingp=:x—v. $+2{m:c~mnx}p=4coeac2x -==(3

X

¢Iliml.x—llnx}d:t - Jlma‘i‘ E‘Ij-:;td

Iis LF= -t

2 1 ; I ..
= elomsin® x o glogem” x _ ginl y cos? x = :Slﬂlfzx}

The solution of equation (3) is

cos2x

+C

p.iﬁin:{lx} = [4cusechxisinz{2x}dx +C= [sin2xdx +C =~

m,p=£=—2mslxx : ; +4Ccosec’ 2x
Cdx : sin” 2x

= ~2cot 2x X cosec2x +C, cosec’ 2x. [c, =4c]

Integrating with respect to x,

= -—IE cot 2x X cosec2xdx + Ci_l'coseazlxdx +C,

= cosec2x _]EC' cot2x +C,
sin x lc cos2x
2sinxcosx 2  sin2x

cos2x . !lcus*xul! A
Xsmx = SR X

sin 2x 25in X COSS

xsinx+C,sinx

Ly=vsinx=

=cosx*laecx
2

or Yy =%secx——;.—C, [wsx - -;—se-: x]+ C,sinx is the complete solution.

2
Example 4 Solve (x + 2].;1_5: —{2x + s}d_y + 2y = (x + 1)e*
dx” - dx

Solution : The given equation is

2
dy_{Zxﬂ-S}ﬂ{‘ 2 =x+lg, Sl
dx? x+2 d&x x+2 X+ 2
Here
P:_2x+5' Q = 2 , R=x+1c“
x+ 2 x+ 2 x+ 2
_2{x+2]+1
x+ 2
= -2 - :
X+ 2




2 2

24+ 2P Wy G . - =0
o a3 x+2 x+12
su=e" is a part of the C.F. of equation (1)
Let the complete solution be y=uv=c1"v
Thus the equation (1) can be reduced to
d’v dv
d_l.]_+FIE+QIv=RI ———{2)
where PL:P+Ed—“=—2x+5+%Kehx2
udx x+2 e
_=2x—-5+4x+8 _ 2x+3
2 x+2 x+2
R x+1 1 x+1 _
=0, R=—= *X—= 2
2 Y i x+2'= e x+1e
So equation (2) is
d’v 2x+3dv _ x+1 dp 2x+3 x+1 _ dv
+ —= - [, =dee——pz=———g  ———(3) where p=—
i’ x+2dx x+2. LR T L Y ©) ™
2x+3 e
IisLF= n‘:Jr = ltz'[[2 ”I}h A P V.
(x+2)

ix
= px eZx :J'[x+l]=_,x e & i Ci
X+ 2 (x+2) X+ 2

[x+1) _ (x+2) 1

=I£+—]-L:’dn+{31 (x + 2y m1[1+2]'! t{l*‘z}l

o2 ={1+2)_[x+2]2

=I e . = - +C,
x+2 (x+2)
Bh e!l dv 7
= +C s—=p=e*+C (x+2e™
2 X432 x4 dx i i tde
Integrating with respect to x,

v

IE"‘dx + C,I[x + 2 Mdx + C,

=2
ex

-2

]

—e_*+C; [x'l‘Z}E_"zl"jl- dx +C2
-,

10




=-e"* +C —l|:1:+2}t=_23"+-l-:»<"=_2'l +C
N2 2" -2 5
= - - %Cl[lx +4+1 4 C,

ie. v=-e- --}C,c"‘ (2x+5)+C,

Ly=uv=e™ |:-t‘." —%C‘e_h (2x + 5}+C,]

=—¢* —%C![Zx +5)+Ce™ is the required solution.
2 Teas
Example 5 Solve i_f_ . % L8 S

Solution: Here for the given equation

1(12 +1x)

P(x)=-2x, Q(x)=x'+2, R(x)}=e?
We cannot find an obvious solution y=u(x) of the equation
2
-'S-Eii—zxgi—%{xz #2)y =0
that is , there is no obvious part of the C.F. of equation (1)

But Q = Q- P -

[ S

dP 2 1 7 .1

L~ — S 2P 2D

z Tt -2 By =56
=x?-2-x24+1=3

To remove the first derivative from the given equation we take y=uv

b |
1 1 x
== pdx == =2xdx L

] s W

and choose u- = e 2 =g =e
Then the equation (1) will be reduced to

d*v d
-7 RO+ Qv = R,

where P,(x)=0, Q,(x)=3 and R, (x)=

2
ofr, ?E:r-+3v=¢‘ L .-_{2]




For C.F. we have D*+3=0,D= -i— or, D= +i3

~.C.F. of equation (2) is =C, cos ¥3x + C, sin ¥3x

ie 1 e" e”
Particular Integral P.L= et = — = —
D?+3 ¥ +3 4

W :Clmﬁxi-czsinﬁx +-]‘;E1

1.2
Finally y=uv=ezx [C] cos f3x + C; sin Pix + %c"]

2y .
EumpleéSolvcdz+ LA L. .1 _.%yya AP |
dx 1}; e 41:% G:r.% *
Selution s Hiwe P u -t qa by aal 8 o'ag

3 41% 6::% "

Here there is no obvious part of the C.F. of the given equation (1)

N :
TTSS | N PR 4 SR

Hmcbunsingu=c z =g I =& =

3

And taking y=uv=e 4 v, the given equation can be reduced to the normal form

d’v 1 1dP} R dv 6 d*v
-&x—;-i-[q-—zpz—ia]v:-ﬁ—:ﬂ or, Eﬂ-‘x__’v:ﬂ oT, lz'a";'?—ﬁ\f:u "'—(2}

Putting z = logx or x = e°, We get

12




dc 1 Sy dvds, lde

dx x'dx dzdx_ x dz .

div d [ldv] 1 dv 1d’vdz 1 dv 1 div

— e | e | ——— e e e = e o
! dx\xdz x!dz xdz’dx x*dz x*dz’

Ble

- . 1
i ;=:x_j=‘f£§_%z‘i=nm—nv,whm D=

The equation (2) becomes

D(D-Nv-6v=0 or, (D’-D-6v=0

or, (D+2)D-3)wv=0
sv=Ce™ +C,e™ =Cx™ +C,x° .

2
B

Finally y=uv=e ¢ (Cx 7 + Cyx?) which is the required solution.

Example 7 Solve d—11+y cntx+7{ﬂ+ ytanx] = SEC X
dx? dx
Selution: The given equation is
2
d—%+y+zd—ytanx+2}rtan1x=m¢ntanx
dx dx

2 ;
Y s aansd +2tan’ x)y = seex tanx -~ ~ (1)

dxz
Here P =2tanx, Q=1+2tan’x and R=secxfanx
Also inFz--I—E=(1+1tan2x}—lxdtanlx-lxzs~aczx
4 2 dx 4 2
=1+tan?x —sec?x =sec’ x —sec’ x = 0
To remove the first derivative from equation (1), we choose u as

1 1 -
fpax  -=f2tmxdx
u=¢e 2! =e 1‘F TN o gmeosx _ oog x

Then , on putting y = uv = (cosx)v, the equation (1) can be reduced to the normal form

1
d_v_'_[q__l]}]“liri)v =E =M=5ﬁ:1xtanx
dx? 4 2 dx u cos X

dv
nr,—2+[l-:5ec1xtanx
dx

Integrating we get :ilx_v :J-seczxm:adx+ﬂl = Itanxd{tanx}+€, = Etanzxa-cl

13




Integraﬁngagairi. : vééj.tanzxix+[‘.lx+ﬂz=%I(soclx—l}lx+c|x+ﬂl

=%[t;|11:uc-x]+1’:1x+'tfiz :ét:um:+[~(C,——II—}¢+!1’3:L

Sy=uv =cusx[%tanx +C,x +Cz],wiﬂ1 C; =(i.'3l —%—) is the required solution.

§ 1.5 Change of the independent variable
In attempting to solve the equation
2

d’y dy i
= + P{‘}E +Qx)y=R(x) -—--(1)

if we can find neither a part of its C.F. nor reduce it to a normal form with constant
coefficients the methods of solution discussed earlier fail. However, sometimes, on changing
the independent variable x to a new variable z the equation (1) may become integrable. .

Let x be changed to z by the relation
dy dy dz d% dzy(d‘z]z dy d*z
=f{x),sothat — = ——,—< = —<|— = —
) 2 b kdxdl | a2 \dx) | dz o
Theoqml:ion(ljbecmnm
2 = z .
_d_f[g) +ﬂd_§+ EE+Q};=R
dz® \dx dz dx dz dx
d’z dz
2 _J+P_
or, d_hix_ﬂd_h Qty; R i rmei= ()

&
dx dx
Here we shall encounter the following two cases.

Case I Let z=f{x) be so chosen that the coefficient of 2 in equation (2) vanishes. i.e.

dx
diz dz d (dz dz
& dx o dx[dx] dx
Integrating we get
hg[%]=—fl’dx a%u”‘{ “or,z= [ehfm]ﬂ!

14




2
.2 y-E -0

@@

Q —-is a ‘constant or —-IE;, where k is a constant.
dz z- :
dx
Because then equation (3) becomes a linear equation with constant coefficient or another one
which can be reduced to such a form.

’

Case H Let z=f(x) be chosen such that % . J@ where the sign with Q i# taken so that .
a

Then the equation (2) reduces to

This equation can be solved if

%' real and a” is a positive constant.

ﬁ+ PE
Ifnow &X° _dx _ A, a constant , then equation (2) becomes

&)

2
dF+A§-+a1y=

gt A -

dx
which is a linear equation with constant coefficient and so can be solved.

§ 1.6 Solved examples
Example 1 Solve : mzﬁ +sinxd—y-2[cm3 x)y = 2cos’ x
: dxz dx :

Solution : The given equation in standard form is

d’y dy

E;.'_!-"-MIE-HWI xhr-—.'}!ms‘x [']
On putting z=f{x), so that

dy _dyds ﬁ_ﬁ[ﬁ)’ﬁvﬁ

dx  dz dx dx?  dz? \dx dz dx?

15




where P= tanx, Q=-2cos’x and R=2cos’x -

Let us now choose f{x) such that

d’z dz : dp : dz :
En_IerxE:n or, a;-t—ptanx:ﬂ with p=a. Integrating, we get
sin x dz . .
logp:-j dx = logcosx ~Lp=—=cosx and z=jcusxdx=smx
cOsSX dx
The equation {2} now becomes

d'y 2cos’x _ 2cos’x

dz’ cos’x cos’ x

2
or, d——ly 2cos’ x-2{l-sm2i)=2ﬂ—zz}
SR
or, (D?-2)y=2(1-z%), where D=d—i-

For CF.wehave D>2=0= D = +J2 .~ CF= C,e‘ﬁ‘ + Cke"ﬂ‘

1
and P.I.=D2_2><2(1— }——{i D} (1- z}

=-(t+in’+,...){1—z’}:-(1-z‘ +U—%.2.1)=-{1—z2 -)=2*
A C e’ +C,e ™ +2°
i.ﬁ. Y:CIEJ_M;_!_CEE—J_EJ& +$iﬂ2i
which is the complete solution of the given equation .

1
EnmplelSulve%‘mt ~ [sin® x)y = cos x — cos® x

Solution: Here P="-cotx, Q=~si|1!x, R=cosx-Cos’X

On chaﬁging the independent variable from x to z, the given equation becomes

d d '
Shel g e R Peug

16




Let us choose z such that P,=0

5 .
ie. -'§~~‘~‘E—+PE =0 = i[——]—mth =0
dx? dx dx dx

'Onintesmting
j' [ J f cotxdx = Imsx or lug(%]=10g3iﬂ1=>%=5in‘
dx

z=Jsinxdx=—msx

=1 k] 1

. 3 s X COSX—C05 X =C08 X

This gives QI =——7 =-1, Rl = - : mgxﬂ_‘..._} -
5in X s5mn X : s5in X

Then the equation (1) reduces to jz—zr -y =~z

For CFwehave D?—1=0,where D=% ~D=Fl,

~CF.= )r Ce'+Ce™ =Cig™™" +Ce™"
lf—z] { } [):{I+D2+m]2=z

LY :Cle"’“" +C,e™* —cosx

PJ-

2

d’y O g i
Example 3 Ex-;—(l+4¢ ]EJJE! y=e™ (1)
Solution: Let z be the new independent variable chosen from x so that

dz _1Q _
dx Va?
.z‘__eﬁ

= ¢*,wherea” = 3
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£.2_+PE
dx? dx_n:"~(l+4e‘}xu":l—i-4c‘_—4e"

dz ’ e’ [~ e"
&)

Then the given equation (1) can be reduced to

=-4, a constant

This gives P,(x)=

=-4

2 Hx+e™) Ix 2e®
‘_j-_!f 4 ﬁ.d_}r--i- az}r = R — d = = o ’;E
dz? dz az]’ (") i

dx
2
:z—:r—dr%+3y=ek;=ck -—=(2)

For C.F. wehave D?4D+3=0 Or, (D-3)(D-1)=0 ..D=3,1. Hence C.F. =Cie™ + Cz¢”

]- 2z 1 2z Fil

= — a = —@ =

(D-3)D-1) (=1).(+1)

x L]
'.'F=Cle!z+clez_elz=cl33¢ +Cz¢: —

et

is the required solution.

2
Example 4 Solve: %+mx%+4ymse¢zx =0 —=--=-(I)

Solution:
Here P=cotx, Q=4cosec’x, R=0
On changing the independent variable from x to z, the given equation (1) becomes

dz dz
&y attaw, o
Y s Ty —y=0 ——~(2)
dz? dzy dz [dzJ’
[&i&] dx
Let us choose z such that
2 2
[E) = .15 = doosec X _ 4 cos ec’x, al =1
dx al 1
2
= E.I'E ='2msec1' d’z = -2 cos ecx cot x
d-! 2
and 5=25msecndx=21&glan—

Then the coefficient of ‘:‘il in (2) is
Z




dz _dz
— 4 -
p o dx  dx _—2cosccxcotx+cotxX2cosex _
; dz ) 4 cos ec’x
=
; . _41:03&:21
and coefficient of y is Qj=————— =1
4 cos ec’x

Then the equation (2) becomes E+y=ﬂ

For C.F. we have D*+1=0= D = i o~ CF. = Acosz+ Bsinz
P.L =0, since the r.h.s. is zero.
Hence the solution of the given equation is

y = Acosz + Bsinz = Cycos(z + Cj), C,, C; are arbitrary constants

=, mx[llugtani;l-b cz)

2
Example 5 Solve x"’-gx—g: + 3x° % + azy = L:

Solution : The gi\r equation is

d’y 3dy  a’ 1
SRR e il
dx? xdx «x° x* O
2
Hee P=2,Q=2 andR=—%
x X

dx X a X
2
Sothatz = - ——, L SV o X
X X

Then, on changing the independent variable from x to z, the equation (1) is reduced to

19




+ y=
@@
dx dx
d'y a’ 1 1 1
o~ e e~ e
1
or, 9—¥+a23:-22
or, (D'+a’)y=-2z
For C.F. we have D*+a’=0= D = %ia -.C.F. =Acosaz + Bsinaz = C.ﬁos{arﬂ');}

: . -1
1 2 D’ -3f. D* 2
PlL= D +a2 )((—22) =—a—2[l +~aT] z=-a—l[1~—;2-+ }Z= -';T.I

. the solution of the given equation is

: 2
y:Clmﬁ{az+C2}-—:2-z

—-a 1
ZEClm{-i?'l-Cz]ﬁ'Ez—

§ 1.7 Miscellaneous examples

]

: : dzy {3 dy 1
Example 1 Given that the tion -+ |==2x|=-—
P equation x{x } 2 (1 x] -y

0 —-=~Q)
has a particular integral of the form x°, prove that n = —%,andthattheprhniﬁveufﬁw

b
equationis y = x 1[A + Bsin_'(x’k;)], where A and B are arbitrary constants.
\

2
Solutions: Let y=x", then % = nx""!, 5 = n{n - Dx""%
Then the equation (1) yields

(1 = xall - k™ + [% N zx,}ux*-= Ly g

or, nfl- nix“" - x”] + “I:}i x" - 'Zx“] =

20




0

=1

x“[—n(n =1) -2n—%}+x“"|:n[n -1+ %n] =0

or, —ix‘[ﬂtn’ —-§n+3n+i}+%x“"[ln’ ~2n+43n)=0

or, x'[4n? +4n+1]+x™ x(-2)ln? +n]=0.
or, (2n+1)’x"=20(2n+1)x""'=0

This equation will be satisfied for arbitrary values of x, if we have

@2n+1)>=0 and —20(20+1)=0 :bn:—%:*ntﬂor -

b | =

!
hence we take n = —%. Thus y = x" = x 2 is a solution of equation (1).

. !
Now to ubt&iumageucmlsulutinnufeqmﬁnn (1),wetake y = uv =x 2v(x)

o
50 that %:ng_%xzv
dly dlv -3 dv | -2 dv 1 -2 1 3
e T B O I S R ) &
dx dx J
LI 3 -
=12~d—:—x1%+%x 1y
dx

) 2
On substituting these, expressions fﬂr}',% and :x—:'thn equation (1) becomes
L EA 1 3 3
x(x-1 ﬂx 2 —Etx 2+ 3vx ? +[i—lx d—vx . -—lvx : -lvx 1=0
dx 2 4

4
1 342 I 1

on multiplying by x2,
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2 :
d’v [l_xjﬁzu

l-x)—+
x( _x}dxj 3 =
1
- (1 - 2x)
or, E+_3.____ =0 where p=£-
dx  (x - x%) dx
: 1
— {1 = 2x)dx
el T
or jp——! < + cons tan t
1 2
or lngpz—ilugix-x}+mnstmt
=lﬂg;|+lugﬁ.whueﬁisamnmt
(x - x?)?
R A
i o
(x - x*)?
Integrating with respectto x ,
dx dx
#ﬁj"'—"'—l“+B=A.‘|'—l“—'—'—“l-+B
(x - x2)2 x2(1 - x)2
l : & ik d
Weput x? = @so that —x 2dx = ddor — = 2d0
2 i
, x2
‘.v=ﬁ[—-_~.-zgg==+ﬂziﬁsin_'ﬂ+ﬂ
Vi -9

or,v = 2Asin~'(Wx) + B
1 1

Finally v = x ly=x 2

kA sin'(vx) + 8]

d’y 2
Example 2: Solve P =sec” ytany ---().
X

; d
Solution: Multiplying both sides of the given equation by 2 EY we get

Integrating with respect to x, we get
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jdx[ ]dx jd(um yhix + €,
ut_[d(d}'] d[lan y)+C,

m{—] - ualy+C

TLdx
d-]f oy 2 " - .

W'E_ tan~ ¥ + C,, taking positive sign only.

ndx = zd" = & o S
=2

Jlﬂn y + G LU S § J;m y + C; cos’ y
cos’ y
cos ydy cos ydy

,,,'sm y + C,(1 - sin® y) Jc,+{: C,)sin? y

Putting siny = v, so that cosydy=dv, we get
o " dv .
Jo +a-c)v - (€ -1

d C, 1\" |
dV - 1 Cl } x C|

'C -1.. ;
or, 1(: sin y = sin}JC; = 1(x — Cz]}
i

C,CI sinfyC, —1x - ;)]

sLosiny =
which gives the solution of the given equation

dz}' dy
Example 3 : = y’ - y,given that S = Dwhen y=1

Solution: we have




2
. d[dy] dx{P] PY P—- whmIF%

dx?  dxldx dydx  dy
Then the given equation becomes

dP_J
Pd}r—!!’ b J
or, | pdp = [ y’dy — [ ydy + cons tan ¢

4 4 2
m,p—=L—L+mmunt

2 4 2

2

dy S W P
ar, | — = = — - +C—-——>{2}
(#) e Ly

Given that % = 0,when y=1, ..equation (2)gives 0 = %_— I+CorC= %

Thus
dy]l RN 2
=] =—y = - -2y* +1'-— -1
- 5Y =Y B [y y ] (y' -1
d 1 .,
or, —=t—(y -1)
dx 2
integrating, Idx = :t*.EJ- zdy : + cons tan t
}f—-

dy +£,Cisaconstanl

1
i - K

3w i) 1
|‘=-n— = — |} =T)= 1
or :t[ _f[y_l 3'+1 5 liog(y = 1) — log(y + D)

i)
2 y +1

or, ]ug{}r - :] = +2(x — ¢) = —/2(x - ¢) ,taking only the —ve sign
¥+

2




il e—«ﬁu—e]

ur,L=
y+1 1
% b l+y+1 _ 20 4
y-l-y-1 i)
X—C
2
1
R=C E=C ={x_':[__ﬁ}
2}' _E_EI""':KEI+EH ] ﬁ
= e 13
e V) o T _ o1 -[x-—c][-_T]
1
= ——=(X=-c)
V2 .
i [
ET(:I.—i:] T(t—t} o e?i{l-c] +e?-fu.-c:| }
or,—y= 3 —
Y e—ﬁ{x-{:j e cj;{l_ﬂ }" JL(:-«:} T{u—:: -J_.-

§ 1.8 Method of variation of parameters

The method of variation of parameters is used to find the complete primitive of a
linear second order ordinary differential equation when its complementary function is known.

Let the equa.ﬁunbe F—?—E + P{ﬂﬂ +Q(x)y =R(®)  --==()
dx? dx
and its complementary function (C.F.) be .y = Cju(x) + Cav(x) - ----- —(2)

where C; and C; are arbitrary constants. Then u{x) and v(x) are two independent solutions of-
the equation

2

+P(x}d"'+c:-{x1y=o i)
so that f—zu Pd—“+(}u_ﬂ dﬁ+Fd—v+Q=(}-—-H]
dx? dx dx? dx

Clearly, when R(x)}=0 jthe expression C1H(K]+Cz‘n’{l} will not be the complete primitive of
the equation (1).

We now assume that y=Au+tBy = - -~ (5)

is the complete solution of equation (1), where A and B are no longer constants but
functions of x to be so determined that the equation (1) will be satisfied by the expression (5).
Thus the constants C; and C; in the expression (2) which is the solution of equation (3) are
replaced by the functions A(x) and B(x) respectively to obtain the solution of the equation
(1), For this reason this method is known as the method of variation of parameters.
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Differentiating (5) with respect tox we get y, = %=Al{x}u+ﬂ|{x]v+hu|+ﬂvt e )]

where A.l=%‘ﬂ.!=%,u.’:l—u md\rlzg;i

We observe that the unknown functions A(x) and B(x) an:.su far connected by the
single equation (5). But to determine them we require two equations (or conditions). '

We can now impose on them the condition:- AxtBi(xpv=0 ———(7)
Then equation (6) reduces to yi=Au+By, (8)
. q 2}'
Differentiating (8) again we obtain y, = F—: Au +Byv,+Au,+Bv, ——-(9)

Substituting the expressions for y, yi, and y; from (5), () and (9) in equation (1) we obtain
[Au, +Bv, + Au, + B,v, |+ P[Au, + Bv, ]+ Q(Au+Bv) =R
or, A(u, +Pu; +Qu) + B(v, + Pv, +Qv) +(An, +B,v)) =R
The expressions within the first two brackets vanish by virtue of (4)
Ay By, =R — -~ (10)
Solving equation (7) and (10) for A, and B, we get

Aywibog : R ¢ M. W O
dx uv, — uv dx uv; — WV

integrating these, A(x) = f(x) + k; and B = g(x) + k, ,where

vRdx

v — uv,

uRdx

————— where k; and k; are two constants of
v, — v

f(x) = f
integration .

and g(x) =I

Putting these expressions for A and B in (5) we get the required solutions as
y = (f(x) + kj)u + (g(x) + ky)v

Note : The method of vanation of parameter can be applied only when the complete C.F. of
the given equation is known. It is applied when the complete C.F. is known, but it is difficult
to obtain the particular integral of an equation .

§ 1.9 Solved examples

2
Examplel. Solve the equation :ﬂ—f + 0’y =seenx —— - (1)




2
Solution : The C.F. on solution of 5 +nly =0 is y=Cjcosnx+ Cssinnx, where C;

and C; are constants.

Let us assume the solution of equation (1) as y=Acosnx+ Bsinnx —(2)
where A and B are functions of x to be determined.
From (2) we get %:—ﬁnsinnx+3nmm+ﬁ,mnx+ﬂ,sinm

Theﬁmﬁtiunsﬁ{x}md B(x) are so chosen as to satisfy the condition

Ajcosnx + By sinnx =0 -—==1(3)

Then g-xy- = —An sin nx + Bn cos nx

=An’® cos nx — Bnlsinnx—ﬂlnsi.nm + Bin cos nx

—nz{ﬂmnx + B sin ox) — An sin nx + Byn cos nx

= -n’y — Ajn sin nx + Byn cos nx
: ; dy d’y .
P‘ul‘hngthcmmﬁmmfor}r,-&x-—, and Fm(l}w:gﬂ

I—nzy-ﬁlnsinnx+B}nmsnxl+ l'lz}r'——secnx
or~Ansinnx + Bneosnx =secnx ---(4)

Multiplying (3) by nsinnx and (4) by cosnx we get

~ AN cos nx. sin nx + Bjnsin’ nx = 0

: 2
= Ajn cos nx.sin nx + Byn cos” nx = sec nx cos nx

Adding the last two equations, one gets
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nB, (sin” nx + cos’ nx) =1 ~B, ==

sinnx 1
= ——tannx
COSNX n

Then, A,=-B,

A=j%dx=_[-%tannxdx+ﬂ,

=—1jsmmdx+ﬂ,=lI_mud{ﬂl~l+C|:Lzlﬂgmm+Ct
n” cosmx n? cosnx n n
and B=jB,dx=ljdx=lx+c2

n n
~.the complete solution is  y = Acosnx + Bsinnx

or,y = [Lilngmsnx +C,]cm:nx +[—2— +Ci]s'mmr.
n .

: : nx X
= C,cosnx + C; sin nx + log cos nx + — sin nx.
n

“2

I 1
Example 2 Snlveﬂreequaﬁnnigq- 4y =4tan2x - - - (1)

djy

Solution : . The C.F. on solution of -d? + 4y = 0is

y = Cjcos2x + Cysin2x, where C, and C; are constants.

Let us assume the solution of equation (1) as y=Acos2x+ Bsinlx (2)
where A and B are functions of x to be determined. -

From (2) we get l:%=—ZAsian+ZBm52x+h,msh+Bism2x

We impose the following additional condition on A(x) and B(x):
Ajcos2x + Bysin2x =0 ---(3) .

Then % = -2A sin 2x + 2B cos 2x

and

—4A cos 2x — 4Bsin 2x — 2A, sin 2x + 2B, cos 2x

—4({A cos 2x + Bsin 2x) — 2A, sin 2x + 2B, cos 2x .
—4y — 2A, sin 2x + 2B, cos 2x

1]
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Putting the expressions for y. dy and ﬁmu}wcgm
¥ le dI:

[- 4y - 2A, sin 2x + 2B, cos 2x] + 4y = 4 tan 2x

or,~2A, sin 2x + 2B, cos 2x = -2 tan 2x - = = (4)

Solving equation (3) and (4) for A, and B, we get

A, = -2 tan 2x X sin 2x,

B, =—A]M=+2mn2xxsin2xxcotlx='25inh

sin 2x
# A= [Adx = -2 tan 2x.sin 2xdx + C; -
= - tan 2x sin 2:&&—]{25&:2 2x| sin Ixdx Jix +C,

cos 2x cos 2x

= tan 2x.

—Zjlmr:z 2x

dx +C,

= sin 2x - 2 sec 2xdx + C,
= sin 2x — log(sec 2x + tan 2x) + C;
and

B = [Bydx = 2[sin 2xdx + C; = —cos 2x + C;
~.the complete solution is

y = Acos2x + Bsin2x

= C, cos 2x + C, sin 2x — log(sec 2x + tan 2x). cos 2x.

Example 3 Solve the equation

2

2 d%y dy 1

E——+ I —=+y= v i L1}
dx? ax Y a - x)*

" Solution : To obtain the C.F. of equation , we have to solve the equation

2
12¥+Sx%+y=ﬂ—-—[2}

Letusputx=¢" or logx=z,

Suthatd—}r= 2 B 4 or,xd—y- L
dx dz dx x dz dx dz
d’y

2 F
m‘jd xd_zri_fi_y:d_fz:l .
dx’ dx dz"dx «x
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2 2 2
or XEH=H_1£"—:H_£
d?  dz'  dx @’ dz

Then equation (2) becomes
d’y dy . dy
— o et G ey
32w T T
{D2+1D+l]y=ﬂwhere1)=%
or,[]]+l}13.r=ﬂ,

Auxiliary equation is (D + 1)> = Oor, D=1, -1

.

Sy=(Cz+C,)e™ = (C, logx +C1]..1. =
X X X

or, y=Cu+C,v
where u=m.v = land C,,C; are constants.
X x
To solve equation (1), we take as the complete primitive
Y=A({x)u+B(x)v -—-—(3) where A and B are to be determined.

'I'l.'li.':l'l)"l =%:AIU+BIU+ME+B‘H

We now impose on A and B, the condition
Au+Bv=0 ---(4
~ ¥ = Ay, + By, — — - (5)

2
m}rz =i"¥'=ﬁlu'|+B|V!+M1+B\'1“"‘“"{E}

Substituting these expressions for y, y; and y; in equation (1), we get

1
(1 - x)?

1
(- x)?

::z{ﬂmz + Bvy + Ay + Byvy) + 3x(Au, + By} + (Au + Bv) =

ur,'ﬁ.{xiui + 3xuy + u) + B[xzvz + 3xvy + V) + xz{A.u, + Byvy) =

Here the coefficients of A and B vanish since u and v are the solutions of the equation (2)

.. the last equation becomes




1

SN S—— 1 e
S e - -

ﬁ.l.l; + Blvl =

Also, we already have Au+Byv=0 cvememe (4)

Solving these two equations for A; and B, we get

i ___ R wm“lzi[@%%_ﬂgm___l_
Vi - uv v, — uv de i\ x x A X
_ 11 logx logx (-1} _ 1 logx logx _ 1
e S I[xz :r.z] x [xz] ¥ o X" %,
1 1
2
N ( ;c} x 1
2 (1-x)
X
s —da-x | 1
In A = +a
tegrating I _[ (l—x] {1__1]
1 log x
B, = x“(1-x) E o logx
= {1
¥’ _
logx dx 1 dx
~B= sdx +b=-1] + fq—x +b
!{1 x)? 0“1{1—:}2 }-{x I{l—x}*}d’
=-I,<:.g::>c:I +I— —~—dx+b
[ 1 +b
-x
or, E:-%Iogx+lngx—log[l—x}+b
-x
s y=Au+Bv
1 logx 1 1
= +a +| - logx + logx —log(l—x)+b |—
1-x X 1- X
= : ]ngx+alngx— : iﬂgl+logx_lug(1—x}+h
x(l—x) X x(1—x) X X X

or,y =[(a+logx + b—log(1 - x)}]
X

§ 1.10 Riccati’s Equation

The first order non-linear ordinary differential equation

3




% + P(x)y + Qx)y* = R(x), Q(x) # 0, ~—-—(1)

is known as the generalized Riccati’s equation .

This can be reduced to a linear equation of the second order by the substitution

y==-S2 L)

Qu dx
through which the dependent variable y is transformed to u.
, . dy 1 du 1 (@) 1 dQdu
U , we obtain L N L e T B S
sing (2), we o P [dx) g
Then equation (1)} becomes
1 dn 1 (du) 1 dQdu 1 du -1 (duY
—_——————| ———— = P(x)——+ x——=—1 =R
Qu dx? Qu’[dx] Quardr Dquax® 20 Q‘u=[dx] )
z
o, 48, |p-LRN® pewt -=1@)
dx Q dx Jdx :

This is a linear equation of second order in u and can be attempted for a solution by
the methods discussed earlier.

§ 1.11 Solved examples

d}' 2 1 3 2 1
Example 1, Solve — + =y + = x'y" = — — - — (I
g x xT2YY T ®
Snlutiun:HercP:-E,Qzlﬂ,R —.
X 2 2x
by a2 1
‘:kldl xil.ldl

jﬁﬂl_“_iﬂ_.h%_u[éﬂf+£_?_iﬂ_“'+lxix 4 [Eﬂ]z_-l_
ux’ dx? x4y dx xipl \dx X x? udx 2 x%u? Ldx 2x
d®u 3 du d[du]z 2du 1fdu} 1 x%u

— ——— — — —| +=—+—|—| =—x—

dx? xdex uldx xdx uldx 2x 2

2 F ]

i_"',*,l,f'r_'i_x_u:{}_-"[z]

Gr'dxz x dx 4




1 ’ 11 #
Here P(x) = -+, Q(x) = - %R = 0
X 4

To solve the equation (2) ,we change the independent variable x to z by the

substimtion
o EY.
dx al
Then
P(x) = &
e
o ik _ Rkx) _
Qi(x) = -F R —I,R|(x} e 0
HE (&)
i d’u 1 1
Then the equation (2)reduces to a—l:—~—u=ﬂ or, D*-=p=0
dz® 4 4
1 1
1 L
Thealuﬂjazjrequaﬁonisﬂz-i={)=n=i% u=Ce2 +Ce?
Finally,
2 1 i L
= Ce? -C,e? oo By
_ldu_22 2.1 G,
“aa ¥ L & x 2 kG %
Cie? +C,e? e’ +—e
o
’ T - z %
Finally, on putting, = k and replacing z by — we get
1
4 3
1l et —ke *
T RR
et 4+ ke ¢
dy g
EumplelSﬂlvBE—(tanx+3ms X))y + (cos® x)y* =-2 —===(1)
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Solution: Here P=(tanx+3cosx), Q=cos'x, R=-2

1 du mczxﬂ

PI.'I. ! = —— =
ung ¥ Qu dx u  dx

Weget%}: me.smxm:;xudx —3

Thmeqmﬂqn{l}bemm::s

mzxd1u+r2mzxmnxﬂ_mzx[ﬂ}z_
dx vl \dx

u  dx? u

F i F 2
sec
{tanx + 3cosx) % 1l"'':l—"ul+|:-.:c:-s"xxsmlx(f‘iﬂ =2

v dx u dx

2

or, E—?+2m::x£—mnxﬂn3mxﬂ=—2umslx
dx dx dx

2
or, %x-];+(mx—3cmx}-:x—“+2{mz x)u=0

Here P’=tanx — 3cosx, Q"=2cos’x, R'=0. To solve equation (2), we change the independent
] 3 F
Q_J2008X _ex ¢ nzesax =gz  ad

vacisblex tozby S | =
dx a 2

d’z  _.dz
S oap— ;
dx’ dx —sinx+(tanx—3cosx)cosx
P(x) = R -
dz cos" X
(&
_ —sinx+sinx—3cos’x) _3cos’x _ .
cos” x cos® x
# 2 11 = #
Q(x)= 9 “aa mi =& R (x)= =1
{E] cos’ X [g]
dx : dx
Then the equation (2) becomes
d*u du -t
E —3—+2us= {3)
or (D™-3D+2)u=0, where D = .é"_
Z
D2-3D+2=0  Or, (D-2)}D-1)=0 Or,D=2and |

The auxiliary equation is

nu=Ce? +Chet

M.




Finally, we have the required solution of the given equation (1) as

_ 1 du_ 1 2CeM +Cyet dz
Qudx  cos’ x C,e® +Cpe® dx

. C :
2‘:2:1: X 4 2 asinx

¥

l=J.J:in:l _'_i:_;_ sin x ¢

h!n’n:_l_h:inn
L3 o =Isin:r. +k.esin:
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UNIT 2
Solution in Series

2.1 Introduction; Consider the second order linear differential equation
d’ d
au[x}ax—f +a‘{x]§+ a,(x)y=0 (N

Sometimes an equation of the form (1) may not be of any standard class which were
discussed earlier in chapter 1. In that case, we may fail to obtain its solution in terms of
known elementary functions which are made up of integral or fractional powers of x, sines
and cosines, exponentials and logarithms such as '

|
(142x)e*, sinx + x cosx, x'?+x ' | x + logx, e* etc.

The first and the second of these functions can be expanded by Maclaurin's theorem in
ascending integral power of x. The others cannot be expanded in this form. Of course the
last function can be expanded in powers of 1/x.

In such situations, (when the solution of equation (1) can not be obtained in terms of
elementary functions), we must seek other methods of expression for the solution. One way
of secking the solution of equation (1) is to assume that this equation has a solution which
can be expressed in the form of an infinite series, say

c,;,+c1{x-xu]+cl{x-xu}:’+m=icn{x-xﬂ]' {2)
=0
Where ¢,,C,,C;,* C,,... are constants. Under this assumption, the coefficients

CgsCy €15 C,» ... can be determined so that that the series (2) satisfies the equation (1)

The simplified form of equation {1) is

d? d

—dx—i’+P.{x}§+P;{xw=ﬂ (3)
Where p, (=25 and  p, =22

a,(x) a,(x)

The solution so obtained in terms of infinite series in powers of (x-x,)with the
independent variable x, is known as power series solution of the given differential equation.
Many important equations like those of Legendre, Bessel, and Gauss (or Hypergeometric) are
solved by the method of series solution. An expression of the form (2) is called a power
series.
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Definition: A function f{x) is said to analytic at x = x, if its Taylor series expansion about
Xy, namely

= f{nj
z _"EIXL} {x-xu}ﬂ

n={

exists and converges to f{x) for all x in some open interval including x,.

All polynomial functions are analytic everywhere .The function e*, sin x and cos X
are also analytic everywhere. A rational function like p,(x) and p,(x) given above is
analytic everywhere except at those values of x at which the denominator a,(x) of the
rational function is zero,

Ordinary point and singular point
The point x, is called an ordinary peint of the differential equation (1) if both the
functions p,(x) and p,(x)in the equivalent normalized form (3) are analytic at x,. If

either (or both) of these function is not analytic at x,, then X, is called a singular point of
the differential equation (1).

Ilustration: Consider the differential equation

( o AP BTR > (4)
* )Ef xdx x}r-

2
Its normalized form is d—}r+ X A + .
dx?  x(x-1) dx x(x-1)

y=0

1
Here p,(x) = ﬁ  PaX) =

The function pi(x) is analytic everywhere except at x = 1 and the function px(x) is analytic
everywhere except at x = 0 and 1. Thus x = 0 and x = 1 are the singular points of the
differential equation (4). All other points are ordinary points.

Theorem: (for existence of power series solution )

If the point X, is an ordinary point of the linear differential equation (1), then this
equation (of second order ) has two non-trivial linearly independent power series solutions of

~ the form, z c (x—x,)" and these power series converge in some interval
n=i

|x- x.l{ R (where R > 0) about x,.

The general solution of the equation (1) about the ordinary point x,may be
obtained as a linear combination of these two linearly independent solutions.
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2.2 Power series solution about an ordinary peint.

Here we give the procedure for obtaining the power series solution of a linear
differential equation about one of its ordinary point through the following examples

Ex.1 Find the power series solution of the differential equation

F
gx:: + x '—;—f + (x*+2)y=10 (1) in powers of x about the point x=0.

Solution: Here p,(x)=x, p,(x) = x’+2, which are analytic functions of x for all
values of x including the point x =0.
So, two linearly independent power series solutions of the equation (1) about x = 0 should

exist.
I;etasohltinnbe y= Ec'{xﬁﬂ]' = 2 c,x" (2)
n={ n=l
so that % = %{:a +.clx+ ¢, X% 40 € X" +}
= ¢, +2c,x+3c,;x 4 tne x4 = z-:c_mc"‘

2 . i
% = ¢, 2.1+¢,3.2x +¢,4.3x" +--+e nfn—1)x"F +--r = 2, Cpnm-1x"*
n=21

putﬁng these expressions in equation (1) we get

: i ¢ .nn—-Dx"? + x i ¢, nx"" + {xz+2}iclx“ ={)
o=l o=l

=1

or, z-: ¢,n(n-1)x"? + i c. nx" + icnx"+1+2innx' =0--(3)

=2 =1 n=0 nz=0

Now, z n(n-1) cnx“'z ,put m=n-2 . whenan=2,m=0

=2

= i {(m+2)(m+1)¢_,x"
m={

=Y (m+2)n+1) ¢ ,x" - misadummysuffix .m—n.
=l

The 3" term= )" ¢,x™* , put m=n+2
n=ll

k]




Then the equation (3) reduces to

-

z (n+2)(n+1) ¢, x" + inc.x" +icﬂx" +Zicnx“ =0
E: =l m=il

m=l n=2

- L]
or 2.1e,x" +3.2.c,x' + E (n+2}n+1) ¢,,,x" +lex'+ znc_;“
=2

B=2

- A
+ Y cuax" +2ex" 420X + 2)c,x"=0
n=1 .

=21

or, (20, +26,)+(6c, +¢, +26,)x+) [(a+2Dm+Dc,, +nc, +¢,, + 2¢, ]x"=0

- a=l

or {?.r:.,,+2-::1}+(3-|:,+6c3]x+i[{n+2}{n+l}:mz+{n+2}:“+cn,11x“ =0 ....(4)

w=2

Since the relation (4) is valid for all x in the interval of convergence |1—0|~= R, the
coefficient of each power of x in the left hand member of equation (4) must vanish. This
leads to '

2o+ 2=0=2c2=-=¢q ceed 5)
9 |
gt =0=c —-Ect ...{6)
and (n+2Kn+ ez +(n+2)cq+ca2=0,n22 A7)

The condition (7) is called the recurrence formula. Through this relation, we can express
_each coefTicient cys+2 for n = 2 in terms of all the previous coefficients ¢, and cq.

-2k, +eay .59 . A{8)

T Rom ) G T T 0 2)

forn =2, (8) gives

4c, +cu. _ _4'(_‘:0]"'":0

— 5 I.lSi.“. 5
o 3.4 3.4 80)
1
or ¢, —zc‘ ...... (9
{-l¢]+c
5‘: +c 2 ] I
forn=3, =3 1l-_ , using (6
orn Cq 45 45 g (6)
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3
mc5=+ﬁc, ....(10)

Putting these expressions for the coefficients in the assumed solution (2), we get

1
—cgx" +1c:,x‘i .
40

4

1 1 3
=cﬂ[1~x* +Ex* +---J+c,1kx—-ax’ +E1’ +] .(11)

This gives the solution of the given equation (1) in powers of x near the ordinary point x=0.
The two series in bracket in (11) are the power series expansions of two linearly independent
solutions of equation (1), and cq and ¢, are arbitrary constants. Thus the combination of the
series in (11) represent the general solution of the differential equation (1) in powers of x.

1
y=cy+¢X—CyX” u-iclx’ +

Exercise 2: The differential equation

(i-x )——-— Y +n[n+l}y 0 4

(where n is a constant) is called Legendre's differential equation of order n.

(a) Show that x = 0 is an ordinary pn'int of this differential equation and find two
independent power series solution in powers of x.

(b) Show that if n is a non-negative integer, t]:uan one of the two solutions found in part (a)
is a polynomial of degree n.

Solution: Part(a) The normalised form of equation (1) is
d’y  2x dy | n{n+1)

__I___)dx ) 0 (2

Here P(x)]_ = ]2*2} =0 and szx]],,f“T[ff}}} =n(n+1)
x=l nel

Thus x =0 is an arbitrary point of the given differential equation .

Let us assume its solution as

y=Yax =a,+a,X+a;X" +ota,x" o
par: :

.‘.ﬂ:a|+232x+3~a3x1+---+mfx"'+m-=Zm,x"'
dx e
dl}'__ i -1 o < -1
E:_z]a +3.2a,x +4.38,x7 +--+(O)(r—Da,x"7 +--= Y r(r-Na,x
r=2




putting these expressions in equation (1) we get

(- x"']Zr{r— la,x"2 - inm,x"’ +n(n + 1]§a,xr =0

r=l

r={l

or, ir{r—l]ﬂ,x"2 —ir[r —1)a x" - Zirarx‘ +n(n + l]ia,xr =0 ...3)
el r=t r=1

Here first term= Zr{r—l]a,x"z , putting m = r-2 so thatm = 0 whenr=2

=1
- E{m+ 2fm+1)_,,x"
m=0
= i{r+2}{rf‘£)a,+zx‘ — - ris dummy suffix.
=0
then equation (3) becomes

i{r+ 2)r+1)a,,x" =Y r(r—1)a,x’ —Ii ra x" +n(n+ l}iaTx‘ =0
=0 =1 =0

=3
or 2.la,+3.2a;x+ i{r+2:{r+l}1mx’ —r-ir(r ~lax"-2Lax" -
=1 =1

2> ra,x" +n(n+1)a, +n(n+Lax+ n{n+1)Y ax" =0
r=2 i=1

or {2a, +n(n+1a,}+{6a; —2a, +n(n+1a, Jx + i[(r+ 2)0r+Da,,, @
! r=12
~r(r—1)a, —2ra_ +n(n+Da, Jx" =0

Equating to zero the coefficients of various powers of x on the left hand side of equation (4)
we obtain the following relations :

xn:—iZaz+u[n+l]ao=ﬂ=:-a:,=~%n{u+l)an

x':-pﬁa‘—zaj+n{u+1}a,=ﬁ=>33=-"5-[z—n{n+1_}]a,
.. -

= 3!{11 1Yn+2)

The recurrence formula forn 2 2 is

(r + 2)(r + 1)acsz - r{r-1)a, - 2ra, + n(n + Da,=0
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| _ r(r—1)+ 2r—n(n +1)
e = (r+2)r+1) o

or

_ (r+n+1)fr—n)

“ =) «A3)

or .a

Putting r =2 and 3 in (5) and simplifying we get

il n!r=l[l:l—l}{n-l]élrl:l+2]{11+4~:Ia’

- (n— 1].11.{1:: Din+3) "

Putting these expressions for the coefficients in the assumed solution we obtain

Faﬂ[t_ n(+l) » (@-2)n@+hn+3) , *?--]+a.[x—wxs
2! 4 %

-3 {n-lljlltl'*zl @+4) s _} ©)

Each power series within the brackets in the relation (6) is a solution of the given Legendre's
equation and they are linearly independent of each other. Thus (6) gives the complete
solution of the differential equation (1).
Part (b): When n is a non-negative integer, then because of the factor (r-n) in the recurrence
formula (5) a set of coefficients will be zero beyond the term corresponding to r = n. When n
is odd, the second series in (6) will be terminated beyond the term corresponding to x". Thus
the second series will be reduced to a polynomial of degree n only.

Similarly, when n is even, the first series in {6) will be a polynomial of degree n.
Exercise 3: Solve y"+(x=1)y'+ y=0 in powers of x - 2.
Hints: Put v = x - 2 to convert the given differential equation to

d’y dy
C¥ i wv+nZiy=0
dv? iy ]dv y

The series solution of this equation about v = ( may be obtained and then replacing v by {x;
2), the required solution is found as :

satt-ia-aritneete Lo Naoab e b i ool
y—au[l z{x 2) +ﬁ{x 2) +12{x 2) 20[::.2} 180{1 2" + ]

+ a][{x n 2}—%{1: ~2)? —%{x ~2) +'E.:x _2)* _%h )8 +}

2.3 Solution About Singular Points; The Methed Of Frobenius:

Suppose Xy is a singular point of the linear differential equation
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ﬂ(x} L ta, {x]a+ai{x]y 0 kD)

In this case we are not assured of a power series solution of equation (1) in the form
y=2 c.(x-x4)" 5
n=0 -

Such a solution about a singular point, in general, does not exists.
Dlustration: For the eqt-.mtion
x y"+(x? —x)y +2y=0 ...{3)
x = 0 is a singular poirit since a,(x)] _, = x’ L=,, =0.
If we assume a solun-:an of the from
y=cotox+ex tox +ext ... )
and substitute this in the given equation (3), we get
X(2c2 + 3.265x + 4.3cex® + 5.4 e’ +...) + (- 1)1+ 26% + 3oax’ + deax’ +..)
+ 2egtox +¢ﬂz+c313+m4+ =0
On simplification this reduces to
2cg + Cix + (262 + e + (5e3 + 2e2)x° + (10cq + 3cy)x’ + ... =0

If the solution is to be satisfied identically, it requires that
¢=0,¢1=0,¢; = %c,=ﬂ, cl:uéczzﬂ etc.

Therefore, there is no series of the form (4) satisfying the equation (3). So it requires
to obtain a different type of series as a trial solution of the given differential equation about a
singular pomx X = Xp.

Definition: The singular point x = X of the d:ffmmtla] equauon (1) is called a regular
singular point, if the functions (x-x)P;(x) and (x-xg) Pa(x) .-(5)

¥ a0 _5,()
here Py {x) i) and P,(x) s

are both analytic at x; i.e. the functions in (5) can be expanded in Taylor series about x = Xy.

If either (or both) of the functions defined in (5) is not analytic at x = Xo, then xyis
called an irregular singular point of the differential equation (1).
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MMlustration 1: Consider the differential equation
(1+x)y"+2xy" -3y=0
Here ag(x) = 1 +x, a;(x) =2x, ax(x)=-3

Atl +x=0ie x=-1,a0(x) andsox =-1 is a singular point of the given
differential equation .

a(x) _ 2x {x} o

Al ml = 23

il ag(x) 1+x’ nal)= a,(x) 14x

Now {x—[—l}}P,{x]:{x+l]l—23;=2x which is analytic at x = -1

and  (x—(-1)}P, 0= {mr'f }}

=3(1+ x) which is analytic at x =-1

~x =-1 is a regular singular point of the given differential equation .

Ilustration 2: Consider the differential equation

: d’y 2 dy x+1
2 +2 -2 + Iyy=0 + + =0
-2 kA :' aHly=0 o S 'Ya-& Cx-2¢
2 x+1
Here P(x)=—— and P.(xX)=——
1( .} KE{K—E] 2[ } xz{x_z}z

The singular points of the differential equationare x =0 and x = 2.

Let us first consider the singular point x = 0.

The function R, (x) =xP,(x)= ( - ) is not-analyticatx =0
x(x—

where as Rl[x]zszz{x]: x+1., is analytic at x =0.
(x=2)"

So x =0is an irregular singular point of the given equation.

Next, consider the singular point x = 2.

Inthiscase R,(x)=(x-2)P(x) =% is analytic atx =2
X

2

and R?(x]z{x—zfﬂlx]:f—ﬂ is also analytic at x = 2.
X

Hence x = 2 is a regular singular point of the given differential equation.
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Theorem: If xo is a regular singular point of the differential equation

1

d’y

d
30{31E+ﬂ|[xl*&%+az{x]y=ﬂ st}

then this differential equation has at least one non trivial solution of the form
y=(x=%g)* X ¢, (x—x,) --A2)
r=0

where p is a definite (real or complex) constant which may be determined, and this solution is
valid in some interval 0 < | x-xo |< R (where R >0)about x,.
1.4 The method of Frobenius:

The procedure of finding a solution of the differential equation of the type (1) given
above, about a regular singular point X, starting from the assumption of a series solution of
the type (2) is known as the method of Frobenius_. The procedure is laid down as under .

Procedure: Let the solution be yz{x-xn}”Zc,(1~xu}'=}:cr(x-xﬂ]"’" (3)
T =i} r=0 :

where ¢, # 0 and x, is a regular singular point of the differential equation (1).

Assuming term by term differentiation of the seties (3) we get

ﬂzi([”‘ r)c, (x—x,)""" @
dx =
dz¥=i{p+r]{p +T—]}Cr{x_xuzlp4r-2 5)
dx® =

On substituting these exprassiuns. for y, ¥, and y",the differential equation (1) becomes

2,03 @ +1) @+r-De,(x-%,)*" +2,(0 L, O+1) P, (x—x,)*"

+ azl{x}i c.(x—%,)"" =0
r=d)

On rearranging the terms on the left hand side in ascending powers of (x - xp), this equation
finally takes the form '

K, (x-x,)""" K dmam + K, (x-x) " 4020 (6)

where k is a certain integer and the coefficients K; , i =0, 1, 2, ... are functions of p and
certain of the coefficients ¢ , of the solution (3).

45




In order that (6) is valid forall x in 0 <| x- xp] <R wémusts:t
Ko=Ki=Ka=...=0.
The coefficient K, of lowest power p + k of (x - xg) equated to zero gives Ko=0....(7).

This is a quadratic equation in p, called the indicial equation of the differential equation (1).
The two roots Py, pz (p1 = p2) of this indicial equation are called exponents of the equation
(1) and are the only possible values of p in the assumed solution (3).

The other equations K, =0,K, =0--- (8)

allow us to determine the various coefficients ¢, in terms of p and other preceding
coefficients.

We now substitute the larger root p; for p and determine ¢, forr=12,....n,... to
satisfy the conditions (8). When c; are so chosen, the resulting series (3} is a solution of the
desired form.

If p» # p1, we may repeat the earlier procedure by using the smaller root p; instead of
pi1. In this way a second series solution of the desired form (3) is obtained. However, this
second series solution may not be linearly independent of the earlier solution with p = p;_ In
that case, we have o search for a second solution linearly independent of the first one.

It will be seen in discussing the following examples that when the roots of the indicial
equation are equal or differ by a positive integer, then the second solution is to be obtained in
a complicated form to make it linearly independent of the first solution.

2.5 Examples of various cases of Frobenius method.

Now we consider the various cases of the roots of the indicial equation while
obtaining series solution of linear differential equations by the method of Frobenius, through

some examples.

Case I) The roots of the indicial equation unequal and differing by a quantity which is
not an integer. .

£

Exercise 1. Use the method of Frobenius to find solutions near x = 0 of the differential
eguation

d’y _dy
zx’F-xaﬂx—s;ﬁwﬂ (n
Solution: Obviously x = 0 is a singular point of the equation (1).

; : x 1 x-—5
H P T — i — P X)= 3
% 1(x) 2x? 2x (%) 2x?

R,(x)=(x=-0)P(x)= ,E’E, = —% which is analytic at x = 0.
X




which is analytic at x = 0

Rz{x};{x—ﬂlz Py(x) = x* (x—3) ={x;5]

2x?
Hence, x = 0 is a regular singular point of the differential equation (1).

So, we assume the series solution

y=2.c,xP*" =xP(cy +Cx +CyX’ +6,X° +00), co 20
- .
so that %:E{p+ rext ,
r=l{)
dI}I' -
and — =Y (p+r)p+r-Necx*** .
dx® =

On substituting these expressions, the given differential equation reduces to

(2)

22 Y P+ E+e-De ' xT (+1) e x4 x-9), 61" =0
= =0 -

or T RE+DE+r-)-(E+0-5kx™ + Y cx" =0

=0 por
Now the last term in the equation is

YexP =3¢, x"" putm=r+lwhenr=0,m=|
=i} m=l

= Zl‘-‘n,_.xp" -~ m is dummy suffix.
r=l
So we have

;[i{p+ rIp+r-—]]—[p+;-}_ 5}31xpﬂ +§cllep+r BE =

or, [2p{p—1)-p—Skox® + ‘Zl{[zip +r)fp+r-1)-(p+r)-5k, +c,  x* =0

The lowest power of x in (3) is x".
Its coefficient equated to zero gives us the indicial equation
[20(p~1)-p~5k, =0

or, 2p’-3p-5=0 e, #0.
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e 3+.J9-42.(-5)

22

‘l'l:uaa1‘~'.'.u|:--tsam;:-,:E and p,=-1
2 5

= — ,-1
2

' These are the exponents of the differential equation (1) and are the only possible

values of p in the assumed series solution (2). Equating to zero the coefficient of " in (4),
we get the recurrence formula

[2(0+Xp+r-1)-(p+1)-5k, +c,, =0, r=1 o-(4)

On putting p =p, = 3 in (4) , we get

{2[;+-§—Ir+§]_'[r+%]- 5}:, +C,, =0 : (r+ %]{Zrﬂ’_-—l}ui

=(r+%121‘+2]-5

or, rl2t+7k, +¢c, =0 =(2r+5)r+1)-5

=2 +Tr+5-5
=r{2r+?}
o Beb” C say (5
e r(2r+7)° > ®)
From (5), we get, by puttingr=1, 2, 3, 4 etc.
g T e s B . B N S
A=) 9 0 2T 2{+7) 22 9 198
'c3=— € _ 1l cy g

36+7)” 39 198 7722

Thus putting p = %in (2) and using these values of the coefficients, we obtain the

solution jf'=c,;,x3';(i—lx+~1—:&2 —;x’ +] ....{6) corresponding to the larger

o 198™ 7122
oot p=p,=%. .

We now put p = -1 in the recurrence formula (4) to obtain

{Z[r—ll.lul]—{r-l}—ﬂ]c:+cr_| =0, rzl

48




or, f{2r-7k, +c,, =0 ' 26 —6r+4-r+1-5

. S
of, o m—mett o yBl ¢ D) = A
r2r-7) =r(2r-7)

This gives forr=1, 2, 3 etc.

c. _c_u _ c lc,,,, c.,

Co ©p 1 e ¢

_n_
30 g 4{37} 49 360

L%
3

Thus putting p = -1 in the series (2) and inserting these values of the coefficients, we
obtain the second solution

y=cux'l[l+—l~x+ix +—x -Lx +] ....{(8)

The two solutions (6) and (8) corresponding to the two exponents p= 3 and -1
respectively are linearly independent. So putting co = a in (6) and ¢ = b in (8) we may put the
general solution in the form

y=ax Y[ln-l—xﬁr—!— Bl 2 x3‘+---)+bx"[i+-!-x+lxz+ix3——l—x‘-i--n]-
9 198 7722 5 3 20 360

where a and b are arbitrary constants.

In general, if indicial equation has two unequal roots = and f differing by a quantity
which is not an integer, we get two independent solutions by substituting these values of p in
the assumed series for y.

Ex. 2 : Find the solution in series for Bessel's equation of order n,

zdz}' dy 2 2 . .
X aax—2+1a+(x -0 )y=ﬁ ...{1) taking 2n as non integral.

Solution : It is easily seen that x = 0 is a regular singular point of the differential equation
(1). So, we assume the series solution

yuxfY o x" =) cx™ , ¢, %0 ...M4)
£l =

so that %:i{p+r};rxp+b" and —Y-E{p+rlp+r I s
=0
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On putﬁng these expressions, the equation (1) becomes

i[p+r}ip +r=1) x*" +i[p +1)e x"" + icrx’*”z —n?icrx"” =0
(] =0 ] r=il :

prrd prm _ pr
Hence Ecrx = Zcm_lx = Z{:,_,x
=0 m=2 =1

m=r+2
whenr=0, m=2

Or, g[{pw p+r—1)+(p+r)-n?f x*" + ic,_zx"“ =0

=2

Or, 53(9 "'1}'1' p- nz};nxp."‘ {(PH}:[H I- l:l+{p+ 1}-112};:1"”
"'iz{{P"'f](PH"U’f (p+r)-n’kx"" + Zcr_zx’" =0

Or, {Pz —n’ }’nxp +Eﬁ3+ I]z 'llll:lx#+I +§[{p + TI}J - nz}ir +cr-2}(p+' =0....(3)

Equating to zero the coefficient of lowest power of x i.e. of x” in (3) we get the indicial
equation {p1 -—-nl):ﬂ =0 , wherec, =0

~pP-n’=0 orp=%n ...4)
Thus p, =n and p, =—n
Since p, —p, =2n is given to be non-integral, we expect two series solution of the

form (2) to the given differential equation and these solutions should be lincarly independent
of each other. Next putting the coefficient of x™*' 1o zero we get

lo+17? -n?] ¢, =0 .5
Since the only possible values of p are given by (4) we have (p+1)* —=n? %0
Then equation (5) requires that c=0 ....{6)
Next, equating to zero the coefficient of ", r=2 , we obtain the recurrence formula

C..

' =_{p+r+nrp+r—n]

From this recurrence formula and the result (6), it is clear that all the odd cocfficients
ie. Cy=Cs =C7= ... Carel =1,

{p+r]z—n2}c,+cr_z=ﬂ Or, ¢ , T22 wul(7)

We now pﬁt p = p1 = n in (7) and obtain the first series solutions cnm:spaudiﬁg to the
larger root of the indicial equation.
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Puttingr=2,4, 6 etc. and p=n in (7),

Co (8 Cy

: =q_{n+2+11)111+1-.1'l}=“2('~"-""112 =*22[n+l}

<

L €3 . L. %y L o
S (n+4+n)n+4-n) 2{n+2}22{ 2[n+112} 2*2(n+1)n+2)

C, 1 Cy
= - = x
> (b+6+n)n+6-n) 2(n+3)23 2*2(n+1)n+2)

[

Cq

T 2 n+1)a+2)n+3)

Cq

Similarly, ¢, = =9 =(-y
mmularly, cCg € { ] 22'.1'!{114*11“4'2_]*“{!14"!‘]

2'4(n+1)n+2)n+3)n+4) -

Then the first series solution of equation (1) is obtained on putting p = n andgy=a as

x}ln x4rn xﬁ-—r!
y=a x"

“2(@+)) 2 2@+)n+2) Z3@sas2Nasd)

) z='_rs{n+1xn+z]---{n+r}+'"]

; - yl[x}zni ["-].](IMZT

2" n+1)n+2)--(n+r)

=au(x), say [ B)

Then putting p = p2 =- n in (7),

B : Cg &
'{—n+2+nI—n+2—n}_ 1.2{1—11}" 2*(n-1)

C, =

p c, _ 1 " €y _ €y
' (~n+4+n)-n+4-n) 2°2(n-2) 2’(n-1) 2°2(n-1)Xn-2)

=— =4 = l X a0
*" (~n+6+n)-n+6-n) 22x2(n-3) 2*2A(n-1)n-2)
. %

= 2°(n-1)n=2)n-3)

c

Cy —2 Cy

c, =——ruvrr-— =

*~ afar-20) erﬂ(n—l):n—Z]-=-[n;r]
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Thus the second series solution corresponding to p = p; = -n is obtained from (2) on putting

cp=bas

i —+1r

RS2 o oy o s

2 4

xﬁ

F
x r

daer

= bv(x), say

Hence the general solution of the Bessel's equation (1) can be written as

¥ = 1(6) + yals) = au(x) + bv(x)

x! x-l

= ) 2 2a+1a+ 2]+"'}+b"_n[‘+

Bessel's function: If we put the constant a =

Thus J, (x)=

¥ 2" (n-1)fn-2)---(n-r)

"”‘_n[“ (1) 2°2(a-1fn-2) 2°3(a—1)--(n-3)

+] saelkd)

x2 x*

22{n—l}+ 2* 2(n—1)n-2)

1
2"T(n +1)
then it is known as the Bessel's function of the first kind of order n and is denoted by J,(x).

1 i (_I}rxn-h
2°T(n+1)5 2 #(n +1)(n+2)---(n+r)

5 |
& 27 T+ D)} +1)n+2)---(n+r)

% - ([ x n+lr ] 1
‘?—E;{‘” [5] X AT@rr+1)

;< =
LQJ"[I}z?;;r!T‘(n+r+]){E]

|

27" M(-n+1)

Next, putting the constant b=

+u-]...{m

in the solution yi(x) given by (8),

Nn+1)=oln
=n(n-1)"(n-1)
=n!

Also, I'n= je ™ dx

O Yoy,

in the second solution yz(x) given by (9),

we get Bessel's function of the second kind of order n and is denoted by La(x). Thus we

have
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an =n+2r

1 x
] =
(%) 2I~n +1}§22’.r!{n-i]{n—l}-n(n—r]

—n+lr 1

_}'j X
= = I—rn-lr A {(-n+)}n-1)n- 2)---(n—-r1)

- —n+2r
= Z[i) A 1
o\ 2 r {T(1—n)}(1-n)}2-n)---(r—n)

g ) _—iﬂ_ x —m+2r
or ]_,(}F}-ér!r{r—n%‘-”[zJ

The complete solution of Bessel's equation of order n is given by
Y = AJn(x) + BlLo(x)
Where A and B are two arbitrary constants.
Exercise 3: Solve in series the equation
20y —xy + (X +1)y=0

Hints: Proceeding as above, the roots of the indicial equation will be found as p = 1 and 1/2.
The solution will be :

]
e 1 1 ] 1 1
=Ax?1-— 2 xf o 6+'"]+HK[[-"— !..p.._-.-.-x‘_ ﬁ'+,u)
. [ 6" T168° " 66x168 10" T360°  78x360

where A and B are arbitrary constants.

Case I Roots of the indicial equation — equal
. sdly dy
Exercise 4: Solve the equation (x—x }ax-—1—+[l~—51]a—4y=ﬂ a1

in series convergent near the point x = 0.

Sabutiois Hom Pi(x) = - = ]‘5’;] :

= P(xy=- :
x-x2 x(1- 2( x(1-x)
Obviously x = 0 and x = 1 are the regular singular points of the given differential equation.

Let us take the trial solution near the point x = 0 in the form

y:{x—ﬂ}piar{x—ﬂ]' =ia,xp" ..-(2)
r=l} e={
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Then d—F:Z[p+r} a xP
dx =0

Rt .
d—f=2{p+ fip +r-1) a,x”?
dx r=0
On substituting these expressions for y, ¥, y", the equation (1) becomes
(x- x‘]i{p +r)p+r-1) a x""? +(1-5x)) (p+r)a x
r=0 r=0

—42 ax™ =0
or i[{p+r}{p+r-l}+{.p+r} 77 | i
r=0
-i]{pwr}[p+r—1]+S[p+r]+4]arx"" =0
=i

Here (p+r)p+r—1)+5(p+r)+4=(p+rf +alp+r)+a={p+r)+2}

So the preceding equation 18

Ylp+rfax"" -3 (p+r+2)a,x" =0
=) ]
Or, plagx® +3 (p+1)a x" =Y (p+r+2fa x™ =0 ...(3)
r=l =l

Here 2nd term = Z[pnlrr}zarxp"_'

=1

- putm=r-1,
=Z[p+m+l]zamlx‘"“ thenr=1=m=0

-l [—co=>m —deo

Or, 2nd term = Z{p +r+1)a_ x*"
=]

So the equation (3) becomes

pla x?! +ik|:)+r+1:|la“l —{p+r+2}2ar]x'” =0
=il 3

1




The coefficient of the lowest power of x, that is of x*! in (4) equated to zero gives the
indicial equation

1

pa, =0

-ra, #0, this gives p* =0, that is, p=00

...(5) are the roots of the indicial
equation .

The coefficient of x” equated to zero, gives

(e+1)a, ~(p+2)a, =0 or a, “{(2:?}3: L ....(6)

The recurrence formula is obtained by equating to zero the coefficient of x

(p+r+1)a,,, -(p+r+2)a, =0

{p+r+2]

Or ; Bl oy 4
{[:I+r+]:I1 Y 0

a4 =

Putting r = 1, 2, 3 etc in (7), we get

b+ 43 lo+2) {;)+3}
2ol el e o pel)

[ ST
T 1) g e

a, =

On substituting these expressions for the constants, the series (2) tums out to be
( writing ¥ for y)

2 3 2
J=a x"i!_l+ pral JRrIl e pas] ol Lo
T Lp+l p+1 p+l1

On putting p = 0 here, we get a solution of the given differential equation as

¥ =all+22x +3%x? +42x? 4| .(10)

But this gives only one solution instead of two, since we have two equal roots p = 0,0 .
of the indicial equation.

MNow substituting the series {9] in the LHS of equation (1} and sunph[‘}rmg it can be
seen that
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d’y dy - -
(x-xz)dx—f+[l-51]§—4y = 5 «ou(11)

Regarding ¥ as a function of x and p, let us differentiate both sides of the equation

i 2
(11) partially with respect to p.to obtain, ; (xwx’]i-;+[lw5x}-dix—4:|?=anai!pzx1’"]
S p

dx
]
= gy.2px"" +anpz i(Jc”—t) Put 6=x
; 9 or, log 8 =(p-1)logx
lﬂ_l logx
o s b -,
=2a,px"" +a,p?x" logx

Elﬂ O i p-1
—\x logx
As the differential operators are commutative, the last equation may be written as
d? d | -
—x e+ (1-5x)——4 | = 2a,px* +a,p?x" logx ....(12
|:(“ L &’ ( x}dx 3p oP oP B (12)
or, forp=0

21 @’ d ) _
‘ [(x—x ]§+{1—Sx}£—4 -g—] =0

p=d

dy

Hence — is a second solution of the given differential equation if p is put equal to zero after

differentiation.

Now from (9) we have

dy _ Z{p+1 [p+3] -2 @A
= =¥Vlo p +2

op g gx+a°x|: p+l‘ [p+1] p+1) (p+1)

PEAL, w3 N
+2[p+l]x{p+1}2x + ]....{13}

[ In obtaining the 1st term on the R.H.S. of (13) we have used that

P
v x® logx which is derived as given below :
p

Put 8=x" on logB=plogx
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© 1400 00 ox”
== =1logx , —=0logx;ie. —=x"logx ]
B dp dp dp

Now, putting p = 0 and 8 = a and b respectively in the two series (10) and (13) we

obtain
?=Bh+225+3!12 +4zx]+~--lzau{xl say

and 8 =bulogx + bx"| 2. xu—lx zjx—z 2+2x4x:§><x3+"‘]
ap I? 12 1 1

= bulogx—2b[112x + 2.3x7 +3.4x* +---] =bv(x), say
Then the complete primitive is y = au + bv.
In general, if the indicial equation has two equal roots p=o,0 we get two

independent solutions by substituting this value of pin ¥ and%_;- :

Ex.5: Obtain a series solution for the Bessel's equation of order zero,

d’y dy .
xE;E+E+ X}"=ﬂ t:l}

Solution : Here x = 0 is a regular singular point of the given differential equation (1).

We assume the series solution

y:Za,x"” ciodbBY

= 2 =
So that, L Y (p+rx™ :E%:Z{p+r;(p+r—l]3‘x""""
d-x r=l} dx =0

Substituting these in equation (1) we get

xi{p+rlp+r-i}arx“*"1 +‘Z{P+ P xt +xia.x"" =0
=0 =0 =0

Or, é[p+rlp+r-l]arxp”" +z=.;ar{p+r]x‘”"’ +§]a,x""“L =0...(4) Now

e - Put r+1=m-1
.zaixmm z xp+m -1
r=l

=2 or, r=m-2

whenr=0,m=r+2=2

-Za e
o -2
p— Whﬂﬂp-—-}m,ﬂ]-—}m
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So, equation (3) becomes

Slo+o+r-+ @kt + 3a, 5 =0

Or, plauxﬂ-'+{p+1}1a.x**+ka+1}1a,+a,_z]ﬂ""=ﬂ )
4 =2

Equation the coefficient of the lowest power of x to zero, we get the indicial equation,
pa, =0 or p’=0, ~a,#0
which has the equal roots p; =p, =0 vensl)

Equating to zero, the coefficient of x° in (4) we get
(p+1)a, =0

By virtue of (5), this requires that a; =0  ....(6)

The coefficient of x*'™ in (4), equated to zero gives the recurrence formula

[p+r]za,+ar_1 =0,rz2

a
or, a = L

T g

From (6) and (7), we observe that all add coefficients
8 =85 =85 ==y =0

Then from {7) we obtain the even coefficients as

T, |
o fp+2)
3 a, _ 1 -, a,

o e ey ) Gerppaay

- a,

e o e v e
2y =(1)

¥ ay
l(p + 2)p + 4)---(p+ 20)f

Putting these expressions for the coefficients in (2) we get on writing ¥ fory
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y=ax|1- ; xt+ . x* - : »
A [] (p+2) (p+2)(p+4) [p+2]’{p+4)’|[p+u:i}zx

1

[p+2)p+4)-(p+20)f

Putting p = 0, we get the 15t series solution ( on replacing a; by a)

$oot(=1f

xx2'+---] ..-A8)

1 L g 1 s
y, (x)= a[l _?x] + 27 42 ol 22 41 61 o +]
=2y (-1 'L[i)n . (9)
r=d {n!]l 2

The quantity excluding the constant 'a’ on the right hand side of (9) is called the
Bessel's function of the first kind of order zero and is denoted by Jp (x).

To obtain the second solution, we differentiate (8) w.r.L p to obtain

gg_:ﬂaf[l* L., 1 e i f+--.]
p ol @+ (++4) (p+2 - (p+6)’

+aﬁx"[ﬂ+ ok x2+{ ot : =4 }x‘#—

(p+2) {p+2]3{p+4)2+[p+2}1x{p+4)3

2

2 i
{(P+2}’[p+4]1(p+6}’ T2+ 4y +6r '

2 LT -
{p+2}’{p+4]’(p+6]3}x ]

Putting here p = 0 and ao = b, we get the 2nd solution as

2 2 2 1
| +bx“[ {1—4—?:*}

=2

p=0

o2 2 2 .
Tae  Tae 2ae]
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1 | 1 1 1 1
i Mﬂ{x]]DEI +h[2—1xz —W[l + ijl +m[l + "i'l'g]xﬁ +'":|
Or, y,(x)=bv(x), say.

The complete solution of the given equation is

Y =y, (x)+ v, (x) =2 T, (x) + buix)

Case I1I : Roots of the Indicial Equation differing by an lnteger. making a coefficient of
¥ ( the assumed series ) infinite.

Ex 6: Let us consider Bessel's equation of order unity,

. .
xljx—¥+x:1—y+(x2—l)y:ﬂ T )

Here x = 0 is a regular singular point. So, we assume the series solution about x =0 as

y=x*Yax" =Y ax" wherea#0 2
=0 =il
- 2 - 1
So that d—}r=Z[p+ r)l,xb’"’” d—1‘:=2{p "'TKF’"' r-l]arx{""'z}
dx =0 dx r=i)

Substituting these expressions in (1) we get
i(p +r)p+r-1)a,x" +i[p +rja x"" + ia,x"*“’ - iafx"" =0
r=i} red} =il =i

...(3)

S c ing,r+2=m
Now Y axP™=3%a, ,x*™" RENNES
r=0 m=2 r=0=>m-2

o pr
=D a,.%
=2

=l

- Then (3) becomes i[[p+ p+r=1)+(p+r)-1fa,x"" + ia,_zx"*‘ =0
. par

which can be rearranged to

(pz - 1}1“:" + ip+ 1)? —l}qx"‘q + i[{[p+ ) —~l}1, + a,_zlx‘”' =0 ..(4)




The indicial equation is
a,(p?-1)=0, giving p=#1, a,#0 )
Coefficient of x**! gives {p+1) —1p, =0 thisyieldsa, =0  ...(6)

The recurrence formula is
kp+rP —lk,ﬂnh2 =

ar—Z
G‘l’, a'——m ) (7}

From (6) & (7) we conclude that

8 =ay=a5=""=dyy =0

Putting r = 2, 4, 6 etc. in (7) we get

e {p+23’—1=_{p+1fp+3}

a,= - _[ ]2
o4 -1 4] - {p+1);p+3f[p+s}

8 =2t —= (1) o ,
(p+e6) -1 (P+1)p+3)(p+5Y(p+7)

y=a x"[i——— . x? + :
o p+1)p+3)  (p+1fp+3)(p+5)

! =
_[p+IX;)+3]1{|:ﬁ+5]2{p+1"]x ] .

we have p = +1 or -1. But the coefficient of x*, x* etc. in the series (8) becomes infinite if we

put p = -1, because of the factor -—:—_—l To avoid this difficulty, the arbitrary constant a is
: p
replaced by ( p + 1 )k where k is an arbitrary constant. The equation (8) can be written as

= = 1] = 1 F ] 1 x-l_
3e) =k 1) 5+ s

! i = S
T T } @)
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Again substituting this series in the given equation (1) we get
P

LT Tt map? -1k =Ko+ -1k ...10)

The occurrence of the squared factor (p+1)" on the RH.S. of (10) shows that g as

well as ¥ satisfy the differential equation (1) when p = -1. Also on putting p =1 in (9) we
‘obtain a solution. So apparently there are three solutions of the second order differential
equation. '

These solutions are, for p = -1

y,{x}l=kx"[ﬁ-2i!x!+ . x* : x‘+---]

224 2246
=ku, say w{11)
Forﬁjl 2
).,
| -2 1
=kul kx7'|1 2, % o
TR [+{p+3}"' {{1”3)’ (p+5)
1 1 4
{p+3}2x{p+sf}x

-2 2
_{[p+3)2{p+5)‘{p+?l_{p+3)1(p+5}’(p+?]_ .

1 6 sEa
{p+3)=(p+s;:[,,+-,-r}" ' L,

or, Y:[x}¥kulugx+kx*|:l+—l—x‘ l [E+l]m"+---l-—-—(g E+l):c"+---]

7" 2742 4 T246\27 4 6
=kv, say (12)
And forp=1,
- R T
3y(6)= S =2 7 on - x|

=kw, say ...(13)

From (11) and (13) we observe that w=-4u .




So we have found only two linearly independent solutions. The complete snluﬁun is
y =¥, (x)+ y,(x)=au+bv.
In general, if the indicial equation has two roots ¢ and p ( say o > P} ) differing by an

integer and if some of the coefficients of ¥(x) become infinite when p = B, the form of the
assumed series solution ¥ is modified by replacing ag by k ( p - P ). Then we get two

independent solutions by putting p = f in the modified form of ¥ and g% The result of
putting p = o merely gives a numerical multiple of the solution corresponding to p = p.

Case IV : Roots of the Indicial Equation differing by an integer making a coefficient of
¥ ( the assumed series ) indeterminate.

4
Ex 7 : Consider the equation {laxz}-j-;-zl+213+y:ﬂ .. d1)

Obviously, x =+1 are the regular singular points of this differential equation. Instead
of seeking a series solution about one of these regular singular points, let us seek a series
solution about the ordinary point x =0 in the form

y=x*’za,x‘ :ZIIIPH ;a, =0 L...(2)
r=0 =0

sothat =3 (o4 chxt md%;_{=);{p+r1p+r_:)a,xw-l
On substituting  these the equation (1) can  be reduced to
SHG+tpsr-+2p 40 sk + Tlprrosr-tha =0
Or, plp—1)a,x®? +(p+1)pa,x”" +(p+2)p+1)a,x* +(p+3)p +2)a,x""
+o+ap+ax®? +tfp? +3p+1hgx® +{(p+1) +3p+1)+1p,x""
+p+2) +3(p+2)+1h,x"? 4. =0
or, plp-Tex" +(p+1pax™ +[p? +3p+ 2, +{-p? +3p+ 1) fi?
+lo+3)p+ 2, +{+1) +3p+1)+1p K 4o =0

The indicial equation is obtained by equating to zero the coefficient of x* as
P(p = ])‘an =0

>a,#0, wehavep=0or1 iaA3)
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The coefficient of x™' equated to zero gives
n,(p__+ Jp=0
Similarly, (p+ 2)p+1)a, +§p* +3p+1j, =0 .. A5)
(p+3)Xp+2), +{‘{|:u+i)1 +3(p+l}+1}, =0 ...(6) andsoon.

Now for p = 0, the coefTicient of a; i.e. (p+1)p vanishes in aqual:mn (4). This makes a,
indeterminate instead of infinite.

If p = 1, then equation (4) requires that a, = 0. Thus if p = 0, then from equation (5), (6) etc
we get 2a,+a,=0

and 6a,+{-1+3+1lja,=0=>6a,+3a,=0
and 43a,+{-4+6+1}a,=0=>12a,+3a, =0 and soon.

: 1 1 1
These give a, =T B =TT, A =["1]'!§aa _

Finally we obtain the series solution as

y,[x):;r{x}l;,nvan{]—%x +;x +$x . }

1 1 3 :
adx—=—x"+—=x"+—x"+-p L. (M
2 40 560

This contains two arbitrary constants and so it may be taken as the complete
primitive.

The series may be proved to be convergent fm‘|x| <l.

The other solutions for p = 1 is obtained as

1 1 3
Tz(’-‘ X}L_' a,x |:1—E'K=+Eax‘+ﬁxﬁ+-"]

This is a constant multiple of the second series in the first solution y,(x).

In general, if the indicial equation has two roots o and B ( & > B ) differing by an
integer and if one of the coefficient of y(x) becomes indeterminate when p = fj, the complete
primitive is given by putting p = f§ in y(x), which then contains two arbitrary constants. The
result of putting p = @ in y(x) merely gives a numerical multiple of one of the two series
contained in the first solution.




Exercises

1. Obtain a series solution of the Bessel's equation of order 2,

- 5 jx—2§+x31—y+{x’ ~4)y=0

Ans:  y=y,(x)+y,(x)

L .3 I iy
Wh =k - + x* =
- hi) [ Y4 22°46 ]

=ku(x)

o . T
and y,(x)=kulogx +kx I[I+Ixz+ﬁx +:t

2. Solve Legendre's equation of order unity,

[l-xz]y'—zxy'+2y=ﬂ
good gokey
Ans: y=c¢,|1-x —-El —gx = X,

3. Solve in series the differential equation

x4

(1-x)

(x-x’}y'—Ey'+2y=0 about the point x=0.  Ans: y:a[l+§x+%xz]+b
4. Examine the singularities of the differential equation

; .
x’%+x{l——x]%+y=ﬂ and solve it in series, convergent near X = oo,

1
Hints : Convert the independent variable x to z by the relation x = —
z

The given equation can be reduced to

2
zg +[3~z]%+y:l] Obtain the solution of this equation near z = 0.
1Y1 3 2 i -
Ans: y=|a+blog— | —=3|+b x" +3Ix+4—— —+—X"+:-
XAX 3x 8

TrY
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Simultaneous differential equations

3.1.Simultaneous equation:

In an ordinary differential equation we have two variables, one is the dependent
variable say y and the other independent variable x. By the solution of the differential
equation we mean that y is to be obtained as a function of x with as many constant as the
order of the differential equation.

But we may have a set of ordinary differential equations involving only one
independent variable and two or more dependent variables. Thus are called simultaneous
ordinary differential equations. When these differential equations are linear these can be
solved when the coefficients are constants and attempted for solution when the coefficients
are variables. There are two types of simultaneous ordinary differential equations as given
below: -

(i) The simultaneous linear differential equations of the type

fi(D)x+ LDy =Ti, (D) +n(D)y =Tz

; d d
where x, y are the dependent variables, t is the independent variables, D EE’ Ty, T; are

functions of t and fi(D), f(D), ®i(D), ¢(D) are differential operates with - constant
coefficients. s

When we increase the number of dependent variables x, y to more than two, say n,
then we shall require n simultancous equation to solve them.

(ii) . 'We may have also simultancous equation of the form
Pldﬁ+Q]dy+R|dZ"ﬁ and P1d1+de-}'+ R1d2.=ﬂ
P, Pa...... R; are functions of x, yand z.

These equations involve three variables x, y and z. The method of solution of these
equations can be applied to equations involving any number of variables. :

Solving the above equations simultaneously, we get

_ dx Ay ©__ which isof theform
QR,-Q.R;, RP-R,P P,Q, - F,Q,
dx _dy _dz
P Q R

where P, Q, R are functions of x, y and z. We shall first discuss the methods of solving the
category I of simultaneous equations and then the methods of solving equations of the

category IL




3.2 Methods of solving simultaneous linear diff. equations with constant mefﬁdelt:
First mefhod: Let us consider the simultaneous differential equations

fi(D) x + HD)y=T;......(1)

®(D)x D)y = Ta.......(2)
Where t is the independent variable and other symbols are already defined.

We first eliminate one of the dependent variables, say y from the above two
equations. For this purpose, we operate upon equation (1) by ¢:(D) and equation (2) by f(D)
to obtain,

fi(D)2(D)x + £2(D)2(D)y = ¢2(D)T

and  ¢(D)&(D)x +4(D)z(D)y = (D) T
By subtraction, [£1(D)$2(D)- ¢:(D)fz(D)]x =[¢=(D)- £(D)JT
Whichisthe foorm F(Dx=T"......... (3)
This is a linear ordinary differential equation in x as dependent variable and t as independent
variable. This equation can be solved for x in terms of t and as many arbitrary constant as the
order of the equation (3). Then putting this expression for x in equation (1) or (2) we get an
equation in y which can be solved for y.
Second Method: Method of differentiation

Sometimes X or y can be conveniently eliminated if we differentiate equation (1) or

(2) or both. The resulting equation after eliminating one dependent variable (x or y) are

solved to give the value of another dependent variable. Then the value of the other variable
can be found.

Note: Number of arbitrary constants:

: The number of arbitrary constants in the general solutions of the equations (1) and (2)
is equal to the degree of D in

o] D) fz{D']'|
|6:(D) 6,(D)

In case A=(), then the system is dependent.
3.3 Worked examples

The methods of solution of this type of simultaneous equations will be made clear
through the following examples.
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Ex1 Solve the simultaneous equations

d’x d’y
F_31_4Y=D‘ F+K+}’=ﬁ

Solution: - Writing D for 5}-, the given equations can be written as

And x+(D*+1)y=0....(2)
Eliminating y between these equations, we get
(D*-3)D* +1)x + 4x =0
or, (D'2D* +)x =0

or, (D*-1x=0 sD=-1,-1,+1,+1
The solution of the last equation is
x={g+ c:t}l.‘.-t'i‘ (c3t+ i:ql}el e3)

Where c), ¢z, €3, C4 are arbitrary constants.
dx
Now Dx e oy + cat)e™ + e + (ca+ catde' + cue’

D’x =':—:= (1 + eaf)e’ - cae™ - cae™ + (ca + cat)e’+ cae' + cae'
= (¢ + cat)e™ - 2c2€™ + (c3 + cat)e' + 2cqe’
Then from equation (1) weget 4y = (D*-3)x=D’x-3x
On substituting the expressions for x and D’x from above and after simplification, this leads
to
| y=1% [(ca- c3-catde' - (c1 + cat + c2)€’] 4
The solution of the given simultaneous equations are given jointly by (3) and @).
Example 2 Solve the simultaneous equations '
(D+1)x +2D+T)y = e'+2 (1)
-2x HD+3)y =g'-1 2)
Solution : Multiplying the equation (1) by 2 and operating the equation (2) by (D+1) we get

2(D+1)x +2(2D+7)y = 2¢'+4




2(D+1)x HD+1)(D+3)y =(D+1)(e-1)= '+ &-1=2¢-1

[2(2D+T7) + (D+1YD+3)]y = 4¢'+3

or [D*+8D+17]y=4¢'+3 ..(3)
The auxilary equation is
D*+8D+17=0
s L W =4ti

Its roots are D
.~ C.F. of equation (3) is e*(cie"+ ce™) or CF.=ae™sin(t+b)
where a and b are two arbitrary constants

i -1
' PI=2—I“["€‘+3}==—i‘E"—+—:I—[1+‘S—D‘+-}—D1) 3
D* +8D+17 1 +8-1+17 17 17 17

tﬁ.-{-i[l_.-s-n_-]—nz_d) 3=_2..Et +1

26 17 17 17 13 17
~y=ae sin(t+ b)+ .%é' +% ..(4)

The solution for x is obtained from equation (2) as

2x = (D+3)y-¢' +1=Dy + 3y- €' +1
A = iy 2 t A - ﬁ t g (
=a{-4¢ sin(t+b)+e “cos(tb)}+ o€ +{3acTsin(tby e +5)-e 41

or,  x= ﬂe‘"{m(t%b]-sintﬁb}}-%ﬂt"'% . 5)

Equations (4) and (5) give the solution of the given equations.
Example 3: Solve the system of differential equations
(D-3)x + 2(D+2)y = 2sint (1)
2(D+1)x + (D-1)y = cost 2

Solution : Operating upon equation (1} by (D-1) and upon (2) by 2(D+2), where Dﬂ%,we

get




(D-1XD-3)x + 2(D-1) (D+2)y = 2(D-1)sint = 2cost — 2sint ...(3)
4(D+2)(D+1)x + 2(D+2)(D-1)y = 2(D+2)cost = -2sint + 4cost...(4)

Now (4) - (3)

[4(D? + 3D +2) - (D*-4D+3)]x = 2c0st

or, (3D+1)(D+5)x = 2cost .5
The auxiliary equation is

(3D+1)D+5)=0  .D= % -5

' I
The C.F. of equation (5) is=Cy e * +Cae™

2cost

—_— = COsL= cost
3ID* +16D+5 3=1%)+16D+5 - 16D+2
(8D-1) (8D-1) 1
= st= cost=——(8D—1)cost
@DY —1 0 641y —1 Tyl
—-l[nasint—cos:}fi[smu cost]
65 T 65
- sty 1 :
Sx =Cie ? +0ze +E[Esmt+mst] ...(6)
Then from equation (2), we get

=1
(D-1)y =cost—2(D + ljxﬂcnst—:?:[-%{!m 3! -5{31;'5'+6—15-[Sm3t—5int}]
it = =St . =
“2C)e ¥ -2Ce -E[Esmt+cost]
4 1y s, 1 :
or, ——y=—— Cje * +8Ce”"+—[47cost—14sint]
3 65
Its LF. = e_‘“' =e™

1
:-y::"'—*_[ 8C,e™"e™ —%Cle et +é[4?mst—l4sint]e"}1t+ﬂ3

4
4 —1 1 . -
=j8ﬂ2e'ﬂdt~—§(:]je 3 dt+EI{47mst—]4smt!c 'dt+C,
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4 ;
3 +ﬁlsmi—33custe_¢ +C,

8 —bit
===C,e " +Cje
5 ’ 130

Hence

=t 6lsint—33cost
 ———

y=—i;c1e"" +C,e ? 30 +Cse' (D)

Since the degree of D in (5) of the given simultaneous equations is 2, there should be only
two arbitrary constants in the solution. So, one of the arbitrary constants C;, C;, C; must be
zero or a multiple of C;, C;, or a linear combination of C; and C,. Here, on substituting the
expressions (6) and (7) for x and y in equation (1), it can be seen that

Cy=0

Hence the general solution is

1 -5 1 ..
x=Cie ¥ +Ce +E§[Esmt+mst]

1 ;
}r=-iC2e*ﬂ+CtE - +ﬁlsmt—r33cust
3 130

Example 4: Solve the simultaneous equations

2 2
d—x+m2y=ﬂ, M—~:112;-r.:lill
dr* die’

Solution : Writing D for g;, the equations can be written as

D*x + m’y=0 (1)
Dy - m*x=0 ..d2)
From the first equation we obtain :
D*% =-m’D’ y = -m’(m’x), usmg the second equation
(D' +mYx=0 ..(3)
The auxiliary equation is
D*+m"=0
or (D + m*)*- 2D°m* =0
or, (D*+m’v¥2Dm) (D’+ m’+ v¥2Dm) =0

. Either D* + m*- V2Dm=0 or D* + m*+ ¥2Dm=0
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2m 1 2m? - 4.1.m? —2m+v2m? - 4.1.m?
o 21 e 2.1

_2m+v-2m’ ' _—2m#+y-2m’
2 : 2
=m:tim =—miim
32 32
Thua D_miim -m+im
272

Hence the solution of equation (3) is

m, it it -m it i
x=e¥? (C,eﬁ + C,e_‘rf}r e:ﬁl[{:,eﬁ +C‘e-ﬁ]

it mal
Now C e:E+C e-;ﬁ =C [m£t+isin£t]+c [msﬂ-t-isin-rit]
, . W2 V2 V2 V2
=(C, +Cl}msﬁt +i(C, —Cz}smﬁt
Put C, +C, =acosb
i(C,~C,)=asinb
m T |
=acoshcos—t—asinbsin—t
J2 V2
m
=acos| —=t+b
()
it it
Similarly ~ Cye ™ +C,e ¥ =ccos [ﬂ,,HdJ
J2
where a, b, ¢ and d are arbitrary constant.
sLx=ae"* cos{ —=t+b|+ce ¥° cos| —=t+ A4

. m
dx m 7' m 3 ..om.. [m ]
Now, — =a~-=e¢e"* cos| —t+b |+ae"* X—=sin|—t+b
I (..E ] 2 2
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m m
m 7 [m ) g e 1D [m )
—-c—¢e cos | —=t+d |+ce ¥——sin| —t+d
2 2 ) 2 2

=a%e%t[ms[%t+b)-sin[%t+bﬂ

—B%c—'&l[ﬁ —t+d)+5u{4,_t+d]]

Differentiating this equation again with respect to t and simplifying we get

d’x _ m? IZ . [m ] T [ ]
—_—=ag— ~sin| —=t+b ||+ Cm?e sin| —t+d
dt? 2 [ V2 V2

Then from equation (1) we get y=- -]—11)2;
m

_ae%? sin [% t+ h} - ce_"'rft sin [%t + d] ..(5)

The expressions of (4) and (5) give the solution of the given simultaneous equations. .
Example 5: Solve the system

(D%-2)x - 3y = & (1)
(D*+2)y +x=0 o

where D denotes %aml find the particular solution satisfying the conditions:

x=y=1,Dx=Dy=0whent=0

Solution : Eliminating y from the equation (1) and (2), one obtains  (D*-1)x = 6¢”
The solution of this equation is x= I(Z..3'+«Cy.=:*+Jnﬂu:::c:rL-c,t~*lr]3$i11t+%f:h ..(3)

w]:u:n_e C,C;, A and B are arbitrary constants.

Then from equation (1), solution for y is obtained as 3y =(D2)x - &”
ory= —lC ¢ *lC ¢'—Acost —Bsint - -E- e (4) l
S vl 15




Equations (3) and (4) give the general solution of the given system of equations.

Particular solution :-

Whent=0, x=y=1 ,-.1=ci+c1+a+u+§ (5
1 1 1
& I=—C ~=Ci=AtO~—
g g 15
1
or 3= -C:-Cz—?!ﬂ—; ...(6)
- 1 19
Adding (5) and (6), we get 4=-2A+§:: =—i-E {7
A 6
Again from (5) we get 3=3C,+3C;+3A +;_ ...(8)
and 3=-C;-C;<3A -% from (6)

Adding 6=2C,+2C+0+1
6-1 5 5
Or Ck+C2=-'—5-"='£ﬁC1 =E'—C| _{9)

Again, Dy = -%C:e‘+%Cﬂ*+ Asint - Beost -%ez'

& Dx=Ce'- Cre'-Asint + Beost +%eh

Given that Dx =Dy =0att=0

1 1 2 :
0= —=C+—=-0C+0-B-—
;O34 s _ (i)
4 -
&0=C1-C-0+ B+ W)
: £ ' 2 2 2
Adding these two we get 0= —j—C}--—srCz+ 5 or C-Cz=-1

Already we have C+ C1=—;-

Solving these two equations we get C:=% ' C.F-I"

T4




. 4 4 4 2
i 0=2c,-2c,+28
W- = 3173 +{5 15]

1242 4 14 2 1
. EB——C ——F -———m———=—of,B=—
" g3 g § I8k el %
7 19 1

3
= iFt ﬁ i 'B.__.
Thus we have C= 2 Cz—4 0’ 3

The required particular solution is

Xo = x] 0 :%e‘ +%e“ -—%mu ;sml+ iel

Example 6: Solve the following system of differential equations

dx
—_—=xty+z |
it x+y (1)
+

) N 2
dtxrz (2)
dz

+ 3
e e (3)

Solution : Adding the three given equations, we get

d
—(x+y+z)=(x+y+
p (x+y+z)=(x+y+z)

dix+y+z)
(x+y+z) B

Integrating log(x + y +z)=1 + a constant.

Or,  x+y+z=Ce .(4)
Where C is an arbitrary constant.
From this we have
X+y+z=Ce -2 (5)
x —y+z=Ce' 2y (6)
x+y-—=z=Ce' -2z (7N
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From (1) and (5) we have

B —2x+Ce' GI,E-i‘ 2x =Ce'
dt dt

IF. = & gl

sxel = CI e' e*dt +constant = C_[ekdt+A

=CT+$, A is a constant of integration.
X =§'e' +Ae™® ...(8)
From (2) and (6), we get %ﬂ:c' -2y or jl“-‘;‘:?"'lr-+ 2y = Ce'

The solutionis  ye® = CIet e"dt+B

2
=c5§—+3 B is another constant.

=Cet 4B ...(9)
3
Then from (4), (8) and {9), we have

z=Ce-x—y=Ce'- %e‘ +Ae™ *gel -Be™

=§-=‘ —(A+B)e™ ...(10)

Hence (8), (9) and (10) give the solution of the given system of equations.

§ 3.4 Metbods of solving &= = %Y - 2
P Q R
First method: we have
| dx _dy _dz_ldx+mdy+ndz
P Q R IP+mQ+nR

If 1, m, n can be chosen such that IP + mQ + nR=0,

then we get ldx + mdy + ndz=0.
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I.fitisanmtﬁﬂﬁmﬁm,safdu,thmu-a,abdngamnsmt, is one part of the complete
solution. . :

Similarly, if we can find I, m’, o’ such that
IP+m'Q+nR=0 weget I'dx+m'dy+n'dz=0
This gives another equation on integration.

The two equations so obtained from the complete solution of the given simultaneous
equations.

Second Method: The equations are

Taking any two members, say ﬂ:-z %—, if we find that this equation does not involve the
variable z, it can be solved.

Next, we choose another two members, %=%z— If this is integrable, we get another

integral of the set of simuitaneous equations. The two integrals, so obtained form the
complete solution.

§3.5 Geometrical interpretation
We know that the direction cosines of the tangent to a space curve are
[E dy E]
ds’ds’ ds
that is, are proportional to dx, dy, dz.

Then the simultaneous eu:{l.mti«:msE = 4 = %{E expresses the fact that the tangent to a curve

rQ
at any point (x.y,z) has direction cosines proportional to (P,Q,R). If u(x,y,z) = a and
v(x,y,z)=b are two integrals of the above equations then the curves are the intersection of the
surfaces u = a and v = b. Since the arbitrary constants a and b both can take any values in
infinite number of ways, the curves are doubly infinite in number. In particular, if P, Q, R are
constants, the curves are straight lines.

§3.6 Worked examples
Example 1. Solve the simultaneous equations

adx bdy cdz

(b=c)yz i (c—a)zx i {a—b)xy




Solution : Taking ax, by, cz as multipliers we get

adx  _ bdy  cdz  _ a’xdx + b’ydy+c’zdz
(b-c)yz (c—-a)zx (a-b)xy a(b—c)xyz+blc—a)xyz+c{a—b)xyz

__ a’xdx+blydy+clzdz
xyz{a(b-c)+b{c—a)+cla-b)]

_a’xdx +b’ydy +c’zdz
0 3

nzxq:t +biydy +c*zdz =0
Integrating, a” x° + b’ ¥’ + ¢’ 2* = a constant C, (1)

Again choosing x, vy, z as hmlliplim we get

adx _ bdy _ oz _ axdx + bydy +czdz
(b-clyz (c—a)xx (a-b)xy =xyzi(b-c)+(c—a)+(a-b)]
=axdx+bydy+czdz‘
0

-~ axdx + bydy + czdz = 0
Integrating one gets
ac+by+ ez =C; (2)
Then (1) and (2) together form the complete solution of the given equations.
Example 2. Solve the simultaneous equations

dx _ dy _ dz
mz—-ny nx—lz ly—-mx

Also find the radius of the circle represented by these equations that passes through: the point
{n'l -n, 'm}' .

Solution : We have

dx _ dy _ dz ldx + mdy + ndz
mz-ny nx-lz ly-mx Kmz-ny)+m{nx-1z)+n(ly-mx)
_ ldx + mdy + ndz
0

S x + mdy + ndz =0
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Integrating Ix +my+nz=C ...(1)

' 'Where C is an arbitrary constant.
Again,
dx . .- -dy - dz xdx+3uiy+ﬂz
mz-ny nx-lz ly-mx x(mz-ny)+ y(nx—lz)+z(ly - mx)
o XYy
0

Sxdx+ ydy+adz=10
Integrating *+ Y’ +Z=a" ...(2)
Where a is an arbitrary constant.
Integrals (1) and (2) together form the complete solution of the simultaneous equations.

2™ part: Again (1) represents a plane and (2) a-sphere. So, their intersection will be circles
given by the complete solution :

Xty +z=a
& Ix+m;.r+nz=C
For the circle passing through the point (0, -n, m)
: We have 0+ n? + m® = a? )
And Lo-+m{-nftam=C=C=0 .--{ii)

Thus for the circle represented by equations (1) and (2) and passing .tlm':-ugh the point (0, -n,
m), the plane (1) becomes ;

Ix+my+nz=0
But this plane passes through the centre (0, 0, 0) of the sphere (2).

Then, the radius of the circle of intersection of the plane and the sphere becomes
equal to the radius of the sphere itself. From relation (i) we see that this radius is

aﬂ'u‘mzi-n:.
dx_d_y= dz

Example 3 : Solve —=—5=—7
XY ¥ xyz—2x

&
xy

<&

Solution : Taking the first two ratios

w | &

or,

'-:"l&




Integrating, logx —logy =logC, or, E =C, (1)

Then taking the second and third ratios,

e
y* xyz-2x" C,yyz-2Cy
or d—:::I—dzm—— or, Cdy= e
y C.}’ (2_2C|} e Z—zcl
Integrating C,y - log(z-2C,) =C2 ...(2)
On using (1) to remove C; from (2) we get
2 y-log(z-2=)=Cs
y y
or, x-log(z21)=C, ..(3)
y

The complete solution is given by (1) and (3).
Example 4. Find the inte*.gra] curves of the simultancous equations

g ccody - dz
Yix-y) x*(y-x) z(x’+y?)

Solution : Given that

dx dy dz
) D it B R (1)
yix-y) -x(x-y) zx"+y’)
Taking the 1st two ratios, we get
x'dx + y'dy =0
Integrating x” + y'=C; 2

Choosing 1, -1, 0 as multiplier, each ratio of (1)

_ dx —dy K dx —dy
Y (x-N+x(x-y) (x-y}x’+y?)

is

Equating the 3™ ratio of (1) with this,

iz dx-y)
2(x*+y?)  (x-y)x*+y?)
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Gr‘ggzd{x—r}
z (x-y)

Integrating, log(x-y) - logz = logC;
Or, i:"‘3'%=1t:1 ..(3)

The required integral curves are given by the surfaces (2) and (3).

Exercises 1

1. Solve the simultaneous equations

2
E+4:1: +y=te'
dr*

d’y . 2
—+y-2x=sin"t
dt

Ms.x=.ac03(\’31+b}+ccos{42t+d}+%(t- -;u}e'- é-ﬁ-%mﬂt

y=-acos{(¥it+b)-2c cus('\fIH'd}*‘E e'(t- %]"’% '

Where a, b, ¢, d are constants.
2. Solve the simultaneous equations
D(D-2)x - (D-1)y =0

(2D-1)x + D*(D-1)y =t where Dﬂi.

Ans. x=(Cy+ C; t+ Cat)e'+ Cee'-(14+2), y=-[(C}-2C;3)t + %Czt‘2 +% Cit }e'-% Cqe'+ Coe'-2
3. Solve the simultaneous equations

dx 2
— 4+ x—-vi=1
d1+t[x ¥}

dy 1,
—+—(x+5y)=t
3 t(n ¥)

2 2
PR 0 T 0 R O B O
t t* 15 10 2 ¢* 15 20




4. Solve the equations

dx dy dz

Y +z2-x? -2xy -2xz

Ans.y=Ciz, xX+y+z=Cz
5. Solve the simultaneous equations

& . dy o d
yx-2x' 2y'-x’y 9z(x’-y’)

1
. Ans. xyz*=C,, iz——lzﬂ:z,
b X

dx " dy dz
6. Solve - =

X-yi-yz xi-y -z zx-Y)

Ans.x-y-z=GC,, : zzy =,
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Total Differential Equations
4.1 Definition :
An equation of the form
Pdx + Qdy + Rdz—0 : 1) |
Where P,Q,R, are functions of x,y,z is called a total differential equation. -

For example, the equations
Bxy-e'2)dx+2(x y+sinz)dyHycosz-¢")z=0  ...(2)
(3xz + 2y)dx + xdy + x’dz=0 (3)
and dx + dy + xdz=0 ..(4)
are all total differential equations. |

: An equation of the type (1) may be directly integrated if there exists a function
u(x,y,z) whose total differential du is equal to the left hand side of equation (1). The equation
(1) is then said to be an exact differential equation. Again, this equation (1) may not be exact,
but may be rendered so by multiplying by a factor fix.y,z) which is called the integrating
faetor. On the other hand, this total differential equation (1) may not be integrable at all. For
equation (1) to be integrable, the coefficient functions P,Q, and R must satisfy a certain
condition which is called the condition of integrability of the equation.

Now, the equation (2) can be written as
(3x*y'dx + 2’ ydy) — (€"z dx+ &" dz)H sinz dy + y cosz dz) =0
or, d(x’y’) - d(e"z)+d(ysinz)=0 or, d(x’y’-e"z+ ysinz)~0
Integrating, x'y’ - "z + ysinz = C, a constant.
This is the primitive (or integral) of the total differential equation (2). Here,
| u(xy.2) = X'y’ €'z + ysinz)
Next, the equation (3) can be writtenas ~ 3xzdx + 2ydx + xdy + x’dz=0
Multiplying it by x, we get  3x°zdx + 2xydx + x*dy + x’dz=0
or, (3x°zdx + x’dz J+(2xydx + x’dy) =0 or, d(x’z)+d(x’y)=0
Integrating, x’z + x’y = C, a constant.

This is the premitive of the total differential equation (3). Here f{x,y,z)=x is the
integrating factor of the equation (3).
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Finally it can be seen that equation (4) can not be integrated anyway That is,
equation (4) is not integrable.

" It will be seen that the equations (2) and (3) satisfy the condition of integrability to be
derived in the next section, where as the equation (4) does not satisfy it.

42 Condition of integrability (necessary and sufficient) for integrability of the
differential equation Pdx+Qdy+Rdz=0

Necessary Condition: Consider the total differential equation

Pdx+Qdy+Rdz=0 ...(1)  where P,Q,R, are functions of x,y,z.
Let this equation have an integral ¢{x,y,z) =¢ .--(2)
Then the total differential d¢ must be equal to Pdx+Qdy+Rdz or to it multiplied by a
factor.
But we know that
d¢=%dx +%dy+%dz )

Comparing this with equation (1) we get

= AP, o Q. F . . (4)
where A is a function of x,y and z.

From the first two equations of (4), we find that

2
P s I 4 2 [aq’]-itm}

dy ayax axdy ox\dy) ox
12,2 o2
or, ‘%’-%}: Qg—:—l’% .(5)
Similarly, %Qm%;] %-Q—-— ...(6)
L L

Multiplying the equations (5),(6) and (7) by R,P and Q respectively and adding we get




9Q R} (R 0P} ofoP dQ)_
P[&z B‘y]+ = Bz]+R[3y ax)-ﬂ .-.(B)

This is the necessary condition for the integrability of the equation (1).

Sufficient condition:

Theorem : We shall now prove that the condition of integrability (8) for the total differential
equation (1) is sufficient. That is, when this condition, (8) is satisfied by the coefficients P,Q,
and R, we can always find a solution of equation (1).

Before proving this theorem we shall establish the following lemma.

Lemma: If P,Q and R satisfy the condition (8), then so also do P, = AP, Qi=AQ, R,;=AR,
where A is any function of x, y and z.

Proof of the lemma

QR \_5pl(23,oR) (AR g2
P{az ay]—ﬂ{(laz Qaz] (lay+Ray]}

ﬂlzP[g—ua—E]+ll‘[Qﬁ—R§i]

dy dz oy
Similarly,
) o) agfn 22
Q'[Eht oz A dx oz +1QRax Paz
9 _9Q|_j2p(9® _2Q A _oR
R‘[ar ax]‘l ay ax]”‘R[Pax an]
Adding these three results we get
(9Q, 3R,)_,2 dQ dR
(3-SR 5)
dr di dA dA dh dA
=0 0+0=0
Hence

3Q, R aR, P 3P, 2Q
boaks. < R il e MRl Lkl |-
Pj[ dz ]+Q'( ox E}z]-rﬂj[ay Eixl} Ve

85




Proof of the Theorem

To obtain the solution of equation (1), we assume, for the time being, z to be constant
so that dz = ﬂTh:neqmmu(l}bmmesPMQd}r 0

Let the solution of this equation be F(x,y,z)=a (10)
. . dF dF
Th —dx +—dy=0
is gives dy
oF oF
ox _ 9y
S o _5Y o,
0 PO say

Now put P,=PA, Q;=Q%, R;=RA and replace ‘a’ in (10) by f(z), giving
F(x,yz-f{z) (11)

Hence aFdx aFd aFdz dfdz

Jx dy oz
dF oF - df
i+ gy S B =0
Or, ™ x+a}rd}r {32 %
daF df
Or, Pldl+Qld}r+[£-E =0 ...(12)

This will be identical with the equation
Pdx + Qdy + Rdz=0 A1)

F_H_ar=r,
dz

oz

ie. HEE-EEmR -.{13)

dz oz

Now we shall show that the right hand side of equation (13) can be reduced to a function of F
and z only by virtue of the relation (11). That is %zE—R, involves x and y cf»nly as a function
of F.

9FCY:2) R, (x,y,2) will notinvolve x and y if

If is known from differential calculus that

aFa{aF R} HFB{BF R}
oxdyloz '] dyox|az h

0 ..(14)




Again the lemma (9) is

[3'3& 3“] QI(BR'] 3"] R,["""'-ﬂ]ﬂ )

9z oy dx oz dy ox

further, since the equation (12) is integrable, we have

P2 (3 i) o [3(%F i) 7, +[a_5_£ r_%,)_

'| 9z ody\oz dz Nox\oz dz) 9z| \9z dzAdy ox
Subtracting this from equation (9) we get
r H{HF‘_E_RI}_ i{aj-i‘i_gi} {BF_E_R E-ﬁ]:ﬂ_“{u}

'ayloz dz Q'ax dz dz dz dz dy ox
o p9F _OF  d(df} d(df)_
But P;=\P =’ (8] i, ﬂx[dz]_'ay(dz)_u
As fis a function of z alone.
~(15) becomes

23(80) EEOHE- S5

dF 9 oF 3 (dF

=R, |=———] —— =

% Hxay(az ]] &y&x[ﬂz R'] 5
This is the same as the condition (14).

Thus, %E — R, can be expressed as a function of F and z, say y(F,z).

ence, from (13), %=w‘{F,z] = w(f,z) using (11)
Let the solution of this equation be F(z)=x(z)

Then F(x,y,z) = f(z) = (2) is a solution of Pdx + Qdy# Rdz=0 (1)
Thus the equation (1) is proved to be integrable whenever P,Q,R satisfy the condition (8).
4.3 Geometrical interpretation of the equation

Pdx+Qdy+Rdz=0 A1)

This differential equation expresses the fact that the tangent to a curve is perpendicular to a
certain line. The direction cosines of the tangent are proportional to dx, dy, dz and the
direction cosines of the line are proportional to P, Q, R.




But the simultaneous equations

dx _dy dz

'P HE:E .“{2)

expresses that the tangent to a curve is parallel to the line (P,Q,R). We thus get two sets of
curves. If two curves, one of each set, intersect, they must do so at right angles.

Now two cases arise.

If may happen that the equation (1) is integrable. This means that a family of surfaces
can be found, all curves on which are perpendicular to the curves represented by the
simultaneous equations (2) at all points where these curves cut the surfaces.

On the other hand, the curves represented by the simultaneous equations may not
admit of such a family of orthogonal surfaces . In this case, the single equation (1) is non-

integrable.
4.4 Condition of exactness

Suppose the equation Pdx+Qdy+Rdz=0 ...(1) is exact. That is it can be integrated by
rearranging its terms.

Let its integral be u(x,y,z)=C  Then du= Pdx+Qdy+Rdz

du Ju du du 3u .&u

Al = — N —dz. — =0U p__
50, d.u. Bxdx+a}rd?+&zdz So, we have P‘"E LQ a?,R ™
P d(ou)y d(ou) 9 o dQ dR dR _oP
Put —=—|—|=—]| —|=— larly—=—and —=—
™ Hy[ax] &x(&y] nl YR TH T x &

These are the conditions of exactness of the equation (1).When these are satisfied the
conditionof integrability

3Q_R), of R _P), (P _3)_ i uiomatically sat
Bz“ay]+q[ax 31}+R[8y ax]-ﬂ is automatically satisfied.

4.5 Methods of Solving Pdx+Qdy+Rdz=0 ...(1)

Case [: Exact equation i

When the conditions of exactness are satisfied, the equation (1) can be integrated directly by
rearranging its terms and expressing the right hand side as the total differential du of a
function u(x,y,z). The integral will be u(x,y,z)=C, a constant.

When these conditions for exaciness are not saﬁsﬁed1b}.r P.Q.R, then we have to check
whether they satisfy the condition of integrability:-

9Q dR) foR 9P} oldP 3Q)_
P[az By]+q[ax -az]+R[ay ax] v, -
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If this condition is satisfied, the equation (1) is integrable and the following cases arise:-
Case II Homogeneous Equation

If P, Q, R are homogeneous functions of x,y,z then one of these variables, say, Z can
be separated from the others by the substitution x=zu, y=zv, so that dx=zdu+udz and dy=
zdvt+vdz.

On substituting these in the given equation (1), it will be reduced to an equation involving
only u and v or an equation where the variable z is separated from u and v. In both the cases
the reduced equation can be integrated as an exact equation.

Case 111 One variable constant

If any two terms of the equation (1) equated to zero, say Pdx-+Qdu=0 can be readily
integrated, then we take the third variable z= constant , so that dz=0.

Thus the equation (1) becomes Pdx+Qdy=0
Let its solution be u=(}z) {3
Where ¢(z) is an arbitrary function of z alone and independent of x and y. Here u=u(x.y).

Then to find the solution of equation (1) completely we take total differential of equation (3)
as

du du do(z)
—dx + = dy +———dz=0 .4
o dy y dz @

Comparing equatiuﬁs (4) and (1) we get a relation between ¢(z) and z. If the coefficient of dé
or dz in this relation involves x and v, it will be possible to remove them by using (3).

Solving this equation we obtain ¢(z) and substituting its value in (3) we obtain the complete
primitive of equation (1).

Case IV Method of auxiliary equations

If none of Ec above methods is applicable then comparing the equations (1) and (2)
we get the simultaneous equations :

&  dy - dz
9Q_oR "R _oP P _IQ

dz 9y ox o0z dy ox

el 3)

which are called auxiliary equations and can be solved like simultaneous equations.
Let u(x,y,z)=a and v(x,y,z}=b

be the two integrals of the auxiliary equations (5). Then comparing Adu+Bdv=0 with
equation(1) we get the values of A and B and then the complete primitive.
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- It may be noted that this method is not applicable for an exact equation.
§4.6 Worked Examples
Example 1 Verify that the equation
(v-2)y+z-2xMdx + (z - x}ztx-2y)dyHx - ylx + vy - 2z)dz=0
is exact and find the solution.
Solution : Comparing this equation with  Pdx + Qdy + Rdz=0
We find that P= ¥ - 2-2x(y-z), Q=2 -x-2¥(z-x), R=¥’ -y -2z(x~y)

aP oP 9Q
—=2y-2x, —=-2zt2x, —=2z-2y,
dy . e e
d0Q dR dR
— — ="V V" s W i
3% 2x-+2y, = 2x-2Z, e 2y+
dP dQ o9Q dR dR _oP

W that —=— T i, it P

e see Y 5 and i

Thus the conditions of exactness s satisfied and the given equation is exact.
The given equation ‘can be written as :
(¥ — Z-2xy+2x2)dx + (2 — x*-2yz +2yx)dy + (x* — ¥ - 22x + 2zy)dz=0
or, (y'dx +2xydy) 7z’ dx +2xzdz) + (2’ dy +2yzdz) {(x’dy+2yxdy)
+(x” dz +2xzdx) - (¥ dz + 2zydy)=0
o, d(yx)-d(x) + dy) - diy) + dz) + d(y0)0
Integrating  y’x—7x +'zzy_x=y+x2z+ﬁ-==c where C is an arbitrary constant.
Example 2: Solve zdz+x-a)dx =V{h’ - 2 —(x-a)’}dy
Solution : Hao P=x-a, Q=- {b’-Z7—(x-af}'?, R=z

o _oP 3Q_ 1 Ix{-2(x-a)l} _ (x—a)

dy & & 2 (-2 —x-a*ff  {n?*-2>-x-a)*f"

Q_ 1 1x%(-2z) 3 z

2  2{p2_z? _(x-apff {n?-22-x-a)?}*
R ___R
iy




Q_EE 3_1‘_3_1' aP _daQ
Now. Ha ay] )“[ay ﬂx]

z
.—_I[::—alll[h2 o ._{x-a}z}” —ﬁl]«i—‘{ty.2 —gt —{x—n]z}m{ﬂ—ﬂ]
ﬂ— ' X—a
+2{ [ h? - 22 —{x—a}z}x]

b (x —a)z +0— {:r. a)z :
[hz —-z"l{m—lﬂl\z]"s {12 -2 —(x-a) ]ﬁ

Thus the condition of integrability is satisfied.

The given equation can be written as

2dz + (x —a)dx

blz~{zz+{x—n}lﬂx
adb {2 -af

2[p? {22 + x-2)*}f

Integrating "%X[F.z A{ = Eha}l}]x =y +cost

[h2 —{ z? +{x-a}z}|={}r-c}1 is the solution.

=dy

Example 3: Solve the equation

(Hy2)ix + (zxt )y + (7-xy)dz=0
Solutien : Comparing the equation with Pdx+Qdy+Rdz=0
We find P=y’+yz, Q=zx+z’, R=y’-xy

R X o, 30 apin 2

a:-’ =2y+z, Ez &~ 27+x, o =7

.t D 5

ox 7 dy E

9Q_aR a_n_a_r] r[oE_RQ
Now, P[Bz By’]+ S [ay x

91




(P Hy2){(2z+x)-2y-x)} + (@x+2){-y-y} + -xy){2y+2)-z}
(¥ +yz) {2x+22-2y}- 2y(zx+2") + 2y(y’-xy)
=2xy* + 2¥°z -2y’ +2xyz +2y2’ -2zy’-2yZ" ~2xyz +2¥ —2xXY
=0.
_ The condition of integrability is satisfied.
Again the given equation is homogeneous in X,y,z.
So we take x = uz, y = vz, so that dx = udz + zdu, dy = vdz + zdv
Then thé given equation becomes '

(v Y udztzdu)yHu +2 Y vdz+zdv)+ (V- uvz)dz=0
or dividing throughout by z*

[(V+v)u Hu+1)v + (V-uv)]dz + (v+v)zdu Hu+1)zdv=0
or, (V+v)(u+1)z+z[(v'+v)du+(u+1)dv]=0

dz du dv
or, —+ face =
z u+l v 4w

dz_ du+D) dv_dv+D) _
z (u+l) v (v+1)

or,

Integrating we get
logz + log(u+1) Hogv —log(v+1)=constant =logC, say

or, zv{utl)=c(v+l)
OF, z£[£+l}=c{1+l}
g 8. z

or, y(x+z)=c(y+z) which is the primitive of the given equations.
Example 4 So].ve the equation

(Xy -y - yz)dxHxy" - x'z ')y Hxy' +x’y)dz=0
Solution : [t r.:an be shown that this equation is i.ntegmble.

Further the equation is homogeneous in x, y & z. So we put x = uz, y= vz, so that
dx=udz+zdu, dy= vdz+zdv.

Then, substituting, these and simplifying, the given equation can be reduced to




(w?- v }{vdu-;idv] -vidu-uldv=0

dividing it by u’v’ and simplifying we get

vdu—udv udv—vdu 1 1
ey = ——du =0
v2 u? v: u’
e, f2)e 7)o )ed3) -0
v u v u

[nwgm‘l:i.ng,5+1+-l—+l=ﬂ

v u v o

Or, X+ ¥+ Z . Z _C which is the integral of the given equation.
y x x ¥
Example 5. Solve (2x*+2xy +2xz"+1)dx + dy +2zdz=0 (1

Solution : Here P =2x+2xy +2x2°+1, Q=1, R=22

It can be shown that the condition of integrability is satisfied by the coefficients P,Q and R.
Hence the given equation is integrable.

To integrate the equation , we treat x to be a constant for the time being, so that dx=0
and the given equation reduces to dy + 2z2dz=0. '

Integrating this, y +7° = constant with respectto yandz = f{x)  ...(2), say

Now differentiating (2), we obtain

~9EX) 4y +dy+22d2=0 ..(3)
dx
This equation should be identical with equation (1), if (2) is an integral of (1). Then
comparing (3) with (1) we get
_ df(x)
dx Ll 22
2x? +2xy+2xz" +1 1 z

_..._dix} = - (2x*+2xy +2x2%+1)= -2x7-1-2x(y +7%)

= 2x*-1-2xf{(x) using (2)

O - (2x°+1)
dx

2
LR mpl ™ e a®
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wfe* =—[(2x? +1)e* dx +constant
=—[2x%e dx—[e dx +C .(4)
%

Here j 2x%e* dx = jx.zxdx:" = j xe* d(x?)

x? 1 2. 2 : dx _d ;5
= —|—&" dx —_— =t
iy dx?  dt
I x? %2, - 1 " 1
=xe —Ie dx —E”—:FE

then (4)=> fe* =-xe*’ +[e dx~[e*'dx+C
=—m": +C
or f=-x+Ce™

Hence the integral of (2) becomes y + z° = -x +-::¢“1which is the complete solution of (1)

Example 6: Find f{y) if fly)dx - zxdy - xylogydz=0 is integrable. Find th corrosponding
integral. ;
 Solution : Here P=fly), Q=-z, R=-xylogy. _
If the given equation is integrable, then P,Q,R must satisfy the following condition
9Q _oR) fOR 9P) _fdP 9Q|_
= By]+ = az]ﬂl'.[a1Ir ax]—ﬂ
or, ﬂf}f){-x-(-ﬂnsr-xr-i}]-n[-ybﬂ*ﬂ]-lﬂow[f’(ﬂ-{-ﬂ]%

or, f{y).xlogy—xylogy.f ‘(y)=0

o _1
"ty y

integrating, logf{y) =logy +logC
' or, fiy)=Cy 2)

Then the given equation becomes
cydx — zxdy — xylogydz=0 -..(3)




Treating z as constant, that is dz = 0, (3) becomes
 cydx - zxdy =0
d}r-{}

or, —-z—=
X ¥

[nwgraﬁng,hymkingzasmmﬁnt,w:gﬂ

clogx — zlogy = constant with respect to x and y = F(z) say ..

Where F(z) is an arbitrary function of z.
Differentiating (4), we get, taking now z as a variable,
de _Ed},r_.lﬂg?dz:_
X ¥

orcydx“md}'"[xrhﬂﬁ.v%ldﬁﬂ
Comparing (3) and (5) we get
syﬂrgqﬂow

or, %wﬂ, Integrating F = C,, an arbitrary constant.

Putting F = C; in (4), required solution is
Clogx — zlogy = C
Example 7: Solve the equation ;
Ixtdx +3vdy — (X +y +e)dz =0
Solution : Here P=3x?, Q= 3y%; R= (x’ +y’ +¢%)

P _ # W K an_hz

dy dz ox oz dy
It can be shown that the condition of integrability is satisfied.
The auxiliary equations are

dx _ dy _ dz
9Q “OR _oP dP dQ
dz

aR
dy ox 9z dy ox
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or, i : =
0+3y" -3x"-0 0-0
de dy dz

or, '—-—2-=—-E':—
) 0

The first two ratios give x’dx + y°dy = 0
Integrating x* + y° = constant with respect to .Jt and y = u, say.

The last ratio gives dz =0 ﬂz=mnstantudthrespﬁ to z = v, say.
Then  Adu+Bdv=0 i
Gives  A(3x’ dx + 3y’dy) + Bdz =0

Comparing this with the given equation one obtains
3x* = 3Ax%, 3y° = 3Ay", -(x'+y’ +e™)=B
~A=1and B=-{ute™)

Hence (2) becomes du= -(ut+e’™)dv=0

or, :u—v—u =g ©L.3)

=¥

Its LF.= cl_'h= [
Hence ue"‘=‘[¢j"e""dv+c= _[e"’dv+C =e' +C
~ou=Ce" +e**
~the solation is | x’ + y'= Ce*+e™
§4.7 Non-integrable single equation
If the equation Pdx + Qdy + Rdz=0 .o(1)

does not satisfy the condition of integrability, then this equation cannot, in general, be
integrated.

In this case, the equation (1) represents a family of curves orthogonal to the family
represented by the simultaneous equations

' dz
9"];=§=— (2)
Q R

But in this case there is no family of surfaces orthogonal to the second family of curves.




However, we can find an infinite number of curves that lic on any given surface. And
satisfy the equation (1), whether that equation is integrable or not.

Suppose we are given an arbilrary equation
fix,y,z)=C  ...(3)

in x,y,z. Then the solution of equation (1) can be determined subject to the relation (3) as
follows:-

From (3) we get

af af daf
—dx+—_d d==0 .4
. 3y ﬁ&z (4)

When the form of the relation (3) is known, then one variable and its differential can be
determined in terms of the other variables and their differentials. Thus from (1), (3) and (4)
one variable and differential say z and dz can be eliminated. Then we get a differential
equation of the form '

P1dx+Q|dy=ﬂ ...(5)

Where P, and Q, are functions of x and y only. The forms of P, and Q, depend upan (3)
containing the arbitrary constant C of (3).

The equation (5) can now be solved. This solution together with the equation (3)
forms a solution. For different values of f, different solutions can be obtained.

Obviously this solution represents a family of curves that lie on the surface (3) and
. satisfy the equation (1).

§4.8 Worked examples

Example 8 Find the curves represented by the solution of
ydx + (z-ydy + xdz= | (1)

which lie in the plane 2x —y-z=1 ol 2) |

Solution : Here P=y, Q=z-y, R =x

I-Im'u:tzl:'(ﬂv‘a—R "-'F:'—l'l«~1E}—P]+F!.;::'—pl--'l-:;‘—r'{;lL
dx oz dy dx

= y(1-0) + (z-y)(1-0) + x(1-0)
=y+z-y+tx=xizz0
Thus the condition of integrability is not satisfied.

Now differentiating the equation (2) we get 2dx—dy-dz=0 ...(3)
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4
We shall now eliminate the variable z and its differential dz from (1), (2) and (3).
For the purpose, xx(3) + (1) gives (y+2x)dx Hz-y-x)dy =0
Or on using (2],_ {v+2x)dx H{x-2y-1)dy =0

of,  (ydx+xdy)+2xdx —2ydy - dy =0
Integrating, xy + X — y* —y = constant , C*, say  ...(4)

Thus the curves of the family represented by equation (1) and which lie in the plane (2) are
section by that plane of the infinite set of rectangular hyperbolic cylinders given by equation
(4).

Example 9. Show that there is no single integral of

dz = 2ydx + xdy A1)
Prove that the curves of this equation that lie in the plane z=x+ vy ...(2)
lie also on surfaces of the family {x-l]:f(Ey-! ¥C ...(3)

Solution : It can be shown that the condition of integrability is not satisfied by the equation
(1).

Differentiating equation (2) we get
de+dy=dx (4
To eliminate z and dz beyween (1), (2) and (4), we have by subtracting (4} from (1),
2y - dx + (x-1)dy =0

dx dy

or e g s

x—1 2y-1

dx-1) 1d@y-1 _,
(x=1) 2 Qy-1)

Integrating, 2 log(x-1) + log(2y-1) = logC
~(x-1Y(2y-1)=C .3

or

Thus the curves of the equation (1) that lie in the plane (2), lie also in the surface represented
by the equation (3).
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Exercise 2

yZ | 4y 1
Sel dx — dy—tan dz 0 Ans. ¥/ =tan —]
i o x2+_=,-'1 xz+}r & A [cz
Solve (2x’y +1)dx +x'dy +x’ tanzdz =0 Ans. X'y -—1~+Iagsecz =C
X
Solve yz logzdx - zxlogzdy + xydz =0 Ans. xlogz=cy
Solve z(1-2°)dx +zdy —(x+y+xz")dz = 0 Ans. x - xZ +y=¢z
Find f{z) such that

[ + 2 - x*)/2x]dx — ydy + f{z)dz =0 is integrable. Hence sulv}. it.
Ans. xc = x* +y* +2° , ¢ is arbitrary.

Ive (yz+z')dx — xzdy +xydz =0 Ans. xz = c(y + 2)
Solve (y'+yz+z)dx + (Z+xz +)y Hx+xy+y))dz=0  Anms. (xy +yz +2x) = c(xy+z)
Solve (z + Z')cosxdx - (z + Z)dy +(1-2))(y-sinx)dz=0 _Ans. (sinx - y)(z'+1)=cz
Solve (1+yz)dx +(zx — x*)y —(1+xy)dz=0 Ans. 1+xy =c(z-xX)
Solve z(z-y)dx + (zx - X*)dy — (1+xy)dz =0 Ans. (x+y)z=c(x+2)
Find the system of curves satisfying the differential equation

X

2 2
xdx +ydy +¢ [1——— ]dz='l]
a b?

2 2
whmhhennthcsurfm~—~—+%+az—z=l Ans.
c

z
Z 1-2— —z—landxz+y2+zz=c

a

u|:~=
[ 5]
:r




UNIT 3

Partial Differential Equation

§ 5.1. Introduction :

Differential equations which involve two or more independent variables and partial
derivatives of the dependent variable ( or variables ) with respect to these independent
variables are called partial differential equations. Thus an equation relating partial
derivatives is called a partial differential equation { p. d. equation ).

As in the case of ordinary differential equations, the order of a p. d equation is
defined to be the order of the derivative of highest order occurring in the equation. If, for
example, we take z to be the dependent variable and x, y and t to be independent variables
then the equation '

9z oz
§=E ............... (1)

is a second order p. d. equation in two independent variables. Again, the equation

zY oz
—| F=—==0 e 2
[axj ot )
is a first order p. d. equatiorrlint\!m independent variables. Again, the equation
9z _0dz oz
—ty—+—=0 ... 3
x Yoy ot 14

is a first order p. d. equation in three independent variables. A first order p. d. equation with z
as dependent variable and x,y as independent variables can be written in symbolic form as

FlEyzZpaY=0 . i (4)
dz dz
where P—E,{l—g ................ (5)

A common form of second order p.d. equation in two independent variables x,y is
Rr+S8Ss+Tt+Pp+Qq+F(xyz)=0 ............. (6)
where RS, T.P,Q are functions of x and yand fisa bmscﬁbad funection of x,y and z and

2 2 2
o L R o R R (7)
ax? dxdy dy*
The general form of the equation ( 6 ) is
F(xy.zpgrst)=0 PE——
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Again, p. d. equation may be divided into two broad classes, linear equations and
non-linear equations. The degree of a p. d. equation is the exponeat of the highest order.
Such an equation is called linear if it is of the first degree in the dependent variable and its
partial derivatives. That is, the powers and/or products of the dependent variable and its
partial derivatives must be absent. An equation which is not linear is called a non-linear p.d.
equation. :

The equations (1), (3) and (6) are linear, but the equations (2), (4) and (8) are non-linear.
§ 5.2. Origin of partial differential equation :

Our interest here is to solve a first order p. d. equation of the type

Jz dz ;
P—+Q—=R R |
p. Qay . (13
orofthetype f(xyzpg)=0  ririienen (2)
' 92 %
here P,Q,R are functi f dp=—; -q=— .
W Q.R are ons of x,y and p o q 3

Obviously, the equation (1) is linear where as the equation (2) is non-linear in general.
Before discussing the solution of equations of this type, we shall examine the interesting
question of how partial differential equations arise. In what follows, it will be shown that
such equations can be formed by elimination of arbitrary constants or arbitrary functiens
from an algebraic equation.

A. Elimination of arbitrary constants :
Consider a relation containing two independent variables x and y, the
dependent variable z and two arbitrary constants a and b. Let this be
f(xyzab)=0 {2)
By partial differentiation of equation (2) w.r.t. x and y in turn we get the equations
ofdx ofdy ofdz_, ofox afdy dfoz
dxdx dyox dzdx oxdy dydy dzdy

ay ax . . : ox dy oz dz
Here —=0=—, and vy are independent and — =1=— ,p=—,9=— .
since x and y are indepen o= 3 p ™ q ey

ox dy

So the last two equations become

=

and
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In general, the arbitrary constants a and b may be eliminated from the eguations (2),
(3) and (4). Thereby we get a partial differential equation of the first order

F{x,}r,z,p,q}=ﬂ sienriion L)

The equation (5) is often called the eliminant of the equation (2). It is in general,
non-linear.

Worked Examples

Ex. 1. Obtain a partial differential equation of the first order by elimination of the constants a
and b from the equation

axz + byz + abxy = 0

Solution : On differentiating the given equation partially w.r.t. x and y in turn, we obtain

az+sx%+hy%+ahy=ﬂ and u%+hz+by%+abx =0

or a(xp+z)+b)p.+ahj’=[ll and axq+b(yg+z)+abx=0
Now, the given equation and the last two equations are linear homogeneous equations

for the three quantities a,b and ab. For a non-trivial solution of these equations ( that is all of
a,b and ab cannot the zero ), the determinant of their coefficient must vanish. This requires

Xz  yz
Xp+zZ  yp y|(=0
Xq Yyq+z x
Expanding the determinant and simplifying we get xp +yq ==z

This is a first order linear p.d. equation and does not contain the constant a and b. This
is therefore, the required eliminant of the given equation.

Ex. 2. Find two eliminants corresponding to the equation z =ax+% :

Solution : Differentiating the equation w.r.t. x, we get p = % =a.

Eliminating a from this and the given equation one obtains
z=px+% or xp’-zp+y=0

which is an eleminant of the given equation. It is a first order non-linear p. d.

equation. Next, differentiating the given equation wrt. yweget q= g: = %




So the eliminant the partial differential equation

z=%+yq, or  x+ygq®—zq=0 which is the 2™ eliminant.

Thus, we can obtain more than one eliminants i.e., p. d. equations from the same algebraic
equation.

Note : The original algebraic equation from which we obtain eliminants as p.d. equation or
equations is called the solutions of there p. d. equations. That means we can have the same
solution for more than one p. d. equations.

Ex. 3. : Eliminate the constants a,b and ¢ from the relation

2 2 2
E‘TJ_H_E:] ................... (1)
a b® ¢

Solution : Differentiating (1) partially w.r.t. x and y we get

=T L G, dasewsdlesenasanes (2
a’ czp )
and E}%J'cii T COPRRRCI o0 S S (3)
Differentiating (2) w.r.t x,
r
“-l?-I-E--I'-iz]J:ﬂ ................... (4)
a C C
where =§'z' B l‘=a—zz
p ax“q a}r' 2
Now (4) x x — (2) gi l—[p? r— ]—ﬂ
ow (4) x x ) gives i X +zxr—zp|=

or pz=xp +zxp
which is an eliminant and is a non linear second order p. d. equation.

Alternatively, differentiating (3) partially w.r.t. y we get

2
Now (5) x y — (3) gives zq=yzt + yq , where tﬂa_._i".;

This is another eliminant of the given equation.
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B. Elimination of arbitrary functions :

Ex.4.:Letu=u(xyz)and v=v ( x,y,2 ) be two known functions of x,y and zand Fbe an
arbitrary function of u and v such that _

Fl(uy)=0 . ' ' essiceieensas (1)
Find a p. d. equation by eliminanting F.

Solution : Treating z as dependent variable and x and y as independent varibales, we
differentiate equation (1) partially with respect to x and y in turn to get

2 2 2o

2ulax oz o
a_F E.féu_ +a_F ﬁq..a:v_ ]:ﬂ
mlay oz ) ovidy oz

There are two linear homogeneous algebraic nquaunns in % and % Since these

quantities are not both to be zero, the determinant of the coefficients of the system must
vanish. Hence we have,

32 (22
g ] b

du dv du dv dudv) dvdu odvou _odvdu it
——tq —— —_ ———=gq——p———=0 lification
or . a}(+ = azJ+ = 3}'] p {on simp . )

o (R _dvdu) fudv dvdu}, [?.“_E,Eﬂ]
dx oy oxdy dz dy azayJ dx 0z Ox 0z
or PB(u,v} +|:;':_]‘{‘l'l'1'r:I = owv) e (2)

a(y.z) d(zx) d(x,y)

This is linear p. d. equation of the first order and is the eliminant of F. Now putting

o(u,v) a(u,v) 3(u,v) _
= )P, ALY iR, 2 .
d(y,z) a[ x) =hQ, A%, y) e equation (2) can be put as

Pp+Qz=R PSR . )
Ex. 5. ; Find the eliminant of lowest order corresponding to the equation

z=f(x+ay)+g(x—ay)  wherefand g are arbitrary functions and a is a constant.
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Solution : Let u = x + ay, v = x — ay so that the given equation becomes
z=f(u)+g(v) et AL e (] 1Y

Differentiating it partially w.r.t. x and y we have

az_ — §E # ﬂ_ # ¢
E—P—f{ﬂ}ax+g(?)ax-F{u]+g[v} .......... (2)
%ﬁqﬂ’{u}%w’(ﬂ% =af’(u)—ag'(v) .......... (3)

The four quantities f, g, £, g’ cannot be eliminated from the three equations (), ()
and (3).

So, we take the second partial derivatives as follow :

2
g;f —r={"(w)+g"(V) e (%
aiz T, _op _ o e o
_S_&qaxu.ap_,,f . (5)
2
and ~—*§; =;=aq:aif”{u}+algf(v1 ---------- (6)

Now eliminating f “( u ) and g”( v ) from (4), and (6) we get

7 &22 b alz & 5 .
t=a‘ror —-a"—=0 which is the required eliminant.
ax? oyt

where z is the dependent variable, x,y are independent variables and f is arbitrary.

Ex. 6, : Find the eliminant of the equation xy+ yz+2Zx =f[ 2
X+y

Solution : On putting u = - , given equation becomes
X+
z
xy+yz+zx:f( ] .................. (1)
kx+y

du Jduox du odudz -z 1
= + 1+

ok s 1
(x+yY = (x+y)

105




Differentiating the equation {t} partially w.r.t x and y in turn and using the above
results we pet

Y+yp+z4+xp= f(u)x[ P ] . i
(x+y} X+y

X+zZ+yg+qx= f’(u}x[ 4+ :| ........... (3)
(x+y)' x+y

Eliminating £ ( u) from (2) and (3), we get

T z
[{r+21+p(x+}'ﬂ{Ty—{x+ }] [tx+z}+q{x+y}]x[ ﬂ—{”ﬂ]

or [(y+2)+p(x+y)llax+y)-z]=lx+2)+ax+llp(x+y)-7]

which on simplification, reduceto  {x+y)(x+2z)p-Ax+y)(y+2z)q=(x-¥)z

This is the eliminant of the givn;naquaﬁunnndisaﬁmturder linear p.d. equation.
EXERCISE-1

1.Find all possible eliminants corresponding to the equation
(x-al Hy-bf+(z-c)=1 ‘

Ans: P'+q'+11+pY=r, @+ + 11 +q) =t" and @'+’ +1)p’ ¢’ =+

2. Formulate a partial differential equation by eliminating a,b and ¢ from

aY (%) _,%

z=a(x+y)+b{x-y) +abt+c Ans : [5] _[5;] =4-§t-

3. Eliminate the arbitrary constants indicated in brackets from the following equations and
from p. d. equations

2 2

(i) z= Ae® sin px, (p and A), Anszgx—iz—+%t—1{=ﬂ
g 'z oz
Ae™ and A), Ans: —= =22
(ii) Ac™ cos px, (p and A) T

(iii) z= ax + by + 2’ + b?, (a,b), Ans : z=px + qy + p* + ¢’

4. From a p. d. equation by eliminating the arbitrary function ¢ from

¢{x+~_|,_r+z,x2+y2—zz}=ﬂ' Ans:(y+z)p—-(x+z)g=x-¥




5. Form p.d. equations by eliminating the arbitrary functions from the following equation :

@x+y+z=RC+y +7), Ans:(y-z)pt(zx)qg=x-y
{ii}lz=y2+2+f‘(—l~+]ogy}, Anﬂ:px2+q}f=2y’

X
(i) £ +y +2, 22 - 2xy) =0, Ana:p—~q=l:y_1%
ey o : . : ot 9%z 9%z
(iv) z=f(x + iy) + g (x - iy) where f,g are arbitrary functions ﬁm.¥+§=ﬂ.

§ 5.3. Lagrange’s linear p. d. equation and its geometrical interpretation :

The standard form of the linear partial differential equation of the first order
and involving two independent variable z is

PorQa=B ' s (1)

where P,Q,R are functions of x,y and z and p=ﬂai.Q:ﬂz-.
ox oy
This is often referred to as Lagrange’s linear equation .
Geometrical meaning :

Let z = f (x,y) be a partial solution of equation (1). Consider a fixed point (x,y,z) on
the integral surface z = f (x,y), we see that the direction cosines of the normal N to this
surface at the point (x,y,2) are proportional to (p.q,-1).

Then the differential equation (1) means that the normal N is perpendicular to a line L
through (x,y,z) and with direction ratios P,Q,R. In other words the direction (P.Q.R) is
tangential to the integral surface z=1f(x,y).

z

L4
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Now let the plane of N and L cut the surface in a curve C, having direction numbers
dx, dy, dz Since the curve C and the line L have the same direction, the two sets of direction
numbers are proportional :

The simultaneous ordinary differential equations (2) are called the subsidiary
equations for Lagrange’s equation (1).

Lagrange's method of solution of equation (1) is based on this fact that there is a
closed connection between the solutions of the subsidiary equation (2) and the integrals of the
equation (1).

]

§ 5.4. The general integral :
Theorem : The general solution of the linear p. d. equation
Pp+Qq=R R SN AT 1
is ¢(uv)=0 S R, .

; where ¢ is an arbitrary function and u ( x,y,2 ) = ¢; and v ( x,y.z ) = ¢; form the
solution of the equations

T (3)
P Q s i
Proof : Giventhat  u (x.y,z) = ¢ it}

satisfies the equations (3). Then taking total differential of {4} we get

x4 udy+udz=0 - ... (5)
Since (4) satisfies the equation (3), the equation (5) must be compatible with the
So, we must have Po,+Quy + R =0 ° ...cerriviansenm (6)

Similarly, from the other solution v { x,y,z) = ¢2, we have
' PUat QUy RS0 oereeeresieenans (7)
Solving the equation (6) and (7) for P,Q, and R we have

P Q R

n,v,-u,v,  u,\v,-u.v, uyv, —u

¥ ¥ y xVy ¥x

¥
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F- o . R
u,v)  9(u,v) ~ 3(u,v)
d(y,z)  d(zx) 9(x,y)

Again, it can be shown that ( section 5.2.B. Ex. 4.) the relation
¢ (u,v) = 0 leads to the p. d. equation

pa{u,v} i dlu, v) = a{u, v)
d(y,z) d(zx) d(x,y)

Substituting from equations (8) and (9) we get Pp+Qg=R  which is equation (1).

Thus we may conclude that the relation (2) is a solution of the p. d. equation (1)
where u = ¢; and v = ¢, are two integrals of the subsidiary equation (3). The solution ¢(u,v) =
0, ¢ being arbitrary is called the general integral of equation (1).

Note : The two integrals u = c; and v = c; are also solutions of the p. d. equation (1).

Proof : Let u and v involve z explicitly. Almld%—=—‘g—=£§=
so that dx=PdA, dy=QdA, dz=RdA  ............. (10)

Taking total differential of u (x,y,z) = ¢;, we get udx+ u,dy+ u,dz=0

or using {10) and canceling dA, Puy + Qu, + Ru, =0

or LTI e R S (11)
uZ uz
du
Againfmm.u{x,}r,z]=c1, we have p=%=-%=-u—:,q =£i—
0z
Hence (11) may be written as Pp+Qq=R (1)

Thus the integral u (x,yz) = ¢; of the subsidiary equation (3) satisfies the Lagrange’s
equation (1). Similarly, the integral v (x.y,z) = c; of (3) is also a solution of equation (1).

Worked Examples

Ex. 1. : Find the general solution of the differential equation

x?i-!-yliiz{xﬁ-y]z swmemevansnanssansin kg

ox dy

Solution : The given equation is a linear first order p.d. equation. Its subsidiary equations are
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s I A ! 2
Xy (x+y)z (3
The first pair of the ratios in (2) gives =¥
x2 y
. i1
Integrating, ———=comstant=c, = .iccciiesececesen (3)
Xy
] dx dy dz _ dx-dy
in, we have rom(2), —=—= =
Aga (2) R e g
d2_dix-y)  d_dx-y)
z (x-y) z (x-y)
Integrating, I;Ym:: NCLCIN, ¢ L
From()ad (@) weget L=Z2zg, oo, (5)
: z ¢

The integral curves of the equations (2) are given by the equations (4) and .{5]‘
The general solution of the given diffe:‘mtial.equation (1) is given by

F(Hmu]ﬂﬂ' cssasannsuananne ) ‘;ﬂhﬁ'ﬁthﬁﬁmﬂﬁﬂnFiSﬂhim.

z z
Ex. 2. Find the general integral of the Lagrange equation
X(Z -V +y( -2 ==Y - %) e (1)
Solution : The mhsidjary equations are

dx dy dz . (2)

x(z* - y*) B y(x* -2%) g 2y’ -x*)
Each ratio in (2) is |
2 xdx + ydy + zdz :xdx+}'d}r+a:lz
x}(2' -y )+ ¥y (x? -2+ 2 (y* -x) 0
Soxde+ydy +2zdz=0
Integrating,
gk a7 r R L . S (3)
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Next, each ratio of (2) is

yzdx-i-zxdy+xyl:lz _ yzdx + zxdy + xydz

Txd@ -y )+ -2)+y —xD)] 0
yzdx + zxdy + xydz=0o0rd (xyz) =0

Integrating, A¥E=E .. ", 7 TN imreeh

. the general integral of the given equation is F (x> +y’ + 2, xyz) =0 where F is arbitrary.

Ex. 3. Find the general integral of the p. d. equation

2-xp-yq=ayx? +y 42 i (1)

Solution : The subsidiary equation of (1) are
dx dy dz

—ECE——Em——— e (2)
X ¥ z—a-\jx +y +Z

'['I:mf'lrs;t't‘ilhr{:rrﬂt:[\une;g:iw.ﬁaﬂ:ﬂ . Integrating v = ¢;x = ........... (3) "
x y
Next, each member of (2) is = s ot , equating the last ratio of
1I+y1+zz--BZ~J[xz+y2+zz)
xdx + ydy + zdz

2) with this, we get
o ki z— a-“x +‘_t,r+2.1 (x*+y?+2%)- a.z«J{x +y? +2%)

Put x* +y* +2° = * so that the last equation reduces to

& 7% & &
z—at t'—am t(t—az) t-az
dx _ g dz+dt _ diz+1t)
x ¥y (z+t)y-alt+z) (l-a)(z+t)
or (1- a}dx M
x  (z+t)

Integrating, (1 - a) log x =log (z+ 1) + log ¢

|
or x"=¢:z{z+t]=cz[z+-.,||xz+yz+zz}

. II_'

z+q|[{xz +y1 +21}

:nc.'2 .................. {4]
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From (3) and (4) we get the general integral of equation (1) as

e

§ 5.5. Integral surfaces passing through a given curve

] The general solution ufalintarp.iaquaﬁnncanbeusadmﬂﬂtmmemcmm
surface which passes through a given curve. ;

Suppose we are given the p. d. equation

Pp+Qg=R ' e (1)
Its subsidiary equation are

L ﬂ_dz .................. (2)

i) Q R

Let the two solutions of equation (2) be
u(xyz)=c, v(XL¥Z)=C -errrnranin (3)
Then we know that the general integral of the p. d. equation (1) is
Fluv)=0  iciiessesn (4)
arising ﬁ'um therelation F (c1,c2) =0 .oriiiiicnnnnns (5)
between the constants ¢, and c; . The ﬁmcuonF marbﬂ:rary
Now, our problem is to determine the function F in special circumstances.

Suppose, we wish to find the integral surface which passes through the curve
C whose parametric equations are

x=x(t),y=y(®),z=2(0)
whmtisapmm.
Then the particular solution (3) must be such that
u{x@y®z®}=c,v={xM),y@®z(t)}=ca

We :hml'un: have two equations from which we may eliminant the s:mgle variable t
to obtain a relation of the type (5). Then our required solution is given by the equation (4).
This equation will not involve any arbitrary constant and so will represent a definite surface
with 3-dimensional co-ordinate spaces.
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Worked Examples
Ex. 4. Find the integral surface of linear p. d. equation
x(Y+2)p-y(+2)q=(x-y)z
which contains the straight linex +y=0,z=1.
Selution : The auxiliary equation of the given equation are

dx - dy ks dz
x(y’+2) -y(x*+z) (x*-y)z

eachratiois =— Y2xt2dy+xydy _ d(xyz) - d(xyz2)=0
xyz{y +z—-x"—zZ+x —}rJ xyz*{ :

Integrating X ¥Z=2¢; = irieerrernrean (1)
' ld(xl +3..r1 -2z)
xdx + ydy —dz =3

(Y +2)-y(x*+2)-(x* -y)z 0
sd(x? +y*-22)=0

~ Again cach ratiois =

. Integrating x* +y* - 2z =¢, TP T 1 Sk 4y
Thus the solution of the subsidiary equations are given by
XYZ=C1, K Y 2T aeiiviiieenrsinens (3)
Again for the given straight line, we may choose the parametric equation as
x=ty=-tz=1 "
Substituting these in equation (3) weget -f=¢,2¢-2=¢,
Eliminating t from these, wefind -2¢,-2=c or 2¢+e+2=0
Then making use of the equations (3) we have
2xyz+ (R +y¥ -22)+2=0
or xz+}f2+2xyz--22;l-2xlﬂ wﬂchgivmﬂmdcsimdintcﬁaisurfacc.
Ex. 5. Find the integral surface of the equation '
E-NYP+-0xq=(+Y)z .o (1)
through the curve xz=2a’, y=0 ... (2)

Solution : The auxiliary equations are

113




dx dy dz

P o s e it (Y
The first two members gives ’i": - ::‘1}
or Xdx+ydy=0
Integrating x* +v° = ¢; R i (4)
Againmhratiuinﬂ}k:(xnf;{yzdixz]
Equating this with thelast ratio of (3),

| dz__ __ d(x-y) dz _d(x~y)

& +y')z (x-y)x*+y’) z  (x-9)

Integrating, z = ¢ (X - ¥) B )
Thus the solution of the equation (3) is given by
| b PO O S L S (6)

For the given curve (2), we take the parametric equation

Substituting these in (6) we have
£+0=¢ ie t=c¢ and

3 ’ 3 3
a a~ . a
— =¢,(t=0) on ¢; =— Le 2 =—
t t ¢,

Eliminating t from these two equations we have

: ' 2
3 9
a a
c.lz:[ﬁ: —_— =—3
Cz i_‘..z

Then substituting from (6), we have

k]
{x3+}r.!]2=a9[x;}r] or z]{x3+}r3‘}1=a9[x_y}5

This equation represents the required integral surface.
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Ex. 6. Find the gmcz'ul solution of the equation

(YD) pH+y Ry +2)q=2 e (1)
and deduce that
yz(Z +yz-2y)=x" ik )
. is a solation.

Solution: The subsidiary equations are

dx dy _dz
3

2x(y +2°) g y(2y+z?) z

..(3)
Two solutions of the equations (3) can be obtained as

Bl e Bt (4)
yZ

z? -2y
yzZ

and epy © gl (5)

" Hence, the general solution of equation (1) is

5
=z 23"):0 ................ (6)
yz' vz

Second part : The equation (2) can be written as
yz (2 +yz-2y) =%

X

& ivin P (xT
or —{(z" =2¥)+yz} = =| —
VZ

(yz2)* \yz
) 2
or E ey +1= (i)
Yz ¥z

or ct+l=cy ... using (4) and (5)

or - c:-1=0
which is of the form Fy(c,.c2)} =0

Thus the given equation (2) is a particular solution of the Lagrange equation (1).
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§ 5.6. Linear equations with n-independent variables
The first order linear p. d. equation in the n-independent variables
X1.X2y wnenns X, and the dependent variable z is of the form

PIPI+P11}2 +"'+’Pnpn:R. ................ {[}

ﬁ,j=l,2, ,,,,,,, 0 andPi’sandRurcﬁmcﬁﬂnsofﬂmx’sandz..

When n = 2, the equation (1) reduces to Lagrange’s equation.
The subsidiary equations of the equation (1) are

dy 95 et
P, P, P, R

These n-independent ordinary differential equations in (2) will generally have n-
independent integrals
05 (X1,X20 00 Xo,Z) = 83, = 1,2,....,n. where a's are arbitrary constants. When
n> 2, it may be shown by the some method employed for the Lagrange equation that

Bl e (3)

where ¢ is an arbitrary function of its arguments is a solution of equation (1). The relation (3)
is called the general integral of the linear partial differential equation (1). A relation involving
n-arbitrary constants and satisfying equation (1) is called a complete integral integral of
equation (1).

When n > 2, equation (1) and its solutions do not have geometric interpretation.as do

the Lagrange equation and its solution. However, the equation (1) is said to be (n + 1)

Worked Examples

9z oz oz Xy
Ex. 7. Sol —t Yt t=—ZAZ ==  ciieresemesiese 1
R T . D t L)

Solution : The auxiliary equations of equation (1) are
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=—=1=CX
X t .
dx dz dz dz
X az4 % +2% az+—x
CqX “3
|
az+—x
dz Cy Z G
or —= =
dx X X ¢
dz z ¢
m _—a—"—’- ............... {4}
dx. X cl

This is a linear first order ordinary differential equation.

Is LF. = el 7% = gobex _ y-o

& - 1-a
Hence, zx '=c,+j—'x“dx—-:3+—’><
Csy C-1 —a
I-a
" ¥Xx
0ofr, I=X |Gy +=—— C
[ , tl"ﬂ-} ....... ..'c—l‘={'
1-a 2
z X
ie, ___;f.r.__zc} ................ (5)
x* tl-a

Thus (2), (3) and (5) are the integral of the auxiliary equation. Hence the general
integral of the given p. d. equation is ,

l=a
Y i_i ‘—‘--— = & i i
0[4,}4,:" txlva] 0  where ¢ is arbitrary.

Ex. 8. Solve z(X,X,p, + X;X3P; + X;X3P3) = XXX,

Solution : The given equation is

ﬂ]x]__q_lex;_.hm!xz—a?:—:I]sz} ............(1)
ax] axz ax]
The auxiliary equations are
dx, _dx, _dx, d& (2)

ZX X4 ZX X4 Hlxl xlxsz

From the first two ratios of (2},

117




B .
.—d.x..i.._. :._2._ or xl.d-_x.l = xzdi1
ZX3X3 I Xy

. Integrating, ki L h Retenien (3)
Similarly, from the 2™ and 3™ ratios of (2),

Ea=a%0y & eeessdsiess (4)
Then from the last two ratios of (2), _

X—2 =0 . SRR N ) ()

Now (3),(4) and (5) are the three independent integrals of the subsidiary equations.

Hence, the general solution of the given equation is

R I T T O
Xy —x3,x; —X3,x3-2) =0

§ 5.7. Homogeneous equations lacking the dependent variable

A homogeneous linear p. d. equation of the first order with coefficients free from the -
dependent variable F is an equation of the form

OF _
ﬂaln

F oF
Q1H—M'+Qz'§£;+"'+ﬂ 0 i il 1)

where Q;,Q4....... ,Qy are functions of the n-independent variables x,,xz,.....Xa , but do not
involve F. -
The subsidiary equations of (1) are

dx, dx, dx,

Q]_ :Q_2= Qn

If w (x1,%,....Xa) = 3, j = 1,2,....... , 1 — 1 involving only the x’s are n — 1
independent integrals of (2), then the general integral of (1) is given by

JAF=0 (2)

F='I.|I'[I.I|,l.lg, ...... ,1]"‘:] --,{3}
where W is arbitrary.

Ex. 9. If u is a function of x,y and z which satisfies the p. d. equation

du du du _
(y*z}aﬂz—xiaﬂx-ﬂg—ﬂ

s0 that u contains x,y and z only in combination of x +y +zand x*+y* +2*.

Solution : The given p. d. equation has the auxiliary equations
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From these we obtain
du=0
dx +dy+dz=10
and xdx+ydy+zdz=0
The integrals are
u=c, X+ytz=cy, x4y 2 =y
Hence the general solution is of the form
u=f{x+y+z,x1+y1+zl} as required to be shown.
Exercise - 2

1.Find the general integrals of the following Lagrange equations :

() &P -2+ (@ -x)g=x" -y Ans: ¢ (x+y+z,x +y +2)=0
(ii) (Z - 2yz— y)p + (xy +xz)g =xy - Xz Ans: ¢ (X2 4y +2, ¥ — 2yz-2) =0
(iii) (* - y2)p + (v - zx)q =2 — xy Ans: o[‘ y = z)
y- z z—-X
(iv) (mz - ny)p + (nx - lz)g = ly - mx Ans:#{h+my+nz,xz+f+f}¥ﬂ
V) (& +3xy)p + (7 + 3xdy)q =22 + Yz Ans:a{ 1 . "”}
(x-y)* (x+y:~

* 2. Find the general integral of the p. d. equation
(2xy - Dp + (z— 2x)q = 2(x - y2)
and also the particular integral which passes through the line x =1,y =0.
Ans: F(y + zx, ¥ - 2xyz— X2 +2) =0
C+y-zx-y+z-1=0
3. Find the equation of the integral surface of the differential equation
2y(z - 3)p + (2x - 2)q = y(2x - 3)
which passes through the circle z=0, x* + y* = 2x.
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Ans X’ +y -2x=7-4z
4. Find the general integral of the p. d. equation (x - y)p + (y-x-2)q =2
and the particular solution through the circle z=1, * + ¥ = 1.

Mﬂ:{x+}r+z,y_xz*z]={l

z

z'(x+y+2)? —22"[3{+],.r+z:|+{:,|r—x—z]|1 +2z°(y-x-2)=0

5. Solve :

{i){:+y+z%+u+z+x1§§+u+x+y; T

ot
0z
Ans: {F i (x+y+z+l}y{t z]:]
X-y'y-
(ii) X, X 4Py + XX, Py + X, X33 + X X,X3 =0
( here z is the dependent variable)

Ans: F(x{ +2z,x{ —x3,x3 =x3)=0

(i) p, +Pp2 +psfl—Z—%, — %, —x3) |=3

Ans: ¢{z-3:1,z—3x;,z+6\f{z—x, - X3 —13}}=ﬂ
(V) (x3 = X2)Py +X9P; —X3P3 =X, (X, +X3) =}
Ans (F(z—x,X,,X; + X3 +X3,X,X;) =0

(V)X3p; + X3P, +X,p3 =0

Ans : Q{[KI-'-I 1 X _x3} 0

(Vi) X, X3P, + X X3P + X, X,p3 =0
Ans: ¢(x] -x2,x2-x1,2)=0

{vil) x;p; + 2x,p; +3x,p, +4x,p, =0

Ans:@[z xy "‘y xyjzﬂ
Y xz’ xsﬁ xd
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UNIT 4

Non-linear partial differential equations of the first order; Charpit’s method of solution.

§ 6.1. introduction

Let us consider the non-linear p. d. equation in two independent variables X,y and the
dependent variable z, denoted by

F(x,y,zp,@)=0 e i |

where p=%—,q=%mﬂFismtaﬁne&rﬁm¢ﬁun in p and g.

We know that the partial differential equation nf the two parameter syste:m of surfaces
f(x,y,zab)=0 . WO 1 i

is of the form (1). It can also be shown that the converse is also true (Charpit’s method to be
discussed hereafter), that is, that any partial differential equation of the type (1) has 'solutions
of the type (2). Such a solution containing two arbitrary constants (here a and b) is called a
complete integral of the partial differential equation (1).

In general, the arbitrary constants a and b in equation (2) will not occur linearly. So,
the two parameter family of surface (2) may posses dn envelope. This envelope is obtained

from PRl e R wD Do ()

da db
‘by elimination of a and b amongst them.
' The envelope will touch at each of its points, a member of the system (2). They
possess, therefore, the same set of values (x,y,z,p,q) as the particular surface, so that it must
also be a solution of the differential equation (1).

Thus the envelope of the two parameter system (2) when it exists, is also a solution of
the equation (1) and it is called the singular integral of the p. d. equation (1).

§ 6. 2. Charpit’s method for solution of a non-linear first order p.d. equation with two
independent variables.

To solve the non-linear first order p. d. equation F (x,y,2p.q)=0......c...... (L
Charpit’s method of solving this equation is based on finding a second p. d. equation of the
first order G(xyzab)=0 (2)
such that equations (1) and (2) can be solved for p and q in terms of x,y and z and such that
these resulting expressions, when inserted in p(x,y,z)dx +q(x,y,z2)dy —dz=0.....3)
makes (3) integrable.
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In order that (1) and (2) be solvable forpmdq,thﬂemmhawmhem&pmdem
and so their Jacobian

oF 26
d(F,G) . o
B d(p.q) & g g'(g' =FG,-FG, .o {4113!!130‘\'!.!11!11 identically.
dq dq -

Again, the necessary and sufficient condition for equation (3) be integrable is

p q -1
53 3,
ox dy az;
p q -l
_o[%9),f%)_[%a_2%r|_
= ‘{az]“‘[az) l[ax 31'] ;
9q_ % dp 9q_
o pa qﬂz 3y+3 =0 PR SRS L | T |
Now, differentiating (1) and (2) partially w.r.t. x (holding x and z fixed) we get,
E+£E+3_Fh= +++-.(6] | SR
9 Opox  0qdx
9G dGdp dGdq_,
and Eix+apﬂx+6qax ................. (7)
oF oG _ G oF
. 3q 3 _ oxap oxop _FG,-FG,
Su]vmg{ﬁ}and{?}forachgu . _E_FE+EB_F_ 3 .(8)
a9 g0
Similarly, differentiation of (1) and (2) partially w.r.t. y gives,
dp 3‘1 op dq
B¢k —+FE ==l and ﬂ G —+G_—=0
" 3y Ty Ty
Salvmgﬁmcmuoquaﬁmfor% , one obtains %—_-w .......... (9)

Next, dit_'feremiating (1) and (2) partially w.r.t. z, we get

dp_, . dq dp dq
F+F£+Faz =0 and G+G'B_+GB?
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'Hl;m:cunbcmlvedﬁ:r% mﬂ%myieid

dp _(F,G,-FG,) 3q EG,-EG,
— ‘ﬂnd — T e — e a G E lﬂ'
oz / dz ] )

- ous for 298 ® g 3 :

Now inserting the expressions for 'y % and > from (8) to (10} in (5), and
multiplying by J, we get,

p(F,G, -F,G,)-q(F,G, -F,G,)- (F,G, ~F,G)+(F,G, ~F,G,)=0

oG oG oG oG oG
?p“+{Fr+qFt}"§qz——{PFp+qu}E—F -'"K——F _—= ...{I]}

This is a six-dimensional linear homogeneous p. d. equation for G as a function of x,
¥, Z, p and q. Its subsidiary equation are
9p da - R .Y aa=0 ......(12)

F, +pF, F, +qF, -pF,—qF, -F, -F,

or (F, +pE,)

These equations are known as Charpit’s equation. Finally, since any integral of these
equations (12) is a solution of the equation (11), we try to find one integral of (12) containing
p or q or both. Let such an integral be U(KY,ZPA) = .oovvieereene (13) Wherecisa
constant. This gives us the relation (2), thatisG=u-a=0.

We then solve (1) and (3) simultaneously for p and q as functions of x,y,z and O
Substinite these in pdx +gqdy-dz=0 = . (13)

and integrate it to get fxyzof)=0 (14)
where [} is a second arbitrary constant.
The solution (14) containing two arbitrary constants will be a complete integral of the

equation (1). A singular integral, if it exists, and a particular casc of the general integral may
then be found.

§ 6. 3. Worked Examples
Ex. 1. Find a complete integral of the equation
PEEEY=E v s (1)
Solution : The equation is non-linear 1 order p. d. equation & F (x,y,z.p.q) = pPx+qy-z

So that,
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The auxiliary equations of (1) are

dp . dq - dz =dx dy and dG =0
E+pkk B +qf, -pB-qgf =K -k

or :]P — qu — d.Z = dx = d}" and dG =0 ............ {2}
PP-P 9°-q -p2px-qlqy -2px -2qy

pldx+2pxdp _ p’dx+2pxdp
~-2p°x +2p°x - 2p’x -2p’x

Eachratioin (2)is =

q’dy+2qydq  _ q’dy+2qydy
-2¢’y+2q’y-2q"y -2q%y

Also each ratio in (2) is =

Equating the last two ratios we get

pidx+2pxdp _g'dy+2qydy - d@’x) _d@y)
~2p’x -2q%y p’x  q'y
Integrating, ]ug [p x) = log (q’y) + log a, where a is an arbitrary constant of

integration. px aq -{3)
Now we have to solve equations (1) and (3) for p and q. (1) X a +(3) gives

ap’x +aq’y+p’x =az+qq’y

h
2 " 2= az . e, az
or p(l+a)x=azorp T ~Pp :|:{“+a]x}

2z H
i . = o . ~q=t -
Then (3) gives ag’y=p’x= e or q AL q {“ +a}y}

Substituting these in the equation

dz = pdx + qdy, we obtain

=z |/ g T8 taking the sign for p and q only )
dz:{{l+a]x} dl+{{l+ﬂ]y} dy { g the sign for p q only

or y—-—a}/— o

[ (1+a) z}é x"é-'.}r'};

2 .

i | el e
Integrating, (l1+a)’? —+—-+constant

AR
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or  j(+a)y)’ ={ax}}5+y5+b ..... P (4)

where b is another arbitrary constant of integration. Equation (4) is the complete integral of
the equation (1).

" Ex. 2. Find the complete integral of
2@+xp+yQ =yp° e (1)
- Ass: Here F (x,y.zp,@) =2 (z + xp +yq) - yp'
F.=2p, F,=2q-p°, F.=2, F,=2x-2yp, Fq=2y
- Charpit’s equations are

F, +pF; F_'p' +af, - pr o qu = F-p i Fq

r - ] = —
2p+2p Zq-p2+2q - p{2x - 2yp) —q(2y) —(2x-2yp) -2y

d - . . L R

From ist and last of the ratios in (2) we get o S or g£+£!'—r"'-r={1l

4p -2y 2Ip ¥y

Integrating %I{}gp+ logy =constant = loga (say)

or p"'{}rza ie. p:}é2 .......... wt3)

We have to solve the equations (1) and (3) for p and q. From equation (1) we have

B 1 _a® a
¥q=_%p ‘Z"IP=EYK—:{*Z"K—1'

2 y ¥
or q—L£—~z e
2y* ¥y ¥y

Putﬁngthe&:expmssmnfo:pandqindz=pdx+qdy,w¢get

or dz+5d}r=a(£x;+5d-]—yj+la='-i-{-r
y . B R
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which is the required coti:plﬁn integral with two arbitrary constants a and b.
Ex. 3. Find the complete integral of
2 (y+2zq)=q(xp +yq) TR & b
Solution : Here F (x,y,z,p,q) = 2 (v + zq) - q (xp +yq)
so that

F F . o F
e |_"=2_'- o = 5
—qp q %z

dx dy
dF oF
—=-xq,—=2z—-xp-y2
ap' K‘Iaq p=yq
Charpit’s equations are
. SN =~ = & el and dG =0

F +pF, F,+qF, -pF,-qFf, -F, -F,

%P d = S & (D)

-@p+p2q 2-q°+q2q pxq-q(2z-xp-2yq) xq xp+2yq-2z

or

Equating the 1* and 4" ratios in (2) we get

d _dx . dp_dn

Pq . xq P x
Integrating, logp=log x +constant or p=ax ...... (3)
where a is an arbitrary constant. Then (1) gives

2y +22q = qxax +yq'

or  yqt+(ax’-2z)q-2y=0

—(ax? - 2z) J(ax? - 22)? + 4y2y
2y

Hence g =
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Putﬁngthﬂemhnsﬁ:rpmdqindz=pdx+qdy.weget

. R
L. }14{:: 2’ +8y"
Y

o 2ydz=2axydx+2zdy—ax’dy+(ax’ - 22)* +8y’dy

or  2(ydz—zdy)+a(x’dy—2xydx) = +y/(ax’ —22)* +8y’dy

r 4
or Zyld(:—r] —ajrld{%-] = tJ{m:’ -2z)* + Sf dy
ok i i
Y ¥ - ¥
2 2 z
. {E==) J[M] .
Yy y Y
{Iz-ul]
Y
2

:l:k:gk%u‘tl +E)= logy + logb = logby whereb is a constant of integration.

or t+Vt?+8=by or  t2+8=(by—1)? =t +b’y* —2byt

2z—ax’ _8

or hzyz ~2byt=8 or bjgz —2byx

or by’ -2b(2z—-ax’)=8

which is the complete integral with two arbitrary constants a and b.
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§ 6. 4. Special types of 1" order non-linear p. d. equations

we shall here consider some special types of first order p. d. equations whose
solutions may be obtained easily by Charpit’s method. These types are ofien referred to as
standard forms. These are discussed below with examples.

Type 1. Equations involving only p and g.

For equations of the type f (p,g) =0 ..o (1)
Wehavef,=0,£,=0,f=0.

Then the Charpit’s equations reduced to

& & .9

f, f, pf,+gf;, 0 O
An obvious solution of these equations is PREE ©  ocsciddane (2)

Then the corresponding value of q obtained from equation (1) is given by
- fag=0 ... (3)
so that q = Q (a), which is a constant.  Putting these in dz = pdx + qdy, we get
dz = adx + Q(a)dy
~z=ax+Qfay+b ... (4)

where b is another constant of integration. Thus (4) is the complete integral of the given
equation (1).

; Instead of choosing the eguation dp = 0 or p = a to provide our second equation, we
may choose dq = 0, leading to q = a in some problems.

Ex. 4. Find the complete integral of the equation
]] + q -] m e e { ]. }
Solution : Here F(x,y.zp.qQ =f(p.Q=p+q-pq

f,=1-q,f, =1-p,f, =0,f, =0,f, =0
Then Charpit’s equations are

0o 0

L I pfp+qfq

Wehavehere dp=0 or p=a  ..cccrenenn (2)

Then from (1), q(p-1)=p
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P a
i T P ——— 3
- 9 p—-1 a-1 (3)
Putting these values of p and g in

dz = pdx +gqdy, we get dz:adx+—a—l-d&'
a—

Integrating , z:u+ﬁy+b

This is the complete integral with two arbitrary constants a and b.
Ex. 5. Using the transformation X:%, Y=logy, Z=logz.
Solve the p. d. equation x'p’ - yzq-Z =0 e &

Solutien : Gives K==L, ' Yelogy, Zabgtorywe gmel

-

dgx dX ox oX\{ x?
3. z._@'?_
~or S
e de BV 5 BEY
= oy oy Yy
o
or yqg=¢ Y
The equation (1) now reduces to
2z E 2* g OZ g -9z
e [HX) e E#Ye e =0
azY [oz
s B i BT
&) -(®)
or PR gl =lml. - T iemasssasess (2)
, A& , OF
here p =—,q =— .
et E

The equation (2) is of the form f(p”,q)=0.
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So we take p’ = constant =
P a } LEwy

Then(2) givesq’ =p” —1=2a" -1
Substituting these in the equation dZ = p'dX +q'dY , we get
dZ = adX + (a - 1)dy,

Integrating, Z = aX + (a*- 1)Y +b
or !ngz:al+(a1 ~1)logy+b
X

which is the complete integral of the given equation with two arbitrary constants a and b.
Ex. 6. Find the complete integral of
E+yY)p'+q)=1 BT o B

Solution : Put x =rcos 6, y = sin 0, so that

+y=r, ﬂzm"(%) ossimsrinie 0 2)

Lo 3 %W il
..'P a-x arax Eﬂax i e R T

and 2r£=2y=&

Again x = r cos 0, differentiating it w.r.t x,

1 =%{rmsﬂ] = %WSE*P T(-Siﬂﬂ}%

ax

or I=msﬂmsﬂ-rsinﬂ-a£=>—rsinﬂ%=l—mzﬂ

20 sin’® _ sin@

“ox -—rsn@® ot

Again differentiating y =r sin 0, w.r.L. y,

1= i{rsﬁn )= ﬂ:sinﬁ+ r-::v:anslﬁlE = gin ﬂsil:l'lil+ru;::c:«siﬂE
dy ay T

3y
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or rcnsﬂ-a—ﬂsl—siuzﬁ=coa29

0 .E_msﬁ v
dy
On using these results we get from (3),

anmtingthmexpremiomfcrpmdq,ﬂwaqmﬁm{i}hewﬁm

e“[.a.z]’mzm[e]’ mvzmemaa@}

or 9, r  orod
(2] o () coge pumomorar]],
or o0 rz A 1 or 00
- AT
ar ) 2|
2 2
- (’%ﬂ 4{%] T T (4)

Now putlogr =R onr=e¢,

IR T BT TR
ﬂ]ﬂ —_— — i —— — T —
T W el Y
Then equation (4) becomes [E):[ﬁ)z:l St o i
oR) "\o0

This is of the form f (p,q) = 0.We choose =E=a,1‘henfmm (5),
PR

00

dz oz  m—
m=—= = —] = -
q [BR) 1-a
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Putting these in dz = pdR +qd 6, we get dz = adR +v1—ade.
hwgraﬁng;=ak+ 1-a’B+c
=alogr+vl-a’0+c = . (6)
where r=x* +y" and ﬂ'=tan'1(%) and a and c are arbitrary constants.

So equation (6) is the complete integral of the given p. d. equation. - :
Type II. Equations not involving the independent variables

If the partial differential equation is of the form  f(zp.Q) =0 .......(1)

So that f, =0, £, = 0, then the Charpit's equation reduces to '

Gy & 9. “‘1 UMY ¢
fp fq Pf +qf pf:
The last two ratios of (2) gives ; %=%i.e._q=u‘p ....... (3)

Solvingﬂ}md{fi}.wcgctpandqintﬂmsofz,myp==¢{z}, q = op = a(z)
Then dz=pdx+qdy  gives dz = §(z)dx + o(z)dy

or, Jlu--+|3-'x+n':y ........... (4) where aand P are arbitrary constants.
&(z)

It appears that, in the complete integral (4), z will be a function of the combination x + ay. Sn
the solution may be obtained by the following procedure:-

=g(x+u}f]=g{u], u=x+u_}l' .............. {5}
so that

_9z _odg_dgou _dg_dz .
x ox duox du du
_9z_og_dgou _dg L dz

a}'ayduay du du

Then the partial differential equation (1) is transformed to the ordinary differential equation
of the first order :

dz dz
........... 6
f[ du du] 2 ©)
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the general solution of equation (6) will cantain the arbitrary constant & and another constant
of integration B, and this will give the complete integral of the p.d. equation (1).

Ex 7. Find the complete solution of the p.d. equation
2 +q¢+1)=1 : WE
and a singular integral.
Solution : The equation is of the form f{z, p, q) = 0.

Weputz=g), uv=x+ay

a0 that
_0z_dgou _dg _dz
P=%x dudx dn du
.9z _dgdu _ dz
1=y @y

Then the given equation (1) reduces to

A& ro(& et | gugi

dz)' 1 1-2z° "‘im
o boallE) i | e
z z —g? %
L
or, V1+a? e iy
l-z 1 :
' 182 .3 2y3
Integrating, . wegg —r =)
' 2
Vit V1-22 =1 (u+B)
Squaring we get
(1+d) (1 -2) = (x + oy + p)’ - A2)
This is the complete integral with o and P as arbitrary constants.
Singular Integral:
The equation (2) is

fx, y, 2, 0 B) = (1 + &)1 -2)) ~ (x + ay + B)* =0

Differentiating this with respect to o and f, partially, we get,
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=0=20(1-2")-2(x+ay+By=0 ....... k)

and =0=-2x+oy+p).1=0 ... 4)

% ¥

From this two equations (3) and (4) we see that
| Z-1=0z=%1 ... (5)
and that these values of z along with (4) satisfy the equation (2).

' Thus the two planes z = £1, give the singular solution of the p.d. equation (1), that is,
the envelope of the surfaces represented by the complete integral (2).

Ex 8. Solve by Charpit’s method

16p* 2 +9q°2 + 42 -4=0 ' s
Solution: The given equation is of the form

fiz,p.q)=0 i L)
So we choose p = aq - -

Then (1) gives  16a°q°Z" + 9q°Z* = 4(1-2)

qz - 4 ]."‘Z.1
' (16a* +9) z°
2
B S —— R, Y 4)
164 +9 z

Substituting these expressions for p and q in
dz=pdx +qdy, we get(positive sign only),

2a 1-22 2- 1-22

dz= X dx + dy
16a2+9 Z Ji6a? +9 Z
or, B = = dx+;dy
Ji-z22 Ji6a? +9 16a% +9
Integrating .

.[ az 2
Vi-z  Ji6a? +9

Now putting 1 — z* =t so that —2zdz = dt,

(ax + y)+ constant il 5y

134




& 1
' 3 !
L.H.S Df{ﬂl&ﬂ j--_%ilz_%il"=_t2 = 1_21
12 3

Hence (5) becomes

- l—zII=T‘:E—g{u+y)+constant
or —Ji:?#lﬁa2+9=2{ax+y]+b
squaring, (162" +9)(1 - ) = {2(ax +y) + b}’
Thiuisﬂmcnmpleteimegml.udﬂlmuhimcunsmnmamdb.
Ex 9. Find the complete integral and the singular integral of the p.d. equation
C=p = ' 0 aes (0
Solution : The given p.d. equation is of the form  f{z, p,q) =0
Sowetake gq=ap = 0. (2)

From (1) and (2) we have - a’p’—Z'p’ (1-p") =0 or, p’(a’ - Z* + Z'p’) =0

; cg. 3
., ecitherp=0 or Zp'=2-a ie. z=1
Z
Now dz = pdx + qdy = p(dx + ady) i3}
whenp=0, (3) givesdz=0 .z=C e (4)

2 2
when p=i@ , ©) gives
dz=i{u—:]zz A2 Pdﬂady]
z

or, nci:|c+ad)_;«r:i%[z1 —ni)_;[Zz}dz=j:%{zz —atz]-%t;l(zI —az)

Integrating,

- T .
; Ju:+a:,:‘+l’:n=:!:%lziE . cuni()

1
2
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Squaring it, (x+ay+b)’=(Z -_alji

Hence the required complete integral is

Z-a=(x+ay+bforz=C - ....{6)
Singular Integral
On differentiating partially with respect to a and b, the first equation of (6) gives
Qa=2x+ay+b}y ... (N
and O0=2(x+ay+b)l eue8)

From (7) and (8),x+ay+b=0anda=0.

Putting these values in the first equation of (6), we getz=0.

These values of p and q clearly satisfies the given differential equation (1). Hence z = 0 is the
required singular integral.

Further z = 0 is a particular case of z= C in (6) corresponding to C = 0. Hence the planz =0
is the singular integral as well as a particular solution of the complete integral.

Type IIL. Separable Equation : f(x,p) = g(v,q)
If the given non-linear first order p. d. equation can be put in the form
fixp)=glyd 00 (1)
so that F(x,y,z,p,q)= fix,p) - £(,9)

Then F, =f,, F,=-g,, F,=0,F =1, F=-g,

The Charpit’s equations become
g e e S B s e
fp —Bq . ]pr —qg, - f, By

From the first and the fourth of these ratios we have

fdx +Hdp=0 -~ = i (3)
and from the second and the fifth,
gdy+gdq=0 . (4)

But the L.H.S of the (3) and (4) are the total differentials df and dg of the functions f
(x,p) and g (v,q). Hence the integrals of (3) and (4) are
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f{x,p) = constant
and g (y,q) =constant

Again by the original equation (1), we see that these two constants are equal. Hence
fixp)=o, gy, =0 ......(3)

Thus, to solve the given equation (1) we proceed by solving the equation (5) for p in terms of
x and o and for q in terms of y and o Then putting these expressions in_

dz = p(x,0)dx + q(y,c0)dy
and integrating, we obtain the complete integral of the given equation.
Ex. 10. Find the complete integral of the p. d. equation

p'q’ +x’y’ =x’q’*(x* +y")

Solution :The given equation can be rearranged as

2 2
P y 2
s S T e
x* q

2 2

-1
or P-:‘xz=yz-z;=}'2[q . ] ................. (1)

X | q

_ This is of the form f(x,p) = g(v,q)

2
We put P_z_x: =a’ or ]::l1 ={a-2 +xz}xz.
X

ie P =xva? +x?

Putting these value of p and q in dz = pdx + qdy, we get

B RS £ IO il
- y? —a

Iniegmting,
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i L..3_ _2 %d{y’-az}
z=|yx*+a° x—d(x" +2°)+ | =———+b
-[ 2 I ’f—az

_L e 107tk

i A 2 }é

or z:%(x1+a’}%+(yl—a1}5 +b.

This is the complete integral of the given equation.
Ex. 11. Find the complete integral of the equation
z(p'-q)=x-y

A=Al |
Solution : The given equation is (\EE] —[\Eg] SEX=Y ccvsinsannas{ 1)

Let us put J/zdz = dz urz%x-§—=z

So that

Tox dzox
_9Z_odZoz _ [
Q e zq

Then equation {1) becomes

3 podZ_dz_

or P-x=Q -y
which is of of the form f (x,p) = £ (v.q).
So we have each side of the last equation is a constant C, say

. Pz—x=c=:rP:~.-‘x+r:.
and Qz—'y=c:}Q=Jy+c

Then dZ'=de+Qdy={x+c}}édx+{y+c}Kdy

Integrating,
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Z={x+c}%x~§—+{y+c}}ix§+mtﬂu
or %—z%=-§—{x+c}%+§{y+c}%+mmt
or z% =l{x++r:}|}1 +(y+c]% +b L )

where a and b are arbitrary constants. Equation (2) is the complete integral of the given p. d.

equation. -
Ex. 12. Find the complete integral of z(xp - yg) =y* - X" .

Put zdz =dZ or Z=§zz.then

p Xk _ o X ZE_
dx odzdx - dy 0Oz dy
Thegiﬁmequaﬁunnowbwm
xPyQ=y -x*
or xP+xX=yQ+y sl il

This is of the form f(x,p) = g (v.q).
So taking each side of (1) equal to the same constant C, say, we get

xP+x*=C and yQ+y* =C

2 2
o Pul2 gulY
X Y

Then dZ=Pdx+ Qdy gives

ﬂ=(£-x}a+(£—y]dy
- y
Integrating,
1 2 1 2
Z=clog;m-5x +clogjr—5:.r +constan t

or %z’ =clng(xy}+%{x’ +y?)+constant

or z°=2clog(xy)-(x?+y?)+b

which is the complete integral.
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Type 4. Clairaut Equations
A first order partial differential equation is said to be of Clairaut type if it can be

written in the form -
z=px+q}r+f(p,q‘} ............... {I]
Here  F(xyzp =xp+yq+f(pg) -2

F.=p.F, =q,F, =-LE, =x+{,,F, =y+{

The corresponding Charpit’s equations are
dx dy dz dp _dq
0

x+f, ‘_3.r+f‘I _px+q+pfp+qfq i

so, dp=0,dgq=0.

So we may take either p = constant = & or g = constant =f§ in conjunction with the given
equation (1}.

However, both these integrals are used and the equation (1) can be written as

z=ox By +F(@B) s (2)

Thisrcaltinn{l]yie]dsp;aandq=ﬂmdithasmarbritmrymstamsauﬂﬁ.Su
it is the complete integral of the p. d. equation (1). '

Usually the family of plans (2) will posses an envelope which will be the singular
solution of (1).

Ex. 13. Solve and find the singular solution of the p. d. equation
Z=px+q¥ + P’ ceeerereeeen (1)

Solution : The equation (1) is of Cairaut type. So putting p = a and q = b in (1) we get the
complete integral as

z=ax + by + a’b’ R R e (2)

For singular solution, we differentiate equation (2) w.r.t. a and b, partially, in turn to get -

0=x+2ab® or 2ab°=-x ... (i)

and O=y+2ab or 2a’b=-y il 1)
Squaring these, 4a’b*=x* = ... (iii)

wd caeyt - U o e (iv)

140




r . 2
Now (iv)/(i) = 2a* = ‘_:’_ = (-1)* é’x_

2 233 .
3 3 ¥ Y
e 2x 3 Zx]

1
2

Similarly by (iii)/(ii) we get b= -[;—]’
Y

: Substituting these expressions for a and b in (2) we obtain the singular solution the p.
d. equation (1) as :

' I 1 1

213 23 2,23
RN, A (S 2% (N B3P
2x 2y 16

Ex. 14, Find the singular integral of the p.d. equation

xpq+Fyp-zpq+1=0 .o (1)
Also find a developable surface belonging to the general integral.
Soluﬁnn : The given equation {1) can be written as
zpq=xp'q +ypq’ + 1

1
or Z=XP+HQY+— crieeeeseeneen (2)

This is of the form z=xp + yq + f (p,q)

Hence its solution can be taken as

z_=m+ﬁy+u—lﬁ. st CE)

where ¢, B are two arbitrary constants.

Singular integral:

Differentiating (3) partially w.r.t & and P in turn we get

| 1 :
ﬂ=x-a—zﬂ 1.¢.“—2ﬁ=x ................. (l} =
1 . .1
and "]:ﬁ—'a—ﬂ'z'- Le. F=}" ................ {ll]
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Now (ii)/(i) gives

E=£=:ra-'1ﬂ ............... ( iii )
B x X
: 1
: 11 . 3 :
Then (i) ﬂ-ﬁ--‘?—x-=;—};B1 or =-;-‘5- ie. fl=[-;-] vereen (V)
L1 ) 1 1
Tlnm{iii}::a:lﬁ=l[iz]3 ={..3.JEZ.}’ ie a= -‘-"'_1]’ ()
X X Yy XY x

Substituting these expressions for o and B in (3) we get

1 L e
RoRERGIG)
R A
or  Z=(xy)? +(xy)? +(xy)? =3(xy)}
x =2y R | |

From the equation (4) we get, 32°p = 27y, 32’q = 27x. Putting these in (2) we obtain

i i
z=27ﬂ+2?xy+ 3z x?-z
3z* 322 27y 27x

R A WD
322 32! 21x2’

Thus the equation (2) is satisfied by (4). Hence the surface (4) is the singular integral
of the given p.d. equation (2).

Developable surface belonging to the general integral

1 1 1
or z= Z=—Z+—=Z+—Z=2Z
3 3 3

Let us choose ﬁ:E{ﬂ}:%,.m that the complete integral (3) has thcmn’-panm&&

subsystem z=ax+éy+l ............... (5)
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Then (5) becomes z—l=Ex+Ey=JE+JE=2JE

or G-TEwlmy . - csosasmees (6)

Equation (5) is a general integral of the p. d. equation (2) and represents a system of
planes for various values of the parameter .

Equation (6) represents the cavelope of the planes (5) and so is a developable surface
belonging to the general integral (5).

Exercise
1. Find the complete integrals of the following partial differential equations

O +d)y=a Ans:Z -y’ =(ax+B),, o constants.
(i) p = (z + qy)*  Ans: yz=ax+2Jay +b, a,b constants.
(i) Z 2 +q) =1 Ans:(Z+a’’ =q(x+ay+b)’, abconstants.
(iv) 2xz - px — 2qxy + pq =0 Ans:z—ay=b{x’-a), ab constants.

M +q -2px-2qy+1=0

Ans:(a’+1)z= %v’ t%v—,‘{vz ~(a® -l-l}}
—~;—{a1 +1][v-l.-1,‘{\'1 ~(a? '+1}I ]+b wherev=ax+b.

 2.() Find the complete integral of the oquation Xp+yqg=7
Ans: logz=alogx +blogy+¢,b=+1-a>
(ii) Find the complete integral of (y - X){qy - px) = (p -9)°
Hints: Takex +y=X,xy=Y. - Ans: 2=3(x+y)+Vaxy +o
(iii) Find the complete integral of p* + q" = npq .

Ans : z=ax+%a[ni\l|nz -4},v+-::

(iv)Using the transformation X = logx,Z = ’Ezz . solve the equation

IZZ(pzxz"‘ql};] Ans : zl=2ulugx+2ﬂ'1—a1}r+|5
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3. (i) Solve the p. d. equation x’p’ + y¥'q" =z Ans : 4(1+a")z = (alogx + logy + b)*

(ii) Find the complete integral of p* = 2* (1 - pq).

Ans A 0u e bcalib | ce e fT et .
\zva

(iii) Solve p’ +q' =27z

Ans : 8(x + ay + b)* = (1 + a”)z’ is the complete integral singular integral is z = 0.

4.' (i) Solve by Charpit’s method g =p’ — xp
Ans: z=i[x1 +xm1+ alog{(+m}+ay+b '
(ii) Find the complete integral of the equation p’y (1 + x%) = qx°.
Ans: z:am+%azy1 +b
(iii) Solve 2 (p* + @) = + ¥
Ans: z' = xm+ c? lag{x +,‘)‘i{|¢=I + xl}}+ }rqf{f -c?)
| —_cllogb+mj+mm1,

 (iv) Find the complete integral of 2x (2%q* + 1) = pz

Ans: 2 =2x*(1+a)+2Jay+2b
5. (i) Find the complete integral and singular solution of the p. d. equation
z=px+qy+cy(1+p’ +q%)
Ans : Complete int is z= ax + by+cy(I+a? +b?) and singular integral is x* + y* + 2 = ¢*
(ii) Find the singular integral of z = px +qy-2,/(pq) . Ans:xy=1.
(iii) Find the complete integral and the singular integral of the equation
z=px+qy+p +q
Ans:Clisz=ax+by+a’ +b’ SLisdz+x’+y' =0.

eo e
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