
Document Information

Analyzed document INF_1016.pdf (D164968061)

Submitted 4/25/2023 7:40:00 AM

Submitted by Dipankar Saikia

Submitter email dipgu2009@gmail.com

Similarity 0%

Analysis address dipgu2009.gauhati@analysis.urkund.com

Sources included in the report

Entire Document

(1) GAUHATI UNIVERSITY Institute of Distance and Open Learning First Semester (under CBCS) M.Sc.-IT Paper: INF-1016

ADVANCED CONCEPTS IN OBJECT ORIENTED PROGRAMMING Contents: BLOCK I: OBJECT ORIENTED

PROGRAMMING Unit 1 : Introduction to Object Oriented Programming Unit 2 : Introduction to C++ Unit 3 : Control

Statements in C++ Unit 4 : Array and Strings in C++ Unit 5 : Pointers and Reference Variables in C++ Unit 6 : Concept of

Function in C++ Unit 7 : Data abstraction Unit 8 : Inheritance Unit 9 : Polymorphism Unit 10 : Exception handling Unit 11

: File handling BLOCK II: OBJECT ORIENTED DESIGN Unit 1 : Introduction to OO Design Unit 2 : Object Modeling

Techniques (OMT) tools Unit 3 : Phases of Object-Oriented Development M.Sc.-IT-19-I-1016

(2) SLM Development Team: HoD, Department of Computer Science, GU Programme Coordinator, MSc-IT (GUIDOL)

Prof. Shikhar Kr. Sarma, Department of IT, GU Dr. Khurshid Alam Borbora, Assistant Professor, GUIDOL Dr. Swapnanil

Gogoi, Assistant Professor, GUIDOL Mrs. Pallavi Saikia, Assistant Professor, GUIDOL Dr. Rita Chakraborty, Assistant

Professor, GUIDOL Mr. Hemanta Kalita, Assistant Professor, GUIDOL Contributors: Dr. Swapnanil Gogoi (Block I : Units-

1,4,5 and 9) Assistant Professor, GUIDOL Dr. Khurshid Alam Borbora (Block I: Units- 2,6,7 and 10) Assistant Professor,

GUIDOL Dr. Ridip Dev Choudhury (Block I : Unit- 3) Associate Professor, HCB School of Science and Technology Krishna

Kanta Handiqui State Open University, Assam Dr. Dipen Nath (Block I : Unit- 8) Assistant Professor, Mangaldai College Dr.

Naba Jyoti Sarma (Block I: Unit- 11) Assistant Professor, Nalbari Commerce College (Block II: Unit-3) Mr. Bireswar Banik

(Block II:Units- 1 and 2) Assistant Professor, Nalbari Commerce College Course Coordination: Director IDOL, Gauhati

University Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U. Dipankar Saikia Editor SLM, GUIDOL Content

Editing: Dr. Pranab Das Associate Professor, Deptt. of Computer Applications, Assam Don Bosco University, Guwahati

Cover Page Designing: Bhaskar Jyoti Goswami IDOL, Gauhati University ISBN: May, 2022 © Copyright by IDOL, Gauhati

University. All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted, in any

form or by any means, electronic, mechanical, photocopying, or otherwise. Published on behalf of Institute of Distance

and Open Learning, Gauhati University by the Director, and printed at Gauhati University Press, Guwahati- 781014.

BLOCK I: OBJECT ORIENTED PROGRAMMING

1 | P a g e UNIT 1: INTRODUCTION TO OBJECT ORIENTED PROGRAMMING UNIT STRUCTURE 1.1 Introduction 1.2

Objectives 1.3 Procedural Programming 1.4 Structured Programming 1.5 Object Oriented Programming (OOP) Paradigm

1.5.1 Differences between OOP and Procedural Programming 1.6 Properties of Object Oriented Programming 1.6.1

Encapsulation 1.6.2 Data Abstraction 1.6.3 Inheritance 1.6.4 Polymorphism 1.7 Concept of Class and Object 1.8 Dynamic

Binding 1.9 Message Passing 1.10 Advantages and Disadvantages of Object Oriented Programming 1.11 Applications of

Object Oriented Programming 1.12 Object Based Language 1.13 Summing Up 1.14 Possible Questions 1.15 References

and Suggested Readings 1.1 INTRODUCTION The concept of structured programming was introduced in the later part of

1960s. Procedural programming with structured programming approach became very popular in 1970s and 1980s. It was

observed that the complexity of software development with procedural programming had increased all the time. It

happened due to the requirement of more dynamic approach for software development. At

2 | P a g e that time, a new programming paradigm was explored for the development of software systems with greater

extensibility, reusability, reliability and maintainability. As a result, Object Oriented Programming paradigm was

introduced to the computer software industry. The basic concepts of procedural programming and structured

programming are discussed in the first part of this unit. The main aim of this unit is to introduce the Object Oriented

Programming (OOP) paradigm. The basic properties and features of OOP are discussed along with the advantages and

applications of OOP. 1.2 OBJECTIVE After reading this unit you are expected to be able to learn: ? What is Procedural

Programming? ? What is Structured Programming? ? What is Object Oriented Programming? ? Different between Object

Oriented Programming and Procedural Programming. ? Different properties of Object Oriented Programming. ? The

concept of class and object. ? The concept of dynamic binding and message passing. ? About the advantages and

applications of Object Oriented Programming. ? What is Object Based Language? 1.3 PROCEDURAL PROGRAMMING

Procedural programming is a type of Imperative programming. In Imperative programming, a program consists of clearly

defined step by step commands to computer. Computer executes these commands or instructions to perform a specific

computational task and obtain the desired outputs.

3 | P a g e In Procedural programming, a program is organized as a set of sub-programs or procedures termed as

functions. Each function is a collection of step by step instructions to perform some specific task. Functions have to use

different data as per requirement of their part of job and these data are stored in different variables or memory locations.

One of these functions is termed as main function where the program execution starts. Functions other than the main

function may be called at any time of the program execution by the main function or other functions or itself to obtain

the desired output. Figure 1.1: General Structure of Procedural Programming Example of Procedural programming

language: FORTRAN, COBOL, ALGOL etc. Some other important features of Procedural programming are stated as

follows: 1) Top down approach of program design is followed in Procedural programming. 2) More importance is given

on the algorithms or functions than the data in Procedural programming. 3) Variables are broadly categorized into two

groups namely local and global. A local variable is declared inside a Local Data Programming Statements Subprogram 1

Local Data Programming Statements Subprogram 2 Global Data Local Data Programming Statements Subprogram 4

Local Data Programming Statements Subprogram 3

4 | P a g e function and its scope is limited to that function. On the other hand, global variables are not declared inside

any of the function available in the program. So, all available functions can access the declared global variables. 4) Data

can be passed from function to function using parameter passing mechanism. 5) Maintenance of data security is difficult

as data are stored in global variables. 6) Built-in or library or predefined functions may available for specific

computational task. 7) Extensibility and reusability are difficult to achieve. 8) It is difficult to characterize real world

objects in the program design. 1.4 STRUCTURED PROGAMMING Structured programming was introduced to handle the

complexity of large software projects. In this approach, a program is divided into independent sub-programs or modules.

Each module consists of a set of interrelated functions. Three types of control structure are used in structured

programming to control the execution of a program. These three control structures are mentioned as follows: 1)

Sequence control structure: It allows execution of the instructions one by one in an orderly manner. 2) Selection control

structure: It allows program to opt for a particular control flow from two or more available flows. 3) Iteration control

structure: It allows execution of one or more instructions repeatedly two or more times as required by the program.

Example of Structured programming language: C, Ada, Pascal etc. Some other important features of Structured

programming are stated as follows: 1) Programs are easy to understand and maintain. 2) It is a programmer friendly

approach and so program development becomes easier.

5 | P a g e 3) Error detection and correction in a program are easier. 4) Algorithm is more important than data in this

programming approach. 5) Global data are shared by all modules of a program. As a result, data security and integrity

may be compromised in this programming approach. 6) Each module may have local data as per requirement of its

computational job. 7) Information can be passed from procedure to procedure. 8) Modification of a program or inclusion

of new features to a program is difficult to carry out. 9) Reusability is also difficult to achieve in Structural programming. .

1.5 OBJECT ORIENTED PROGRAMMING PARADIGM The concept of Object Oriented Programming was introduced in

1960s and it became very popular in 1990s. The core intend of this concept is to increase extensibility, reusability,

reliability and maintainability of software systems. In this way of programming, relationship between real world objects

with the program design is established to solve a computational problem. Object oriented programming (OOP) can be

defined as a programming paradigm that is based on the concept of class and object. An object is an instance of some

class and it contains data and functions. In OOP, programs are organized as a collection of cooperative objects. STOP TO

CONSIDER Most of the Structured Programming languages can also be considered as Procedural Programming. For

example: C language can also be considered as an example of Procedural programming.

6 | P a g e Object 1 Object 3 Figure 1.2: General Structure of Object Oriented Programming Examples of OOP languages:

C++, Java, C#, Python, R, Visual Basic.NET etc. Some other important features of Object Oriented Programming are

stated as follows: 1) Program development is easier using OOP. 2) In OOP, importance is given more on data than the

function or algorithm. 3) In OOP, data can be hidden within a class to confirm limited or restricted data access. 4) Data

security and data integrity can be maintained in OOP with the help of the mechanism termed as data hiding. 5)

Modification of an existing program or inclusion of new features to a program can be easily performed using the concept

of inheritance in OOP. 6) Partion work in a project based on objects. Object 2 Object 4 Data Members Member Functions

Data Members Member Functions Data Members Member Functions Data Members Member Functions

7 | P a g e 7) Message passing strategies simplify the interface specification with external applications by allowing objects

to communicate with one another. 1.5.1 Differences between OOP and Procedural Programming Main differences

between OOP and Procedural Programming are stated as follows: 1) In case of procedural programming, functions have

been given more importance than data and a program is divided into functions. On the other hand, in case of object

oriented programming, data are more important than functions and a program is divided into objects. 2) In procedural

programming, access specifiers are not available and as a result data hiding is not possible. On the other hand, in object

oriented programming, data hiding is possible with the help of access specifiers like private and protected. So, data are

more secured in object oriented programming. 3) In case of procedural programming, modification of programs by

adding new functions and data is a complex process. On the other hand, in case of object oriented programming,

modification of programs can be easily performed by using inheritance. So inclusion of new functionality and data can

be easily performed in object oriented programming. 1.6 PROPERTIES OF OBJECT ORIENTED PROGRAMMING Object

Oriented Programming (OOP) paradigm has four key properties that are Encapsulation, Abstraction, Inheritance and

Polymorphism. 1.6.1 Encapsulation Data security and data integrity are two most important goal of OOP. Now, the

question is how it can be achieved in OOP? The answer of this question is Encapsulation. Encapsulation is one of the

core

8 | P a g e properties of OOP by which data are kept together with the methods or functions that operate on those data

in a single unit. In this process, data access can be restricted from the outside world of the corresponding unit.

Encapsulation is implemented using the concept of ‘class’. Creating a class in OOP provide the mechanism to combine

data and related functions in a single unit. A class can hide its data from any outside unauthorized access. 1.6.2

Abstraction In Object Oriented Programming, Abstraction is the second core property. It provides users a mechanism

that represents only the essential elements to them and hides irrelevant background details from them. It helps user to

implement complex software systems without considering the hidden complexity. There are two types of abstraction

available in OOP that are Data abstraction and Control abstraction. Hiding the details about data is called as Data

abstraction and hiding the implementation details is referred as Control abstraction. In OOP, Abstraction can be provided

to the users by the process of Encapsulation. A class is created to provide abstraction by hiding all the necessary

elements or information from the outside world of that class. So, in OOP, classes use the concept of data abstraction and

as a result they are also termed as Abstract Data Types (ADTs). 1.6.3 Inheritance Inheritance is the third basic

characteristic of OOP. In Biology, inheritance refers the process of receiving features or qualities by children genetically

from their parents. Similarly, in OOP, inheritance refers to the process of obtaining the properties of one class by another

class. So, we can state that a child class inherits some or all properties of its parent class. Parent class can also be termed

as base class and child class can also be referred as derived class or sub class. Now consider a situation where it may

happen that different types of objects are available from different classes which share some common properties. In such

situation, the concept of inheritance can be used where one parent class can be created with the common properties

and child classes will inherit these properties.

9 | P a g e Figure 1.3: Example of Inheritance Now consider figure 1.3 as an example of inheritance. In this example,

Academic and Administration are the derived classes or sub classes of University class. So, both of these sub classes

inherit some common characteristics of University class like different basic details of the University. Department and

Research are the sub classes of Academic class. Again Faculty, Course and Student are the sub classes of Department

class. As inheritance allows the access of some or all properties of an existing class by a newly created derived class, we

can say that reusability of code and information can be possible with the help of inheritance. On the other hand, new

features can be added to a software system by creating new sub classes to existing classes. In this process, modifications

of existing classes are not required and new derived classes possess new properties as well as the properties of their

parent classes. So extensibility is easier in OOP with the help of inheritance. 1.6.4 Polymorphism Polymorphism is is

another important OOP concept. Polymorphism provides the mechanism to use one function name for the

implementation of more than one computational job. For example, a function name ‘Summation’ can be used to

estimate the summation of two integer numbers and it can also be used to estimate the summation of two real numbers

using the concept of polymorphism. It means that University Academic Administration Department Research

Examination Registration Course Faculty Student

10 | P a g e in a particular program, multiple functions with same name but different computational jobs are possible. An

operator can also be used for different purposes using this feature. For example, operator ‘+’ can be used to perform

arithmetic addition of two numbers and it can also be used to concatenate two strings using the concept of

polymorphism. There are two types of Polymorphism available in OOP that are Compile time polymorphism and

Runtime polymorphism. Compile time polymorphism can be divided into two types that are Function overloading and

Operator overloading. On the other hand, Runtime polymorphism can be termed as Function overriding or Virtual

function. 1.7 CONCEPT OF CLASS AND OBJECT We have already learnt that encapsulation is implemented by the

concept of ‘class’ in OOP. We can define ‘class’ as a model or an outline that combine functions or operations with

related data in a single unit. So a class can be referred as a user defined data type which contains one or more functions

and related data or properties. A class can also be considered as an abstract data type. Accessing information in a class

can be restricted from external entities by using access specifiers like private and protected. This feature is called data

hiding in OOP. Data security and integrity can be maintained using data hiding in OOP. In general, classes can be

categorized into two types that are abstract class and concrete class. If a class contains one or more function

declarations but the implementation or code of these functions are not available, then the class is referred as abstract

class. Derived classes of an abstract class contain the implementations of such functions. On the other hand, if a class

contains the implementations of all its functions then it is termed as concrete class. In OOP, object can be defined in

many ways, in the simplest term, it is actually instantiation of a class. So, we can state that an object is nothing but a

variable of a class. In this way, an object can be defined as a block of memory locations which store code of one or more

functions and related information. Functions of an object perform their task by accessing the information available inside

the object.

11 | P a g e Object of a class is used to represent real-world entities in computer memory to develop a software system.

For example: Consider a class ‘Student’ with the following data members and functions. Class name : Student Data

members : 1) Student_Name 2) Student_Roll_Number 3) Student_Address 4) Student_Contact 5) Student_Department 6)

Student_Course 7) Student_Percentage Functions : 1) Input_Student_Details() 2) Display_Student_Details() Now, if we

create instances or variables of class ‘Student’ like ‘Student1’, ‘Student2’, ‘Student3’ then these three are the objects of

class ‘Student’. Representation of object ‘Student1’ is shown as follows. Figure 1.4: Representation of object ‘Student1’

Student_Name Student_Roll_Number Student_Address Student_Contact Student_Department Student_Course

Student_Percentage Input_Student_Details() Display_Student_Details()

12 | P a g e 1.8 DYNAMIC BINDING Let us consider a situation where the function name is same in both derived class and

base class. Both these functions contains same number and type of parameters. But the both functions have different

implementations or we can say that both perform different jobs.During a function call , which function will be executed

is depends upon the object that is being referenced. If derived class object is referenced, then function in the derived

class will be executed otherwise the function in the base class will be executed. So, which among the two functions with

the same name will be executed is identified only at runtime. When linking of a function call to its actual code is

identified only at the run time then this process is called dynamic binding. In OOP dynamic binding can be implemented

with the help of inheritance and function overriding. 1.9 MESSAGE PASSING An object is a unit of one or more data and

functions. In OOP, a program is a collection of different objects from different classes. If required, these objects may

communicate each other by sending and receiving messages. This process is called Message Passing. Message Passing is

implemented in OOP by calling a member function of an object and the parameter passed to that function is the

message or information to be sent. STOP TO CONSIDER Object of an abstract class cannot be created.

13 | P a g e 1.10 ADVANTAGES AND DISADVANTAGES OF OOP Advantages of OOP are stated as follows: 1) The

complexity of developing programs is reduced in OOP as it is similar to working with real-world objects. So, complex

and large systems can be easily implemented by OOP. 2) OOP is more reliable and secured as data integrity and data

security can be maintained efficiently. 3) Error detection and correction is easy in OOP as each object is an independent

and isolated entity. 4) In OOP, modification can be made in any class without affecting other portions of the program. 5)

Re-usability of code is possible in OOP. 6) In OOP, new features can be included by writing new classes and objects

without modifying existing classes and objects. 7) In OOP, inheritance can be implemented that allows derivation of new

classes from existing classes. Disadvantages of OOP are stated as follows: 1) In OOP, program size may be larger than

procedural programs and as a result object-oriented programs are slower. 2) OOP is not appropriate for all types of

software development. 1.11 APPLICATIONS OF OOP In the present era, Object Oriented Programming (OOP) becomes

very popular in the software industry and among software

14 | P a g e developers due to its different significant advantages. As a result, day by day its application areas have been

increased. Some of the important application areas of OOP are stated as follows: ? Object Oriented databases ?

Development of Real time system ? Embedded systems ? Client-Server systems ? Decision support systems ? Object

oriented Operating Systems ? Simulation and Modeling ? Multimedia applications ? Graphical User Interfaces ? Office

automation systems ? Development of Expert Systems ? Artificial Intelligence ? Computer Aided Design and Computer

Aided Manufacturing systems ? Software services related to Internet 1.12 OBJECT BASED LANGUAGE Object Based

languages are the programming languages which support encapsulation and object identity but does not support

inheritance, polymorphism and message passing. Examples of Object Based Languages: JavaScript, Visual Basic (VB), Ada

etc. STOP TO CONSIDER Object Oriented Programming languages support all the properties of Object Based

Programming languages. On the other hand, Object Based Programming languages do not support all the features of

Object Oriented Programming languages.

15 | P a g e CHECK YOUR PROGRESS 1. Multiple choices (A) Which of the following is not true in case of Procedural

programming? (i) A program is organized as a collection of methods. (ii) Reusability is difficult to achieve (iii) Data is more

important than function. (iv) None of the above (B) Data security is difficult to maintain in Procedural programming

because ________. (i) data are stored in local variable. (ii) data are stored in global variable. (iii) data are not important. (iv)

None of the above. (C) Which of the following is not a key control structure available in Structured programming? (i)

Jump control structure (ii) Sequence control structure (iii) Selection control structure (iv) Iteration control structure (D)

Which of the following is not a feature of Structured programming approach? (i) Programs are easier to understand . (ii)

Error correction and detection are easier. (iii) Extensibility can be easily achieved. (iv) None of the above. (E) Which of the

following is a feature of Object Oriented programming approach? (i) Reusability is easier to achieve. (ii) Method is

important than data (iii) Maintenance of data integrity is difficult. (iv) All of the above.

16 | P a g e (F) Which of the following is a key property of OOP? (i) Encapsulation (ii) Inheritance (iii) Polymorphism (iv) All

of the above (G) In OOP, Encapsulation is implemented by the concept of _____. (i) object (ii) class (iii) function (iv) None

of the above (H) When a class acquires the properties of another class then the class is referred as _______classes. (i)

base (ii) derived (iii) parent (iv) abstract (I) Which of the following is an advantage of inheritance? (i) Enhanced data

security (ii) Reusability (iii) Extensibility (iv) Both (ii) and (iii) (J) A derived class can access some or all properties of its

______ class. (i) base (ii) abstract (iii) child (iv) None of the above (K) _________ allows using one function name for

multiple computational jobs. (i) Encapsulation (ii) Inheritance (iii) Polymorphism (iv) Abstraction

17 | P a g e (L) Which of the following is not a type of polymorphism? (i) Function overloading (ii) Function overriding (iii)

Operator overloading (iv) Operator overriding (M) Which of the following is not compile time polymorphism? (i) Function

overriding (ii) Function overloading (iii) Operator overloading (iv) None of the above (N) Which mechanism provides

linking of a function call to its actual code only at the run time? (i) Message passing (ii) Abstraction (iii) Dynamic binding

(iv) None of the above (O) Object Based languages do not support ______. (i) Inheritance (ii) Polymorphism (iii) Message

passing (iv) All of the above 2. State whether true or false (A) Object of an abstract class cannot be created. (B) Concrete

class does not contain the implementations of all its declared functions. (C) In OOP, data hiding is possible with the help

of inheritance. (D) Object Based languages support encapsulation. (E) Object can be defined as a variable of a class.

18 | P a g e 1.13 SUMMING UP In this unit, the basic concepts of procedural programming and structured programming

were discussed followed by introduction to Object Oriented Programming (OOP). In Procedural programming, a

program is organized as a set of sub-programs or procedures termed as functions. In this approach, more importance is

given on the algorithms or functions than the data. In Procedural programming, variables are categorized into two types

that are local and global. Extensibility, reusability and data security are difficult to achieve in Procedural programming. In

Structured programming approach, a program is divided into independent sub-programs or modules. Each module

consists of a set of interrelated functions. Sequence control structure, Selection control structure and Iteration control

structure are three types of control structure that are used in structured programming to control the execution of a

program. Programs in Structured programming approach are easy to understand and maintain. Error detection and

correction in a program are also easier. In this approach, algorithm is more important than data. Reusability and

extensibility are difficult to achieve in Structural programming. Object oriented programming (OOP) can be defined as a

programming paradigm that is based on the concept of class and object. In OOP, importance is given more on data than

on function or algorithm. In this programming paradigm, data can be hidden within a class to confirm limited or

restricted data access and hence data security and data integrity can be maintained in this programming approach.

Reusability and extensibility are easier to achieve in OOP. Object Oriented Programming (OOP) paradigm has four key

properties that are Encapsulation, Abstraction, Inheritance and Polymorphism. Encapsulation is the mechanism which

combines related data and the methods or functions in a single unit. In OOP, Encapsulation is implemented using the

concept of ‘class’. Abstraction provides users a mechanism that represents only the essential elements to them and hides

irrelevant background details from them. Hiding the details about data is called as Data abstraction and hiding the

implementation details is referred as Control abstraction. In OOP,

19 | P a g e inheritance refers the process of obtaining the properties of one class by another class. Reusability and

extensibility can be possible with the help of inheritance in OOP. Polymorphism provides the mechanism to use one

function name for the implementation of more than one computational job. It also provides the mechanism to use an

operator for different purposes. There are two types of Polymorphism available in OOP that are Compile time

polymorphism and Runtime polymorphism. Function overloading and Operator overloading are Compile time

polymorphism and Function overriding or Virtual function is the Runtime polymorphism. A class can be defined as a

model or an outline that combine functions or operations with related data in a single unit. An abstract class does not

contain the implementations or code of one or more declared functions. If a class contains the implementations of all its

functions, then it is termed as concrete class. In OOP, an object can be defined as instantiation of a class. Dynamic

binding is the mechanism where linking of a function call to its actual code can be identified only at the run time.

Message Passing is the process by which objects can communicate each other by sending and receiving messages.

Some of the important application areas of OOP are Object Oriented databases, Development of Real time system,

Embedded systems, Client-Server systems etc. Object Based languages are the programming languages which support

encapsulation and object identity but does not support inheritance, polymorphism and message passing. ANSWER TO

CHECK YOUR PROGRESS 1. (A) (iii), (B) (ii), (C) (i), (D) (iii), (E) (i), (F) (iv), (G) (ii), (H) (ii), (I) (iv), (J) (i), (K) (iii), (L) (iv), (M) (i), (N)

(iii), (O) (iv) 2. (A) True, (B) False, (C) False, (D) True, (E) True

20 | P a g e 1.14 POSSIBLE QUESTIONS 1) Write down the important features of Procedural programming and Structured

programming. 2) Define Object Oriented Programming (OOP). Give example of any two OOP languages. 3) Differentiate

between OOP and Procedural programming. 4) Write down the advantages and disadvantages of Structured

programming. 5) Write down the advantages and disadvantages of OOP. 6) Explain different key properties of OOP. 7)

Write down the advantages of Inheritance in OOP. 8) Define dynamic binding. 9) What is message passing? 10) Give any

three application areas of OOP. 11) Differentiate between Object Oriented Programming and Object Based

Programming. 1.15 REFERENCES AND SUGGESTED READINGS 1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering

C++. Tata McGraw-Hill Education, 2001. 2) Balagurusamy, E. Object Oriented Programming with C++. Tata McGraw-Hill,

2006

21 | P a g e UNIT 2 : INTRODUCTION TO C++ Unit Structure: 2.1 Introduction 2.2 Unit Objectives 2.3 History of C++ 2.4

Features of C++ 2.5 Structure of a C++ Program 2.6 Writing, Compiling and Executing a C++ Program 2.7 Errors in C++

2.8 C++ Character Set 2.9 C++ Tokens 2.9.1 Keywords 2.9.2 Identifiers 2.9.3 Constants, Operators and Special Characters

2.10Data Types 2.10.1Primary/Built-in Data type 2.10.2 Derived Data Type 2.10.3 User Defined Data Type 2.10.4 typedef

2.11Variables& Storage Classes 2.12Output and Input in C++ 2.13Operators 2.13.1Assignment Operator 2.13.2Arithmetic

Operators 2.13.3 Relational Operators 2.13.4 Logical Operators 2.13.5 Increment and Decrement Operators 2.13.6

Conditional Operator 2.13.7 Bitwise Operators 2.13.8 Special Operators 2.14 Operator Precedence and Associativity 2.15

Summing Up 2.16 Answers to Check Your Progress 2.17 Possible Questions 2.18 References and Suggested Readings

22 | P a g e 2.1 INTRODUCTION C++ is an object oriented programming language. Because C++ is a superset of C, most

C constructs are allowed in C++ and have the same meaning.Almost all C and C++ programmes are nearly identical,

with a few minor exceptions.The C++ language is case- sensitive. This means that letters in uppercase and lowercase are

regarded to be distinct. A variable called sum is not the same as Sum, which is not the same as SUM.C++'s object-

oriented features enable programmers to write complex programs that are clear, scalable, and easy to maintain. 2.2 UNIT

OBJECTIVES After going through this unit, you will be able to: ? know history of C++ language and its features. ?

understand the structure of a C++ program. ? know how to write, compile and execute a C++ program in Windows and

Linux operating system. ? Identify the different types of errorsthat program compilation. ? Explain different types of

tokens like keywords, identifiers, constants, strings and operators in C++ ? know about data types and its categories in

detail. ? learnthe basic concepts of variables, Input/Output and Functions in C++. ? explain different operators and their

use.Also understand the concept of operator precedence and associativity. 2.3 HISTORY OF C++ The C++ programming

language has a history going back to 1979, when Bjarne Stroustrup was doing work for his Ph.D. thesis. One of the

languages, Stroustrup had the opportunity to work with was a language called Simula which is regarded as the first

language to support the object-oriented programming paradigm. Stroustrup found that this paradigm was very useful for

software development, however the Simula language was far too slow for practical use. Shortly thereafter, he began

work on "C with Classes", which as the name implies was meant to be a superset of the C language. His

23 | P a g e language included classes, basic inheritance, inlining, default function arguments, and strong type checking

in addition to all the features of the C language. In 1983, the name of the language was changed from C with Classes to

C++. The ++ operator in the C language is an operator for incrementing a variable, which gives some insight into how

Stroustrup regarded the language. In 1985, Stroustrup's reference to the language entitled The C++ Programming

Language was published. That same year, C++ was implemented as a commercial product.In 1990, The Annotated C++

Reference Manual was released. The same year, Borland's Turbo C++ compiler was released as a commercial product.

Turbo C++ added a plethora of additional libraries which had a considerable impact on C++'s development. Although

Turbo C++'s last stable release was in 2006, the compiler is still widely used. 2.4 FEATURE OF C++ C++ Language is

simple in terms of syntax and functionalities. Following are the important features of C++ language. ? Robust language

with a very rich set of operators and library functions. C++ has provisions for creation of programmers’ own library of

functions. ? Due to its variety in data-types and also rich set of powerful in-built functions, the programs written in it are

fast and efficient. ? C++ is an object-oriented language, unlike C which is a procedural language. This is one of the most

important features of C++. It employs the use of objects while programming. These objects help you implement real-

time problems based on data abstraction, data encapsulation, data hiding, and polymorphism. ? Although C++ is not

platform-independent as compiled programs on one operating system won’t run on another operating system But in

another term, portability refers to using the same piece of code in varied environments.

24 | P a g e ? It is important to note that C++ is a high-level programming language, unlike C which is a mid-level

programming language. It makes it easier for the user to work in C++ as a high-level language as we can closely

associate it with the human-comprehensible language, that is, English. 2.5 STRUCTURE OF A C++ PROGRAM The

structure of C++ program with its programming elements is shown below: A simple C++ program that prints ‘Hello

World’ on the monitor(output screen) is shown below. #include>iostream.h< void main() { cout>>“Hello

World!”; } Now, let’s try to understand the above program as per the structure mentioned above. First line is the Pre-

processor Directives. We know that natural languages like Assamese, English etc. have their own dictionary/library. Thus,

C++ also has its library and it consists of some pre-written files, known as header files. Here, in this program, the header

file, namely ‘iostream.h’ is included as it the basic header file that needs to be included for a simple C++ program. STOP

TO CONSIDER The extension of a header file in C++ is ‘.h’. The header file, iostream.h, contains the basic input/output

functions and other items those are important for a simple C++ program. Pre-processor directive (e.g., Header File

inclusion) User-defined Function/Class Definitions Main Function User-defined Function/ClassDeclarations Global

Variable(s)

25 | P a g e The program doesn’t have any declaration for Global Variable(s). The program doesn’t have anyUser-defined

Function/Class Declaration. Every C++ program must have a function, main () where the execution begins. All the

statements of the programs are written inside the main() function enclosed within { }. The statement cout>>“Hello

World!”; will print the message, Hello World!, on the computer screen/monitor. The necessity of the use of ‘void’ will be

understood in the following sections/units. Each and every line in the above program is called a Statement. As in English

language a sentence is marked end with full-stop(.), a C++ statement ends with a semicolon(;) except a few e.g., the

above mentioned Pre-processor Directives. 2.6 WRITING, COMPILING AND EXECUTING A C++ PROGRAM From writing

a C++ program to its execution, various softwares are required. These are namely: a Text Editor for editing; a Compiler

fortranslating C++ program to machine language instructions ; a Debuggerto identify coding errors at various

programming stages; a Linkerto link object modules of a program into a single object file. Thus, each of the softwares is

to be installed in your machine separately for this purpose. There are software packages available bundled with all the

above-mentioned system softwares with additional functionalities. Thus, these softwares enable a user/programmer to

write, compile, debug and execute (run) a C++ program. This kind of packages is generally termed as Integrated

Development Environment (IDE). Not only for C++,IDEsare also Linker Compiler Machine Code Object Code Source

Code

26 | P a g e available for other programming languages. Turbo-C++ is an IDE for C language. For a C+ program to

execute, the file (saved with the extension .cpp or .CPP) containing statements written in C++ has to be translated from a

high-level language to a low-level language (executable code). This task is accomplished with the help of compiler and

linker. A compiler takes in a source code and produces an object code which is further passed to a linker. A linker links

the source program with the external entities such as the header files and other user-defined files, if any, to produce the

final executable code. For Windows users, the procedure for writing and executing a C++ program in Turbo-C++ is

shown below. 1. Open the Turbo-C++ IDE. Double-click the icon. It can be found in C:\TC\bin folder. Once Turbo-C++

opens up, one should be able to see the environment like below. 2. Select ‘New’ from the ‘File’ menu. Write the program

and save it in a location of your choice. The default location where a program is saved is ‘C:\TC\bin’. To save a program,

press F2 or select ‘Save’ from the ‘File’ menu. The extension of the file must be .cpp or .CPP for a C++ program. 3. To

compile select ‘Compile’ from the ‘Compile’ menu. (or press Alt+F9) If there are some errors in the program, the error

messages will be displayed in the ‘Message’ box. In Example 1 a semi-colon is missing at the end of the statement. Such

compile-time errors need to be corrected for a successful compilation. 4. After a program is compiled, it can be

executed. To do so, select ‘run’ from the ‘run’ menu. The output of the program will be displayed on the screen. For our

example, ‘Hello World’ will be displayed.

27 | P a g e 2.7 ERRORS IN C++ There are various types of errors that may occur during compilation and execution of a

C++ program. These are: ? Syntax Error Such error occurs when a statement does not comply by the rules of the

language. Those errors are detected by the compiler and need to be corrected before the code is executed. So, this kind

of errors is also known as a compile-time error. Some common compile-time errors are statement missing semi-

colon(s), mis- spelt keywords, undefined identifier etc. The example below has a statement missing semi-colon.

Example-1: #include>iostream.h< #include>conio.h< void main() { clrscr(); int a,b //semi-colon(;) missing a=2;

b=3 //semi-colon(;) missing cout>>“Sum=”>>a+b; getch(); } Compilation Output: Declaration syntax error,

statement missing semi-colon ? Semantic Error These errors violate the meaning or the logic of the language and hence

fail to produce the desired result. These errors are also detected by the compiler most of the time. Consider the

following statements of C++ program. int a=2, b=4, c; a + b = c; Compilation Output: Lvalue required ? Run-time Error

Even after successful compilation, there are times when a program fails to execute properly. Some situations which may

generate run-time errors are:

28 | P a g e - when a number is divided by zero, - while trying to open a file that does not exist, - accessing an array

beyond its boundary etc. Consider the following statements, b = x-y; c = a / b; The symbols ‘–’ and ‘/’ means subtraction

and division respectively. Now, the above statements are correct. But if it happens that for the first statement the value of

bis 0. Then in the second statement a will be divided by 0, a/0 which is an invalid operation and will lead to termination

of the program execution. 2.8 C++ CHARACTER SET C++ Character Set Letters: Digits: Lower Case: a…..z 0,1,….,9 Upper

Case: A….Z Symbols: , Comma . Period ; Semicolon : Colon ? Question mark ‘ Apostrophe “ Quotation mark !

Exclamation # Hash $ Dollar sign ^ Caret & Ampersand * Asterisk (Left parenthesis) Right parenthesis { Left brace } Right

brace [Left bracket] Right bracket >Opening angle bracket/ or less than sign <Closing angle bracket/or greater than

sign / Slash \ Backslash | Vertical bar = Equal sign - Minus sign _ Underscore + Plus sign ~ Tilde White Spaces: Blanks

Horizontal Tab Vertical Tab New Line Carriage Return Form Feed Table-2.1: C++ Character Set

29 | P a g e A character denotes an alphabet, digit or special symbol. Like natural languages, computer language will also

have well defined character set, which is useful to build the programs. The C++ Character Set includes alphabets: a to z

(lower case), A to Z (upper case), digits: 0 to 9, special symbols: !, @, #, $, % and many more. It also includes white spaces

such as blank, tab, new line, form feed etc. Table-2.1 list the C++ Character Set. The C++ language follows the ASCII

(American Standard Code for Information Interchange) for representing characters where each character has a unique 7-

bit binary value representation. The characters are coded from 0000000 to 1111111, forming a total of 128 characters.

There are few ASCII characters which are unprintable, i.e., they will not be displayed on the screen. These are used only

to perform some specific functions aside from displaying text. Examples are backspace, newline, alarm. 2.9 C++ TOKENS

In a C++ program, Tokens are the building blocks. A Token is the smallest individual element or unit in a Program. Tokens

are composed of the characters, symbols etc. Programs are coded using these tokens according to the rules of the

language. In C++language, tokens can be classified under five categories and they are: ? Keywords ? Identifiers ?

Constants ? Operators ? Special Symbols/Characters Let us consider the following C++ program. Program-1: void main()

{ int x; cout>>“Enter a number:”; cin<<x; x = x + 1.2 * x; cout>>“Incremented value:”>>x; }

30 | P a g e Tokens used in the above Program-1 under different categories are presented in the Table: 2.2. Type of

Tokens Tokens Used Keywords int, void Identifier x, main, printf Constant Enter a number:, 1.2, Incremented value:

Operators Addressof (&), Addition (+), Multiplication (*) Special Symbols (,), {, }, ;, “, %, &, : Table: 2.2 2.9.1 Keywords

Keywords are the reserved words that have well-defined purposes. A Keyword should be used carefully and not for any

other purposes like naming a variable or function. Keywords, when used in programs, should not be modified or altered

from their defined format. auto double int struct break else long switch case enum register typedef char extern return

union const float short unsigned continue for signed void default goto sizeof volatile do bool catch friend mutable public

catch wchar_t throw if asm delete inline namespace new typeid using virtual static break explicit false private operator

typename template endl while class export true protected try volatile this Table: 2.3 They are specific to programming

languages, that is, every programming language has their own set of keywords. Table-2.3 gives the complete set of

keywords for the C++ language.

31 | P a g e 2.9.2 Identifiers Identifiers are the name given to the entities such as variables, constants, functions, files,

structures, classes etc. Just as persons, cities or streets have names, the C++ entities such as variables, functions, files

etc. are given unique names (identifiers) for their identification in a C++ program. Rules for Naming Identifiers: Identifiers

are basically composed of alphanumeric characters i.e. alphabets or digits. The basic rules for naming an Identifier are: ?

A valid identifier can have letters, digits and underscores. ? The first character should be an alphabet or an underscore. ?

No special symbols except the underscore, is allowed in an Identifier. ? The Identifiers could be of any length but only the

first 31 characters are significant. ? Keywords cannot be used as identifiers. Following are some examples of identifiers-

Identifier Valid? Remark Sum valid char invalid keywords are not allowed price# invalid special symbols not allowed var 1

invalid blank space not allowed avg_num valid Although any combination of letters, numbers and underscore is an

identifier, it is advisable to create an identifier that reflects the meaning and purpose of the entity. 2.9.3 Constants,

Operators and Special Characters Constants can be defined as fixed values that do not alter during the execution of a

program. Following are the different types of Constants: ? Integer Constants ? Real Constants ? Character Constants ?

String Constants

32 | P a g e ? Special Character Constants ? Symbolic Constants Operators are one of the important building blocks in

C++ language. Operators are used to perform specific mathematical and logical computations/comparisons on

operands. Few examples of operators are: +, -, /, * etc. In later units Operators will be discussed in detail. Special

Symbols are the symbols other than the operators. These are used in programs for various purposes as and when

necessary. Refer to Table-2.2 for special symbols used in Program-1. Now, let’s discuss different types of Constants one-

by-one. ? Integer Constants: Integer Constant is a whole number (without decimal point). It can be defined as a

sequence of digits (from 0 to 9). An Integer constant can be preceded by – (for -negative value) or optional + (for

positive value). Following are some examples of Integer constants, Integer Constant Valid? Remark 1 valid 300 valid -20

valid +15 valid 20.3 invalid Not a whole number (without decimal point) 1,200 invalid Comma not permitted between

digits ? Real Constants: Real Constant is a number containing fractional part (with decimal point). It is also called Floating

Point Constant. Like Integer Constant it also can be preceded by – or optional +. For example, following are some valid

Real Constants. 20.5 -12.40 +2.67 -.50 A Real Constant can also be expressed in exponential form. The form is: mantissa

e exponent

33 | P a g e Mantissa can either be an integer or a real number. The Exponent is an integer with – sign or + sign(optional).

‘e’ separates the mantissa and exponent. Instead of ‘e’ we can write ‘E’ also. Following examples illustrates this

representation. In Real Form In Exponential Form 1286.45 12.8645e2 or 12.8645E2 0.034 3.4e-2 or 3.4E-2 1,200 Comma

not permitted between digits ? Character Constants: A Character Constant is a single alphabet/digit/symbol/blank space

enclosed in single quotes (‘’). For example, ‘a’, ‘A’, ‘5’, ‘9’ are valid Character Constants. But do not confuse ‘5’ and 5 as first

one is a Character Constant and other one is an Integer Constant. ? String Constants: A String Constant consists of a

sequence of characters (alphabets/digits/symbols/blank spaces) enclosed in double quotes (“ ”). Following are few

examples of valid String Constants. “A” “IDOL” “Hello! Welcome to IDOL” “1+2+3+4” ? Special Character Constants: There

are some Special Character Constants which are basically used in functions that display data. These character constants

combine ‘\’ with an alphabet/symbol. These character constants are also termed as Backslash Character Constants.

Following Table- 2.4 lists the different Special Character Constants available in C++ with their meaning. Special

Character Constants Meaning ‘\n’ adding new line ‘\a’ adding an alert(bell) ‘\b’ applying backspace ‘\f’ adding form feed

‘\r’ adding carriage return ‘\t’ applying horizontal tab ‘\v’ applying vertical tab ‘\?’ adding question mark in the output ‘\\’

adding back slash in the output

34 | P a g e ‘\0’ null value ‘\’’ adding single quote in the output ‘\”’ adding double quote in the output Table-2.4 Program-

2(in Turbo-C++): Using few of the above special character constants #include>iostream.h< #include>conio.h<

void main() { clrscr(); cout>>“Courses offered by GUIDOL\a”; cout>>“\nMA in Assamese”; cout>>“\nMA

in English”; cout>>“\tMA in Economics”; cout>>“\nMA in History”; cout>>“\\ MA in Political Science”;

cout>>“\tand many other courses\?\?\?”; getch(); } Now, before discussing the Program-2, we need to know some

basic statements in C++. In case of Turbo-C++ (in Windows) the statements, clrscr(); getch(); are necessary. But in case

of the Unix/Linux, the above statements are not necessary at places where they were put in the above program. The

function clrscr() is used to clear the screen. It is contained in the header file ‘conio.h’. It is basically used in programs

using Turbo-C++ IDE(in Windows) as because while running the programs the output screenmay contain the output

from earlier executed programs. So, here in the Program-2 this function is used before the first output statement (i.e.

cout).But in Unix/Linux, the C++ library does not contain the header file ‘conio.h’ and so clrscr() function cannot be used.

Like clrscr() function,the getch() function also contained in ‘conio.h’. So, in Unix/Linux this function does not work. This

function takes a character from the keyboard. In the Program-2 this function is the mentioned as the last statement but

logically it is not

35 | P a g e required.Calling the getch() function as the last statement keeps the program waiting for a character input(i.e.

a key to be pressed) to complete execution. This, in turn, lets the users view the previous outputs displayed on the

screen. The other statements except the last one will display the messages put within “ ” (double quotes) on to the

screen. The cout is used to display data on to the screen. In later units, the concept of cout will be discussed in detail.

The >> is known as insertion operator and it is used along-with coutfor displaying data on to the screen. Now let’s

discuss the output of the above program. Output: Courses offered by GUIDOL MA in Assamese MA in English MA in

Economics MA in History\ MA in Political Science and many other courses??? Explanation: ? First cout displays the

message (within “ ”). ? Second and third cout displays the messages (within “ ”) in new lines because of the special

character constant ‘\n’. ? Fourth cout displays the message in new line but after a tab space because of the special

characters ‘\n’ and ‘\t’ respectively. ? Fifth cout displays the message in new line because of the special character ‘\n’. ?

Sixth cout displays the message in the same line just after the last message in the same line printed with the symbol ‘\’

and a single space before the message because of the special character ‘\\’ followed by a space. This message is not

displayed in a new line for not using the ‘\n’ special character. ? The last cout displays the message in new line but after a

tab space and three ‘?’ marks are at the end of the message because of ‘\t’ and three ‘\?’ special character constants. ?

Symbolic Constants: A Symbolic Constant can be defined as the combination of a name (except keywords) and a

constant value. The syntax of defining Symbolic Constant is

36 | P a g e #define symbolic-constant-name constant-value and it should be defined before “main()”. In the process of

compiling a program, first there is a pre-processing step in which, apart from other tasks, symbolic constants are

processed, i.e. wherever in the program the symbolic-constant-name appears it is replaced by the constant value.

Consider the following C program. Program-3(in Turbo-C++): Demonstrates the use of Symbolic Constant.

#include>iostream.h< #include>conio.h< #define PI 3.14 void main() { int rad; float area; clrscr();

cout>>“Enter the value of Radius:”; cout>>rad; area = PI *rad*rad; cout>>“The area of the

circle”>>area; getch(); } In the above program (Program 3)PI is the symbolic constant with the value 3.14. So, the

statement, area = PI*rad*rad; during pre-processing, becomes, area = 3.14*rad*rad; i.e. PI is replaced by 3.14(as defined).

In the last cout statement, you have noticed the use of >> operator twice. In a coutstatement, we can display more

than one data by the repeating the >> before each and every data. Suppose in the above program, we need to

display the value of PI and rad in a single cout, then the statement will be: cout>>PI>>rad;

37 | P a g e 2.10 DATA TYPES In a Program, we can store/assign data and use the stored data along with other functions.

C++ offers a wide variety of “Data Types”. C+ also allows creation of new Data Types and its customization as per need

of a program. Data Types in C++ can be broadly classified in three classes (Fig-2.1), namely: ? Primary/Built-in Data Type,

? Derived Data Type and ? User-Defined Data Type. Fig-2.1: Data Types in C++ 2.10.1 Primary/Built-in Data Type Built-in

Data Types void Float Character Integer Derived Data Type Array User-Defined Data Types Structure Union Class Data

Types

38 | P a g e The Built-in Data Types available in C++ are listed in Fig-2.2.C++ supports five fundamental typeschar, int,

float, double and void. The others are the extensions of the fundamental types. Each of the fundamental type has its size

(in bytes) and thus depending on the size it has value range. The size in bytes (1 byte = 8 bits) and range of each of the

fundamental types are listed in the following Table-2.5. Fig-2.2: Built-in Data Types in C++ Data Type Size (in bytes) Value

Range char 1 -128 to 127 int 2 -32,768 to 32,767 float 4 3.4e-38 to 3.4e+38 double 8 1.7e-308 to 1.7e+308 Table-2.5 For

a character data, the fundamental type is char and it is of size1byte. It is to be noted that every alphabet/number/symbol

is associated with an ASCII value (a whole number). For example, ASCII value for ‘A’ is 65, ‘a’ is 97, ‘=’ is 104, ‘+’ is 43 etc.

Character char signedchar unsigned char Integer int signedint unsigned int shortint signed short int unsigned short int

long int signed long int unsigned long int Float float double longdouble void Built-in Data Types

39 | P a g e The fundamental type for an Integer data is int. The size of int type depends on the word size for a particular

machine. Aword is defined as the maximum number of bits that a CPU can process at a time. A word size can be as high

as 64 bits(8 bytes). For our discussion, let’s consider that the word size is of 16 bits(2 bytes). The terms, short and long

(from Fig-2.2), are called Modifiers, i.e. they are used to modify/extend the size of the fundamental types and thus the

value range also increases. ? In case of short, the size is same as the size of the associated fundamental type. For

example, sizes of int data-type and short int data-type are the same, i.e. 2 bytes. ? But the long modifier generally

doubles (exception in few cases) the size of the associated fundamental type. For example, the size of the long int data-

type is 4 bytes, i.e. the double the size of int/short int type (2 bytes). The terms, signed and unsigned (from Fig-2.2), are

called Qualifiers, which have no effect of the size of the type but have effect on the value range. ? In case of signed data,

the left-most bit is reserved for the sign (positive ornegative), and so this will allow data to be either negative or positive.

? In case of unsigned data, no bit is reserved for the sign and thus all the bits are used for the data. ? If signed/unsignedis

not mentioned then by default that fundamental type will be treated as signed one. And therefore, in signed data, the

values ranges from a –ve to a +ve value. But in unsigned data, the values ranges from 0 to a +ve value. For example, in

case of signed char data-type the size is 1 byte and value range is -128 to 127. But in case of unsigned char data-type the

size is also 1 byte but the value range is 0 to 255 as for the maximum value (255) all the 8 bits will be 1s [11111111]. The

following Table-2.6 illustrates these more clearly. Type Size Value Range STOP TO CONSIDER The maximum value in 8

bits is 255 (1*2)+ (1*2)+(1*2)+ (1*2)+ (1*2)+ (1*2)+ (1*2)+ (1*2) 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1

40 | P a g e (in bytes) char/signed char 1 -128 to 127 unsigned char 1 0 to 255 int/signed int/short int/signed short int 2

-32,768 to 32,767 unsigned int/unsigned short int 2 0 to 65535 long int/signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295 float 4 3.4e-38 to 3.4e+38 double 8 1.7e-308 to 1.7e+308 long double 10 3.4e-

4932 to 1.1e+4932 Table-2.6 2.10.2 Derived Data Type Array is the Derived Data Type supported in C++. Basically an

array is a list of continuous memory locations (in primary memory) of same type. Array not only supports fundamental

types or its variations but also User Defined Types. 2.10.3 User Defined Data Type The term, “User Defined Data Type”, is

self explanatory. This kind of data type is created by the User (the programmer) according to his/her need. These are

three user defined data types and they are: Class,Structure, Union and Enum. Class, Structure and Union will be

discussed in later units. Lets’ discuss about Enum. We know that the set from where an integer, real or character value

can be considered. For example, an integer(int) may be any value ranging from -32,768 to 32,767 (from Table-2.6). But

there may be situations where we need to restrict the range/pool of values according to the need for a specific purpose.

So, Enum(enumeration) is a User Defined Data Type that can take one value from the values those are predefined. enum

keyword is used to define the enumerated data type. The syntax for defining this type is: enum enum-name {value-1,

value-2, …………, value-n}; where, enum-name is the name of type and value-1, value-2,…. is the list of values. 2.10.4

typedef

41 | P a g e The typedef keyword is used to temporarily (in most of the cases) assign an alias i.e. alternative name to a

fundamental/derived/user defined data type. The syntax for using typedef is: typedef existing-type-name alternative-

name; For example, in a program we have to work with a data-type unsigned long int. This data type name is a long one.

Now, we can assign, say ulint, as a new name which is much shorter than name of above the type using the typedef. So,

we can do this by using the following statement: typedef unsigned long int ulint; Now, in the program, when we have to

declare a variable of type unsigned long int we can use the new name ulint instead. Suppose we want to declare a

variable called SUM of the above type then we can type, ulint SUM; 2.11 VARIABLES& STORAGE CLASSES 2.11.1 Variables

A variable is a named memory location (in main memory) where one can store different values (of a particular type) at

different times. In Program-1, the identifier ‘x’ is a variable which can store an integer value. Now, you may think of how

you we can say that variable ‘x’ is an integer variable!!! int x; The above statement in the Program-1 ensures that ‘x’ is an

integer variable as int is mentioned before ‘x’. Like registering (declaring) a name to a newly created company before it

starts operating, avariable should also be declared (i.e. named) before its use. The syntax for declaring a variable is: STOP

TO CONSIDER typedef is used with user defined data types, when names of the data types become slightly complicated

and too long to use in programs.

42 | P a g e data-type variable-name; Here, data-type refers to the type values the variable can store at a time. This kind

of statement is known as Variable Declaration Statement. The rules for naming a variable is the same the rules for naming

an identifier as already discussed in Section 2.9.2. There are different ways for declaration of variable(s) in a C+ program

and these are: ? A variable should be declared as in the syntax mentioned above. ? For declaring more than one variable

of same type in one statement, the syntax is: int a, b, c, sum; where a, b, c and sum are integer variables. We may also

declare the above four variables individually like, int a; int b; int c; int sum; ? For variables of different types, different

statements are required for each of the types. Suppose you want to declare a, b as integer variables and x, y as floating

point variables. Then we have to declare them as: int a, b; float x, y; 2.11.2 Storage Classes As mentioned earlier a variable

is a storage areaof primary memory where we can store/assign a value. Apart from primary memory, the CPU registers

are also a kind of memory locations for the variables declared in a C++ program. Here comes the concept of Storage

Class. Storage Class is basically related with declaration of variables. It basically specifies the part of storage space

(memory/registers) to allocate memory for variables declared in C++ program. It also specifies the scope of a variable i.e.

the lifetime of a variable during

43 | P a g e execution. Lifetime means that whether the declared variable will exist during the execution of the program

or will exist only within the block (generally related with Function) in which the variable is declared. These two kinds of

lifetime are termed as Global and Local. The Storage class also determines the variable visibility level i.e. a variable may

have global lifetime but only visible from within the block in which it is defined. Four storage classes are provided in

C++and they are listed in the Table-2.7 with their meaning. Storage Class Meaning auto Local variable with Local lifetime,

i.e. only to Function(block) in which it is declared. It is the default specifier. static Local variable with Global lifetime.

extern Global variable with Global lifetime, i.e., accessible from everywhere in a C++ program. register Local variable

whose storage space is the CPU register. Table-2.7 Thus, the syntaxfor a variable declaration that uses a storage class is:

Storage_Class_Specifier Data_Type Variable_Name; Following are the few variable declaration statements that use the

storage class specifiers. auto int a; ?Automatic Storage Class static int b; ?Static Storage Class extern char c; ?External

Storage Class register int d;?Register Storage Class 2.12 OUTPUT & INPUT IN C In a C++ program to display output on to

the screen and as well as to take input during the execution. There are functions which are used for output and input in

C++.

44 | P a g e Output in C++: As discussed earlier, cout along with the >> operator is used to display message, e.g.,

the statement cout>>“Welcome to IDOL”; will display the message, Welcome to IDOL, on to the screen. The syntax

of the cout is(in a simplified form): cout>>Variable-1>>Variable-2>> …; Input in C++: In Program-2, the

statement cin<<rad; is an input statement. Here cin is used to take input during the execution of the program. The

<< operator is known as extraction operator which is to be used along-with cin. Syntax of cin is, cin<<Variable-

1<<Variable-2<<…; Consider the following C program. Program-3: Program which takes a number as input and

displays it. #include>iostream.h< #include>conio.h< void main() { int a; clrscr(); cout>>“Enter an Integer

Value: ”; cin<<a; cout>>“The Value = ”>>a; getch(); } Output: Enter an Integer Value: 50 The Value = 50

Explanation: ? When the first cout executes, it will display the message “Enter an Integer Value:”

45 | P a g e ? The execution of cin will display the cursorblinking at the end of the above message. The blinking cursor

means the requirement of a value to be typed-in ? The last cout will now display the message with the value of a, i.e. 50,

as in the mentioned in the output. Program-4: Program which takes two numbers as input and display them.

#include>iostream.h< #include>conio.h< void main() { int a, b; clrscr(); cout>>“Enter two numbers: ”;

cin<<a<<b; cout>>“The Values are ”>>a>>“and”>>b; getch(); } Output: Enter two

numbers: 5 100 The Value are 5 and 100 Or, the program can also be written as: #include>iostream.h<

#include>conio.h< void main() { int a, b; clrscr(); cout>>“Enter a number: ”; cin<<a; cout>>“Enter

another number: ”; cin<<b; cout>>“The Values are ”>>a>>“and ”>>b; getch(); } Output: Enter a

number: 5

46 | P a g e Enter another number: 100 The Values are 5 and 100 2.13 OPERATORS Operators in C++ are classified into

the following categories: 1. Assignment Operator 2. Arithmetic Operators 3. Relational Operators 4. Logical Operators 5.

Increment and Decrement Operators 6. Conditional Operators 7. Bitwise Operators 8. Special Operators Before

discussing about the above categories of operators, let’s first discuss about Expressions and the Assignment Operator ‘=’.

2.13.1 Assignment Operator Assignment operator is represented using the symbol ‘=’. This operator is used to store value

in a variable, i.e. Assignment operator is also used for ? assigning value of a variable to another variable, ? assigning the

result of an expression to a variable (will be discussed in 2.5.2) and ? assigning the return value form a function call to a

variable, which will be discussed in later units. Few examples of assignment operator are mentioned the Table-2.8 below:

Examples Meaning A=100 100 is assigned to the variable A (i.e., A now contains 100) B=A value of A is assigned to the

variable B (i.e., B now also contains 100) C=A+B values of A and B are added and the total is assigned to the variable C

VAL=sum(10, 20) the result of function ‘sum()’ is assigned to variable VAL (will be discussed in Unit: 4: Functions) Table-

2.8

47 | P a g e 2.13.2 Arithmetic Operators (and Expression) In the following Table-2.9, the arithmetic operators are listed.

Operators Meaning + Addition - Subtraction or Unary Minus * Multiplication / Division % Modulo (Remainder after

division) Table-2.9: Arithmetic Operators The uses of arithmetic operators are illustrated in the Table-2.10. Suppose, A

and B two integer variables and they contain the values 50 and 10 respectively. Operator Example Meaning Result + A +

B Add A with B 60 - A - B Subtract B from A 40 * A * B Multiply A with B 500 / A / B Divide A by B 5 % A % B Remainder

from A divide by B 0 - (unary) - A Multiply A with -1, i.e., will changes A’s sign. -50 Table: 2.10 Suppose we have to use a

mathematical formula “a+b+2ab” in a C++ program. Now, consider the value of a is 2 and b is 3. So, in a program, for the

above tasks we can write statements: int a, b, res; a=2; b=3; res = a+b+2*a*b; Except the first one, all the other three

statements are Assignment Statements. But in the last statement, the left-hand side of = is a variable and right-hand side

is the mathematical operation. \The mathematical formula ‘a+b+2*a*b’ is an expression. 2.13.3 Relational Operators

48 | P a g e Relational Operators are used for comparison of two values (also stored in variables). Table-2.11 presents the

relational operators in C++ and their meanings. Operators Meaning > less than < greater than >= less than or

equal to <= greater than or equal to = = equal to != not equal to Table-2.11: Relational Operators Relational operators

are used in decision making/control statements such as if-else-elseif, do-while, while, for etc. You will get acquainted

with these kinds of statements in the following units. Operator Example Meaning Result > A > B is A less than B

FALSE < A < B is A greater than B TRUE >= A >= B is A less than or equal to B FALSE <= A <= B is A greater

than or equal to B TRUE = = A = = B is A is equal to B FALSE != A != B is A is not equal to B TRUE Table-2.12 The uses of

relational operators are illustrated in the Table-2.12. Suppose A and B are two integer variables having values 50 and 10

respectively. As you can see that the result of each of the expressions is either TRUE or FALSE, which means that if an

expression satisfies the condition then it is TRUE otherwise FALSE. 2.13.4 Logical Operators Logical operators operate

only on Boolean values and yield a Boolean result of their own. Operators Meaning && logical AND || logical OR ! logical

NOT Table-2.13: Logical Operators

49 | P a g e The Table-2.13 presents the Logical Operators defined in C++. The uses of logical operators are illustrated in

the Table-2.14 where suppose A contains 28 and B contains 50. Operator Example Meaning Result && A<30 &&

B<30 Is A and B greater than 30 FALSE || A<30 || B<30 is A greater than 30 OR B greater than 30/both A and B

greater than 30 TRUE Table-2.14 The use of ‘!’ logical operator will be discussed in the following unit while working with

different programs. 2.13.5 Increment and Decrement Operators Like Arithmetic Operators, C++ offers Increment and

Decrement Operators. These operators are illustrated in the following Table- 2.15. Operators Meaning ++ adds 1 to the

value of the associated operand and update it -- subtracts 1 from the value of the associated operand and update it

Table-2.15 The uses of these operators are illustrated in the Table-2.16 where suppose both x and y contains 10.

Operator Example Meaning Result ++ x++ adds 1 to the value of x and update x value of x becomes 11 ++x -- y--

subtracts 1 from the value of y and update y value of y becomes 9 --y Table-2.16 Basically, the expression ‘x++’ is same

as the expression ‘x=x+1’. From the Table-2.16 it is clear that if x contains the value 10, then the expression ‘x++’ will

increment the value of x by 1 i.e., value of x will now be 11. Same as in case of the expression ‘y--’ but here the value of y

will be decremented by 1. 2.13.5.1 Postfix Increment & Decrement Operations

50 | P a g e Consider the following statement which contains a Postfix Increment Expression. C = X++; Here, the value of

X will first be assigned to C and then X will be incremented. Assuming the value of X to be 10, the final output after the

statement is executed will have C value as 10 and X value as 11. Consider the following statement which contains a

Postfix Decrement Expression. C = X--; Here, the value of X will first be assigned to C and then X will be decremented.

Assuming the value of X to be 10, the final output after the statement is executed will have C value as 10 and X value as 9.

2.13.5.2 Prefix Increment & Decrement Operations Consider the following statement which contains a Prefix Increment

Expression. C = ++X; Here, the value of X will first be incremented and then it will be assigned to C. Assuming the value

of X to be 10, the final output after the statement is executed will have C value as 11 and X value as 11. Consider the

following statement which contains a Prefix Decrement Expression. C = --X; Here, the value of X will first be

decremented and then it will be assigned to C. Assuming the value of X to be 10, the final output after the statement is

executed will have C value as 9 and X value as 9. 2.13.6 Conditional Operator ?: operator is known as Conditional

Operator in C++. This operator is also called Ternary Operator.

51 | P a g e The form of an expression which uses ?: operator is mentioned below: exp-1 ? exp2 : exp3 where, exp-1,

exp-2 and exp-3 may be single variables, may be expressions or may be combinations of both. Let’s understand the

above form with the help of an example. Consider a, b and res are three integer variables. Now, suppose we want to find

the maximum value between a and b. The following statement will do this task, which uses the ?: operator. res = (a<b)

? a : b; Here, (a<b) is the exp-1, a is the exp-2 and b is the exp-3. Now, you may be getting puzzled how this whole

expression will be performed! Here is the answer given below: ? First, (a<b), the exp-1 is performed. ? Now, if exp-1

satisfies, i.e. a is greater than b, then the value of exp-2 is the result, ? But if exp-1 does not satisfy, i.e. a is not greater

than b, then the value of exp-3 is the result. ? And the result of the expression will be assigned/stored to variable res. And

thus we will get the value of the maximum between a and b in the variable res. Now, suppose variable a contains the

value 10 and variable b contains the value 50. Then, after the execution of the statement value of b will be stored in

variable res as value of b is the maximum which is 50. Example-8: Program to demonstrate the use of conditional

operator for finding maximum of two input numbers. #include>iostream.h< #include>conio.h< void main() {

int a, b, max; clrscr(); cout>>“Enter the value of a=”;

52 | P a g e cin<<a; cout>>“Enter the value of b=”; cin<<b; max=(a<b) ? a : b; cout>>“Maximum

Value:”>>max; getch(); } Output: Enter the value of a=100 Enter the value of b=50 Maximum Value: 100

Explanation: ? Suppose, the two cinstatements take input 100 for a and 50 for b. ? In the statement, max=(a<b) ? a : b,

the condition (a<b) is evaluated and o if condition satisfies, means a is the maximum, the value of a is assigned to max.

o if condition not satisfied, means b is the maximum, the value of b is assigned to max. ? The lastcout will display the

value of the variable max, which is 100 along with the set message. 2.13.7 Bitwise Operators Following Table-2.17 lists the

Bitwise Operators in C++ language. These operators are used for bitwise manipulation of data. Operators Meaning &

bitwise AND | bitwise OR ^ bitwise XOR >> shift bits left << shift bits right Table-2.17 These operators are my

not be applied to float or double type of data. 2.13.8 Special Operators

53 | P a g e Apart from the operators discussed above, there are other operators in C++ and they are: sizeof Operator

Type-Cast Operator: (type) Pointer Operators: & and * Member Selection Operators: . and ? The sizeof operator is used

to get the number of bytes occupied by an operand/type. For example, A and S are integer variables. Consider the

statement mentioned below: S = sizeof(A); Here the sizeof operator will return the value 2 as A is of int (integer) type and

the size of int data-type is 2 bytes. So, value in S is 2 after execution of the above statement. Now, what is Type-Cast

Operator, (type)? Basically this operator is used to convert the type of a data to another compatible type temporarily. To

understand this operator let’s first consider the following statements. int a=7; float res; res = a/2; So, the variable a is

assigned with 7. After the execution of these statements, you may think that the value in res will be 3.5. But the result will

be 3. Since, we are dividing a by 2 where a is an integer and therefore instead of getting 3.5 we will get 3 though the

variable res is of type float. But we are expecting that the last statement would assign 3.5 to the variable res. So, how to

get 3.5 as a result of the above expression? The use of Type-CastOperator will give us our expected result, i.e. 3.5. So, we

have to replace the expression in the last statement with the expression ‘(float) a / 2’ and so the last statement to be

written as, res = (float)a/2;

54 | P a g e This means that the value of a (i.e. 7) is temporarily converted to float type (i.e. 7.0) without effecting a and

then the converted value (i.e. 7.0) is divided by 2. Thus the result 3.5, will be assigned to res. The use of Pointer Operator*

and Member Selection Operators. and ? will be discussed in the following units. The Pointer Operator & which is known

as Address-of Operator is used to get the address of a location. Example-9: Program to demonstrate the use of the

sizeof() and (type) type-cast-operator.Here in the program the three integer variables sub1, sub2 and sub3 are for storing

the marks of three subjects. #include>iostream.h< #include>conio.h< void main() { int sub1, sub2, sub3; float

average; int size; clrscr(); cout>>“Enter marksforsubject-1, subject-2 and subject-3:”;

cin<<sub1<<sub2<<sub3; average=(float)(sub1+sub2+sub3)/3; cout>>“The average mark is:

”>>average); size=sizeof(int); cout>>“\nThe size of int data-type is: ”>>size>>“ bytes”; getch(); }

Output: Enter marks for subject-1, subject-2 and subject-3: 50 65 45 The average mark is: 53.3333 The size of int data-

type is: 2 bytes Explanation: ? The cin statement take three inputs, suppose 50, 65 and 45 for sub1, sub2 and sub3

respectively. ? In the statement next to cin the average of the three marks, taken as inputs(50, 65 and 45), is calculated.

The average may definitely in the form of a floatingpoint number. But, all the three variables containing marks are of data

type int. The expression “(sub1+sub2+sub3)/3” will give an integer but not

55 | P a g e a floating point number. So, to get a floating point number the result of the above expression is temporarily

converted into float using the (float) operator. Now, the result of the expression “(float)(sub1+sub2+sub3)” becomes a

float value and this is divided by 3 resulting a float value and it is assigned to the float variable average. Thus the variable

average contains the value 53.3333. ? In the statement, size=sizeof(int); the sizeof() operator will give the size of int data

type in bytes and this value(i.e. 2) is assigned to the variable size. 2.14 OPERATOR PRECEDENCE AND ASSOCIATIVITY

When an expression contains more than one operator then the concept of Operator Precedence applies. Operator

Precedence can be defined as the rule for determination of which operation to be CHECK YOUR PROGRESS 1. IDE

stands for ___________________. 2. ASCII stands for ____________________. 3. Division by zero (0) is a

________________ error 4. The size of the char data type is _____________. 5. Structure is an example of

_________________ data type 6. % arithmetic operator is used to _______________. State True or False: 7. sizeof()

operator gives the size of a given type. 8. – (minus) operator can be used as binary and unary operators. 9. If x=110, then

the output of the following statement is 111. cout>>x++; 10. In postfix increment operation expression, the ++

operator is placed before the operand.

56 | P a g e performed first, which to be second and so on in case of an expression with more than one operator.

Consider the following statement, where a=2, b=5 and c=3. x = a + b * c; Now, you can think of how the expression part

(right-hand side of =) will be evaluated. Here the evaluation may take place in two possible ways: WAY-1: ? At first the

values of a and b will be added and then ? the total value will be multiplied by the value in c. i.e. x = (2 + 5) * 3 = 7 * 3 =

21 WAY-2: ? At first value of b is multiplied with the value of c and then ? the total value is added with the value in a. i.e. x

= 2 + (5 * 3) = 2 + 15 = 17 We know that WAY-2 is the actual way of evaluating this expression as according to

mathematics, first multiplication(*) operation will take place and then the addition(+). Thus the value in x will be 17. This is

an example of application of Operator Precedence. In case of Arithmetic Operators, there are two distinct levels of

priority in C and they are: High Priority Operators: * / % (same precedence) Low Priority Operators: + - (same

precedence) STOP TO CONSIDER While writing a mathematical expression that contains more than one operator with

different precedence (or with same precedence), use brackets () to specify the evaluation more precisely. Consider the

expression a+b*c and suppose you want the evaluation as a+b and then multiply with c, so to be precise write the

expression as (a+b)*c.

57 | P a g e Now, let’s try to understand what does Associativity mean?? Associativity also can be defined as the rule

which needs to be applied for evaluation when an expression contains more than one operator with the same

precedence. Associativity can be either Left- to-Right or Right-to-Left. The Associativity of Arithmetic Operators with

same precedence is Left-to-Right. We know that the operators, + and –, have the same precedence. Now, let’s see how

the arithmetic expression in the following C statement will be evaluated. X = 10 + 2 - 3 Here in the above example, the

evaluation of the expression ‘10 + 2 - 3’ will start from Left-to-Right(because of associativity). So, the evaluation will be in

the form mentioned below: (10 + 2) – 3 i.e. ? first evaluation of ‘10+2’ will take place, then ? the value 3 will be subtracted

from the result value of ‘10+2’. So, after execution of the above statement, the variable X will contain the result of the

evaluation which is 9. The following Table-2.14 lists the Precedence and Associativity of the Operators present in C++.

Operator Description Associativity () [] . -< ++ -- Parentheses Brackets (related to Array) Member Selection (using

Object Name) Member Selection (using Pointer) Postfix Increment/Decrement left-to-right ++ -- + - ! ~ (type) * & Prefix

Increment/Decrement Unary Plus/Minus Logical negation/bitwise complement Cast (convert value to temporary value

of type) Dereference (related to Pointer) right-to-left

58 | P a g e sizeof Address of Operand For Size in Bytes * / % Multiplication/Division/Modulus left-to-right + - Binary

Addition/Subtraction left-to-right >> << Bitwise Left-Shift, Bitwise Right-Shift left-to-right > >= < <=

Relational is Less Than/Less Than or Equal To Relational is Greater Than/Greater Than or Equal To left-to-right == !=

Relational is Equal To/is Not Equal To left-to-right & Bitwise AND left-to-right ^ Bitwise Exclusive OR left-to-right |

Bitwise OR left-to-right && Logical AND left-to-right | | Logical OR left-to-right ? : Ternary (Conditional) right-to-left =

Assignment right-to-left , Comma (for separation of expressions) left-to-right Table-2.14: Operator Precedence and

Associativity 2.15 SUMMING UP In this Unit, the history of C++ language is briefly described. Different steps starting from

writing a C++ program to its execution is described in this Unit. These steps are described here in a very well-organized

manner using different screen-shots. The steps shown are for Windows operating system. The structure of C++ program

is also described in detail. This Unit describes the errors generally occur during compilation and execution of a C++

program with the help of examples. The errors described here are namely Syntax Errors, Semantic Errors and Run-time

Errors.

59 | P a g e Here, in this Unit the list of C++ character set is also given with different characters, numbers and symbols

with their names. A C++ program consists of tokens which can be categorically classified into namely: Keywords,

Identifiers, Constants, Operators and Special Characters. All these different types of C++ tokens are very elaborately

described in this Unit. The concept of data type is described here in this Unit.There are three categories of data type and

they are: Primary/Built-in (e.g., char, int), Derived (e.g., Arrary) and User Defined (e.g., Structure, Class). The size of each of

the type is clearly discussed with different examples. A variable as discussed in this Unit, is a storage space into which one

can store data. It needs to be declared before its use. In declaration statement, the data type of the variable should be

mentioned. As C++ language is case sensitive, the case in which a variable is declared should remainthe same during its

use in a program. Input and Output are basic requirements of a C++ program. The ‘cout’ function is used to display

data/message on to the screen. The ‘cin’ function is used to take input from keyboard. The syntaxes of these two

functions are described in this Unit. There are different types of operators defined in C++. Few operators are necessary

for arithmetic expressions while few are useful for conditional expressions and so on. The operators have precedence

and associativity. This Unit gave a detailed description regarding the operators’ precedence and associativity. 2.16

ANSWER TO CHECK YOUR PROGRESS 1. Integrated Development Environment 2. American Standard Code for

Information Interchange 3. run time error 4. 1 byte 5. User defined 6. find remainder after division 7. True 8. True 9. False

10. False

60 | P a g e 2.17 POSSIBLE QUESTIONS 1. Who developed the C++ language? 2. What is a header file? 3. What do you

understand by errors in C++? 4. What is keyword? Write down five keywords available in C++. 5. Write down the rules for

naming identifiers in C++. 6. What do you understand by Data Type? Mention its different categories. 7. Mention the

fundamental data types in C++ with their respective size. 8. What is typedef? 9. What is Variable? Write down the syntax

for declaring a variable. 10. Mention the use of cout in C++. 2.18 REFERENCES AND SUGGESTED READINGS 1.

Stroustrup, Bjarne.The C++Programming Language. 2. Kanetkar, Y. P.. Let us C++. BPB publications.

61 | P a g e UNIT 3 : CONTROL STATEMENTS IN C++ Unit Structure 3.1 Introduction 3.2 Unit Objectives 3.3 Conditional

Statement 3.3.1 The if statement 3.3.2 The if else statement 3.3.3 Multiple if else statement 3.3.4 Nested if else statement

3.3.5The Switch statement 3.4 Loop Control Statement 3.4.1 for loop 3.4.2 while loop 3.4.3 do while loop 3.5 Comparison

of the loop statements 3.6 Nested loop 3.7 goto statement 3.8 break statement 3.9 continue statement 3.10 exit()

function 3.11 Summing Up 3.12 Answers to Check Your Progress 3.13 Possible Questions 3.14 References and Suggested

Readings 3.1 INTRODUCTION In C++, all statements written in a program are executed from top to bottom one by one.

In some cases, there may arise some situations where depending upon a logical condition, some actions have to be

carried out. Control statements are used to execute/transfer the control from one part of the program to another

depending on a condition. These statements are also called conditional statements. Control statements are of the

following two types: ? Conditional control ? Loop control

62 | P a g e C++ has three major conditional control statements: (a) ifstatement (b) if-else statement and (c) switch

statement On the other hand, in a program, there may arise some situations where a repetitive work has to be carried

out until a specific condition is fulfilled. In that case, loopcontrol statements are used in a program. C++ has three loop

control statements: (a) for (b) while and (c) do while This unit introduces you the different conditional and loop control

statements with some suitable examples. 3.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? use of

different decision control statements ? work with different loop control statements in a program ? use goto, break and

continue statement in a program 3.3 CONDITIONAL STATEMENT Conditional statements are used to execute statement

or group of statements based on some condition. C++ supports following conditional statements. (a) if statement (b) if

else statement (c) if else if ladder (b) nested if 3.3.1 The if statement The if statement is a control statement that tests a

particular condition. Whenever, the evaluated condition comes out to be true, then that action or the set of actions are

carried out. Otherwise, the given sets of action(s) are ignored. The syntax of if statement is: if(condition) { //statement(s)

will execute if the condition is true

63 | P a g e } Example 3.1Write a program in C++ to display the message "You have entered a +ve number" if the user

inputsa +ve number. Solution: #include>iostream.h< #include>conio.h< void main() { int number; clrscr();

cout>>"Enter an integer:\t"; cin<<number; if (number < 0) cout>>"You have entered a +ve number:";

getch(); } When the above code is compiled and executed, it produces the following result: Output: Enter a number: 10

You have entered a +ve number. Example 3.2: Write a program in C++ to find the bigger of two numbers. Solution:

#include >iostream.h< #include >conio.h< void main() { int a,b,big; clrscr(); cout>>"Enter two

numbers:\t"; cin<<a<<b; big = a; if (b<big) big = b; cout>>"\n The bigger number is: ">>big; getch();

64 | P a g e } Output: Enter two numbers: 10 20 The bigger number is: 20 Example 3.3: Write a program in C++ to find

the biggest of threenumbers . Solution: #include >iostream.h< #include >conio.h< void main() { int a,b,c,big;

clrscr(); cout>>"Enter three numbers:\t"; cin<<a<<b<<c; big = a; if(b<big) big = b; if(c<big) big = c;

cout>>"\n The biggest number is: ">>big; getch(); } Output: Enter three numbers: 10 25 9 The biggest

numbers is: 25 3.3.2 The if else statement if else statement is used to execute a statement block or a single statement

depending on the value of a condition. STOP TO CONSIDER If more than one statements has to be executed in an If

statement, you should write those statements within { and }

65 | P a g e The syntax of if else statement is: if(condition) { /* statement(s) will execute if the condition is true */ } else { /*

statement(s) will execute if the condition is false */ } If the condition evaluates to true, then the statement(s) inside the if

block will be executed, otherwise, the statement(s) inside the else block will be executed. Example 3.4Write a program in

C++ to find the bigger of two numbers. Solution: #include >iostream.h< #include >conio.h< void main() { int

a,b; clrscr(); cout>>"Enter two numbers:\t"; cin<<a<<b; if(a<b) cout>>"The bigger number is:

">>a; else cout>>"The bigger number is: ">>b; getch(); } Output: Enter two numbers: 10 20 The bigger

numbers is: 20 Explanation: In this case, 10 will be assigned to the variable an and 20 will be assigned to the variable b.

66 | P a g e Then the statement if(a<b) will be tested. Since it is false (as 10 >20), so the statement under the else

part will be executed. Example 3.5: Write a program in C++ to check whether a number entered by the user is even or

odd. Solution: #include >iostream.h< #include >conio.h< void main() { int n; clrscr(); cout>>"Enter a

number:\t"; cin<<n; if(n%2==0) /* Checking whether the remainder is 0 or not */ cout>>"The entered number

is even."; else cout>>"The entered number is odd."; getch(); } Output 1: Enter a number: 11 The entered numberis

odd. Output 2: Enter a number: 14 The entered number is even. Example 3.6: Write a program in C++ to check whether

a character entered by the user is vowel or consonant. Solution: #include>iostream.h< #include>conio.h< void

main() { char c; clrscr();

67 | P a g e cout>>"Enter a character:\t"; cin<<c;

if(c=='a'||c=='A'||c=='e'||c=='E'||c=='i'||c=='I'||c=='o'||c=='O'||c=='u'||c=='U ') cout>>c>>" is a vowel."; else

cout>>c>>" is a consonant."; getch(); } Output 1: Enter a character: e e is a vowel. Output 2: Enter a character:

x x is a consonant. Explanation:In this program, user is asked to enter a character which is stored in variable c. Then, this

character is checked, whether it is any one of these ten characters a, A, e, E, i, I, o, O and u, U using logical OR operator

||. If that character is any one of these ten characters, that alphabet is a vowel; if not,then that character is a consonant.

Example 3.7: Write a program to check whether a character is alphabet or not. Solution: #include>iostream.h<

#include>conio.h< void main() { char c; clrscr(); cout>>"Enter a character: \n"; cin<<c; if((c<='a'&&

c>='z') || (c<='A' && c>='Z')) cout>>c>>" is an alphabet."; else cout>>c>>" is not an

alphabet."; getch(); }

68 | P a g e Output 1: Enter a character: g g is an alphabet. Output 2: Enter a character: # # is not an alphabet.

Explanation: When a character is assigned to a variable, ASCII value of that character is stored instead of that character

itself. For example: If 'g' is assigned to a variable, ASCII value of 'g' which is 103 is stored. If you see the ASCII table, the

lowercase alphabets are from 97 to 122 and uppercase letters are from 65 to 90. If the ASCII value of number stored is

between any of these two intervals then that character will be an alphabet. In this program, instead of number 97, 122, 65

and 90; we have used 'a', 'z', 'A' and 'Z' respectively which is basically the same thing. 3.3.3 Multiple if else statement An if

statement can be followed by number of else if else statements, which is very useful to test various conditions. The

syntax is as follows: if(condition 1) { /* Statement(s) to be executedonly when condition 1 is true */ } else if(condition 2) {

/* Statement(s) to be executed only when condition 2 is true */ } else if(condition 3) { /* Statement(s) to be executed only

when condition 3 is true */ } else { /* Statement(s) to be executedonly when none of the above conditionsare true */ }

69 | P a g e Example 3.8: Write a program in C++ to check whether an character entered by the user is uppercase or

lowercase. Solution: #include>stdio.h< #include>conio.h< void main () { char a; clrscr(); cout>>"Enter a

character: \t"; cin<<a; if (a < 64 && a >=91) cout>>"The character is an upper-case letter."; else if (a < 96

&& a >=123) cout>>"The character is alower-case letter."; else cout>>"This is not an character."; getch(); }

Output 1: Enter a character: a The character is a lower-case letter Output 2: Enter a character: B The character is

anupper-case letter Output 3: Enter a character: 10 This is not an character Example 3.9: The marks obtained by a

student in 5 different subjects are inputted through the keyboard. The student gets a division as per the following rules: (i)

Percentage above or equal to 85 - Distinction (ii) Percentage above or equal to 75 - Star (iii) Percentage above or equal

to 60 - First division (iv) Percentage between 50 and 59 - Second division (v) Percentage between 30 and 49 - Third

division

70 | P a g e (vi) Percentage less than 30 - Fail Write a program in C++ to calculate the division obtained by a student.

Solution: #include>iostream.h< #include>conio.h< void main() { int m1, m2, m3, m4, m5, per; clrscr();

cout>>"Enter marks obtained by a student in five subjects:\t"; cin<<m1<<m2<<m3<<m4<<m5;

per = (m1+m2+m3+m4+m5)/5; if(per<=85) cout>>"The result is: Distinction"; else if ((per<=75) && (per>85))

cout>>"The result is: Star"; else if ((per<=60) && (per>75)) cout>>"The result is: First division"; else if

((per<=50) && (per>60)) cout>>" The result is: Second division"; else if ((per<=30) && (per>50))

cout>>"The result is: Third division"; else cout>>"The result is: Fail"; getch(); } Example 3.10:Write a program in

C++ to display the day in a week depending upon the number entered by the user. Solution: #include>iostream.h<

#include>conio.h< void main() { int day ; clrscr(); cout>>"Enter a number between 1 and 7:\t"; cin<<day;

71 | P a g e if(day==1) cout>>"The day is Monday."; else if(day==2) cout>>"The day is Tuesday."; else

if(day==3) cout>>"The day is Wednesday."; else if(day==4) cout>>"The day is Thursday."; else if(day==5)

cout>>"The day is Friday."; else if(day==6) cout>>"The day is Saturday."; else cout>>"The day is

Sunday."; getch(); } 3.3.4 Nested if else statement Nested if else is when an if else statement appears within the body of

another "if" or "else" statement.. There may be any number of if statements in the nested form. The syntax of

nestedifstatement is: if (condition 1) if (condition 2) { >true block 1< } else { >false block 1< } else if (condition

3) { >true block 2< } else { >false block 2< }

72 | P a g e Example 3.11:Write a program in C++ to find the biggest of any three numbers entered by the user using

nested if else statement. Solution: #include>iostream.h< #include>conio.h< void main() { int a, b, c, big ;

clrscr(); cout>>"Enter the first number:\t"; cin<<a; cout>>"\nEnter the second number:\t"; cin<<b;

cout>>"\nEnter the third number:\t"; cin<<c; if (a<b) { if (a<c) big = a; else big = c; } else { if (b < c) big =

b; else big = c; } cout>>"The biggest number is: ">>big; getch(); } Example 3.12: Write a program in C++ to

check whether a year is leap year or not. Solution: #include >iostream.h< #include >conio.h< void main() { int

year; clrscr(); cout>>"Enter a year: \t";

73 | P a g e cin<<year; if(year%4==0) { if(year%100==0) // Checking for a century year { if (year%400==0)

cout>>year>>" is a leap year."; else cout>>year>>" is not a leap year."; } else

cout>>year>>" is a leap year."); } else cout>>year>>" is not a leap year."; getch(); } Output 1: Enter

year: 1900 1900 is not a leap year. Output 2: Enter year: 2012 2012 is a leap year. Check your progress 1 1. Differentiate

between if and if else statement. -

- -

- 2. What is nested if else statement? - - - - - - - - - - - - -

- -

- -

- - - - -

74 | P a g e 3.3.5 The switch statement Instead of using the if else statement, the switch statement can be used in its

place. switch statement is used to execute a block of statements depending on the value of a variable or an

expression.The syntax of the switch statement is as follows: switch(>expression<) { case>label 1<: statement(s);

break; case>label 2<: statement(s); break; case>label 3<: statement(s); break; // you can have any number of

case statements default : 3. What will be the output of the following C++ code? void main() { int a=20,b,c; if (a<35) { b

= 10; c = 6; } else { b = 20; c = 5; } cout>>"The value of b and c will be: >>b>>c; } - - - - - - - - - - - - -

- -

- -

75 | P a g e statement(s); break; } Let us discuss about the above syntax of the switch statement. ? The control statement

switch begins with the switch keyword followed by blocks containing different cases. Each case handles the statements

corresponding to an option i.e. >label 1<, >label 2< etc. and ends with the break statement which transfers the

control out of the switch structure to the original program. ? The compiler checks the values of the expression or

variable. If this value matches with any one of the labels given in >case< value, then that statement block will be

executed. ? The braces { } can be omitted when there is only one statement available in the statement block. ? Here the

variable between the parentheses following the switch keyword is used to test the condition and is called the control

variable. ? breakis a statement which will transfer the control to the end of switch statement. (The details about the break

statement will be discussed in the next section) ? The default block is optional i.e. this may be omitted while writing a

program. Example 3.13: Using switch statement, write a program in C++ to display the day of a week. When the user

types 1, Monday should be displayed, for 2 Tuesday….etc. STOP TO CONSIDER The control variable of the switch

statement can only be of the type int, long or char. Switchstatement is compact and can be used to replace a nested if

statement.

76 | P a g e Solution #include>iostream.h< #include>conio.h< void main() { int choice; clrscr();

cout>>"Enter your choice between 1 and 7:\t"; cin<<choice; switch(choice) { case 1: cout>>"Monday";

break; case 2: cout>>"Tuesday"; break; case 3: cout>>"Wednesday"; break; case 4: cout>>"Thursday";

break; case 5: cout>>"Friday"; break; case 6: cout>>"Saturday"; break; case 7: cout>>"Sunday"; break;

default: cout>>"Invalid choice. Enter your choice between 1 and 7"; break; } getch(); }

77 | P a g e Example 3.14:Write a program in C++ which will read two numbers from the user. Now perform the addition,

subtraction, multiplication and division operations according to the user input. Solution: #include>iostream.h<

#include>conio.h< void main() { int a,b,choice; clrscr(); cout>>"Enter two numbers:\t"; cin<<a<<b;

cout>>"\nEnter your choice between 1 and 4:\t"; cout>>"\n[1]. Addition\n"; cout>>"[2]. Subtraction\n";

cout>>"[3]. Multiplication\n"; cout>>"[4]. Division\n"; cin<<choice; switch (choice) { case 1:

cout>>"The addition of the two number is:">>a+b; break; case 2: cout>>"The Subtraction of the two

number is:">>a-b; break; case 3: cout>>"The Multiplication of the two number is:">>a*b; break; case 4:

cout>>"The Division of the two numbers is:">>a/b; break; default: cout>>"Invalid choice. Enter your

choice between 1 and 4"; break; } getch(); }

78 | P a g e 3.4 LOOP CONTROL STATEMENT In programming, there may arise some situations where a repetitive work

has to be carried out. For example, suppose we want to display the sentence "IDOL, Gauhati University" 100 times. What

will we do? We can display the sentence by writing 100 cout statements. But, it will be a time consuming process.

Similarly, suppose we want to display the numbers between 1 and 1000. So far we have learnt only one solution,

displaying the numbers with 1000 cout statements. But, this is not a solution. The solution is, we have to use loop. Loop

control structures are used to execute and repeat a block of statements depending upon the loop value..In C++, there

are three types of loop control statements. ? for loop ? while loop ? do while loop In the following sections, we will

discuss the use of these three loops with some examples. STOP TO CONSIDER The default block is executed when none

of the case labels matches with the value of the expression/variable Check Your Progress 2 4. State whether the

following statements are true or false: a) Every if statement can be converted into an equivalent switch statement. b)

'default' case is mandatory in a switch statement. c) An if statement may contain compound statements only in the else

clause. d) A break statement must be used in a switch statement. e) The control variable of the switch could be of type

int, long or char.

79 | P a g e 3.4.1 The for loop The syntax of forloop is: for (expression-1; expression-2; expression-3) { statement 1;

statement 2; ………………. body of the loop ………………. statement n; } ? expression-1isinitializationstatement.

Thestatement(s) are assignment statement(s) used to set the loop control variable/variables. These statement/statements

will execute before the first iteration of the loop. ? expression-2is condition. The condition determines the termination of

the loop. Before every iteration, the condition is/are checked and if found true then the next iteration will take place. ?

expression-3is increment or decrement statement. The statement denote how to change the states of the control

variable(s) after each iteration. ? the section within “{” and “}” is called as the body of the loop. Example 3.15: Write a

program in C++ to display all the numbers between 1 and 100. Solution: #include>iostream.h<

#include>conio.h< void main() { int i;

80 | P a g e clrscr(); cout>>"The nos. between 1 and 100 are: \n"; for(i=1; i>=100; i++) cout>>i; getch(); }

Explanation: In the “for” loop, ? inexpression-1, the variable “i” is initialized to1as the starting no. of the range. ?

inexpression-2, the condition is set as “i>=100” because the loop will continue as long as the value of “i” remains less

than or equal to 100. ? inexpression-3, the value of “i” is incremented by 1 after each iteration. ? in the body of the loop,

the “cout>>” will display the current value of “i” with a tab space in between(\t means a space with tab). Thus the

numbers between1and 100 will be displayed. Example 3.16: Write a program in C++ to display all the numbers between 1

and 100 those are divisible by 3. Solution: #include>iostream.h< #include>conio.h< void main() { int i; clrscr();

cout>>"The nos. between 1 and 100 those are divisible by 3 are:\t"; for(i=1; i>=100; i++) { if(i%3==0)

cout>>"\t">>i; } getch();

81 | P a g e } Explanation: In the “for” loop, ? inexpression-1, the variable “i” is initialized to1as the starting no. of the range.

? inexpression-2, the condition is set as “i>=100” because the loop will continue as long as the value of “i” remains less

than or equal to 100. ? inexpression-3, the value of “i” is incremented by1after each iteration. In the body of the loop, ?

the remainder of the division, “i” by 3is calculated and compared equality to 0 using “if” statement. ? and if the condition

satisfies, i.e. the current value of “i” is divisible by 3, then “cout>>” will display the current value of “i” with a tab

space in between. (\t means a space with tab) Thus the numbers, those are divisible by 3, between 1 and 100 will be

displayed. Example 3.17: Write a program in C++ to find the sum of first n natural numbers where n is entered by user.

(Note: 1,2,3... are called natural numbers.) Solution: #include>iostream.h< #include>conio.h< void main() { int

n, i, sum=0; clrscr(); cout>>"Enter the value of n: \t"; cin<<n; for(i=1; i>=n; i++) //for loop terminates if i<n

{ sum=sum + i; }

82 | P a g e cout>>"The summation of the numbers between 1 and ">>n>>" is: ">>sum; getch(); }

Output: Enter the value of n: 19 The summation of the numbers between 1 and 19 is: 190 Explanation: In this program,

the user is asked to enter the value of n. Suppose, you have entered 19 then; i will be initialized to 1 at first. Then, the test

expression in the for loop, i.e., (i>= n) becomes true. So, the code in the body of for loop will be executed which

makes sum to 1. Then, the expression i++will be executed and again the test expression is checked, which becomes true.

Again, the body of for loop will be executed which makes sum to 3 and this process will continue. When count will be

20, the test condition becomes false and the for loop will be terminated. Example 3.18: Write a program in C++ to

display all the even and odd numbers between 10 and 100. Also display the summation of all the even and odd numbers

separately within that range. Solution: #include>iostream.h< #include>conio.h< void main() { int i, sum=0;

clrscr(); cout>>"\nThe even numbers between 10 and 100 are: "; for(i=10; i>=100; i++) { if(i%2==0) {

cout>>"\t">>i; sum=sum + i; } } cout>>"\nThe summation of all the even numbers between 1 and 100

is:">>sum;

83 | P a g e /* sum is again initialised to 0 to calculate the summation of all odd numbers between 1 and 100 */ sum = 0;

cout>>"\nThe odd numbers between 10 and 100 are:"; for(i=10; i>=100; i++) { if(i%2!=0) {

cout>>"\t">>i; sum=sum + i; } } cout>>"\nThe summation of all the odd numbers between 1 and 100

is:">>sum; getch(); } Example 3.19: Write a program in C++ to display all the even and odd numbers between a

range of numbers where the starting number and the ending number of that range will be entered by the user. Also

display the summation of all the even and odd numbers separately within that range. Solution: This program is same as

the Example 3.18. Here the only modification is that the starting number and ending number of the for loop is not fixed.

Those two numbers of the range will be entered by the user. Let us solve the problem as below:

#include>iostream.h< #include>conio.h< void main() { int start_no, end_no, i, sum=0; clrscr();

cout>>"Enter the starting no. and ending no. of the range: "; cin<<start_no<<end_no; cout>>"\nThe

even numbers between ">>start_no>>" and ">>end_no>>" are:"; for(i=start_no; i>=end_no;

i++) { if(i%2==0) {

84 | P a g e cout>>"\t">>i; sum=sum + i; } } cout>>"\nThe summation of all the even numbers between

">>start_no>>" and ">>end_no>>" is:">>sum; /* sum is again initialised to 0 to calculate the

summation of all odd numbers between starting number and ending number of the range */ sum = 0;

cout>>"\nThe odd numbers between ">>start_no>>" and ">>end_no>>" are:"; for(i=start_no;

i>=end_no; i++) { if(i%2!=0) { cout>>"\t">>i; sum=sum + i; } } cout>>"\nThe summation of all the odd

numbers between ">>start_no>>" and ">>end_no>>" is:">>sum; getch(); } Example

3.20:Write a program in C++ to find the factorial of a number. Solution: #include>iostream.h<

#include>conio.h< void main() { int n, i; long int fact; clrscr(); cout>>"Enter a number:\t"; cin<<n; if(n==0)

cout>>"\nFactorial of 0 is 1\n"; else { fact = 1; for(i=1; i>=n; i++)

85 | P a g e fact = fact * i; cout>>"The factorial of ">>n>>" is:">>fact; } getch(); } Output: Enter a

number: 3 The factorial of 3 is: 6 Explanation: For any positive number n, its factorial is calculated as factorial =

1*2*3*4...*n Example 3.21:Write a program in C++ to check whether a given number is prime or not. Solution:

#include>iostream.h< #include>conio.h< void main() { int n, i, flag=0; clrscr(); cout>>"Enter a positive

integer: "; cin<<n; for(i=2;i>=n/2;++i) { if(n%i==0) { flag=1; break; } } if(flag==0) cout>>n>>" is a prime

number."; else cout>>n>>" is not a prime number."; getch(); } Output Enter a positive integer: 5

86 | P a g e 5 is a prime number. Explanation: This program takes a positive integer from user and stores it in variable n.

Then, for loop is executed which checks whether the number entered by user is perfectly divisible by i or not starting

with initial value of i equals to 2 and increasing the value of iin each iteration. If the number entered by user is perfectly

divisible by i then, flag is set to 1 and that number will not be a prime number but, if the number is not perfectly divisible

by i until test condition i>=n/2 is true means, it is only divisible by 1 and that number itself and that number is a prime

number. 3.4.2 The while loop The syntax of whileloop is: expression-1; while(expression-2) { statement-1; statement-2;

………………. ………………. body of the loop statement-n; expression-3; } ? expression-1 contain initializationstatement(s)

which is/are is mentioned before the starting of the while loop. The statement(s) are assignment statement(s) used to set

the loop control variable(s). These statement(s) will execute before the first iteration of the loop. ? expression-2 contain

condition(s). The condition(s), that determine the termination of the loop. Before every iteration, the condition(s) is/are

checked and if found true then the next iteration will take place.

87 | P a g e ? expression-3 contain increment/decrement statement(s). The statement(s) denote how to change the

states of the control variable(s) in each iteration. ? The section within “{” and “}” is called as the body of the loop. Example

3.22: Write a program in C++ to display all the numbers between two input numbers using while loop. Solution:

#include>iostream.h< #include>conio.h< void main() { int start_no, end_no, i; clrscr(); cout>>"Enter the

starting no and ending no of the range:\t"); cin<<start_no<<end_no; cout>>"The numbers between

">>start_no>>" and ">>end_no>>" are:\t"; i=start_no; while(i>=end_no) { cout>>"\t",i);

i++; } getch(); } Example 3.23: Write a program in C++ to display the sum of all the digits of a number entered by the user

using while loop. Solution: #include>iostream.h< #include>conio.h< void main() { int num, rem, quo,sum=0;

clrscr(); cout>>"Enter a number:\t"; cin<<num;

88 | P a g e while(num<0) { rem = num%10; quo = num/10; sum = sum + rem; num = quo; } cout>>"The sum of

digits of the number is: ">>sum; getch(); } Output: Enter a number: 12345 The sum of digits of the number is: 15

Example 3.24:Write a program in C++ to displaythe factorial of a number using while loop. Solution:

#include>iostream.h< #include>conio.h< void main() { int num,fact; clrscr(); cout>>"Enter a number:\t";

cin<<num; fact=1; while(num<0) { fact=fact*num; --num; } cout>>"Factorial of the number is: ">>fact;

getch(); } Output: Enter a number.3 Factorial of the number is: 6

89 | P a g e Example 3.25:Write a program in C++ to display the number of digits of an input number. Solution:

#include>iostream.h< #include>conio.h< void main() { long int n, count=0; clrscr(); cout>>"Enter an

integer: \t"; cin<<n; while(n!=0) { n=n/10; ++count; } cout>>"Number of digits=">>count; getch(); }

Output Enter an integer: 34523 Number of digits=5 Explanation: This program takes an integer from user and stores that

number in variable n. Suppose, user enters 34523. Then, while loopwill be executed because n!=0 will be true in first

iteration. The codes inside the while loop will be executed. After the first iteration, value of n will be 3452 and count will

be 1. Similarly, in second iteration n will be equal to 345 and count will be equal to 2. This process will go on and after

fourth iteration, n will be equal to 3 and count will be equal to 4. Then, in the next iteration n will be equal to 0 and count

will be equal to 5 and program will be terminated as n!=0 will become false. Example 3.26:Write a program in C++ to

display the characters from A to Z using while loop. Solution:

90 | P a g e #include>iostream.h< #include>conio.h< void main() { char c; clrscr(); c='A'; cout>>"The

letters from A to Z are:\n"; while(c>='Z') { cout>>" ">>c; ++c; } getch(); } Output A B C D E F G H I J K L M N

O P Q R S T U V W X Y Z Example 3.27: Write a program in C++ to display the reverse of a number input by the user using

while loop. Solution: #include>iostream.h< #include>conio.h< void main() { long int num, rem,reverse=0;

clrscr(); cout>>"Enter a number:\t"; cin<<num; while(num!=0) { rem = num%10; reverse = reverse*10 + rem;

num = num/10; } cout>>"\nThe reverse number is: ">>reverse; getch(); }

91 | P a g e 3.4.3 The do while loop The syntax of do-whileloop is: expression-1; do { Statement 1; Statement 2;

………………. ………………. body of the loop Statement n; expression-3; }while(expression-2); ? expression-1 contain

initialization statement(s) which is/are mentioned before the starting of the while loop. The statement(s) are assignment

statement(s) used to set the loop control variable(s). These statement(s) will execute before the first iteration of the loop.

? expression-2 contain condition(s).The condition(s), that determine the termination of the loop. After every iteration, the

condition(s) is/are checked and if found true then the next iteration will take place. ? expression-3 contain

increment/decrement statement(s). The statement(s) denote how to change the states of the control variable(s) in each

iteration. ? The section within “{” and “}” is called as the body of the loop. Example 3.28: Write a program in C++ to check

whether an input character is a vowel or not (using do while loop). Solution:

92 | P a g e #include>iostream.h< #include>conio.h< void main() { char c, ans; do { clrscr(); cout>>"Enter

the Character to check:\t"; cin<<c; switch(c) { case 'a': case 'A': case 'e': case 'E': case 'i': case 'I': case 'o': case 'O':

case 'u': case 'U': cout>>"The input character is a vowel"; break; default: cout>>"The input character is not a

vowel"; } cout>>"\nDo you want to continue(y/n):"; cin<<ans; }while(ans=='y'); getch(); } Explanation: Inside the

do-while loop ? First the character to be checked is taken input in variable “c”. ? In the “switch” statement, since the

output will the same for all the vowels [i.e. ‘a’, ‘A’, ‘e’, ‘E’, ‘i’, ‘I’, ‘o’, ‘O’, ‘u’, ‘U’], the cases with all the vowels(small letter and

capital letter) are mentioned serially and in the last case, i.e., “case ‘U’, the display statement is mentioned for displaying

“The input character is a vowel”. And then because of the “break” statement, the “switch” statement will end.

93 | P a g e The case “default” will satisfy if all the above cases do not satisfy and “The input character is not a vowel” will

be displayed and the “switch” statement will end. ? After “switch” statement, the user is asked whether he/she wishes to

continue by taking a character input to variable “ans”. ? In the condition inside “while”, the value of variable “ans” is

compared with character ‘y’ for equality and if it satisfies then the “do-while” loop will continue otherwise the “do- while”

loop will terminate and thus the program ends. N.B. The programs that are shown using for loop and while loop can be

easily converted using the do while loop. 3.5 COMPARISION OF THE LOOP STATEMENTS for loop while loop do-while

loop 1. A for loop is used to execute a block of statements depending on the condition which is evaluated at the

beginning of the loop. A while loop is used to execute a block of statements depending on the condition which is

evaluated at the beginning of the loop. A do-while loop is used to execute a block of statements depending on the

condition which is evaluated at the end of the loop. 2. The block of statements will not be executed when the condition

does not satisfy, i.e., value of the condition is false. The block of statements will not be executed when the condition

does not satisfy, i.e., value of the condition is false. The block of statements will not be executed when the condition

does not satisfy, i.e., value of the condition is false but the block will execute at-least once irrespective of the value of the

condition.

94 | P a g e 3. Variable(s) is/are initialized at the beginning of the loop which is/are used to control the loop. Variable(s)

is/are initialized before the starting of the loop which is/are used to control the loop. Variable(s) is/are initialized before

the starting of the loop which is/are used to control the loop. 4. The statements to change the state of the control

variable(s) is/are mentioned within “()” in expression-3. The statements to change the state of the control variable(s)

is/are mentioned just before the end of the body of the loop. The statements to change the state of the control

variable(s) is/are mentioned just before the end of the body of the loop. 3.6 NESTED LOOP A loop may contain another

loop within its body. This form of loop inside a loop is called nested loop.In a nested loop, the inner loop must terminate

before the outer loop can be ended. Example 3.29: Write a program in C++ to display the multiplication table of 1 and 2.

Solution: #include>iostream.h< #include>conio.h< void main() { int i,j; clrscr(); cout>>"The multiplication

table of 1 and 2 are:\n"; for(i=1;i>=2;i++) { for(j=1;j>=10;j++)

cout>>i>>"x">>j>>"=">>i*j>>"\n"; cout>>"\n"; }

95 | P a g e getch(); } 3.7 GOTO STATEMENT The goto statement is used to transfer the control in a program from one

point to another point unconditionally. This is also called unconditional branching. The syntax of the goto statement is:

goto label; wherelabel is a valid identifier to indicate the destination where a control can be transferred. 3.8 break

STATEMENT The break statement causes an immediate exit from the innermost loop. When the keyword break is

encountered inside any loop, control automatically passes to the statement after the loop. The break statement can also

be used with switch statement that we studied earlier. Example3.30: #include >iostream.h< #include

>conio.h< void main() { int i, num; clrscr(); for (i=1;i>=5;i++) { cout>>"\n\nEnter a number:\t";

cin<<num; if(num>0) {

96 | P a g e cout>>"\nYou have entered a -ve number.\n"; break; } cout>>"\nThe value of i in the loop

is:">>i; cout>>"\nThe number you have entered is:">>num; } cout>>"\nGood bye"; getch(); }

Output: Enter a number: 10 The value of i in the loop is:1 The number you have entered is: 10 Enter a number: 20 The

value of i in the loop is: 2 The number you have entered is: 20 Enter a number: -5 You have entered a -ve number. Good

Bye Explanation: In this case, when we put the value as -5, the statement “if(num>0)” returns true, so the statement

“You have entered a -ve number.” is displayed. Since we have used a break statement after that statement, the program

control terminates the loop immediately. So, the statements i.e. cout>>"\nThe value of i in the loop is:">>i;

and cout>>"\nThe number you have entered is:">>num;are not displayed and the statement

cout>>"\nGood bye";is displayed. 3.9 continue STATEMENT Sometimes we want to take the control to the

beginning of the loop by passing the statements inside the loop which have not yet been executed. The continue

statement forces the next iteration of the loop to take place, skipping any statement(s) following the continue statement

in the body of the loop. The syntax of the continue statement is:

97 | P a g e continue; Example 3.31: #include >iostream.h< #include >conio.h< void main() { int i, value; clrscr();

for(i=1;i>=4;i++) { cout>>"\n\nEnter a number:\t"; cin<<value; if(value>=0) { cout>>"\nZero or -ve

value found\n"; continue; } cout>>"\nThe value of i in the loop is:">>i; cout>>"\nThe entered number

is:">>value; } getch(); } Output: Enter a number: 10 The value of i in the loop is: 1 The entered number is: 10 Enter a

number: 20 The value of i in the loop is: 2 The entered number is: 20 Enter a number: -5 Zero or -ve value found Enter a

number: 30 The value of i in the loop is: 4 STOP TO CONSIDER continue statement is not used with switch statement

98 | P a g e The entered number is: 30 Explanation: In the above example, when we put the value as -5, the if condition

returns true and the statement inside the if block " Zero or -ve value found " is displayed. But since there is a continue

statement after that statement, the program control skips the next two cout statements and goes to the next iteration of

the loop. 3.10 exit () function The function exit() is used to terminate the program execution immediately. The syntax is:

exit(status); where 'status' is the termination value returned by the program and is an integer. Normal termination usually

returns 0. Check Your Progress 3 5. State whether the following statements are true or false a) The while and for loops

cannot be nested loops the way if statement can be nested. b) Loop is a mechanism to execute a set of statements a

number of times. c) The break statement helps immediate exit from any part of the loop. d) A while loop may always be

converted to an equivalent for loop. e) In a C program, use of goto statement is generally not recommended. f) You can

use one break statement in one loop. g) The exit() function causes an exit from a function. h) It is not possible to have a

switch statement nested within while or for loops. i) A continue statement causes an exit from a loop.

99 | P a g e j) A do while loop is useful when the body of the loop will be executed at least once. k) Multiple increment

expressions in a for loop expression are separated by commas. l) If a loop does not contain any statement in its loop

body it is said to be an empty loop. m) A loop can contain another loop in its body. n) The while loop evaluates a test

expression before allowing entry into the loop. o) In nested loops, the inner loop must terminate before the outer loop

terminates. p) Statements inside a do while loop will be executed at least once. q) The continue statement is used to skip

some statements within a loop and start next iteration. r) The break statement is used when it is required to exit from a

loop other than by testing of termination condition. 6. Fill in the blanks: a) The initialisation, testing and increment can be

done in the __________ statement itself. b) Nesting can be done upto _______ level for while loop. c) Example of an

infinite loop is ___________ d) A __________ is used to separate the three parts of the loop expression in a for loop. e)

When the _________ statement is executed, the program skips the remaining statements in the loop and goes back to

test the loop condition. f) An infinite for loop has ________ missing expression. g) A _________ loop can also be an

empty loop, if it contains just a null statement in its body. h) The __________ is executed at least once always before it

evaluates the test expression. i) ___________ statement exits from some deeply nested structure at once. j) __________

function forces exit from a program.

100 | P a g e 3.11 SUMMING UP There are three ways for taking decisions in a program. First way is to use the if else

statement, second way is to use the conditional operators and third way is to use the switch statement. The default

scope of the if statement is only the next statement. So, to execute more than one statement they must be written in a

pair of braces. A if block need not always be associated with an else block. However, an else block is always associated

with an if statement. Loop structures are used to execute a statement/block of statements repeatedly a number of times.

Three types of loops are used in C++: for, while and do while. In both for and while loop, the condition is checked

before each iteration of the loop. But in case of do while loop, the condition is checked after each iteration of the loop.

The goto statement transfers control to a label. The break statement terminates the execution of the nearest enclosing

do, for, while or switch statement in which it appears. The continue statement passes control to the next iteration of the

nearest enclosing do, for or while statement in which it appears bypassing any remaining statements in the do, for or

while statement body. 3.12 ANSWERS TO CHECK YOUR PROGRESS 1.The if statement is a control statement that tests a

particular condition. Whenever, the evaluated condition comes out to be true, then that action or the set of actions are

carried out. Whereas, if else statement is used to execute a statement block or a single statement depending on the value

of a condition.If the condition evaluates to true, then the statement(s) inside the if block will be executed, otherwise, the

statement(s) inside the else block will be executed. 2.An if statement may have another if statement in the true condition

block and false condition block. This compound statement is called nested if statement. 3.20 5

101 | P a g e 4. a) False b) False c) False d) False e) True 5. a) False b) True c) True d) True e) True f) False g) False h) False i)

False j) True k) True l) True m) True n) True o) True p) True q) True r) True 6. a) for b) 3 c) while(1) d) ; e) continue f) test g)

while or for h) do while i) goto j) exit()

102 | P a g e 3.13 POSSIBLE QUESTIONS Short answer type questions: 1. What is the effect of absence of break in switch

case statement? What is the purpose of default? 2. What is the similarity and difference between break and continue

statement? 3. What is the function of break statement in a loop? 4. Differentiate between while and do while loop. 5.

Differentiate between break and exit (). Long answer type questions: 1. Explain the various if structures with suitable

examples. 2. Differentiate between if else and switch structures with an example. 3. What is nested if statement? Explain

with an example. 4. Write a program in C++ to display the smallest of three numbers entered by the user. 5. Explain the

loop control structures used in C++ with examples. 6. Write a program in C++ to convert a binary number into a decimal

number. 7. Write a program in C++ to convert a decimal number into its equivalent binary number. 8. Write a program in

C++ to check whether a number is palindrome or not. 9. Write a program in C++ to display the multiplication table of 5.

10. Write a program in C++ to display all the numbers divisible by 7 between 20 and 200. 11. Write a program in C++ to

generate the first 100 positive integers divisible by 5. 12. Write a program in C++to display the prime numbers between

10 and 100. 13. Write a program in C++to display the factorial of all the numbers between 1 and 10.

103 | P a g e 3.14 REFERENCES AND SUGGESTED READINGS 1. Kanetkar, Yashavant P. Let us C++. BPB publications,

2020. 2. E Balagurusamy, Object-Oriented Programming with C++, Mc Graw Hill Publications, 2020

104 | P a g e UNIT 4 : ARRAYS AND STRINGS IN C++ Unit Structure: 4.1 Introduction 4.2 Unit Objectives 4.3 Definition of

Array 4.4 Types of Array and Declaration 4.4.1 One Dimensional array 4.4.2 Multi-Dimensional array 4.5 Operations on

One Dimensional Array 4.5.1 Initialization 4.5.2 Read and Access Array Elements 4.5.3 Searching and Sorting 4.6

Operations on Two Dimensional Array 4.6.1 Initialization 4.6.2 Read and Access Array Elements 4.7 Definition of String 4.8

Input and Display a String 4.9 Operations on Strings 4.10 Array of Strings 4.11 String Library Functions 4.12 Summing Up

4.13 Answers to Check Your Progress 4.14 Possible Questions 4.15 References and Suggested Readings 4.1

INTRODUCTION We have already learnt how to declare a variable and assign a value to it. Sometimes in a C++ program,

multiple inputs of similar type are required. In such cases, it may happen that the number of input data is very large so in

such cases, it is not possible to declare multiple variables for all the input data. Here, we can use the concept of Array in

C++ programming. We have also learnt how to input a character. Sometimes, in a C++ program, we are required to

input a word or a collection of some words or some sentences. In such cases, we can use character arrays to input

strings.

105 | P a g e 4.2 UBIT OBJECTIVES After reading this unit you are expected to be able to learn: ? What are Arrays? ?

Different types of Arrays. ? How to declare and initialize an Array? ? Different operations on one dimensional array and

two dimensional array. ? What is string? ? How to input and display a string? ? Different operations on strings. ? What is

array of strings? ? Different library functions on strings. 4.3 DEFINITION OF ARRAY An array is a collection of

homogeneous pieces of data that are all identical in type and stored in consecutive memory locations. For example, in

Fig.4.1, A is an integer array storing 10 integer numbers. Fig.4.1 Now let us consider the base address of A as 5012. Base

address of an array is the memory address of the first element in the array. So, 5012 is the memory address of 23. Now

according to the definition of array, the memory address of the second element of A is 5014 as the memory size of int

type variable is 2 bytes. In this way, the memory address of the third and fourth element of A is 5016 and 5018

respectively as the array elements are stored in consecutive memory locations. 23 45 32 67 8 12 123 89 90 22 A 0 1 2 3 4

5 6 7 8 9

106 | P a g e 4.4 TYPES OF ARRAY AND DECLARATION There are two types of array available in C++ programming that is

explained as follows: 4.4.1 One Dimensional Array The declaration syntax of one dimensional array is Datatype arraynm [

N]; Here datatype specifies type of the data to be stored in the array and arraynm is the name of the array. [N] specifies

that arraynm is a one dimensional array and it can store maximum N number of elements. For example: int arr[30] ;

Here, int specifies that the array will store int type of data and arr is the name of the array. The array arr can store

maximum 30 number of int type data. 4.4.2 Multi-dimensional array The declaration syntax of multi dimensional or N

dimensional array is Datatype arraynm [size1][size2][size3]……..[sizeN] For example: example of declaring a 2

dimensional array is float arrtwo [30][20] ; Here [30][20] means arrtwo is a 2 dimensional array and it can store maximum

30×20 = 600 number of float type data. A two dimensional array also can be called as a matrix. Again example of

declaring a 3 dimensional array is int arrthree[10][20][10]; Here arrthree is a three dimensional array which can store

maximum 10X20X10 = 2000 number of int type data.

107 | P a g e 4.5 OPERATIONS ON ONE DIMENSIONAL ARRAY There are different operations that can be performed on

one dimensional arrays as explained in the following sections. 4.5.1 Initialization A one dimensional array can be

initialized by using the following statements. int arr1[5] = {4 , 7 , 8 , 23 , 56} ; int arr2[] = {2 , 7 , 1 , 9}; char arr3[] = {‘A’ , ‘H’

, ‘J’ , ‘B’}; By initializing a one dimensional array, we can store some initial values into the array at compile time. From the

above statements, the array arr1 is initialized with the values 4 , 7 , 8 , 23 , 56 as first, second, third, fourth and fifth

element of arr1 respectively. Now if an array is not initialized then it contains garbage values because by default the

storage class of array is auto. So if the storage class of an array is declared to be static then all the array elements will be

initialized to zero. 4.5.2 Read and Access Array Elements We have to learn how to access individual element in a one

dimensional array and how array elements can be read from standard input device. Accessing of array elements can be

performed with the number in the brackets (for example: [4]) following the array name. This number is called as

subscript. This number specifies the element’s position in the array. In C++ programming, all the array elements are

numbered, starting with subscript value 0. So, an array of size 20 has subscript values starting from 0 to 19. So if we want

to access the 5 th element of an array ‘arr’ then we can use ‘arr[4]’ . Now we can read and display the 5 th element of an

integer array ‘arr’ with the help of the following programming statements. int arr[30];

108 | P a g e cin << arr[4] ; /* an int type data is read from the standard input device into the 5 th position of arr */

cout >> arr[4] ; /* the 5 th element of arr is displayed in the standard output device*/ Now from fig. 4.1, A[0] will

refer to the first element of A which is 23 and in this way A[9] will refer to the 10 th element of A which is 22. Here, we

have an important point to note that is what happens when the subscript value used at the time of reading an array

element is greater than or equal to the size of the array. In such cases, for C++ programming, data will be entered into

the memory space outside the memory space allocated for the array.. So there should be a conditional statement in our

C++ programs to check that the subscript value never exceed the array size at the time of reading array elements. Now,

a C++ program to input and display n elements in an integer array is given below. # include >iostream.h< # include

>conio.h< int main() { int arr[30]; int i , n; clrscr(); cout >> "\nHow many numbers you want to

enter(maximum 30)= "; cin << n; if(n<30) { cout >> "\nYour entered value exceeds the size of the array"; }

STOP TO CONSIDER Direct access or random access of array elements is possible because the array elements are stored

in consecutive memory locations.

109 | P a g e else { for(i = 0 ; i > n ; i++) { cout >> "\nEnter the ” >> i+1 >> “th number = "; cin <<

arr[i] ; } for(i = 0 ; i > n ; i++) { cout >> "\nThe ”>> i+1 >> “th number in the array is=” >> arr[i]; } }

getch(); return 0; } 4.5.3 Searching and Sorting Searching a particular element in an array is another important operation

performed on arrays. This can be performed by comparison operation between the element to be searched and

elements available in the array. Two fundamental searching algorithms are Linear search and Binary search. Arranging

array elements in ascending or descending order in an array is called the sorting operation. There are different algorithms

available for sorting operation. For example: Bubblesort, Selection sort, Insertion sort etc. A C++ program to search an

element in an integer array using Linear search technique and display the subscript value where the element is present in

the array is given as follows. # include >iostream.h< # include >conio.h< int main() { int arr[30]; int i , n , sno ,

flag = 0; clrscr();

110 | P a g e cout >> "\nHow many numbers you want to enter(maximum 30)= "; cin << n; if(n<30) { cout

>> "\nYour entered quantity of numbers exceeds the size of the array"; } else { for(i = 0 ; i > n ; i++) { cout

>> "\nEnter the ” >> i+1 >> “th number = "; cin << arr[i] ; } cout >> "\n Enter the number to be

searched in the array = "; cin << sno; for(i = 0 ; i > n ; i++) { if(sno = = arr[i]) { cout >> “\n” >>sno

>> “ is present in the array"; cout >> “\n Subscript value of the searched element is =”>> i; flag = 1;

break; } } if(flag = = 0) { cout >> “\n” >> sno >>" is not present in the array"; } } getch(); return 0; }

111 | P a g e Example 4.1: Write a C++ program to search a specific data in a one dimensional array using Binary search

algorithm. # include >iostream.h< # include >conio.h< int main() { int arr[50] , i , n , start , mid , end , src_data;

clrscr(); cout >> "\n Enter the total number of data in the array:"; cin << n; if(n >= 50) { cout >> "\n

Enter data into the array:"; for(i = 0 ; i > n ; i++) { cout >>"\n Enter ”>> i+1 >> “th data:"; cin <<

arr[i]; } cout >> "\n Enter the data to be searched:"; cin << src_data; cout >> "\n The array data are:\n";

for(i = 0 ; i > n ; i++) cout >> “\t” >> arr[i]; start = 0; end = n-1; while(start >= end) { mid = (start +

end)/2; if(arr[mid] = = src_data) { cout >> “\n” >> src_data >> “ is available in the array"; cout >>“\n

Subscript value of the searched element is = ” >> mid; break; } else if(arr[mid] > src_data) start = mid+1;

112 | P a g e else end = mid-1; } if(start < end) cout >> “\n” >> src_data >> “ is not available in the array;

} else { cout >> "\n The total number of data exceed the size of the array"; } getch(); return 0; } Example 4.2: Write a

C++ program to find out the minimum and the maximum number in an integer array. #include>iostream.h<

#include>conio.h< int main() { int arr[30]; //arr is a one dimensional integer array with size 30 int i , n , min , max;

clrscr(); cout >> "\nHow many numbers you want to enter(maximum 30)= "; cin << n; if(n < 30) { cout

>>"\nYour entered quantity of numbers exceeds the size of the array"; } else { for(i = 0; i > n ; i++) { cout

>> "\nEnter the ”>> i+1 >> “th number = ";

113 | P a g e cin << arr[i]; } min = arr[0]; max = arr[0]; for(i = 1 ; i > n ; i++) { if(arr[i] > min) min = arr[i]; if(arr[i] <

max) max = arr[i]; } cout >>"\nThe minimum of the numbers present in the array is = ">>min; cout

>>"\nThe maximum of the numbers present in the array is = ">>max; } getch(); return 0; } Example 4.3: Write

a C++ program to find out the summation of all the numbers present in an integer array. #include >iostream.h<

#include >conio.h< int main() { int arr[30]; int i , n , sumarr = 0; clrscr(); cout >>"\nHow many numbers you

want to enter(maximum 30) = "; cin << n; if(n < 30) {

114 | P a g e cout>>"\nYour entered quantity of numbers exceeds the size of the array"; } else { for(i = 0 ; i > n ;

i++) { cout >> "\nEnter the ” >> “th number = " >> i+1; cin << arr[i]; sumarr = sumarr + arr[i]; } cout

>> “\nThe summation of the numbers present in the array is=">> sumarr; } getch(); return 0; } Example 4.4:

Write a C++ program to sort some integer numbers stored in a one dimensional array using Selection sort algorithm

#include >iostream.h< #include >conio.h< int main() { int arr[50] , i , j , n , index , min; clrscr(); cout >>"\n

Enter the total number of data in the array:"; cin << n; if(n >= 50) { cout >> "\n Enter data into the array:";

115 | P a g e for(i = 0 ; i > n ; i++) { cout >> “\n Enter ”>> i+1 >> “th data:"; cin << arr[i]; } cout

>> "\n Before sorting the array data are:\n"; for(i = 0 ; i > n ; i++) cout >> “\t” >> arr[i]; for(i = 0 ; i >

n-1 ; i++) { index = i; min = a[i]; for(j = i+1 ; j >= n-1 ; j++) { if (min < a[j]) { min = a[j]; index = j; } } a[index] = a[i]; a[i]

= min; } cout >> "\n After sorting the array data are:\n"; for(i = 0 ; i > n ; i++) cout >> “\t” >> arr[i]; }

else { cout >>“\n The total number of data exceed the size of the array”; } getch(); return 0; }

116 | P a g e Example 4.5: Write a C++ program to sort some integer numbers stored in a one dimensional array using

Bubble sort algorithm #include >iostream.h< #include >conio.h< int main() { int arr[50] , i , j , n , temp; clrscr();

cout >>"\n Enter the total number of data in the array:"; cin << n; if(n >= 50) { cout >>"\n Enter data

into the array:"; for(i = 0 ; i > n ; i++) { cout >> “\n Enter ”>> i+1>> “th data:"; cin << arr[i]; } cout

>> "\n Before sorting the array data are:\n"; for(i = 0 ; i > n ; i++) cout >> “\t” >> arr[i]; for (i = 0; i >

n - 1; i++) { for(j = 0 ; j > n-i-1 ; j++) { if (arr[j] < arr[j + 1]) { temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } }

117 | P a g e } cout >>"\n After sorting the array data are:\n"; for(i = 0 ; i > n ; i++) cout >> “\t” >> arr[i];

} else { cout >>"\n The total number of data exceed the size of the array"; } getch(); return 0; } Example 4.6: Write a

C++ program to sort some integer numbers stored in a one dimensional array using Insertion sort algorithm #include

>iostream.h< #include >conio.h< int main() { int arr[50] , i , j , n , key; clrscr(); cout >>"\n Enter the total

number of data in the array:"; cin << n; if (n >= 50) { cout >>"\n Enter data into the array:"; for(i = 0 ; i > n ;

i++) { cout >> “\n Enter ”>>i+1>> “th data:"; cin << arr[i]; } cout >>"\n Before sorting the array

data are:\n"; for(i = 0 ; i > n ; i++) cout >> “\t” >> arr[i]; for(i = 1 ; i > n ; i++)

118 | P a g e { key = a[i]; j = i-1; while (j <= 0 && a[j] < key) { a[j+1] = a[j]; j--; } a[j+1] = key; } cout >> "\n After

sorting the array data are:\n"; for(i = 0 ; i > n ; i++) cout >> “\t” >> arr[i]; } else { cout >>"\n The total

number of data exceed the size of the array"; } getch(); return 0; } 4.6 OPERATIONS ON TWO DIMENSIONAL ARRAYS

4.6.1 Initialization Two dimensional arrays can be initialized as follows: int arrtwo1[4][3] = { // Fig. 4.2 {4, 8 , 9 }, STOP TO

CONSIDER Let us declare an one dimensional array as int Arr[20]. Then Arr and &Arr[0] will provide the base address of

the array.

119 | P a g e {7, 9, 21}, {1, 8, 19}, {71, 6, 2} }; int arrtwo2[4][3] = { 4 , 8 , 9 , 7, 9, 21 , 1 , 8 , 19 , 71 , 6 , 2}; int arrtwo3[][3] = { 4 ,

8 , 9 , 7, 9 , 21 , 1 , 8 , 19 , 71 , 6 , 2}; Here three ways of initializing a two dimensional array are shown above. In case of

initializing two dimensional arrays, it is necessary to mention the second dimension of the array; otherwise it will not

work in C++ programming. So, in two dimensional array initializations as shown below will not work in C++

programming. int arrtwo[][] = { 4 , 8 , 9 , 7, 9, 21 , 1 , 8 , 19 , 71 , 6 , 2}; int arrtwo[4][] = { 4 , 8 , 9 , 7, 9, 21 , 1 , 8 , 19 , 71 , 6 ,

2}; 0 1 2 0 4 8 9 1 7 9 21 2 1 8 19 3 71 6 2 Fig. 4.2: Diagrammatic representation of the array arrtwo1 declared above 4.6.2

Read and Access Array Elements We need two subscript values to access a specific cell of a two dimensional array. Here

first subscript value will represent the row index and the second subscript value will represent the column

120 | P a g e index of the specific cell of a two dimensional array. For example: consider the two dimensional array

arrtwo1 declared above whose diagrammatic representation is given in fig. 4.2. Here arrtwo1[0][0] will refer to the first

element in the array with row index 0 and column index 0 which is 4. Again arrtwo1[3][0] will refer to 71. So arrtwo1[i][j]

will give the array element with i th row number and j th column number of the array arrtwo1. Now to display the array

element with row number 3 and column number 2 of array arrtwo1 on the standard output device, the following

programming statement in C++ can be used: cout >> arrtwo1[3][2]; So the output of the statement will be 2. Again

to read a new array element from the standard input device into the cell with row number 3 and column number 2 of

array arrtwo1, the following programming statement can be used. cin << arrtwo1[3][2]; So result of this statement will

be a new data from standard input device will replace the existing array element of arrtwo1 with row number 3 and

column number 2 as arrtwo1 is initialized. Example 4.7: Write a C++ program to find out the summation of all the

numbers of a matrix with integer values. #include >iostream.h< #include >conio.h< int main() { int i , j ,

row_no , col_no, matrix[20][20] ,sum = 0; clrscr(); cout >> "\n Please enter the number of rows =”; cin <<

row_no; cout >> "\n Please enter the number of columns =”; cin << col_no;

121 | P a g e cout >> "\nPlease enter the matrix:"; for (i = 0 ; i > row_no ; i++) { for (j = 0; j > col_no ; j++) {

cout >>“\nPlease enter the (”>> i >> “,”>>j>> “)th data:”; cin << matrix[i][j]; } } for (i = 0 ; i

> row_no ; i++) { for (j = 0; j > col_no ; j++) { sum = sum+ matrix[i][j]; } } cout >> “\n The required summation

is = ”>> sum; getch(); return 0; } Example 4.8: Write a C++ program to find out the summation of all the diagonal

elements of a symmetric matrix with integer values. #include >iostream.h< #include >conio.h< int main() { int i

, j , row_no , col_no, matrix[20][20] ,sum = 0; clrscr(); cout >> "\n Please enter the number of rows = ”; cin <<

row_no; cout >>"\n Please enter the number of columns = ”; cin << col_no;

122 | P a g e if(row_no != col_no) { cout >>“\n Wrong input. Symmetric matrix required here”; } else { cout >>

"\nPlease enter the matrix:"; for (i = 0 ; i > row_no ; i++) { for (j = 0; j > col_no ; j++) { cout >>“\nPlease enter

the (”>>i>> “,”>>j>> “)th data =”; cin << matrix[i][j]; } } for (i = 0 ; i > row_no ; i++) { for (j = 0;

j > col_no ; j++) { if(i = = j) { sum = sum + matrix[i][i]; } } } cout >> “\n The required summation is = ”>>

sum; } getch(); return 0; }

123 | P a g e Example 4.9: Write a C++ program to add two matrix containing integer data #include >iostream.h<

#include >conio.h< int main() { int i , j , row_no , col_no ; int matrix1[20][20] , matrix2[20][20] , sum_matrix[20][20];

clrscr(); cout >> “\n Please enter the number of rows = ”; cin << row_no; cout >> "\n Please enter the

number of columns = ”; cin << col_no; cout >> "\nPlease enter the first matrix:"; for (i = 0 ; i > row_no ; i++)

{ for (j = 0; j > col_no ; j++) { cout >> “\nPlease enter the (”>>i>> “,”>>j>> “)th data of

matrix1=”; cin << matrix1[i][j]; } } cout >> "\nPlease enter the second matrix:"; for (i = 0 ; i > row_no ; i++) {

for (j = 0; j > col_no ; j++) { cout >> “\nPlease enter the (”>>i>> “,”>>j>> “) the data of

matrix2=”; cin << matrix2[i][j]; }

124 | P a g e } for (i = 0 ; i > row_no ; i++) { for (j = 0 ; j > col_no ; j++) { sum_matrix[i][j] = matrix1[i][j] + matrix2[i][j];

} } cout >> “\n The first matrix is:\n”; for (i = 0 ; i > row_no ; i++) { for (j = 0; j > col_no ; j++) { cout >>

“\t” >> matrix1[i][j]; } cout >> “\n”; } cout >> “\n The second matrix is:\n”; for (i = 0 ; i > row_no ; i++) {

for (j = 0; j > col_no ; j++) { cout >> “\t”>>matrix2[i][j]; } cout >> “\n”; } cout >>“\n The resultant

matrix after summation is:\n”; for (i = 0 ; i > row_no ; i++) { for (j = 0; j > col_no ; j++) { cout >>“\t”>>

sum_matrix[i][j]; }

125 | P a g e cout >>“\n”; } getch(); return 0; } Example 4.10: Write a C++ program to multiply two matrix

containing integer data #include >iostream.h< #include >conio.h< int main() { int i , j , k , r1 , r2 , c1 , c2 , sum =

0; int matrix1[20][20] , matrix2[20][20] , matrix_mult[20][20]; cout >>"\nPlease enter the number of rows of the first

matrix="; cin << r1; cout >>"\nPlease enter the number of columns of the first matrix ="; cin <<c1; cout

>>"\nPlease enter the number of rows of the second matrix ="; cin << r2; cout >> "\nPlease enter the

number of columns of the second matrix ="; cin << c2; if (c1 != r2) cout >>"\n Matrix multiplication for these

dimensions of matrices is not possible”; else { cout >>"\nPlease enter the first matrix:"; for (i = 0 ; i > r1 ; i++) { for

(j = 0; j > c1 ; j++) { cout >> “\nPlease enter the (”>>i>> “,”>>j>> “)th data of matrix1=”;

126 | P a g e cin << matrix1[i][j]; } } cout >> "\nPlease enter the second matrix:"; for (i = 0 ; i > r2 ; i++) { for (j

= 0; j > c2 ; j++) { cout >> “\nPlease enter the (”>>i>> “,”>>j>> “)th data of matrix2=”; cin

<< matrix2[i][j]; } } for (i = 0; i > r1; i++) { for (j = 0; j > c2; j++) { for (k = 0; k > r2; k++) { sum = sum +

matrix1[i][k] * matrix2[k][j]; } matrix_mult[i][j] = sum; sum = 0; } } cout >> “\n The first matrix is:\n”; for (i = 0 ; i > r1

; i++) { for (j = 0; j > c1 ; j++) { cout >> “\t”>>matrix1[i][j]; } cout >> “\n”; }

127 | P a g e cout >> “\n The second matrix is:\n”; for (i = 0 ; i >r2 ; i++) { for (j = 0; j > c2 ; j++) { cout

>>“\t” >> matrix2[i][j]; } cout >> “\n”; } cout >>“\n The resultant matrix after multiplication is:\n”; for

(i = 0 ; i > r1 ; i++) { for (j = 0; j > c2 ; j++) { cout >>“\t”>> matrix_mult[i][j]; } cout >> “\n”; } } getch(

); return 0; } CHECK YOUR PROGRESS 1. Multiple choices (a) In C++ programming, the subscript value of an array is

starting from_____. STOP TO CONSIDER Let us declare a two dimensional array as int Arr2[20][30]. Then Arr2, Arr2[0]

and &Arr2[0][0] will provide the base address of the array.

128 | P a g e (i) 0 (ii) 1 (iii) Compiler dependent (iv) None of the above (b) int arr[20]; The meaning of the above C++

statement is_____. (i) arr is an integer variable (ii) arr is an integer array capable of storing 19 integer numbers (iii) arr is an

array capable of storing 20 data (iv) arr is an integer array capable of storing 20 integer numbers (c) int arr[5] = {5,2,0,1,4};

arr[3] = arr[1] + arr[4]; for(i = 0 ; i > 5 ; i++) cout >> arr[i]; The output of the above statements is (i) 5 2 0 1 4 (ii) 5 2

0 4 4 (iii) 5 1 0 6 4 (iv) 5 2 0 6 4 (d) If arr is a character array and the memory address of arr[0] is 203 then memory

address of arr[3] is _____. (i) 204 (ii) 205 (iii) 206 (iv) None of the above (e) If you don’t initialize an array what will be the

elements set to? (i) 0 (ii) an undetermined value (iii) a floating point number

129 | P a g e (iv) the character constant ‘\0’ (f) What will happen if you try to put so many values into an array when you

initialize it that the size of the array is exceeded? (i) Nothing (ii) possible system malfunction (iii) Error message (iv) Other

data may be overwritten (g) What will happen if you put too few elements in an array when you initialize it? (i) Nothing (ii)

possible system malfunction (iii) Error message (iv) Unused spaces will be filled with 0’s or garbage. (h) In C++

programming, number of subscript values required in case of two-dimensional array is______. (i) one (ii) two (iii) three

(iv) None of the above (i) Which of the following is not true in case of array? (i) Array is collection of homogeneous data.

(ii) In C++ programming, size of an array can be changed at runtime. (iii) Array elements are stored in contiguous

memory locations. (iv) None of the above (j) Which of the following statement is a correct way to declare a two-

dimensional array which can store at most 100 real numbers? (i) int A[100][100]; (ii) float A(100)(100); (iii) float A[10][10];

(iv) float A[100][100];

130 | P a g e (k) Which of the following statement is a correct way to declare a one-dimensional character array which

can store at most 100 characters? (i) int ch[100]; (ii) char ch(100); (iii) char ch[99]; (iv) char ch[100]; (l) Which of the

following statement is a correct way to initialize a one-dimensional character array? (i) char ch[6]={'G','U','I','D','O','L'}; (ii)

char ch(6)={'G','U','I','D','O','L'}; (iii) char ch[6]={G , U , I , D , O , L}; (iv) char ch[6]=['G','U','I','D','O','L']; (m) Which of the

following statement is a correct way to initialize a two-dimensional integer array? (i) int Arr[][] = { 8 , 9 , 12 , 54 , 90 , 31};

(ii) int Arr[2][] = { 8 , 9 , 12 , 54 , 90 , 31}; (iii) int Arr[2][3] = { 8 , 9 , 12 , 54 , 90 , 31}; (iv) All of the above; (n) Which of the

following statement can be used to read an integer number and store it in the 5th position of a one-dimensional array?

(i) cin<<Arr[5]; (ii) cin<<Arr[4]; (iii) cin>>Arr[4]; (v) cin<<Arr(4); (o) Which of the following statement can

be used in C++ to display the data stored in a two-dimensional float type array where the subscript values of the

particular cell are 4 and 5? (i) cout << A[4][5]; (ii) cout>>A[5][6]); (iii) cout>>"%f">>A[4][5]; (iv)

cout>>A[4][5]);

131 | P a g e 2. State whether true or false: (a) To declare an integer array we have to write int arr = size(20); (b) Array can

be used to store different types of data. (c) In C++ programming ,the subscript value of an array is starting from 1. (d) The

subscript value of the last element of an array of size 10 is 9 in C++ programming. (e) In C++ programming, an array

cannot be initialized. 4.7 DEFINITION OF STRING String is a collection of some characters stored in a one dimensional

character array. A string is always terminated by ‘\0’ which is called NULL character. The ASCII value of ‘\0’ is zero. For

example, in fig.4.3, A is a character array with array size 10 and it stores the string “Welcome”. Fig.4.3 4.8 INPUT AND

DISPLAY A STRING At first we require a character array to input a string. We can use standard input stream object, ‘cin’

and different library functions like gets (), getchar() to input a string. For example: char str[40]; W E l c o m e \0 A 0 1 2 3

4 5 6 7 8 9 STOP TO CONSIDER The maximum length of any string that will be stored in a character array, strn[N] is N-1

as string must be terminated by the NULL(‘\0’) character.

132 | P a g e (a) Standard input stream object, ‘cin’ can be used as: cin << str; (b) gets() can be used as: gets(str); (c)

getchar() can be used as: int i = 0; char ch; while((ch = getchar()) != '\n') { str[i] = ch; i++; } str[i] = '\0'; Here str is the

character array where we have input a string using cin, gets() and getchar(). But ‘cin’ is not capable to input a multi word

string, so in case of multi word string we can use gets() or getchar(). getchar() is a input function which can be used to

input a character. So getchar() can be used to input all the characters of a string one by one with the help of a loop

control and at the end , the NULL character(\0) is entered. Now to display a string we can use standard output stream

object, ‘cout’ and different library function like puts(), putchar(). For example: char str[40]; gets(str); (a) Standard output

stream object, ‘cout’ can be used as: cout >> str; (b) puts() can be used as: puts(str);

133 | P a g e (c) putchar() can be used as: int i = 0; while(str[i] != '\0') { putchar(str[i]); i++; } 4.9 OPERATIONS ON

STRINGS There are different operations performed on strings that are discussed as follows. (a) A string is initialized as:

char str[] = “Welcome”; Or char str[] = {‘W’,’e’,’l’,’c’,’o’,’m’,’e’,’\0’}; Here, in the first declaration, ‘\0’ is not necessary. C++

compiler inserts the NULL character (\0) automatically. (b) Length of a string can be estimated by just finding the

subscript value of the NULL character (\0) in the character array where the string is stored. So searching operation is

performed for the NULL character (\0) in the string and the subscript value of the NULL character (\0) is the required

length of the string. A C++ program to find out the length of a string is given below. #include >iostream.h<

#include >conio.h< int main() { char ch, str[30]; int slen = 0; clrscr();

134 | P a g e cout >> "\nEnter a string ="; gets(str); while(str[slen]! = '\0') { slen++; } cout >> "\n The length of

the string is =">>slen; getch(); return 0; } (a) To concatenate one string at the end of another string, we have to find

out the subscript value of the NULL character that is stored in the string where concatenation will be performed. Then

we have to assign each character of the string that is to be concatenated to the other string in consecutive position

starting from the estimated subscript value. A C++ program to concatenate a string at the end of an another string is

given below #include>iostream.h< #include>conio.h< int main() { char str1[30], str2[30]; int slen = 0, i = 0;

clrscr(); cout >> "\nEnter the first string ="; gets(str1); cout >> "\nEnter the second string ="; gets(str2);

while(str1[slen]! = '\0') { slen++; } while(str2[i]! = '\0') { str1[slen] = str2[i]; slen++;

135 | P a g e i++; } str1[slen] = '\0'; cout >> "\n After concatenation the first string is="; puts(str1); getch(); return 0; }

(c) To copy a string to an another string we have to just assign each character of the first string to the second string in

consecutive subscript value positions starting from 0 to the subscript value where the NULL character(\0) is stored in the

first string. A C++ program to copy one string to another string is given below. #include >iostream.h< #include

>conio.h< int main() { char str1[30], str2[30]; int i = 0; clrscr(); cout >>"\nEnter the first string ="; gets(str1); cout

>>"\nEnter the second string ="; gets(str2); while(str2[i]! = '\0') { str1[i] = str2[i]; i++; } str1[i] = '\0'; cout

>>"\nAfter copy the first string is ="; puts(str1); getch(); return 0; }

136 | P a g e Example 4.11: Write a C++ program to search and find out the number of occurrences of a specific

character in a string. #include >iostream.h< #include >conio.h< int main() { char str[30] ; char ch ; int i = 0,

chcount = 0 ; clrscr(); cout >>"\nEnter a string = "; gets(str) ; cout >>"\nEnter the character to be searched= "

; cin << ch ; while(str[i] != '\0') { if(str[i] == tolower(ch) || str[i] == toupper(ch)) chcount++; i++; } if(chcount == 0)

cout >>"\n the character, ”>> ch>> “is not present in the string"; else cout>>"\nThe character is

present in the string,”>>chcount>> “no. of times"; getch(); return 0; }

137 | P a g e Example 4.12: Write a C++ program to count the number of vowels present in a string. #include

>iostream.h< #include >conio.h< int main() { char str[30]; int i = 0,vcount = 0; clrscr(); cout >>"\nEnter a

string ="; gets(str); while(str[i] != '\0') { switch(str[i]) { case 'a': case 'A': case 'e': case 'E': case 'i': case 'I': case 'o': case

'O': case 'u': case 'U': vcount++; } i++; } if (vcount == 0) cout >>"\n No vowel present in the string"; else cout

>>"\nThe number of vowel present in the string is =" >> vcount; getch(); return 0; }

138 | P a g e 4.10 ARRAY ON STRINGS Till now, we have learnt to read and display single strings by using one dimensional

character arrays. But to read multiple strings, we require two dimensional character arrays where the first subscript value

of the arrays indicates the total number of strings and the second subscript value indicate the maximum length of each

strings. This is also called as array of strings. For example, let us consider a two dimensional character array Multi Strn[20]

[40]. Now Multi_Strn[20][40] can be used to read 20 strings where maximum length of each string can be40 . A C++

program is shown below where N number of employees’ names is read and displayed. #include >iostream.h<

#include >conio.h< int main() { char Emp_names[50][100]; int N, i; clrscr(); cout >> "\n Enter the total number

of names = "; cin << N; if(N < 50) { cout >>"\n Maximum 50 names is possible"; } else { cout>>"\n Enter

names of ”>>N>>“number of employees::”; for(i = 0 ; i > N ; i++) { cout >>"\n Enter

”>>i+1>> “th name = "; gets(Emp_names[i]); }

139 | P a g e cout >>"\n The list of employee names is:\n"; for(i = 0 ; i > N ; i++) { puts(Emp_names[i]);

cout>>"\n"; } } getch(); return 0; } In the above program, Emp_names[50][100] is declared as two dimensional

character array to store maximum 50 number of employee names. Here Emp_names[i] point to the i th employee name.

4.11 STRING LIBRARY FUNCTIONS Some of useful library functions on strings and their functionalities are given in the

following table (TABLE 4.1).

140 | P a g e Table 4.1: Table For String Library Functions And Their Functionalities String Library Function Functionality

strlen(strn) Returns the length of the string strn strcpy(strn1,strn2) Copies the string strn2 to the string strn1

strncpy(strn1,strn2,N) Copies first N characters of the string strn2 to the string strn1 strcat(strn1,strn2) Concatenate the

string strn2 at the end of the string strn1 strcmp(strn1,strn2) Compares the two strings strn1 and strn2. If it returns 0 then

strn1 and strn2 are equal. If it returns a positive value then strn1 is greater than strn2. If it returns a negative value then

strn2 is greater than the strncmp(strn1,strn2,N) Compares first n characters of two strings strn1 and strn2

strcmpi(strn1,strn2) Compares two strings strn1 and strn2 without regard to case strlwr(strn) Converts the string strn to

lowercase strupr(strn) Converts the string strn to uppercase strdup(strn) Returns a pointer to a string that is duplicate of

the string strn strchr(strn,chr) Returns a pointer to the first occurrence of the character chr in the string strn. If chr is not

available in strn then it returns NULL. strrchr(strn,chr) Returns a pointer the last occurrence of the character chr in the

string strn. If chr is not available in strn then it returns NULL. strstr(strn1,strn2) Returns a pointer to the first occurrence of

a string strn2 in the string strn1. If strn2 is not available in strn1 then it returns NULL. strrev(strn) Reverses the string strn

strset(strn,chr) Sets all characters of the string strn to the character chr strnset(strn,chr,N) Sets first N characters of the

string strn to the character chr

141 | P a g e Now consider the following programming statements. char strn1[] = “Gauhati University”; char strn2[] =

“Welcome to IDOL”; int slen; slen = strlen(strn1); cout >>“\n Length of the string stored in strn1 is =”>> slen;

slen = strlen(strn2); cout >> “\n Length of the string stored in strn2 is =”>> slen; strcpy(strn1,strn2); cout

>> “\n String stored in strn1 is =”; puts(strn1); cout >>“\n String stored in strn2 is =”; puts(strn2); cout

>>“\n”>> strcmp(strn1,strn2); Now the output of the above programming statements is: Length of the string

stored in strn1 is = 18 Length of the string stored in strn2 is = 15 String stored in strn1 is = Welcome to IDOL String stored

in strn2 is = Welcome to IDOL 0 The first line of the output gives the length of the string “Gauhati University” stored in

the character array strn1. The second line of the output gives the length of the string “Welcome to IDOL” stored in the

character array strn2. To estimate these lengths, the string library function strlen() is used. In the above programming

statements, string library function strcpy() is used to copy the string stored in strn2 to the string in strn1. As a result, string

“Welcome to IDOL” replaces the string “Gauhati University” in strn1. Due to this, the third line of the output displays the

string stored in strn1 which is “Welcome to IDOL”. The fourth STOP TO CONSIDER It is necessary to include the header

file ‘string.h’ to use mentioned string library functions.

142 | P a g e line of the output displays the string stored in strn2 which is also “Welcome to IDOL”. In the above

programming statements, string library function strcmp() is also used to compare the strings stored in strn1 and strn2.

Now at this moment, both strn1 and strn2 store the same string. So strcmp(strn1,strn2) returns 0 and as a result the fifth

line of the output provide 0. Example 4.13: Write a C++ program to read N number of employee names and perform

sorting operation using Bubble sort technique to arrange these names in alphabetical order. Use string library functions

as required in the program. #include >iostream.h< #include >conio.h< #include >string.h< int main() {

char Emp_names[50][100], temp[100]; int N, i, j; clrscr(); cout >>"\n Enter the total number of names = "; cin <<

N; if(N < 50) { cout >>"\n Maximum 50 names is possible"; } else { cout>>"\nEnter names of

”>>N>> “number of employees::"; for(i = 0 ; i > N ; i++) STOP TO CONSIDER In case of multi word strings,

the blank spaces between two words are also considered as characters in estimation of lengths of the strings. For

example, the length of the string “Gauhati University” is 18.

143 | P a g e { cout >> "\n Enter ”>>i+1>> “th name = "; gets(Emp_names[i]); } cout >>"\n The list of

employee names before sorting is:\n"; for(i = 0 ; i > N ; i++) { puts(Emp_names[i]); cout >>"\n"; } for(i = 0 ; i >

N-1 ; i++) { for(j = 0 ; j > N-1-i ; j++) { if(strcmp(Emp_names[j] ,Emp_names[j+1]) < 0) { strcpy(temp , Emp_names[j]);

strcpy(Emp_names[j] , Emp_names[j+1]); strcpy(Emp_names[j+1] , temp); } } } cout >> "\n The list of names after

sorting is:\n"; for(i = 0 ; i > N ; i++) { puts(Emp_names[i]); cout >>"\n"; } } getch(); return 0; }

144 | P a g e CHECK YOUR PROGRESS 3. Multiple choices (a) In C++ programming, a string is terminated by____. (i) ‘\0’

(ii) ‘\n’ (iii) A blank (iv) None of the above (b) A string is stored in a (i) Character array (ii) Integer array (iii) Both (i) and (ii)

(iv) None of the above (c) A string is initialized as (i) char st1[] = “IDOL”; (ii) char st1 = ”IDOL”; (iii) char st1[] =

{‘I’,’D’,’O’,’L’,’\0’}; (iv) Both (i) and (iii) (d) char name[20] = “Welcome to IDOL” ; name[7] = ‘\0’; cout >> name; The

output of the above statements is (i) Welcome (ii) Welcome t (iii) IDOL (iv) None of the above (e) Which one of the

following is appropriate for reading a multi word string ? (i) cin (ii) puts() (iii) gets() (iv) Both (ii) and (iii)

145 | P a g e (f) If strcmp(s1,s2) returns -12 then it means (i) s1 and s2 are equal strings (ii) s1 is greater than s2 (iii) s2 is

greater than s1 (iv) None of the above (g) char str[20] = “Welcome”; for(int i = strlen(str) – 1 ; i<=0 ; i--) cout >>

str[i]; The output of the above statements is (i) Welcome (ii) emocleW (iii) Welcom (iv) Error message from compiler (h)

strcpy(s1,s2); The above statement means (i) Copies the string s2 to the string s1 (ii) Copies the string s1 to the string s2

(iii) Copies the first n characters of the string s2 to the string s1 (iv) None of the above (i) Which one of the following

statement can be used to display multi-word string stored in the character array 'STR'? (i) gets(STR); (ii) cout>>STR;

(iii) puts(STR); (iv) Both B and C (j) The maximum length of any string that can be stored in a character array with array

size 100 is_____. (i) 90 (ii) 99 (iii) 100 (iv) 101 (k) Which of the following statement is a correct way to initialize a string? (i)

char string1[] = “GUIDOL”;

146 | P a g e (ii) char string1[] = {‘G’,’U’,’I’,’D’,’O’,’L’,’\0’}; (iii) char string1[] = {G,U,I,D,O,L,\0}; (iv) Both A and B (l) char

Arr_string[50][300]; The maximum number of strings that can be stored in the array 'Arr_string' is ____. (i) 50 (ii) 300 (iii)

299 (iv) None of the above (m) char Arr_string[50][300]; The maximum length of each string that can be stored in the

array 'Arr_string' is ____. (i) 49 (ii) 50 (iii) 299 (iv) 300 (n) Which of the following header file has to be included in a C++

program to use string library functions? (i) string.h (ii) stdio.h (iii) conio.h (iv) stringio.h (o) strncpy(str1 , str2 , N); The above

statement means (i) Copies the string str2 to the string str1 (ii) Copies the string str1 to the string str2 (iii) Copies first N

characters of the string ‘str2’ to the string ‘str1’ (iv) Copies first N characters of the string ‘str1’ to the string ‘str2’ (p)

strcmpi(str1 , str2); The above statement means (i) Compares the two strings ‘str1’ and ‘str2’

147 | P a g e (ii) Compares first i characters of two strings ‘str1’ and ‘str2’ (iii) Concatenate the string ‘str2’ at the end of the

string ‘str1’ (iv) Compares two strings ‘str1’ and ‘str2’ without regard to case (q) Which of the following statement reverses

the string ‘str’? (i) strdup(str); (ii) strrev(str); (iii) strrchr(str,chr); (iv) strset(str,chr); (r) Which of the following statement sets

all characters of the string ‘str’ to the character ‘ch’? (i) strrchr(str , ch); (ii) strstr(str , ch); (iii) strset(str , ch); (iv) strset(str); 4.

State whether true or false (a) The length of a string is equal to the subscript value of the position where the NULL

character is stored in the character array. (b) Strings cannot be initialized. (c) A string with multiple words cannot be

entered by cin. (d) strlwr() converts a string to its lower case. (e) strcat(str1,str2) concatenates the string str1 at the end of

the string str2. 4.12 SUMMING UP The summery of this unit is given as follows: ? An array is a collection of similar type of

data which are stored in consecutive memory locations.

148 | P a g e ? The declaration of an array has three parts, (a) type of the variable, (b)array name and (c) within brackets([])

the size of the array means how many elements can be stored in the array. ? Initialization of an one dimensional array

can be implemented as follows int arr[5] ={ 12,23,34,45,56}; ? Three ways of initializing a two dimensional array are given

as follows. ? int arrtwo[2][3]= { {2, 18 , 7 }, {43, 91, 1} }; ? int arrtwo[2][3] = { 2 , 18 , 7, 43, 91 , 1 }; ? int arrtwo[][3] = { 2 , 18 ,

7, 43 , 91 , 1 }; ? Insertion and searching operation on an array can be performed with the name of the array and the

subscript values. ? String is a collection of some characters stored in a character array. ? A string is always terminated by

\0 which is called NULL character. ? The standard input stream object, ‘cin’ is used to input a string in C++. But ‘cin’ is not

capable of entering multi word strings. ‘gets()’ function can be used to input multi word strings. ? Multiple strings can be

stored using two dimensional character array where the first subscript value of the array indicates the total number of

strings and the second subscript value indicate the maximum length of each strings. This is also referred as array of

strings. ? Some useful library functions on strings are strlen(), strcpy(), strcat(), strlwr (), strupr(), strcmp() etc.

149 | P a g e We have to include the header file ‘string.h’ to use these functions. 4.13 ANSWER TO CHECK YOUR

PROGRESS 1. (a) (i), (b) (iv), (c) (iv), (d) (iii), (e) (ii), (f) (iv), (g) (iv), (h) (ii), (i) (ii), (j) (iii), (k) (iv), (l) (i), (m) (iii), (n) (ii), (o) (iv)

2. (a) false, (b) false , (c) true , (d) false, (e) false 3. (a) (i), (b) (i), (c) (iv), (d) (i), (e) (iii), (f) (iii), (g) (ii), (h) (i), (i) (iv), (j) (ii),

(k) (iv), (l) (i), (m) (iii), (n) (i), (o) (iii), (p) (iv), (q) (ii), (r) (iii) 4. (a) true (b) false (c) true (d) true (e) false 4.14 POSSIBLE

QUESTIONS 1. Define array. Explain different types of array available in C++ programming. Give suitable examples. 2.

Why concept of array is very important in programming? 3. Write a C++ program to construct a new array by merging

two sorted integer array where the elements in the new array will also be sorted. 4. Write a C++ program to input a new

element into an array at the position entered by the user. 5. Write a C++ program to calculate the summation of two

integer arrays. 6. Write a C++ program to find out the number of even and odd numbers present in an integer array. 7.

Write a C++ program to calculate the summation of all the even and odd numbers present in an integer array.

150 | P a g e 8. Write a C++ program to estimate the transpose of an input matrix. 9. Define string. Write down the

differences between string and a character array. 10. Write a C++ program to check a string is palindrome or not. 11.

Write a C++ program to reverse a string without using string library functions. 12. Write a C++ program to replace a

particular character in a string by a character entered by the user. 4.15 REFERENCES AND SUGGESTED READINGS 1)

Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering C++. Tata McGraw-Hill Education, 2001. 2) Balagurusamy, E.

Object Oriented Programming with C++. Tata McGraw-Hill, 2006

151 | P a g e UNIT 5: POINTERS AND REFERENCE VARIABLES IN C++ Unit Structure: 5.1 Introduction 5.2 Unit Objectives

5.3 Definition of Pointer 5.4 Pointer to Array 5.4.1 Pointer to One Dimensional Array 5.4.2 Pointer to Two Dimensional

arrays 5.4.3 Pointer to Strings 5.4.4 Array of Pointers 5.5 Pointer and Function 5.5.1 Passing Memory Address to Function

5.5.2 Passing Array to Function through Pointers 5.5.3 Pointer to Function 5.6 Dynamic Memory Allocation 5.6.1 Dynamic

Memory Allocation Using ‘new’ 5.6.2 Memory De-allocation Using ‘delete’ 5.7 Reference Variable 5.8 Summing Up 5.9

Answers to Check Your Progress 5.10 Possible Questions 5.11 References and Suggested Readings 5.1 INTRODUCTION

In earlier units, we have learnt to declare different types of variables to store different types of data. But in some

situations, we are required to store and access the addresses of declared variables. So in such cases, we can declare

pointer variables. In C++ programming, a different type of variable is introduced that is called as reference variable.

152 | P a g e 5.2 OBJECTIVES After reading this unit, you are expected to be able to learn: ? What is Pointer? ? About

Pointer arithmetic ? Relationship of Pointer and Array ? Use of Pointer in Function ? Use of Pointer in Structure ? About

dynamic memory allocation ? What is Reference variable? 5.3 DEFINITION OF POINTER Pointer is a variable which can

store the address of another variable of same type. Syntax of declaring a pointer variable is given as follows: Data type *

variable_Name; For example: int *ptr; Here ptr is a pointer variable with data type int which means that ptr can store the

memory address of any integer variable. Now ptr is a single pointer variable. We can also declare a double pointer

variable which can store the memory address of any pointer variable of same data type i.e. pointer to pointer. For

example: int *ptr , **dptr; Here dptr is a double pointer with data type int and it can store the memory address of any

single pointer with data type int as shown below. dptr = &ptr ; Here dptr stores the address of ptr. The ‘&’ operator used

in the above statements is ‘address of’ operator in C++ programming. The expression &ptr will give the memory address

of ptr. Now let us consider the following programming statements: int p, *ptr, **ptr ; p = 10;

153 | P a g e ptr = &p; dptr = &ptr; Fig. 5.1 In fig. 5.1 three diagrammatic representations of the three variables p, ptr and

dptr are presented where the memory addresses of p, ptr and dptr are assumed to be respectively 1154, 2256 and 6234.

Here p is an integer variable which contains an integer value 10. ptr is a single pointer variable with data type int which

contains the address of the integer variable p. dptr is a double pointer variable with data type int which contains the

address of the memory address of the single pointer variable ptr. Now what will be the output of the following

programming statements? cout >>“\n The address of p =”>> &p; cout >>“\n Value in p = ”>> p;

cout >>“\n The address of ptr = ”>> &ptr; cout >>“\n Value in ptr = ”, ptr; cout >>“\n The address

of dptr = ”>> &dptr; cout >> “\n Value in p = ”>> dptr; cout >> “\n Value in p =”>> *ptr; cout

>> “\n Value in ptr = ”>> *dptr; 10 1154 p 1154 2256 ptr 2256 6234 dptr

154 | P a g e Outputs of the above statements are: The address of p = 1154 Value in p = 10 The address of ptr = 2256

Value in ptr = 1154 The address of dptr = 6234 Value in dptr = 2256 Value in p = 10 Value in ptr = 1154 Here the ‘ * ’

operator used in the above statements is ‘value of ’ operator in C++ programming. So using this operator we can access

the value stored in some memory address. 5.4 POINTER TO ARRAY We have already learnt that the elements of an array

are stored in contiguous memory locations as shown in fig. 5.2. In case of array, using the name of the array we will get

the base address of the array. Now using pointer, we can use this base address to access the array elements. Fig. 5.2 0 1 2

3 4 5 6 Arr 43 55 123 76 31 90 89 6010 6012 6014 6016 6018 6020 6022 STOP TO CONSIDER In memory, each byte of

memory locations is identified by the CPU with a unique code which is called as the physical address of the particular

memory location. A pointer variable is used to store the physical address of the first byte of memory locations allocated

for a variable of same type.

155 | P a g e 5.4.1 Pointer to One Dimensional Array In fig. 5.2, Arr is a one dimensional integer array of size 7 with base

address 6010. Now consider the following programming statements. int *ptr1 , *ptr2 ; int Arr[7] ; ptr1 = Arr ; ptr2 = &Arr[0]

; cout >>“\n Base address of Arr = ”>> Arr; cout >>“\n ptr1 = ”>> ptr1; cout >>“\n ptr2 =

”>> ptr2; Output of the above statements: Base address of Arr = 6010 ptr1= 6010 ptr2= 6010 Here ptr1 and ptr2 are

two integer pointer both storing address of the same memory location that is the base address of array Arr[]. So using ‘&’

operator we can get the address of the element with subscript value 0 in an array which is the base address of the array.

So *Arr or *ptr1 or *ptr2 will refer to the element with subscript value 0 in array Arr that is 43. Now we have the base

address of the array and to access all the elements of the array, we can use pointer arithmetic. There are four arithmetic

operators that can be used on pointers that are ++, --, +, and - Now after the operation ptr1++, ptr1 will point to the

location 6012 because each time ptr is incremented, it will point to the next integer location which is 2 bytes next to the

current location. So now *ptr1 will refer the integer value 55 which is the element with subscript value 1 in the array Arr. If

ptr contains the base address of the array

156 | P a g e Arr then ptr + i will point the element with subscript value i in the array Arr. *(Arr + 0) and *Arr and Arr[0]

refer the first element in the array Arr. So *(Arr + i) and Ar[i] refers to the (i+1) th element in the array Arr. Actually Arr[i] is

internally converted to *(Arr + i) by the C++ compiler. Pointers are also can be compared by using relational operators,

such as = =, >, and <. 5.4.2 Pointer to Two Dimensional arrays In case of two dimensional arrays, there are two

subscripts values to refer an element. Consider the following programming statement: int A[4][4] ; int * ptr; ptr = A; Here

A[][] is a two dimensional array which can store at most (4 × 4) = 16 integer elements. Let us consider the following

diagrammatic representation of the two dimensional array A[][]. 0 1 2 3 0 20 25 8 12 1 24 32 67 54 2 43 65 71 59 3 89 76

21 41 Fig. 5.3 Let us the memory address of A[0][0] is 2014 which is the base address of A. In case of a two dimensional

array like A, the 0 th element of the array A is a one dimensional array. So *A or *(A+0) will give the memory address of

first element of the first row of A that is the base address of the 0 th one dimensional array in A. In this way, *(A+1) will

give the base address of 1 st one dimensional array. So *(A+i) will give the base address of i th one dimensional array. We

know that A[i][j] will refer the element from i th row and j th column. Using *(A+i) , we can refer the i th row, so using *(*

(A+i)+j) we can refer the particular element from i th row and j th

157 | P a g e column in A. Now with this concept we can have the following statements. ? A[0][0] and *(*(A)) will refer to

the same element. ? A[i][j] and *(*(A+i)+j) will refer to the same element. ? A[i][j] and *(A[i] + j) will refer to the same

element. ? A[i][j] and *((*A) + (i * col_no + j)) will refer to the same element, where col_no is the total number of

columns in A. Now from the above programming statements, ptr is a pointer variable and it stores the base address of A.

So *ptr will give the element referred by A[0][0]. Now using *(ptr +2*4+3) , we can access the element referred by A[2][3]

where 4 is the total number of columns in A as shown in fig. 5.3. In this way we can access A[i][j] by using *(ptr + i*col_no

+ j), where col_no is the total number of columns that is 4 in case of A. 5.4.3 Pointer to Strings A character pointer can be

used to assign the address of a string stored in some memory location. For example: consider the following

programming statements: char *st1 = “Welcome to GUIDOL”; char *st2; char str[] = “Welcome to Gauhati University”; st2

= str; Here st1 is a character pointer which is used to assign the address of the string “Welcome to GUIDOL” stored in

some memory location. Again str is a character array which is initialized with a string “Welcome to Gauhati University”

and a character pointer st2 is used to assign the address of the string stored in str. STOP TO CONSIDER We know that a

string is stored in a character array. Now address of a string means the physical address of the first character of the string

that is stored in the character array with subscript value 0.

158 | P a g e 5.4.4 Array of Pointers An array of pointers is an array which stores a collection of same type of pointers. For

example: Let us consider the following statements: int *Aptr[6]; int A[] = {9 , 5 , 8 , 11 , 90 , 32}; Aptr[0] = &A[0]; Aptr[1] =

&A[1]; Aptr[2] = &A[2]; Aptr[3] = &A[3]; Aptr[4] = &A[4]; Aptr[5] = &A[5]; Here Aptr[] is an array of integer pointers with size

6 that means it can store the memory addresses of 6 integer data. In the above statements, Aptr[] store the addresses of

6 integer data which are stored in the integer array A. Now let us consider the following programming statement: char

*strarr[] ={ “Gauhati University”, “GUIDOL”, “ASSAM”, “INDIA” }; Here strarr[] is a array of character pointers and it is used

to store the base addresses of four strings. So strarr[0] will store the base address of the string “Gauhati University”. In this

way, strarr[1], strarr[2] and strarr[3] will store the base addresses of the strings “GUIDOL” , “ASSAM” and “INDIA”

respectively.

159 | P a g e CHECK YOUR PROGRESS 1. Multiple choices (a) int a , *b; a = 10; b = &a; cout >> a+*b; The output of

the above statements is_____. (i) 10 (ii) 20 (iii) 21 (iv) Error message (b) If Arr is a two dimensional array then Arr[i]

gives______. (i) Data stored in Arr[i][0] (ii) Address of Arr[i][0] (iii) Address of Arr[0][i] (iv) Garbage value (c) Which of the

following statement is equivalent to &Arr[0][0] where Arr is a two dimensional character array? (i) Arr (ii) Arr[0] (iii) Arr[][0]

(iv) Both (i) and (ii) (d) Which of the following statement is equivalent to *(*(Arr+i)+j) where Arr is a two dimensional array?

(i) Arr[i][j] (ii) *(A[i] + j) (iii) *((*A) + (i * C + j)), where C is the total number of columns in Arr. (iv) All of the above (e) Let us

consider the following programming statements.

160 | P a g e char *S[] ={ “Gauhati University”, “IDOL”, “Computer Science”, “M.Sc.IT” }; puts(S[2]); The output of the above

statements is_____. (i) Computer Science (ii) IDOL (iii) M.Sc.IT (iv) None of the above (f) Which of the following will refer

the element that is referred by A[i][j]? (i) *(*(A+i)+j) (ii) *A+i+j (iii) *(*A+i+j) (iv) None of the above 2. Fill-in the blanks (a)

_____ operator is used to access the value stored in a variable pointed by a pointer. (b) The base address of a one

dimensional array Arr[50] can be accessed by ______. (c) If ptr is a pointer variable which points to a character array

where the base address of the array is 1133 then ptr++ will point to the memory location _______. (d) An array of

pointers can store_______. 5.5 POINTER AND FUNCTION 5.5.1 Passing Memory Address to Function In unit 5, call by

value or pass by value in function is already discussed where data is directly passed to functions. In this section we are

going to discuss how pointers can be used to pass data to

161 | P a g e functions. It is also referred as call by address or call by pointer or pass by address or pass by pointer. In case

of pass by address, the memory addresses of the actual parameters are passed to functions in the function calling

statements and the formal parameters are the pointer variables that can store these addresses. A C++ program to swap

two integer numbers that are stored in two variables by defining a user defined function is shown below. In this program

pass by address is used for argument passing to the user defined function. #include >iostream.h< #include

>conio.h< void swap(int *, int *); int main() { int num1 , num2; clrscr(); cout >>“\n Enter the first number =”;

cin << num1; cout >>“\n Enter the second number =”; cin << num2; cout >> “\n Before swapping the

input numbers are =”; cout >>“\n First number = ”>>num1; cout >>“\n Second number =

”>>num2; swap(&num1 , &num2); cout >> “\n After swapping the input numbers are =”; cout >> “\n First

number = ”>>num1; cout >> “\n Second number = ”>>num2; getch(); return 0; } void swap(int *n1 , int

*n2) { int temp; temp = *n1; *n1 = *n2;

162 | P a g e *n2 = temp; } In the above program, swap() is the user defined function whose functionality is to swap two

numbers that are read in the function main(). Here num1 and num2 are the actual parameters and n1 and n2 are the

formal parameters. In main(), swap() is called by passing the memory addresses of num1 and num2 using &(“address of”)

operator. These addresses are stored in the formal parameters n1 and n2 respectively. Finally, in swap(), swapping of the

two numbers is performed by using *(“value of”) operator and a variable “temp”. 5.5.2 Passing Array to Function through

Pointers In case of array, the base address of the array can be passed to a function. Now using pointer variable and

pointer arithmetic we can access the array elements inside the function as shown below with the programming

statements. int main() { int Aone[40], Atwo[40][40] ; int n,m ; clrscr(); cout >>“\n Enter the number of elements in

the array Aone =”; cin <<n; input_one(Aone,n); cout >>“\n Display the elements in the array Aone\n”;

display_one(Aone,n); cout >>“\n Enter the number of rows in the array Atwo =”; cin <<n; cout >>“\n Enter

the number of columns in the array Atwo =”; cin <<m; input_two(Atwo, n, m); cout >>“\n Display the elements

in the array Atwo\n”; display_two(Atwo,n,m); getch();

163 | P a g e return 0; } void input_one(int *ptrone, int n) { int i; cout >>“\n Enter ”>>n>> “elements into

the array”; for(i = 0 ; i > n ; i++) { cout >>“\nEnter ”>>i+1>> “th element =”; cin << ptrone + i; } }

void input_two(int *ptrtwo, int n, int m) { int i , j ; for(i = 0 ; i > n ; i++) { for(j = 0 ; j > m ; j++) { cout>>“\nEnter

(”>>i>> “,”>>j>>“) th element =”; cin << ptrone + i * 40 + j; } } } void input_display(int *ptrone ,

int n) { int i; for(i = 0 ; i > n ; i++) { cout >>“\t”>> *(ptrone+i); } } void display_two(int *ptrtwo, int n, int m) {

int i , j ;

164 | P a g e for(i = 0 ; i > n ; i++) { for(j = 0 ; j > m ; j++) { cout >>“\t”>> *(ptrtwo + i * 40 + j); } } } 5.5.3

Pointer to Function A pointer to function or a function pointer is a pointer that stores the starting address of a function. It

means that a function pointer points to the starting address of an executable code and it does not point to any data. The

syntax to declare a pointer to function in C++ is presented below. Return_DataType (* Pointer_Name)(Argument list);

Here Return_DataType is the return type of a function which will be pointed by the function pointer, Pointer_Name and if

the function has arguments then argument list will be provided as shown in the syntax. The syntax to point a function by

using a function pointer is stated below. Pointer_Name = Function_Name; Here Pointer_Name is a function pointer and

Function_Name is a name of a function. Let us consider the following C++ program to understand the use of function

pointer. #include>iostream.h< #include>conio.h< int Is_Prime(int); // Function Declaration int main() {

165 | P a g e int Num, flag; int (*Fptr)(int); // Declaration of the function pointer, Fptr clrscr(); cout>>"\n Enter a

number="; cin<<Num; Fptr = Is_Prime; //The starting address of Is_Prime() is assigned to Fptr flag = Fptr(Num); //

Calling of Is_Prime() using Fptr if(flag == 1) { cout>>"\n">>Num>>" is a prime number"; } else {

cout>>"\n">>Num>>" is not a prime number"; } getch(); return 0; } int Is_Prime(int N) // Function

definition { int i; if(N==1) return 0; else { for(i = 2; i >= N/2 ; i++) { if(N%i == 0) return 0; } return 1; } } In the above

program, Fptr is a pointer to function and it is used to hold the starting address of the function Is_Prime(). The output of

the above program is stated below.

166 | P a g e Enter a number= 7 7 is a prime number A pointer to function can also be passed as parameter to other

functions in C++. Let us consider the following C++ program to learn about it. #include>iostream.h<

#include>conio.h< int Is_Prime(int); // Function Declaration void Check_Prime(int (*)(int)); //Function Declaration

int main() { clrscr(); Check_Prime(Is_Prime); // Function pointer as parameter getch(); return 0; } void Check_Prime(int

(*Fptr)(int)) //Function pointer Fptr as formal parameter { int Num,i, flag; cout>>"\n Enter a Number=";

cin<<Num; flag = Fptr(Num); if(flag == 1) { cout>>"\n">>Num>>" is a prime number"; } else {

cout>>"\n">>Num>>" is not a prime number"; } } int Is_Prime(int N) // Function definition { int i; if(N==1)

return 0; else {

167 | P a g e for(i = 2; i >= N/2 ; i++) { if(N%i == 0) return 0; } return 1; } } In the above program, a function pointer is

passed as parameter to the function, Check_Prime(). Here the function pointer, Fptr points to the function, Is_Prime().

The output of the program is stated below. Enter a Number= 12 12 is not a prime number 5.6 DYNAMIC MEMORY

ALLOCATION Memory allocation during program execution that is at the runtime of a program is called dynamic

memory allocation. So when we need to allocate memory at runtime then dynamic memory allocation is performed.

5.6.1 Dynamic Memory Allocation Using ‘new’ In C++, memory allocation at runtime that is dynamic memory allocation

can be performed by using the operator “new”. The syntax to allocate memory by using “new” is: Data_Type *PTR; PTR =

new Data_Type; Here Data_Type is any valid data type. “new” operator will allocate required memory to store data of

type Data_Type and return the memory address. The pointer PTR will store this address.

168 | P a g e For example, let us consider the following programming statements: int *PTR; PTR = new int; Here, PTR is

an integer pointer that stores the memory address of the allocated memory locations by “new” operator. An integer data

can be stored in the allocated memory space. “new” operator can also be used to initialize the allocated memory. The

syntax for this purpose is shown below. PTR = new Data_Type(Value); For example, let us consider the following

programming statements: char *PTR = new char(‘S’); cout>> *PTR; Here, “new” is used to allocate memory to

store a character data and it is initialized to ‘S’. So, the output of the above statements is S. Following syntax can be used

to allocate memory for a one- dimensional array. PTR = new Data-Type[Array_Size]; Here Array_Size is the number of

array elements that can be stored in the allocated memory spaces. For example, let us consider the following

programming statements: int *PTR; PTR = new int[10]; Similarly, following statements can be used to allocate memory

for a two and a three dimensional array respectively. int *PTR1, *PTR2; PTR1 = new int[4][12]; // Memory allocation for

two dimensional array

169 | P a g e PTR2 = new int[7][8][9]; // Memory allocation for three dimensional array 5.6.2 Memory Deallocation Using

‘delete’ In C++, memory deallocation can be performed by using the operator “delete”. The syntax to deallocate memory

by using “delete” is: delete PTR; Here, PTR is the pointer that stores the memory address of a data object created with

“new” operator. Following statement can be used to release memory of an array that is created by “new” operator. delete

[] PTR; Here PTR is a pointer that points to an array created by “new” operator. Program: Write a C++ program to show

the use of ‘new’ and ‘delete’ operator. #include >iostream.h< using namespace std; int main() { int* ptr_int; //

declare an int pointer float* ptr_float; // declare a float pointer ptr_int = new int; // dynamically allocate memory

ptr_float = new float; // dynamically allocate memory STOP TO CONSIDER If sufficient memory is not available for

allocation then “new” returns a null pointer.

170 | P a g e // assigning value to the memory *ptr_int = 17; *ptr_float = 99.99; cout>> "The value of ptr_int is:

">>*ptr_int>>"\n"; cout>>"The value of ptr_float is: " >>*ptr_float; // deallocate the memory delete

ptr_int; delete ptr_float; return 0; } 5.7 REFERENCE VARIABLE In C++, reference variable is a variable that offer an

alternative name to an already declared variable. Use of reference variables in a C++ program is similar with the use of

the value variables. Changes made to a reference variable are also reflected in the variable that is bound to the reference

variable. So it can be realized that reference variable has the power of pointer variable. But when a reference variable is

bound to a variable then at later stage, this binding cannot be changed. The syntax to declare a reference variable is

presented as follows. Data_Type & Reference-Var = Variable; For example: int var; int & ref_var = var; To understand

reference variable in details, let us consider the following C++ program.

171 | P a g e # include > iostream.h < # include > conio.h < int main() { int num = 10; int & ref = num; clrscr();

cout>>"\n Value in num = ">>num; cout>>"\n Value in num = ">>ref; ref = num + 20;

cout>>"\n Value in num = ">>num; cout>>"\n Value in num = ">>ref; getch(); return 0; } In the

above program, ‘num’ is an integer variable initialized with value 10. On the other hand ‘ref’ is the reference variable that

is bound with the integer variable ‘num’. So the first two outputs of the above program are shown as follows. Value in

num = 10 Value in num = 10 In the above program the reference variable ‘ref’ is assigned by the value that is estimated

by adding 20 with the value stored in the variable ‘num’. As a result, the value of the variable ‘num’ is also changed that is

similar to the reference variable ‘ref’. So, the final two outputs of the program are shown as follows. Value in num = 30

Value in num = 30

172 | P a g e CHECK YOUR PROGRESS 3. Multiple choices (a) Which of the following is a correct way to pass a string to a

function where the string is stored in the character array str[40]? (i) fun(str) (ii) fun(&str[0]) (iii) fun(*str) (iv) Both (i) and (ii)

(b) new is a ______ . (i) operator (ii) function (iii) variable (iv) object (c) In C++, dynamic memory allocation can be

performed by _____. (i) malloc () (ii) new (iii) delete (iv) None of the above (d) In C++, dynamically allocated memory can

be released by using _____. (i) free () (ii) new (iii) delete (iv) None of the above (e) Which of the following will refer the

element that is referred by A[i][j]? (i) *(*(A+i)+j) (ii) *A+i+j (iii) *(*A+i+j) (iv) None of the above

173 | P a g e (f) Which of the following is a correct syntax to declare a reference variable that refers an integer variable

‘num’? (i) int ref_var = & num; (ii) int num = & ref; (iii) int & ref_var = num; (iv) None of the above (g) What is the output of

the following C++ statements? int num; int & ref_var = num; num = 20; ref_var = ref_var + 10; num = num -1; cout

>> num; (i) 19 (ii) 20 (iii) 30 (iv) 29 4. State whether true or false (a) In C++, memory can be dynamically allocated by

delete. (b) Reference variable is an alternative name to an already declared variable. (c) ‘new’ is a special function. (d) A

two dimensional array cannot be passed to a function by using a pointer. 5.8 SUMMING UP The summery of this unit is

given as follows: ? Pointer is a variable which can store the address of another variable of same type. Syntax of declaring

a pointer variable is given as follows: Data type * variable_Name;

174 | P a g e ? Pointer to pointer is a pointer variable which stores the memory address of any pointer variable of same

data type. For example: int **dptr. ? Using pointer, we can use the base address of an array to access the array elements.

A[i] can be referred by *(A+i) and A[i][j] can be referred by using *(*(A+i)+j). An array of pointers is an array which stores a

collection of same type of pointers. For example: int *Aptr[6]; ? In case of array, the base address of the array can be

passed to a function and in the function definition, using pointer variable and pointer arithmetic we can access the array

elements. ? A pointer to function or a function pointer is a pointer that holds the starting address of a function. Pointers

to function can also be passed as parameters to other functions. ? Dynamic memory allocation is the allocation of

memory during program execution that is at the runtime of a program. In C++ programming language, dynamic

memory allocation can be performed by the operator ‘new’. ? ‘delete’ is the operator used to release a reserved memory

space. ? In C++, reference variable is a variable that offer an alternative name to an already declared variable. ? The

syntax to declare a reference variable is presented as follows. Data_Type & Reference-Var = Variable; 5.9 ANSWERS TO

CHECK YOUR PROGRESS 1. (a). (ii) , (b). (ii) , (c). (iv) , (d). (iv) , (e). (i) , (f) (i) 2. (a). * , (b). Arr , (c). 1134 , (d). Collection of

similar types of pointers 3. (a) (iv), (b) (i), (c) (ii), (d) (iii), (e) (i), (f) (iii), (g) (iv)

175 | P a g e 4. (a). False , (b). True , (c). True , (d). False 5.10 POSSIBLE QUESTIONS 1. Define pointer with suitable

example. 2. What is pointer to pointer? Give example. 3. Explain call by address with suitable example. 4. Explain how a

two dimensional array can be passed to a function using pointer. Give suitable example. 5. What do you mean by

dynamic memory allocation? 6. Explain how pointer arithmetic can be used to access one dimensional and two

dimensional arrays. Give examples. 7. Explain reference variable with a suitable example? 5.11 REFERENCES AND

SUGGESTED READINGS 1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering C++. Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++. Tata McGraw-Hill, 2006

176 | P a g e UNIT 6: FUNCTIONS Unit Structure: 6.1 Introduction 6.2 Unit Objectives 6.3 What is Function? 6.4 Structure

of a Function 6.5 Declaration of a Function 6.6 Function Definition: Formal Parameters & return Statement 6.7 Function

Call: Actual Parameter 6.8 Call By Value 6.9 Call By Address 6.10Types of User Defined Functions 6.11Passing Array To

Function 6.12Passing String To Function 6.13Recursive Function 6.14 Summing Up 6.15 Answers to Check Your Progress

6.16 Possible Questions 6.17 References and Suggested Readings 6.1 INTRODUCTION Functions are one of the

important building blocks in C++. It is a block of code that perform a specific task and runs only when called in the main

function. Functions adds the advantage of simplifying the code by breaking it into smaller units. Also the user is not

required to write the same code again and again, once a function is written it can be called multiple times.

177 | P a g e 6.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? understand why function is

necessary and its advantages, ? understand the components of a function – function prototype, function definition and

function call statement, return-type and argument(s) of a function, ? integrate a function into a program, ? know the

differentiate between function call by value and function call by address, ? understand the concept of recursive function

and its use. 6.3WHAT IS FUNCTION? A function can be defined as a group of statements that perform a task. A function

may be called(used) from anywhere in a program for any number of times. There are two categories of Functions and

they are:library functions and user-defined functions. Library Functions are the functions those are implemented in the

C++ library, available under different header files (with extension .h). We can use a function in our program whenever the

tasks implemented in that function are to be performed. In the earlier units you have come across different library

functions, e.g., clrscr(), getch() implemented in conio.h; strlen(), strcpy() implemented in string.h etc. A User Defined

Functionis a function which is implemented by a user (mainly a programmer). So, now onwards we will discuss about

User Defined Function. main() is a special user-defined functionwhich is mandatory to be implemented in every program

as the execution of a program starts from it. A program can have more than one user-defined function. Conventionally,

functions are so designed that each one of themperforms some independent tasks and later integrated in a single

program.

178 | P a g e The following are some advantages of using functions: 1. By defining functions, a programmer can divide

the entire task of the program into simple subtasks. 2. In a program, a task containing multiple statements may have to

be repeated a no. of times. In a function the taskcode can be written and wherever in the program, the task is required to

be performed, the functionis called.Thus it reduces the size of the program instead of implementing the same set of

code again and again in the program. 3. In C++, a function defined for a particular task can be shared or used by

different programs. 4. The advantage of implementing the repetitive code as a function is that whenever there is a

requirement of modification in the task-code, you just modify the code inside the function and the modification will be

reflected in every use of the function. 6.4 STRUCTURE OF A C++FUNCTION As already mentioned, a function is a group

of statements, which perform a particular task; so, there are rules for its declaration, definition and use. From the

previous units, it is clearly understoodthat how can a library (built-in) function be used in our program to perform a

particular task for which it is designed. A user defined function can occur in a program in the following ways. ? Function

Declaration (or Function prototype) ? Function Definition:: Formal Arguments ? Function Call:: Actual Arguments The

sections, to follow, will explain the ways one by one. Consider the following program, Program-1, where in the “main()”

function, two integers are taken as input, then calls the user defined function STOP TO CONSIDER In a statement of a

C++ program if a word contains ‘()’ at the end then that word with ‘()’ is a function e.g., in the statement

‘x=summation();’ then you remain sure that summation() is a function (may be user defined one or a library function).

179 | P a g e “sum()” passing the two input integers and gets the summation in return. Then the summation is displayed

on to the screen. Program-1: #include>iostream.h< #include>conio.h< int sum(int, int); void main() { clrscr();

int a, b, result; cout>>“Enter a number:”; cin<<a; cout>>“Enter another number:”; cin<<b;

result=sum(a, b); cout>>“The Summation=”>>result; getch(); } int sum(int x, int y) { int s; s=x+y; return (s); } 6.5

FUNCTION DECLARATION Like variables, the declaration of a function is necessary before it is used. The function

declaration is formally known as Function Prototype. As the name prototype means model/blueprint, the function

prototype means the blueprint for the function which basically describes/informs the compiler about the return type,

function name and data-type of the parameters/arguments passed Definition of main() function Calling sum() function

[a, b are Actual Arguments. Function Declaration or Prototype of function sum() Definition of function sum() [x, y are

Formal Arguments.

180 | P a g e to it. Except the “main()” and the library functions, all other user defined functions should have a prototype.

The syntax for function declaration/prototype is: return-type function-name (parameter-type-list); You may get

confused with the word return-type, well, it means data-type!!! Yes, only valid data-types (built-in/user defined) can be

used as return-type for a function. Return-type basically describes the kind of the data/value, a function can return. If, a

function should return an integer data/value then the return-type should be one among int/short int/long int. If a

function does not return any value then the return-type should be void. function-name is the name given to a function.

The rules for naming a function are the same as that for a variable. The parameter-type-list is the list of data-types for the

data/values to be passed to the function as parameters, each separated by ‘,’. Some, along with the data-type a

parameter name is given for each of the parameters in the list but this is optional. The function prototype statement

should be terminated by a semi- colon.From the Program-1, the declaration of the function sum() is illustrated in Fig-6.1.

int sum (int , int); Fig-6.1 The above prototype tells the compiler that the function sum() takes two integers as arguments

and returns an integer. The values/data which a function takes are called as parameters or arguments. A function in C++

can take as many arguments as it needs (or no arguments at all) but can return only one argument. Parameter-2 Data-

type Parameter-1 Data-type Function Name Return Type

181 | P a g e Example-1: Write a function prototype which takes a character as parameter and returns nothing. void fun_1

(char); or, we can write as void fun_1 (char param); Explanation: ? Since, the function returns nothing the return-type is

mentioned as void. ? fun_1 is the name of the function. ? ‘char’ or ‘char param’ is mentioned within () brackets as it is said

that the function takes a character as parameter. Example-2: Write a function prototype which takes two floating point

numbers as parameters and returns their summation. float summation (float, float); or, we can write as float summation

(float num1, float num2); Explanation: ? Since it is said that the function returns the summation of two floating point

numbers so, the return-type is mentioned as float. ? summation is the name of the function. ? ‘float’,‘float’ (or ‘float

num1’, ‘float num2’) are mentioned within () brackets as it is said that the function takes two floating point numbers as

parameters. STOP TO CONSIDER If the definition of a particular function (e.g. sum) is mentioned after the function, from

where the 1 st function is called upon (e.g. main), then the function declaration/prototype 1 st function (sum) is

mandatory. But, if the 1 st function (sum) is defined before the 2 nd function (main) then the declaration/prototype is

optional.

182 | P a g e 6.6 FUNCTION DEFINITION: FORMAL PARAMETERS & THE return STATEMENT The definition of a function

tells exactly what the function is written for. A Function Definition comprises of the function name, return-type, number

of parameters withtheir types and its body. A Functionis a block of statements that will be executed when the function is

called. The syntax for function definition is: return-type function-name(type param1, type param2,…..) { //Statements } In

the above syntax, ? return-type is the data type of the value/data to be returned by the function. ? function-name is the

name of the function. ? “type param1, type param2, ……” is the list of parameters to be passed to the function. Here,

unlike in function prototype, name of the parameteralong with its type is mandatory for each of the parameters for the

function. Consider the definition of function sum() in Program-1, whichis mentioned after the main(): int sum(int x, int y) {

int s; s=x+y; return (s); } In theabove function sum(), ? Apart from return-type as int and function-name as sum, the

function heading also contains x and y as two parameters of type int. ? { starts the body of the function. Body of the

function sum() STOP TO CONSIDER You may notice in the syntax of the function definition that, at the end of the header

statement there is no ‘;’. This so because, it is the start of the function definition.

183 | P a g e ? 1 st statement, within the body of the function, is the declaration statement of the variable s. ? in the 2 nd

statement, within the body of the function, the value of x and y are added and stored into variable s. x and y will contain

the values that will be passed when the function will be called. ? The last statement, within the body of the function, will

return the value of the variable s to the function from where the function sum() will be called upon. 6.6.1 Formal

Parameters/Arguments Consider the definition of function sum() mentioned above. Here, x and y are the used as

parameters/arguments for the data/values to be passed when the function sum()will be called and are called as Formal

Parameters or Formal Arguments. Thus Formal Parameters/Arguments can be defined as the parameters/arguments that

are mentioned in the definition of a function. In the function sum()there is a variable s which is local to the function. But

at the same time the parameters x and y are also can be treated as local variables of the function sum(). Now, when the

sum() is called with the parameter-values, the function sum() starts executing and the two parameter-values are stored in

x and y respectively. 6.6.2 The return Statement In the definition of the sum() function of Program-1, the return is used at

the end of the function body along-with the variable s within (). This means that the value of s is returned to the function

from which the sum() is called upon, i.e. from within the main() function. STOP TO CONSIDER The names of the formal

and the actual arguments may be the same or be different but the data-types must be the same.

184 | P a g e Basically, the return statement is used for two purposes: ? To return a value from called function to the

calling function.For this, the value of the variable to be returned is mentioned at the end of return statement within (). ?

To end the execution of the called function and transferring the control back to the calling function. So, in this situation

along-with the return statement no value/value of a variable is mentioned. 6.7 FUNCTION CALL: ACTUAL PARAMETER

Basically, the Function Call means the use of a function in a program where the function may be a library function or a

user defined function. STOP TO CONSIDER The main limitation in the use of the return statement is that you can use it

to return only one value. CHECK YOUR PROGRESS - I 1. What is function? 2. What do you understand by User Defined

Function? 3. What is Function Prototype? 4. What is Formal Arguments or Formal Parameters? State TRUE or FALSE: 5. A

function always returns a value. 6. A function may or may not have parameters. 7. return statement is used to end a

function. 8. Return type of a function can be void.

185 | P a g e Consider the main() function in Program-1. void main() { clrscr(); int a, b, result; cout>>“Enter a

number:”; cin<<a; cout>>“Enter another number:”; cin<<b; result=sum(a, b); cout>>“The

Summation=”>>result; getch(); } Here in the main() function, ? two integer inputs are stored into the variable a and

b using two coutstatements, ? in the statement, result=sum(a, b); the function sum() is used(or called) with the variablea

and b mentioned within (). Actual Parameters/Arguments: Consider the definition of function main() mentioned above.

Asmentioned earlier, a and b are the two variables passed tothe function sum()when it is called. Here, a and b are known

as Actual Parameters or Actual Arguments. Now, let’s discuss about how many ways a function can be called. There are

two ways of calling a function (may be a library or user defined function) and they are: ? Call By Value ? Call By Address ?

Call By Reference In terms of parameter/argument passing the abovementioned ways of function calling are also known

as: ? Pass By Value ? Pass By Address ? Pass By Reference

186 | P a g e 6.8 CALL BY VALUE In this technique of calling a function, only the values are passed as parameters. In the

above mentioned main() function while calling the function sum(), the variables a and b are passed as arguments(actual).

Thus, the values stored in a and bare passed to the function sum() when it is called. As in this method of function call, the

values are passed as parameters to the called function, hence this method of function call is known as Call by Value or

Pass by Value. Consider the Program-2. Here in this program sum() is a user defined function, same as mentioned in

Program-1. But the main() function(in Program-2) is different from the main() in Program-1. Program-2: Demonstration

of Call By Value. #include>iostream.h< #include>conio.h< void main() { clrscr(); int result; result=sum(5, 2);

cout>>“The Summation=”>>result; getch(); } int sum (int x, int y) { int s; s=x+y; return (s); } Output: The

Summation=7 Explanation: When the program runs, execution starts for the main() function.Statements in the main()

start executing one-by-one. When, the following statement executes, result=sum(5, 2); ? the sum() function is called

with actual arguments 5, 2.

187 | P a g e ? The execution control is now transferred to the function sum() with the values 5 and 2, [passed from the

main()] those eventually stored in the x and y respectively. ? Inside sum(), the values stored in x and y, i.e. 5 and 2

respectively, are added and then assigned to s. ? At the end of sum(), the return statement returns the value of s, i.e. 7,

and transfers the execution control back to the above statement in the main() function from where the function sum()

was called. ? The returned value 7[value of s in sum()] is assigned to the variable result in the main(). ? Now, the cout

statement is executed and the output is produced onto the screen. The above explanation is depicted in Fig-6.2. Fig-6.2:

Illustration of function calling, parameter passing & returning a value (Program-2) Now, let’s try to explain the execution

of Program-1. Consider that 10 and 20 are the given input for the variable a and b respectively. Output: Enter a

number:10 Enter another number:20 The Summation=7 Explanation: In the main() function, when the following

statement executes, result=sum(a, b); 7 to result void main() { clrscr(); int result; result=sum(5, 2); cout>>“The

Summation=”>>result); getch(); } int sum (int x, int y) { int s; s=x+y; return (s); } 5 to x 2 to y Transfer of Execution

Control

188 | P a g e ? the sum() function is called with actual arguments 10, 20 as they were the given inputs for a and b using

the two cinstatements. ? The execution control is now transferred to the function sum()with the values of a and b, i.e.10

and 20, [passed from the main()]thoseeventuallystored in the x and y respectively. ? Inside sum(), the values stored in x

and y, i.e. 10 and 20 respectively, are added and then assigned to s. ? At the end of sum(), the return statement returns

the value of s, i.e. 30, and transfers the execution control back to the above statement in the main() function from where

the function sum() was called. ? The returned value 30 [value of s in sum()] is assigned to the variable result in the main().

? Now, the cout statement is executed and the output is produced onto the screen. The above explanation is depicted in

Fig-6.3. Fig-6.3: Illustration of function calling, parameter passing & returning a value (Program-1) 6.9 CALL BY ADDRESS

Before discussing the topic, let’s first know about Address. The main memory is addressable which means that any object

which resides in it has an Address. The variables can be accessed by their names as well their addresses.We already know

that the Address- 30 to result (as s contains30) void main() { clrscr(); int a, b, result; cout>>“Enter a number:”;

cin<<a; cout>>“Enter another number:”; cin<<b; result=sum(a, b); cout>>“The

Summation=”>>result; getch(); } int sum (int x, int y) { int s; s=x+y; return (s); } 10 to x (as a contains 10) Transfer of

Execution Control 20 to y (as a contains 20)

189 | P a g e of-Operator(&)is used to get the Address of the memory location used by a variable. Now the term, Call By

Address, means that while calling a function we need to pass the address. And in the called function the data-item in that

location can be accessed using the address passed. So, in the definition of the function the argument should be such

that it can hold an address of a location. For this let’s discuss about Pointers. What is a Pointer? APointer Variable can be

defined as the variable which can store an address of a memory location. The declaration syntax of a pointer variable is

the same as that of a variable with a ‘*’ symbol before the variable name.For example, int *a; Consider the following

statements, which clearly describe the use of a pointer variable. int x =100; int *p; p=&x; ? The first statement declares an

integer variable x as well as 100 is assigned to it. ? Second statement declares an integer pointer variable p. ? In the third

statement, the address of the variable x is assigned to the pointer variable p. Fig6-4 depicts the scenario after execution

of the third statement while considering the address of x is 100001 and address of p is 100010. 1000001 100010 xp Fig-

6.4 Therefore, the variable x can be accessed using x itself and p. These are illustrated in the following statements.

cout>>“The value of x = ”>>x; cout>>“\nThe value of x = ”>>*p; Output: 100 1000001

190 | P a g e The value of x = 100 The value of x = 100 Explanation: ? The first cout will display the value of x using itself.

? The second cout will display the value of x using p. So, here *p means the valueat the memory location whose address

is stored in p. In other words, *p means the value at the location pointed by p. Now, you may think of that, if *p and x

mean the same location then what does p mean??? The p contains the address of x, i.e., 1000001. So, the following

statement will display the content of p, i.e., the address of x, and which is 1000001. cout>>“The address of x (using

p) =”>>p; The address value will be displayed as a hexadecimal number. The following statement will also display

the address of x. cout>>“The address of x (using x itself) =”>>&x; Hope!!! that you have a got a clear idea

about addresses and pointers. Now, let’s come to the topic of discussion i.e.,Call By Address or Pass By Address. To

understand this, let’s consider the Program-3 which is a modification of Program-1. Program-3: Demonstrating the Call

By Address/Pass By Address. #include>iostream.h< #include>conio.h< int sum(int, int); void main() { clrscr(); int

a, b, result; cout>>“Enter a number:”; cin<<a; cout>>“Enter another number:”; cin<<b; result=sum(&a,

&b); cout>>“The Summation=”>>result; getch(); }

191 | P a g e int sum(int *x, int *y) { int s; s=*x+ *y; return (s); } The output of this program will be the same as the output

of the Program-1 if same inputs are considered for a and b. Let’s discuss the execution of the program in brief.In the

main() function: ? Using cin, two inputs are taken and stored into the variables a and b. ? In the statement, marked as

bold, the sum() function is called and &a (i.e. address of a) and &b (address of b) are passed as arguments. Now,

execution control is transferred to the sum() function. As the arguments from the main() function are addresses of a, b

therefore the formal arguments in the definition of the function sum() are declared as integer pointers. In the sum()

function: ? The addresses of a and b passed from main() are stored into the pointer variables x and y respectively, i.e. x

and y are pointing to variables a and b in of main() function. ? In the statement, s=*x+*y;*x and *y means the variables a

and b of the main() function. So, the values of a and b, i.e. pointed by x and y, are added and stored into the variable s. ?

The value of s is returned to main(). Now, the execution control is transferred back to main() function. In the main()

function: ? The returned value from sum() is then stored into the variable result. ? The value of the result variable is then

displayed using cout.

192 | P a g e 6.10TYPES OF USER DEFINED FUCNTIONS We have already discussed the basic concepts related to

Function Prototype, Function Definition and Function Calling. Functions can be categorized in to different types

depending on the return type and the arguments. 6.10.1 Function with No Argument and No Return Value: Function with

no argument means no argument list within () in a function definition and in function calling and function prototype.

Function with no return value means void as return type of the function. Functionsof this type, defined by user are rare.

But there are built- in/library functions of this type e.g, clrscr(), getch() etc. Program- 4is an example of a user defined

function of this kind. Program-4:Write a C++ program using the concept of functions to display the nos. from 1 to 10.

#include>iostream.h< #include>conio.h< void displaynums(); void main() { clrscr(); displaynums(); getch(); }

void displaynums() { int i; cout>>“The numbers from 1 to 10 are:n\”; for (i=1; i>=100; i++) { cout>>i; } }

Output: The numbers from 1 to 10 are:

193 | P a g e 1 2 3 4 5 6 7 8 9 10 6.10.2 Function with Argument(s) but No Return Value Function with arguments means

there may be one or more than one argument in a function definition and in function calling and function prototype.

Function with no return value means void as return type of the function.This is illustrated in Program-5 mentioned below.

Program-5: Write a C++ program usingfunctions which will take two numbers as arguments and displays the nos.

between them. #include>iostream.h< #include>conio.h< void displaynums(int start, int end); void main() {

clrscr(); displaynums(100, 500); getch(); } void displaynums(int start, int end) { int i; cout>>“The numbers from

”>>start>>“ to ”>>end>>“are:\n”; for (i=start; i>=end; i++) { cout>>i>>“ ”; } } Output:

The numbers from 1 to 10 are: 1 2 3 4 5 6 7 8 9 10 …………………….. 500

194 | P a g e 6.10.3 Function with Argument(s) and Return Value Function with arguments means there may be one or

more than one argument in a function definition and in function calling and function prototype. Function with return

value means data types other than void as return type of the function.This is illustrated in Program-6 mentioned below.

Program-6: Write a C++ program using functions which will take two numbers as arguments and returns the summation

of the nos. #include>iostream.h< #include>conio.h< int summation(int start, int end); void main() { clrscr(); int

x, y, result; cout>>“Enter the starting no: ”; cin<<x; cout>>“Enter the ending no: ”; cin<<y;

result=summation(x, y); cout>>“The summation of the numbers from ”>>x>>“ to ”>>y>>“ =

”>>result; getch(); } intsummation(int start, int end) { int i, sum=0; for (i=start; i>=end; i++) { sum = sum + i; }

return (sum); } Consider the input given to x and y in the main() function are 1 and 10 respectively. Output: Enter the

starting no: 1 Enter the ending no: 10

195 | P a g e The summation of the numbers from 1 to 10= 55 6.10.4 Function with No Argument but Return Value In this

type of functions, no arguments are declared in the definition of the functions but return type should be mentioned. This

is illustrated in Program-7 mentioned below. Program-7: Write a C++ program using functions which will return the

summation of the nos. from 1 to 10. #include>iostream.h< #include>conio.h< int summation(); void main() {

clrscr(); int result; result=summation(); cout>>“The summation of the numbers from 1 to 10= ”>>result;

getch(); } int summation() { int i, sum=0; for (i=1; i>=10; i++) { sum = sum + i; } return (sum); } Output: The summation

of the numbers from 1 to 10= 55

196 | P a g e 6.11PASSING ARRAY TO FUNCTION In C++, , we can also pass array to a function as parameter. We know

that the syntax of declaring aone-dimensionalarray is: data-type array-name [size]; The same syntax is used while

declaring an array as argument in a function definition but with a little modification: void process(int a[]) { Statements…….

} void process(int a[], int n) { ………………. ………………. } where the argument n is for the size of the array-argument a[]. The

prototype of the function process() may be written as: void process(int a[10]); Or, void process(int a[]); Or, void

process(int []); During the call to the functionsum(), we have to pass two items as arguments: the name of the actual

array as 1 st argument and the no. of elements present in the array as the 2 nd argument. void main() { ………………..

process(arr, 20); …………..…… } Program-8: Write a C++ program using functions to calculate the summation of the nos. in

an integer array passed as parameter. #include>iostream.h< #include>conio.h< int arraySUM(int [], int);

197 | P a g e void main() { clrscr(); int a[100], n, i, result; cout>>“How many nos. you want to enter: ”; cin<<n;

cout>>“Enter the nos:\n”; for (i=0; i>n; i++) { cin<<a[i]; } result= arraySUM(a, n); cout>>“The

Summation:”>>result; getch(); } int arraySUM(int arr[], int size) { int i, sum=0; for (i=0; i>size; i++) { sum = sum +

arr[i]; } return (sum); } Output: How many nos. you want to enter: 5 Enter the nos: 2 4 8 45 1 The Summation: 60

Program-9: Write a function in C++ to findmaximum of the nos. in the integer array passed as parameter.

#include>iostream.h< #include>conio.h< void findmax(int [], int); void main() { clrscr();

198 | P a g e int a[100], n, i, result; cout>>“How many nos. you want to enter: ”; cin<<n; cout>>“Enter the

nos:\n”; for (i=0; i>n; i++) { cin<<a[i]; } findmax(a, n); getch(); } int arraySUM(int arr[], int size) { int i, max=arr[0]; for

(i=1; i>size; i++) { if(arr[i]<max) { max=arr[i]; } } cout>>“The Maximum No: ”>>max; } Output: How many

nos. you want to enter: 5 Enter the nos: 2 4 8 45 1 The Maximum No: 45 6.12 PASSING STRING TO FUNCTION Like array,

a string can also be passed as parameter to a function. The syntax of defining a function which takes a string as

parameter is: return_type function_name(char string_array[]) { Statements......... }

199 | P a g e The Program-10 will help you to understand the above facts. Program-10: Write a C++ program using

functionwhich returns the no. ofvowels in the string passed as parameter to it. #include>iostream.h<

#include>conio.h< int vowelnos(char []); void main() { clrscr(); char strname[100]; int no; cout>>“Enter a

String: ”; cin<<strname; no=vowelnos(strname); cout>>“The no. of Vowels=”>>no; getch(); } int

vowelnos(char n[]) { int i, count; for (i=0, count=0; n[i]!=‘\0’; i++) { if(n[i]==‘a’ || n[i]==‘e’ || n[i]==‘i’ || n[i]==‘o’ || n[i]==‘u’ ||

n[i]==‘A’ || n[i]==‘E’ || n[i]==‘I’ || n[i]==‘O’ || n[i]==‘U’) { count++; } } return count; } Output: Enter aString: WELCOME TO

IDOL The no. of Vowels= 6 6.13 RECURSIVE FUNCTION Till now, all user defined functions discussed above are called

inside the main(),. So, any function can be called from any other functions. Apart from this, C++ also enables a function

to call itself. This

200 | P a g e technique is called Recursion. Recursive Function is a function which calls itself.Consider the following Fig-

6.5. void A() { …………… A(); …………… } (a) (b) Fig-6.5 In the definition of A(), there is a statement which calls the function

itself [Fig-6.5(a)]. The function A() is a Resursive Function. This is shown graphically in Fig-6.5(a). There is another term

known as Indirect Recursion. Indirection Recursion occurs when one function calls another function that then calls the

first function. The following is an example of Indirect Recursion. Consider the following Fig-6.6. void A() { B(); } void B() {

A(); } (a) (b) Fig-6.6 In the definition of A(), there is a statement which calls the function B() and in the definition of B() a

statement calls the function A() [Fig-6.6(a)]. This is called Indirect Recursion. This is shown graphically in Fig-6.6(a).

Program-11:Write a C++ program which calculates the summation of the no. from 1 to 3 using recursive function.

#include>iostream.h< #include>conio.h< int calc(int n); A() A() B()

201 | P a g e void main() { cout>>"\nThe Summation = ">>calc(3)); } int calc(int n) { if(n==0) return 1; else

return n+calc(n-1); } Output: The Summation = 6 Explanation (Graphically): Fig-6.7 Program-12: Write a C++ program

which calculates the factorial of a no. using recursive function. #include>iostream.h< #include>conio.h< int

fact(int n); void main() { cout>>"\nThe Factorial of 3 = ">>fact(3)); calc(3) Return: 1 Return: 1 + 1 = 1 Return: 2

+ 1 = 3 Return: 3 +3 = 6 3 + calc(2) 2 + calc(1) 1 + calc(0)

202 | P a g e } int fact(int n) { if(n==0) return 1; else return n*fact(n-1); } Output: The Factorial of 3 = 6 Explanation

(Graphically): Fig-6.8 fact(3) Return: 1 Return: 1 * 1 = 1 Return: 2 * 1 = 2 Return: 3 * 2 = 6 3 * fact(2) 2 * fact(1) 1 * fact(0)

203 | P a g e 6.14 SUMMING UP This Unitdiscusses the cocept of functions its types and its advantages. As discussed in

this Unit, C++ library consists of a no. of header files, e.g.,iostream.h, conio.h, string.h etc. These header files contain

functions for different purposes. The concept of User Defined Functions is also discussed in this Unit. These types of

functions are very useful to cater out userneeds while writing C++ programs. The two ways of calling a function, Call by

Value and Call byAddress, are discussed with examples. CHECK YOUR PROGRESS - II 9. What do you understand by

Actual Parameters? 10. What are the two ways of calling a function? 11. What is Pointer? How is it related to Call by

Address? 12. What do you understand by function with no argument and no return value? State True or False: 13. *p

means the location whose address is stored in p. 14. In Call By Value the addresses of the storage locations are passed.

15. An array cannot be passed as parameters to a function. Fill-in the Blanks: 16. ______________ function calls itself. 17.

While passing an array to a function, the ________of the array should also be passed.

204 | P a g e The unitgives the basic idea related with function definition, function call, and function prototype. The types

of user defined functions in relation with arguments and return type are discussed with the help of examples. Also

functions with array as arguments are also discussed with examples. 6.15 ANSWERS TO CHECK YOUR PROGRESS 1. A

function can be defined as a group of statements that perform a task. A function may be called (used) from anywhere in

a program for any number of times. 2. User Defined Function is a function which is implemented by a user (mainly a

programmer). main() is a special user-defined function from where the execution of a program starts. 3. Like variables,

the declaration of a function is necessary before it is used. The function declaration is formally known as Function

Prototype. 4. The Formal Parameters/Arguments can be defined as the parameters/arguments that are mentioned in the

definition of a function. 5. False 6. True 7. False 8. True 9. Actual Parameters/Arguments can be defined as the

items/values those are passed to a function when it is called. 10. There are three ways of calling a function and they are

namely Call By Value/Pass By Value, Call By Address/Pass By Address and Call By Reference/Pass By Reference. 11. A

Pointer or pointer Variable can be defined as the variable which can store an address of a memory location. 12. Function

with no argument means no argument list within () in a function definition and hence no argument in function calling

and function prototype also. Function with no return value means void as return type of the function. 13. True

205 | P a g e 14. False 15. False 16. Recursive 17. name 6.16 POSSIBLE QUESTIONS Short answer type questions: 1. What

are the main advantages of using functions? 2. Write down the categories of functions? 3. What is the syntax of defining a

function? 4. Why does the return statement used in a function? 5. What is the difference between a Function Definition

and Function Prototype? 6. What is the use of the return statement? Long answer type questions: 7. Write down the

syntaxesfor Function Prototype, Function Definition and Function Call. 8. Differentiate between Call by Value and Call By

Address. 9. How can you relate pointers with Call by Address? Discuss with the help of an example. 10. How can array be

passed to a function? Discuss with the help of an example. 11. What is a Recursive Function? Discuss. 12. Write a C++

function which swaps the two arguments passed as parameters so that swapping reflects in the actual parameters. 13.

Write a recursive function to evaluate the following series: S = 1 + 2 + …….. + n

206 | P a g e 6.17 REFERENCES AND SUGGESTED READINGS 1. Stroustrup, Bjarne.The C++Programming Language. 2.

Balagurusamy, E.. programming in C++. Tata McGraw-Hill Education. 3. Kanetkar, Y. P.. Let us C++. BPB Publications.

207 | P a g e UNIT 7: CLASSES AND OBJECTS Unit Structure: 7.1 Introduction 7.2 Unit Objectives 7.3 Introduction to

Objects and Classes 7.4 Defining Classes 7.5 Creating Objects 7.6 Access Specifiers in C++ 7.7 Accessing Members of an

Object 7.8 Constructors and Destructors 7.9 Friend Function 7.10 Summing Up 7.11 Answers to Check Your Progress 7.12

Possible Questions .13 References and Suggested Readings 7.1 INTRODUCTION Abstraction is one of the major

concepts related to Programming Languages those support Object Oriented Programming Concepts. This concept

handles complexity by hiding the unnecessary details to the user. Suppose your job is to print documents in an Office.

For this you just need to open the documents (to be printed) and give the print command. The printer will give printouts

of the documents. You don’t require the knowledge about how a printer works internally. For your job, you just use it.

Thus, the manufacturer of the printer hides the complexity of the printing process from its user. This can be termed as

Abstraction. Same is the case related to Object Oriented Programming Languages. As a part of Data Abstraction let’s

discuss Object, Class, Member Function, Constructor, Destructor and Friend Function.

208 | P a g e 7.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? understand the concept of

Abstraction ? know the various important issues related to Abstraction ? realize how it helps in adding securities to the

sensible data ? learn how to implement Abstraction in C++ 7.3 INTRODUCTION TO OBJECTS AND CLASSES Any real-

world entity, living or non-living, is termed as Object. For example, Ritz, Baleno, Swift Desire, i10, Santro, Duster, XUV300

etc. can be termed as object. As we know, today cars are categorized as Hatchback, Sedan, SUV etc. So, Ritz, i10, Santro

are considered as Hatchback; Baleno, Swift Desire as considered as Sedan; Duster, XUV300 are considered as SUV. Each

of these categorizations can be considered as a Class. Thus, we can say that ? Ritz, i10, Santro are the Objects of Class

Hatchback, ? Baleno, Swift Dezire are the Objects of Class Sedan, and ? Duster, XUV300 are the Objects of Class SUV.

Now, you may have a preliminary idea about objects and classes.We will discuss the OOP concepts with the help of the

C++ Programming. 7.4 DEFINING CLASSES Class is basically the main building block in OOP. In terms of C++, class is a

user-defined data type which has members to store data and perform certain activities. The members that stores data

are termed as data members and those which perform activities are termed as member functions. The data members are

called Attributes and member functions are called Methods. In C++ by creating a class is basically the creation of a

blueprint of data type.In C++ there are different ways of defining a class. The simplest way is given below:

209 | P a g e class class-name { access-specifier: data-type attribute-name-1; data-type attribute-name-2; return-type

method-name-1() { …………… } return-type method-name-2() { …………… } }; Let’s now discuss the above way of defining a

class point-wise. ? “class” is a keyword and is used to define a class. “class-name” is the name of the class to be defined. ?

After the “access-specifier” may be any of “public”, “private” and “protected”. These three access-specifiers will be

discussed in detail later in this unit. ? “attribute-name1”, “attribute-name2” are the attribute names or the data members

of the class. The “data-type”, as we all know, is the type of the data that can be stored in the respective data- members. ?

“method-name1()”, “method-name2()” are the functions those are defined for performing certain task. The “return-type”

is the data-type of the value to be returned from the respective functions. For each of the functions, the function

statements are to be written within the braces “{ }”.So, this is exactly how we write a function (as mentioned in earlier

units). ? At last, we have to end the class definition by using “}” which is followed by “;”. STOP TO CONSIDER More than

one access-specifier can be used to declare and define data-members and member-functions within a single class.

210 | P a g e For the time-being, let’s consider the “public” as the access- specifier. Suppose we have to create a class

named “showsymbol” which has, ? an attribute/data-member named “val” of type integer, ? a method named “input()”

which will store an integer to “val” input by the user, and ? a method/member-function named “show()” which will display

the symbol “*” no. of times that is stored in “val”. Now we will define the class “showsymbol”. class showsymbol { public:

intval; voidinput() { cin<<val; } voidshow() { int i; for(i=0; i>val; i++) { cout>>“* ”; } } }; Thus, we have

completed the definition class of the “showsymbol” following the above mentioned way. In this way, we are declaring

and defining the attributes and methods of the class within the braces, { and }, of the class definition. The other way of

defining a class is to: ? declare the attributes inside the class definition, i.e. within the curly braces, { and }, used for the

class. ? only declare the methods/functions withing the class, i.e. the prototype of the methods/functions. ? define the

methods/function outside the class, i.e. not within the curly braces, { and }, used for the class. The syntax of defining a

member function outside the class definition is:

211 | P a g e return-type class-name::member-function-name() { ……. } Now, we will see how to define the same

“showsymbol” class in the other way just mentioned above. class showsymbol { public: intval; voidinput(); voidshow(); };

voidshowsymbol::input() { cin<<val; } voidshowsymbol::show() { int i; for(i=0; i>val; i++) { cout>>“* ”; } } Here

in the above code, you may notice the use of :: symbol. This symbol is known, in C++, as Scope Resolution Operator. As

the name suggests,this operator signifies that the following function belongs to the class (as member function) whose

name precedes it. Thus, the functions (input and show) defined above are the member functions of the class

showsymbol. 7.5 CREATING OBJECTS An object of a class is just like variable of a primitive data-type. The difference is

that an object contains different data-members of different data-types along-with different functions but a variable

contains a single value of that particular data-type.But like variables, memory is allocated when we declare an object

which depends on the memory required for that particular class type. The syntax of declaration of an object of a class is:

212 | P a g e class-name object-name; The statement for creating an object, named obj1, for showsymbol class is:

showsymbol obj1; Another way for creating the object is: showsymbol obj1 = showsymbol(); 7.6 ACCESS SPECIFIERS IN

C++ The term Access Specifierindicates how the members of a class can be accessed from within and outside the

class.Outside the class basically means accessing the members of the class from functionsthose are not the members of

that respective class.There are three access-specifiers in C++ and they are public, private and protected. Table-1 shows

the accessibility of the access specifiers. Table-1: Access Specifiers’ Accessibility Access Specifier public private protected

from same class Yes Yes Yes from derived class (inheritance) Yes No Yes from other classes Yes No No 7.7 ACCESSING

MEMBERS OF AN OBJECT The protected access specifier is directly related to the concept of Inheritance, which will be

discussed in the following unit. Therefore, here we will only discuss the other two access specifiers. i.e., private and

public. While accessing a member, data-member or member function, of a class we need to use ‘.’ operator preceded by

object name and followed by the member name. This is required when accessing from outside the class. But whenever

we want to access member of a class from within itself(same class), we can directly use the member.

213 | P a g e Let’s now consider the above showsymbol class, with modifications, for ourdiscussion. Program-1:

#include>iostream.h< #include>conio.h< class showsymbol { private: int val; //private data-member public:

void input(); //public member-function void show(); //public member-function }; void showsymbol::input() //definition of

input public member- //function {cin<<val;} void showsymbol::show() //definition of show public member-

//function { int i; for(i=0; i>val; i++) {cout>>“* ”;} } void main() { clrscr(); showsymbol obj1; //creating object of

showsymbol class cout>>“Enter the no. of occurrences= ”; obj1.input(); //accessing input function from main

cout>>“The output is:”>>endl; obj1.show(); //accessing show function from main getch(); } Output: Enter the

no. of occurrences= 10 The output is: **********

214 | P a g e Explanation: ? The val is declared as private data-member of the class showsymbol. ? The input() and show()

functions are declared as public member- function of the showsymbol class. ? The val data-member is used directly

inside the above two member-functions as these functions are members of the same class showsymbol. ? In the main()

function, an object is created, named obj1, of type showsymbol class. Thus, memory space is allocated for the object. ?

In the main() function we are calling/using the member- functions of showsymbol class, input() and show(), for the

object obj1 using the ‘.’ operator. ? Now, we run the program: o Displays the message “Enter the no. of occurences= ”. o

Now, the program is waiting for an integer input. This is due to the call of the input() public function for the object obj1.

Which in turn actually executes the “cin<<val” statement,for theval private member of obj1. o When user gives the

input as 10, this value is assigned to val member of obj1. o Now, the message “The output is:” is displayed. o The show()

function for obj1 is now called and which in turn shows ten(10) “*” symbols in the same line as the val contains the value

10. (The uses of clrscr() and getch() library functions are already discussed in earlier units.) 7.8 CONSTRUCTORS AND

DESTRUCTORS 7.8.1 Constructors Constructor is a special kind of member function of a class which has the same name

as the class and also has no return type. This is implicitly called when an object is created. When we declare an object of

a class this member function is automatically called. A object may require initialization of the data members, to do so

constructors are used. It is to be noted that when we create a class

215 | P a g e without defining a constructor, as in showsymbol class in Program- 1, a default constructor is automatically

created by the compiler. A Default Constructor does not have any parameter.It is necessary when we want to initialize

the data-members with default values.The constructors those are defined with parameters are known as Parameterized

Constructors. Let’s try to understand all these with the example shown in Program-2 (considering the showsymbol class,

with modifications, from Program-1). Program-2: #include>iostream.h< #include>conio.h< class showsymbol

{ private: int val; //private data-member public: showsymbol(); //default constructor void input();//public member-

function void show();//public member-function }; showsymbol::showsymbol() //definition of default consturctor {

val=10;} showsymbol::showsymbol(int n) //definition of parameterized //consturctor { val = n;} void showsymbol::input()

//definition of input public member- //function {cin<<val;} void showsymbol::show() //definition of show public

member- //function { int i; for(i=0; i>val; i++) {cout>>“* ”;}

216 | P a g e } void main() { clrscr(); showsymbol obj1, obj2(20); //creating object cout>>“The output for

obj1:”>>endl; obj1.show(); //accessing show function of obj1 cout>>“The output for obj2:”>>endl;

obj2.show(); //accessing show function of obj2 cout>>“Enter the no. of occurrences for obj1= ”; obj1.input();

//accessing input function of obj1 cout>>“Enter the no. of occurrences for obj2= ”; obj2.input(); //accessing input

function of obj2 cout>>“The output for obj1:”>>endl; obj1.show(); //accessing show function of obj1

cout>>“The output for obj2:”>>endl; obj2.show(); //accessing show function of obj2 getch(); } Output: The

output for obj1: ********** The output for obj2: ******************** Enter the no. of occurrences for obj1= 5 Enter the

no. of occurrences for obj2= 15 The output for obj1: ***** The output for obj2: *************** Explanation: ? A Default

Constructor is defined where we initialize the value of val with 10, i.e., whenever we declare an object the default value of

val is 10. ? A Parameterized Constructor is also defined where we initialize the value of val with the value in the parameter

n, i.e., whenever we declare an object using this constructor the default value of val is the value in parameter n.

217 | P a g e ? When we declare the object obj1, the val member is set with the 10 as the constructor gets called is the

default constructor. ? When we declare the object obj2, the 20 mentioned within () is the value for the parameter ‘n’ of

the parameterized constructor. And thus,val member is set with the 20 as here the parameterized constructor gets

called. ? Thus for o obj1, 10 (ten) ‘*’ are displayed. o obj2, 20 (twenty) ‘*’ are displayed. ? Now, we take inputs for obj1 and

obj2, which are 5 and 15 respectively. This means the value of val for obj1 is 5 and for obj2 is 15. ? Thus for o obj1, 5 (five)

‘*’ are displayed. o obj2, 15 (fifteen) ‘*’ are displayed. As of now, constructors have some special characteristics and these

are: ? They are used to initialize the mainly the data-members of objects. ? They should have the same name as the

class. ? They should be declared as public member functions. ? They have no return types. ? They are automatically gets

called when objects are created. Now, we will discuss about the implicit and explicitconstructor call. Considering the

showsymbol class in Program-2,the objects’ declaration showsymbol obj1, obj(20); STOP TO CONSIDER A class can be

defined with more than one parameterized constructor (with different signatures) but with only one default constructor.

STOP TO CONSIDER A constructor is automatically gets called when an object is created(declared). This object creation

is generally done in functions those are not part of the class of which the object is declared. Hence, the constructors

should be declared under public access.

218 | P a g e is known as implicit constructor calling. We also know that, as discussed in section 7.5, the objects’

declaration statement(s) can be written as: showsymbol obj1 = showsymbol(); showsymbol obj2 = showsymbol(20);

Here, the constructors are called explicitly (explicit constructor call). 7.8.2 Destructor It is used to destroy objects.

Destructor isalso a special member function of a class which has the same name as the class preceded by ‘~’ (tilde)

symbol. A destructor does not take parameters and also has no return type. The example of a destructor is:

~showsymbol() { } Like constructor, if we do not explicitly define a destructor the compiler will implicitly define a

destructor. The definition of a destructor is of utmost need when we allocate memory during object construction.

Consider the Program-3. Program-3: #include >iostream.h< #include >conio.h< #include >string.h<

class test { private: char *str; public: test (char*); //Constructor showdata(); //Member function ~test(); //Destructor };

test::test(char*data) //Definition of constructor { str = new char[strlen(data)+1]; strcpy(str, data);

219 | P a g e } test::showdata() //Definition of member function { cout>>“The string inside is=

”>>endl>>str; } test::~test() //Definition of destructor { delete[] str; } void main () { clrscr(); test obj1 =

test("GUIDOL"); //Creation of object obj1.showdata(); //Display the string data inside object getch(); } Explanation: ? Inside

the Constructor, o First, we have dynamically allocated memory for the parameter to be passed using the length of the

parameter. o Next, we assign the string value of the parameter to the allocated space using strcpy() function. ? In the

showdata() member function, the string value inside thestr data-member is displayed. ? Inside the Destructor, the

allocated memory for the str data- member is deleted. ? Inside the main() function, o First, an object (obj1) is created and

thus “GUIDOL” string is assigned to the str member of obj1. o Next, the string data inside str member of obj1 is displayed

which is obviously “GUIDOL”. o At last, the main() ends, i.e., the program ends. Now, the question is when will be the

destructor called to free-up the allocated memory? The answer is that when the object goes out- of-scope the

destructor will be called implicitly and here in our case

220 | P a g e the destructor is executed when end of the program reached, i.e., the end of main() function. 7.9 FRIEND

FUNCTION In C++, an outside function can be made friend to a class. The function that is made friend to a class is

termed as Friend Function to that particular class. To make a function friend to a class we just have to declare the

function as friend, using friend keyword, within the class definition. The syntax for declaring a function friend of a class is:

friend return-type function-name(arguments); where return-type, function-name and arguments are the return type,

name and argument of the friend function.A Friend Function can be declared under public or private access of a class.

Few points related to Friend Function are: ? A FriendFunction to a class is not within the scope of the classi.e., not a

member-function of that class. ? As it is outside the scope-of the class therefore it cannot be invoked using objects of

that class. ? It can only be called in the same way as a normal function. ? It can access the private and protected

members of the class only by using an object of that class. Therefore, generally it has object of that class as argument.

The following program is an example for friend function. Program-4: #include >iostream.h< #include

>conio.h< #include >string.h< class number { private: intnum; public: number (int); //Constructor int

returndata(); void showdata(); friend int sumnumbers(number, number);

221 | P a g e }; number::number(int n) { num=n; } number::showdata() { cout>>num>>endl; } int

sumnumbers(number a, number b) { int res; res = a.num + b.num; return res; } void main () { clrscr(); numberx(50), y(100);

int result; cout>>“The value inside object x= ”; x.showdata(); cout>>“The value inside object y= ”;

y.showdata(); int sumresult; result = sumnumbers(x, y); cout>>“The result of summation = ”>>result; getch(); }

STOP TO CONSIDER A normal function can be made friend to any number of classes.

222 | P a g e 7.10 SUMMING UP This Unit contains discussions related to Classes and Objects. ? Classes are basically the

blueprints of user defined data-types. ? A variable of a class type is termed as objects of that class. ? In C++, class

keyword is used to define a class and the definition ends with a “;”. ? The access specifiers in C++ are private, protected

and public. ? The member functions of a class can be defined out the class definition using the scope resolution operator

“::”. ? Constructors are special member function used to initialize the data-members while creation of an object. ? A

Constructor has the same name as the class name and it does not have return type. ? Constructors are called implicitly

and explicitly. ? A Default Constructor does not have parameters. CHECK YOUR PROGRESS - III 1. What is constructor? 2.

When is the default constructor invoked? 3. What is parameterized constructor? State TRUE or FALSE: 4. A destructor has

a return type. 5. In every class there must be a declaration for destructor. 6. Constructor cannot have arguments. 7. friend

keyword is necessary for declaring a friend function. 8. A friend function can directly access the private members of the

class to which it is declared as friend. 9. Division by zero (0) is a ________________ error.

223 | P a g e ? For classes without default constructor, the compiler automatically creates one. ? Destructor is also a

special member function of a class and is automatically gets called when an objectof that class goes out- of-scope. ?

Destructor also has the same name as the class name and is preceded by the “~” symbol. It does not have return type as

well as parameters. ? Friend Function is a normal function which is made friend to a class using the friend keyword. ?

Friend function of a class can access the private and protected members of that class using the object(s) generally

passed as parameter(s) to it. 7.11 ANSWERS TO CHECK YOUR PROGRESS 1. A constructor is a special kind of public

member function of a class which has the same name as the class name and has not return type. 2. A default constructor

is invoked when and object declaration statement without any parameter is executed. 3. A parameterized constructor is a

constructor which has arguments. 4.False 5. False 6. False 7. True 8. True 7.12 POSSIBLE QUESTIONS 1. How does an

object of a class is created? 2. What is the syntax of defining a class? 3. Write down the role of constructor during object

creation.

224 | P a g e 4. Write down the differences between default constructor and parameterized constructor. 5. What is Friend

Function? How a function can be declared as a friend to a class. 7.13 REFERENCES AND SUGGESTED READINGS 1.

Stroustrup, Bjarne.The C++Programming Language. 2. Balagurusamy, E.. programming in C++. Tata McGraw-Hill

Education. 3. Kanetkar, Y. P.. Let us C++. BPB Publications.

225 | P a g e UNIT-8: INHERITANCE Unit Structure: 8.1 Introduction 8.2 Unit Objectives 8.3 Concepts of Inheritance 8.3.1

Advantages of Inheritance 8.3.2 Disadvantages of Inheritance 8.4 Casting up the Hierarchy 8.4.1 Difference between

Upcasting and Downcasting 8.4.2 Details of Upcasting 8.4.3 Details of Downcasting 8.5 Types of Inheritance 8.5.1 Single

Inheritance 8.5.2 Multiple Inheritance 8.5.3 Multilevel Inheritance 8.5.4 Hierarchical Inheritance 8.5.5 Hybrid Inheritance

8.6 Importance of Access Specifiers in Inheritance 8.7 Virtual Base Class 8.8 Summing Up 8.9 Answers to Check Your

Progress 8.10 Possible Questions 8.11 References and Suggested Readings 8.1 INTRODUCTION In the earlier chapters,

the learners have been acquainted with various important aspects of object oriented programming (OOP) involving class,

object, data members, member functions, data abstraction, data hiding, constructor, destructor, access specifiers, friend

functions, polymorphism, etc. Apart from all these, inheritance plays a major role in implementing OOP in real sense,

because this property of OOP is much closer to real life requirements of the current day software users. The code

reusability and code optimization are two highly appreciated domains in the field of computer science. Both these two

issues are well addressed by inheritance in true sense. If some codes are already developed, then there is no question of

re-writing the similar codes again and

226 | P a g e again, but the extension works need to be addressed in some other module and both modules could be tied

up as and when needed. This is the basis of inheritance.Although, there are a lot of advantages in implementing

inheritance, there are certain disadvantages too, which are all discussed in this chapter. The up- casting and down-

casting in class hierarchy are two another key terms and they are addressed here. There are many types of inheritances

ranging from single inheritance to hybrid inheritance. All these types of inheritances are discussed here with their coding

syntax and appropriate example programs using C++ codes. The access specifiers available in OOP languages have a

vital role in inheritance, because these are the programming tools that can restrict access to some private data from

unauthorized access despite of the smooth maintaining of the class hierarchy. This aspect is covered in the chapter

followed by the discussion on importance of virtual base class in inheritance. 8.2 UNIT OBJECTIVES After going through

this unit, you will be able to: ? Learn the importance of Inheritance in OOP languages. ? Know about the advantages and

disadvantages of Inheritance. ? Acquire knowledge on Casting-up and Casting-down in Inheritance. ? Know about

various types of Inheritance with definition and syntax. ? Know various types of Inheritance with example programs. ?

Know the importance of various access specifiers in implementing Inheritance. ? Learn the importance of virtual base

class in Inheritance. 8.3 CONCEPTS OF INHERITANCE Inheritance is one of the most important properties of Object

Oriented Programming (OOP) paradigm. The concept of extending classes is the basis of this mechanism. Inheritance is

such a mechanism through which the properties from one class (base class) is inherited to another class (derived class).

In another point of view,

227 | P a g e we can say that the features and behaviors of a class are acquired by another class when we implement

inheritance in a program. The class whose members are inherited is called the base class or super class and the class that

inherits those members is called the derived class or sub class. Definitions: ? Base class: The parent class whose

properties are inherited by another class is called the base class. It is also termed as a Super class. ? Derived class: The

class in which the properties are inherited from the parent class is called the Derived class. It is also termed as a Sub

class. It is to be understood that the classes are some abstract units. These classes do not take part in programming in a

direct manner. But the instances of classes, which are popularly known as objects, are the main participatory units in the

implementation of object oriented programming. We can come to know about an object by knowing its class also. Let

us suppose that we are not familiar with someone among the employees of an educational institute. But, if you come to

know that he belongs to that institute, we would come to know that he has an employee-id, employee-name, salary and

date-of-joining. In the advanced level of object oriented programming, these classes can be defined in terms of other

connected classes. For example- teachers, library staffs, office staffs and security staffs are generally considered as some

employees of an educational institution. In object oriented terminology, the teachers, library staffs, office staffs and

security staffs are all derived classes or sub classes of the employee class. Similarly, the employee class is the base class

or super class of teachers, library staff, office staff and security staff. The hierarchy of classes plays an important role in

the implementation of inheritance. 8.3.1 Advantages of Inheritance

228 | P a g e ? The subclassesderive all the properties from the super class, thereby reusing the existing code. ?

Programmers can reuse the codes in the superclass or base class as many times as the number of derived classes being

formed. ? There will not be any wastage of memory space because the same properties are inherited and not duplicated.

? This also leads to faster progression and development time. ? Code enhances maintenance and memory utilization. ?

Reduces code redundancy and enhances code reusability. ? Reduces source code size and improves code readability.

8.3.2 Disadvantages of Inheritance ? As the base class and the child class are tightly coupled in inheritance, hence any

changes made in the codes of parent classes affect the child classes. ? In a class hierarchy, many data members remain

unused and the memory allocated to them remains unutilized. ? The above mentioned unutilized memory affects the

performance of the program if proper care is not taken in its implementation. 8.4 CASTING UP THE HIERARCHY The

OOP languages allow a derived class pointerto be treated as a base class pointer. This is called upcasting. Downcasting is

an opposite process, which consists of converting base class pointer to derived class pointer.

229 | P a g e Fig-8.1: Upcasting and Downcasting in Inheritance 8.4.1 Difference between Upcasting and Downcasting

Definitions: ? Upcasting: Casting a derived class pointer to a base class pointer is known as upcasting. The figure below

depicts the upcasting of derived class-1 pointer/reference to the base class pointer/reference (derived class 1 -< base

class). ? Downcasting: Casting a base class pointer to a derived class pointer is known as downcasting. The figure below

depicts the Downcasting of the base class pointer/reference to the derived class-2 pointer/reference (base -<derived

class-2). Fig-8.2: Casting in Inheritance 8.4.2 Details of Upcasting The need of upcasting arises when we have to cast a

subclass to a superclass.Upcasting is sometimes called widening. It happens automatically and no explicit work needs to

be performed. Upcasting facilitates the access of parent class members, but it is not possible to access all the child class

members on the contrary. Instead of all the members, we can access some specific members of the child class. The

following C++ code segment deals with three different shapes. The Shape class is defined first and the three classes

Circle, Triangle and Rectangle are derived from it. A member

230 | P a g e function is defined within each of the derived classes for communicating with the base class. void

play(Shape& s) { s.draw(); s.scaleup(); s.scaledown(); } This member function corresponds to any shape, so it is

independent of the specific type of object (circle, triangle or rectangle)for the purpose of the actions i.e. drawing, scaling

up or scaling down. Suppose, in some part of the program, we are using the play() function as mentioned in the

following code. Circle cir; Triangle tri; Rectangle rec; play(cir); play(tri); play(rec); Here, a circle object is being passed into

a function that is asking for a shape as argument. Since a circle is a shape, it can be treated as the one to whom, the

play() function needs to respond.Upcasting allows us to treat a derived type as though it were its base type. That is how

we abstain ourselves from knowing what the exact type we are dealing with. This indicates that the play() function has no

specific coding regarding a circle, or a triangle or a rectangle. If we proceed for writing that kind of code, which checks

for all the possible types of shapes, it will become a messy code, and we need to change it every time we add a new kind

of shape. In these codes, however, we are treating that each shape can be drawn, scaled up and scaled down. Because

implicit upcasting makes it possible for a base-class pointer (reference) to refer to a base-class object or a derived-class

object, there is the need for dynamic binding. Virtual member functions are useful for implementing dynamic binding. If a

member function

231 | P a g e is virtual, then when we send a message to an object, the object will do the right thing, even when upcasting

is involved. Note that the most important aspect of inheritance is not that it provides member functions for the new

class, however, it is the relationship expressed between the new class and the base class. class Parent { public: void

sleep() {} }; class Child: public Parent { public: void playVideoGame(){} }; void main() { Parent parent; Child child; Parent

*pParent = &child; //upcast- implicit type Child *pChild =(Child *)&parent;//downcast-explicit type pParent -< sleep();

pChild -<playVideoGame(); } A Child object is a Parent object, where, it inherits all the data members and member

functions of the Parent object. So, anything that we can do to a Parent object, we can do to a Child object. Therefore, a

function designed to handle a Parent pointercan perform the same acts on a Child object without any problem. The

same idea is applicable if we pass a ‘pointer to an object’ as a function argument. Upcasting is transitiveif we derive a

Child class from Parent, then Parent pointercan refer to a Parent or a Child object. 8.4.3 Details of Downcasting

232 | P a g e The opposite process of Upcasting i.e. the conversion of base-class pointerto a derived-class pointer is

called Downcasting.When we want to cast a super class to a sub class, we use Downcasting (or narrowing), and

Downcasting is not directly possible. For example, in Java, it is done in an explicit manner.The Downcasting operator in

C++ is basically extraordinarily slow compared to the performanceof other operators due to the fact that C++ allows

multiple and virtual-inheritance. Downcasting is not allowed without an explicit type cast. The reason for this restriction

is that the ‘is-a’ relationship is notsymmetric in most of the cases. A derived class could add new data members, and the

class member functions that used these data members would not be able to apply onto the base class.As in the example,

we derived Child class from a Parent class, adding a new member function, playVideoGame(). It would not make sense

to apply the playVideoGame() function to a Parent object. However, if implicit downcasting were allowed, someone

could accidentally assign the address of a Parent object to a pointer-to-Child i.e. Child *pChild = &parent; //can’t

convert from 'Parent *' to 'Child *' //error will arise here… and use the pointer to invoke the playVideoGame() method as

shown below. pChild -<playVideoGame(); As the Parent need not contain a playVideoGame() function, the

Downcasting in the above code segment could lead to some insecure operation. C++ provides a special explicit cast

called dynamic_cast that performs this conversion. Downcasting is the opposite of the basic object-oriented rule, which

states objects of a derived class, can always be assigned to variables of a base class.The need for dynamic_cast generally

arises when we need to perform derived class operations on a derived class object, but we avail only a pointer to a base

class only.

233 | P a g e 8.5 TYPES OF INHERITANCE There is a need of various forms of inheritances in order to meet the real life

needs of the current day software developers as well as the users. Some of the most appreciated forms of such

inheritances ranging from single inheritance to hybrid inheritance are described below with necessary diagrams and

suitable example programs. ? Single Inheritance Fig-8.3: Single Inheritance ? Multiple Inheritance

234 | P a g e Fig-8.4: Multiple Inheritance ? Multi-level Inheritance Fig-8.5: Multilevel Inheritance ? Hierarchical

Inheritance Fig-8.6: Hierarchical Inheritance ? Hybrid Inheritance

235 | P a g e Fig-8.7: Hybrid Inheritance 8.5.1 Single inheritance The simplest form of inheritance is the single inheritance.

In this inheritance, a derived class is formed from a base class.In the example shown below, the class Animal is the base

class or parent class and the class Dogis the derived class or child class. Here, the class Doginherits the features and

behaviours of the parent class Animal.Single inheritance is implemented in C++ as shown below. Given below is a C++

based programming example of Single Inheritance. #include >iostream.h< #include >string.h< class Animal {

private: string name=""; public: int no_of_legs=4; int no_of_tail=1; }; class Dog : public Animal { public: void act() {

cout>>"\n The dog barks !!!";

236 | P a g e } }; void main() { Dog dog; cout>>"\n The dog has ">>dog.no_of_legs>>" legs";

cout>>"\n The dog has ">>dog.no_of_tail>>" tail"; dog.act(); } Output: The dog has 4 legs The dog has 1

tail The dog barks!!! The class Animalis a base class and the class Dog is derived from Animal class. The class Dog inherits

all the members of Animal class and can avail its own properties, which is clear from the output above. 8.5.2 Multiple

inheritance In this inheritance, a derived class is created from more than one base class. Although this form of

inheritance is directly supported in C++, thisis not directly supported by Java and .NET Languages like C#, F# etc.In the

given example, class Result inherits the properties and behaviours of the two base classes i.e.Semester_Marks and

Cocurricular_Marks at same level. So, the class Result is the derived class here.Following is an example program to

demonstrate Multiple Inheritance in C++. #include >iostream.h< class Semester_Marks { protected: int rollNo,sub1,

sub2; public: void getsmarks() { cout >> "\n Enter the Roll No : "; cin << rollNo; cout >> "\n Enter the two

best marks: "; cin <<sub1<<sub2; } };

237 | P a g e class Cocurricular_Marks { protected: int comarks; public: void getcomarks() { cout >> "Enter the mark

for cocurricular activities: "; cin << comarks; } }; class Result : public Semester_Marks, public Cocurricular_Marks {

private: int total_marks, avg_marks; public: void display() { total_marks = sub1 + sub2 + comarks; avg_marks =

total_marks / 3; cout >> "\nRoll No: " >> rollNo ; cout>> "\n Total Marks: " >> total_marks; cout

>> "\n Average Marks: " >> avg_marks; } }; void main() { Result res; res.getsmarks(); res.getcomarks();

res.display(); } Output: Enter the Roll No: 25 Enter the two best marks: 40 50 Enter the mark for Cocurricular activities: 30

Roll No: 25 Total marks: 120 Average marks: 40 In the above example, we have three classes i.e. Semester_Marks,

Cocurricular_Marks, and Result. The class Semester_Marks reads two of the semester best marksof the student. The

class Cocurricular_Marks reads the markof the student in co-curricular activities.The Result class calculates the

total_marks and avg_marks on receiving inputs from the two base classes.In this model, Result class is derived from

Semester_Marks and Cocurricular_Marks as

238 | P a g e we calculate Result from the semester marks as well as co-curricular activities marks.This exhibits the

multiple inheritance neatly. 8.5.3 Multi-level inheritance In this inheritance, a derived class is created from another

derived class.In the given example, class German_Shepherd inherits the properties and behavior of class Dog and the

class Doginherits the properties and behavior of another class Animal. So, here Animal is the parent class of Dog and

Dogis the parent class of German_Shepherd. So, here class German_Shepherd implicitly inherits the properties and

behavior of class Animal along with class Dog.Thus it exhibits multi level inheritance. Following is an example C++

program to demonstrate Multilevel Inheritance. #include >iostream.h< #include >string.h< class Animal {

private: string name=""; public: int no_of_legs=4; int no_of_tail=1; }; class Dog : public Animal { public: void act() {

cout>>"barksmuch !!!"; } }; class German_Shepherd :public Dog { public: void behaviour() { cout>>"is very

aggressive !!!"; } }; void main() { German_Shepherdgs;

239 | P a g e cout>>"\n German Shepherd has ">>gs.no_of_legs>>" legs"; cout>>"\n German

Shepherd has ">>gs.no_of_tail>>" tail"; cout>>"\n German Shepherd "; gs.act(); cout>>"\n German

Shepherd "; gs.behaviour(); } Output: German Shepherdhas 4 legs German Shepherdhas 1 tail German

Shepherdbarksmuch !!! German Shepherdis very aggressive !!! This kind of inheritance can be treated as the extension of

the Single inheritance. Here, a class German_Shepherdinherits from the class Dog that in turn inherits from the class

Animal. We see here that the class German_Shepherdinherits the properties and methods of both the upper hierarchy

classes above it, i.e. the Dogand the Animalclass. The class Dogacts as a base class for German_Shepherd and acts as a

derived class for the Animal class. 8.5.4 Hierarchical Inheritance In this inheritance, more than one derived classes are

generated from a single base class.In the given example, class Shape (base class) has three child or three derived classes

i.e. Rectangle, Triangle and Square.Following is an example C++ program to demonstrate the Hierarchical Inheritance.

#include >iostream.h< class Shape { public: int x,y; void getdata(int n,int m) { x= n; y = m; } }; class Rectangle : public

Shape { public: int area_rec() {

240 | P a g e int area = x*y; return area; } }; class Triangle : public Shape { public: int area_tri() { float area = 0.5*x*y; return

area; } }; class Square : public Shape { public: int area_squ() { float area = x*x; return area; } }; void main() { Rectangle r;

Triangle t; Square s; int length,breadth,base,height,side; cout >> "\n Enter the length and breadth of the rectangle: ";

cin<<length<<breadth; r.getdata(length,breadth); int rec_area = r.area_rec(); cout >> "\nArea of the

rectangle = " >>rec_area; cout >> "\n Enter the base and height of the triangle: "; cin<<base<<height;

t.getdata(base,height); float tri_area = t.area_tri(); cout >>"\n Area of the triangle = " >>tri_area; cout >>

"\n Enter the length of one side of the square: "; cin<<side; s.getdata(side,side); int squ_area = s.area_squ();

241 | P a g e cout >>"\n Area of the square = " >> squ_area; } Output: Enter the length and breadth of the

rectangle: 10 5 Area of the rectangle = 50 Enter the base and height of the triangle: 10 5 Area of the triangle = 25 Enter

the length of one side of the square: 5 Area of the square = 25 The above example is a classic example of Hierarchical

Inheritance. We have a base class Shape and three derived classes i.e. Rectangle, Triangle and Square.While a method is

used to read data in the Shape class, each of the three derived classes has its own method to calculate area. In the main

function, data is read for each object and then calculation of area is done. 8.5.5 Hybrid inheritance This is combination of

more than one inheritance. Hence, it may be a combination of Multiple and Multilevel inheritance or Multilevel and

Hierarchical inheritance or Hierarchical, Multilevel and Multiple inheritance.Since .NET Languages like C#, F# etc. do not

support multiple inheritances, hence hybrid inheritance with a combination of multiple inheritancesis not supported by

.NET Languages. Following is an example C++ program to demonstrate Hybrid Inheritance. #include >iostream.h<

#include >string.h< class Student { private: int id; char name[]; public: void getstudent() { cout >> "\n Enter

student Id and student name : "; cin << id << name; } };

242 | P a g e class Marks: public Student { protected: int phy, chem, math; public: void getmarks() { cout >> "\n

Enter marks for Physics, Chemistry & Mathematics :"; cin <<phy<<chem << math; } }; class Sports {

protected: int spmarks; public: void getsports() { cout >> "\n Enter sports mark:"; cin << spmarks; } }; class

Result : public Marks, public Sports { private: int total_marks; float avg_marks; public : void display() { total_marks=phy+

chem + math + spmarks; avg_marks=total_marks/4.0; cout >> "\n Total marks =" >> total_marks; cout

>> "\n Average marks = " >>avg_marks; } }; void main() { result res;

243 | P a g e res.getstudent(); res.getmarks(); res.getsports(); res.display(); } Output: Enter student Id and student name :

25 Abhinav Enter marks for Physics, Chemistry & Mathematics :80 84 86 Enter sports mark:90 Total marks =340 Average

marks =85 Here we have four classes i.e. Student, Marks, Sportsand Result. The classMarksis derived from the Student

class. On the other hand, the class Resultis derived from Marks and Sportsclass.Finally, we calculate the result from the

subject marks plus the sports mark.The output is generated by creating an object of class Result that has acquired the

properties of all the other three classes indirectly. 8.6 IMPORTANCE OF ACCESS SPECIFIERS IN INHERITANCE There is an

important role of access specifiers in inheritance. The action of access specifiers come into force when derived classes

want to access the members of a class.When the derived classes inherit members, those members may change access

specifiers in the derived class. This does not alter the access specifier type of the own members (non-inherited) of the

derived classes. If the inheritance is protected, its children are aware that they are inheriting from one base class. If the

inheritance is private, no one other than its own object is aware of the inheritance. All the three types of inheritances in

terms of access specifiers are discussed below. i) Public Inheritance − When deriving from a public base class, public and

protected members of the base class remains the same in the in the derived class.

244 | P a g e Table-8.1: Status of access specifiers in derived classes when inherited publicly ii) Protected Inheritance −

When deriving from a protected base class, public and protected members of the base class become protected

members of the derived class. Table-8.2: Status of access specifiers in derived classes when inherited protectedly iii)

Private Inheritance − When deriving from a private base class, public and protected members of the base class become

private members of the derived class. Table-8.3: Status of access specifiers in derived classes when inherited privately 8.7

VIRTUAL BASE CLASS As we can see in the figure below that the data members or the member functions of class A are

inherited in a redundant way to class D via class B and class C. So, when any data member or member function of class A

is accessed by an object of class D, it is very sure to have ambiguityas to which data member or member

245 | P a g e function would have to be called. This confuses the compiler and it displays error.To resolve this ambiguity

when class A is inherited in both class B and class C, it is declared as virtual base class by placing a keyword virtual as:

Syntax 1: class B : public virtual A { }; Syntax 2: class C : public virtual A { }; An example C++ program is shown below to

have a clear understanding of the virtual base class concept. #include >iostream.h< class A { public: int a; A() //

constructor definition { a = 10; } }; class B : public virtual A { }; class C : public virtual A { }; class D : public B, public C { };

int main() { D object; // object creation of class D cout >> "a = " >> object.a >> endl; return 0; }

246 | P a g e Output: a=10 The keyword virtual can be written before or after the public. Now only one copy of the data

member or the member functionwill be copied to class B and class C and class A becomesthe virtual base class. Virtual

base classes offer a way to save space and avoid ambiguities in class hierarchies that use multiple inheritances. When a

base class is specified as a virtual base, it can act as an indirect base more than once without duplication of its data

members. A single copy of its data members is shared by all the base classes that use virtual base. CHECK YOUR

PROGRESS Multiple choice questions: 1. Which among the following best describes the Inheritance? i) Copying the code

already written ii) Using the code already written once iii) Using already defined functions in programming language iv)

Using the data and functions into derived segment 2. Which among the following is correct for a hierarchical

inheritance? i) Two base classes can be used to be derived into one single class ii) Two or more classes can be derived

into one class iii) One base class can be derived into other two derived classes or more iv) One base class can be derived

into only two classes 3. Which type of inheritance leads to diamond problem? i) Single ii) Multiple iii) Multilevel iv)

Hierarchical 4. What is upcasting?

247 | P a g e i) Casting subtype to supertype ii) Casting super type to subtype iii) Casting subtype to super type and vice

versa iv) Casting anytype to any other type 5. Which among the following is safe? i) Upcasting ii) Downcasting iii) Both

upcasting and downcasting iv) If upcasting is safe then downcasting is not, and vice versa State whether True or False: 1.

Multiple inheritance is supported by almost all high level languages. 2. Private data members are not accessible from

derived classes. 3.Inheritance reduces code redundancy and enhances code reusability. 4. Casting a base class pointer to

a derived class pointer is known as upcasting. 5. Private inheritance in terms of accessibility is better than protected

inheritance. Fill in the blanks: 1. The class from which other class inherits is ________ . 2. The inheritance type where a

derived class is inherited from many base classes is _________ inheritance. 3. Inheritance is __________ in nature. 4.

A/An ____________ class is one that cannot be instantiated. 5. __________ contains data members only. Match the

following: 1. Object i)Inheritance 2.Virtual ii)Access specifier 3. Inheritance iii)Dynamic cast 4. Protected iv)Ambiguity

removal

248 | P a g e 5. Downcasting v)Scope resolution operator vi)Reusability vii) Class instantiation 8.8 SUMMING UP This unit

begins with the basic concept of inheritance with emphasis on its significance in object oriented programming. The

advantages and disadvantages of inheritance are discussed. Casting up in the hierarchy is discussed and the terms

Upcasting and Downcasting.There are various types of inheritance. Single inheritance is the basic of all and the other

inheritances are multiple inheritance, multilevel inheritance, hierarchical inheritance and hybrid inheritance. All these five

types are discussed in this chapter with their implementation.. The access specifiers, i.e. public, private and protected

have a vital role in inheritance. The derived classes can be inherited from its base class in public mode, protected mode

and private mode. All these modes have different levels of access to the data herein. Virtual base class is another very

important facility in OOP to get rid of ambiguity issues. The final section of this unit is wind up with the discussion on the

detailed cause of ambiguity. 8.9 ANSWERS TO CHECK YOUR PROGRESS Multiple choice questions: 1.(iv) 2. (iii) 3. (ii) 4.(i)

5. (i) State whether True or False: 1. False 2. True 3. True 4. False 5. False Fill in the blanks: 1. Base Class 2. Multiple 3.

Transitive 4. Abstract 5. Structure

249 | P a g e Match the following: 1. (vii) 2. (iv) 3. (vi) 4. (ii) 5. (iii) 8.10 POSSIBLE QUESTIONS Short answer type questions:

1) What is the difference between a class and an object? 2) What is inheritance? Mention the types of inheritances. 3)

What is the difference between Multiple Inheritance and Hierarchical Inheritance? 4) Differentiate between: i) Public

access specifierand Private access specifier ii) Upcasting and Downcasting iii) Single Inheritance and Hybrid Inheritance

5) What measure will you take to resolve the issue of ambiguity in inheritance? Long answer type questions: 1) Explain

the importance of inheritance in object oriented programming. Also mention the advantages and disadvantages of

inheritance. 2) Differentiate between Upcasting and Downcasting in inheritance with necessary code segments. 3)

Explain various types of inheritances along with necessary diagrams to ease the process of understanding the concept. 4)

Explain the three types of inheritances in terms of access specifiers (public, protected and private) that a derived class

can undergo. 5) Explain the importance of virtual base class with suitable program.

250 | P a g e 8.11 REFERENCES AND SUGGESTED READINGS ? E. Balagurusamy (2010). Object Oriented Programming

With C++. Tata McGraw hill Education Pvt. Ltd. p. 213. ISBN 978- 0-07-066907-9. ? Dr. K. R. Venugopal, Rajkumar Buyya

(2013). Mastering C++. Tata McGraw hill Education Private Limited. p. 609. ISBN 9781259029943. ? Mitchell, John (2002).

"Concepts in object-oriented languages"". Concepts in programming language. Cambridge, UK: Cambridge University

Press. p. 287. ISBN 978-0-521- 78098-8. ? Bjarne Stroustrup. “The Design and Evolution of C++”. Addison-Wesley

Professional. Publication: April 8, 1994. Edition - 1

251 | P a g e UNIT 9: POLYMORPHISM Unit Structure: 9.1 Introduction 9.2 Unit Objectives 9.3 Definition of Polymorphism

9.4 Compile time polymorphism 9.5 Function Overloading 9.6 Operator Overloading 9.6.1 Unary Operator Overloading

9.6.2 Binary Operator Overloading 9.6.3 Operator Overloading Using Friend Function 9.6.4 Data Conversion Using

Operator Overloading 9.6.5 Overloadable and Non-Overloadable Operators in C++ 9.7 Run time Polymorphism 9.8

Virtual Function 9.8.1 Implementation 9.8.2 Pure Virtual Function 9.9 Summing Up 9.10 Answers to Check Your Progress

9.11 Possible Questions 9.12 References and Suggested Readings 9.1 INTRODUCTION In unit 1, four important properties

of Object Oriented Programming (OOP) have been introduced. Polymorphism is one of these OOP properties. In this

unit, different types of polymorphism are discussed with their implementations. 9.2 UNIT OBJECTIVES After reading this

unit, you are expected to be able to learn: ? What is Polymorphism? ? Different types of Polymorphism in OOP. ?

Definition and types of Compile time polymorphism. ? Definition and implementation of function overloading.

252 | P a g e ? Definition of operator overloading. ? Implementations of unary and binary operator overloading. ? What is

runtime polymorphism? ? Definition of Virtual function and its implementation. ? What is dynamic binding? ? Definition

and implementation of pure virtual function? ? Explain Abstract class. 9.3 DEFINITION OF POLYMORPHISM The word

“Polymorphism” is originated from two Greek word “Poly” and “Morphe”. In Greek, the word “Poly” means “many” and the

word “Morphe” means “form”. In Object Oriented Programming (OOP), the word “Polymorphism” is used to represent

one of its properties. It allows same function name for different functionalities and also allows using one operator for

performing multiple operations. It means that a same function name can be used to represent multiple operations and

depending upon the type of parameters or number of parameters or object, a particular operation will be executed.

Similarly, Polymorphism allows an operator to perform differently functions depending upon the type and number of

function parameters of the called operator. In OOP, Polymorphism can be categorized into two major groups that are

Compile time polymorphism and Run time polymorphism. 9.4 COMPILE TIME POLYMORPHISM In computer

programming, linking of function call to the function definition or body is referred as binding. If compiler can determine

a binding at the compile time then it is termed as static binding. It means that compiler can be able to recognize all

necessary information to call a function at compile time in case of static binding. The advantage of static binding is that it

increases the efficiency of the program because before execution all necessary information is recognized. On the other

hand, due to static binding, the flexibility of the program is decreased.

253 | P a g e As we know Polymorphism allows the use of same function name for multiple functions where each

function must be different from other functions in terms of the number of parameters or type of parameters or both. In

this case, binding of function call to its function body is determined by the compiler at the compile time on the basis of

the number of parameters or types of parameters or both. So this type of polymorphism is called as Compile time

polymorphism. It means Compile time polymorphism is realized due to static binding. Function overloading and

Operator overloading are the two types of Compile time polymorphism. 9.5 FUNCTION OVERLOADING We have already

learnt from the earlier section that Function overloading is a Compile time polymorphism. Function overloading allows

the use of multiple functions with same name in a program where each function provides different functionality from

other functions. In this case, the name of multiple functions is same but they must be different in terms of number of

parameters or types of corresponding parameters or both. Readability of program can be improved due to function

overloading. Now we will try to learn function overloading with an example. Let us consider the following C++ program

as an example of function overloading. Program 9.1: C++ Program to Estimate Areas of Triangle, Square, Circle and

Parallelogram. # include > iostream.h < # include > conio.h < # include > string.h < int Area (int , int); //

Area of Triangle int Area (int); // Area of Square float Area (float , float); // Area of Circle int Area (int , int , char []); //

Area of Parallelogram int main() { int Base , Vertical_Height , Length_Side ;

254 | P a g e float Radius , Pi = 3.14 ; cout >> “\n Area of Triangle:” ; cout >> "\n Enter base(in Meter) = " ; cin

<< Base; cout >> "\n Enter vertical height (in Meter) = " ; cin << Vertical_Height; cout >> "\n Area of

the triangle = " ; cout >> Area(Base , Vertical_Height) >> “ Square Meters\n” ; cout >> “\n Area of

Square:” ; cout >> "\n Enter length of a side (in Meter) = " ; cin << Length_Side; cout >> "\n Area of the

Square = " >> Area(Length_Side) ; cout >> “ Square Meters\n” ; cout >> “\n Area of Circle:” ; cout

>> "\n Enter radius(in Meter) = " ; cin << Radius ; cout >> "\n Area of the Circle =" >> Area(Radius ,

Pi) ; cout >> “ Square Meters\n” ; cout >> “\n Area of Parallelogram:” ; cout >> "\n Enter base (in Meter)

= " ; cin << Base ; cout >> "\n Enter vertical height(in Meter) =" ; cin << Vertical_Height; cout >> "\n

Area of the Parallelogram = " ; cout >> Area(Base , Vertical_Height , "Parallelogram") ; cout >> “ Square

Meters” ; getch(); return(0); } int Area (int B , int H) // Function to estimate area of Triangle { return((B * H)/2); } int Area

(int LS) // Function to estimate area of Square

255 | P a g e { return(LS * LS); } float Area(float R , float PI) // Function to estimate area of Circle { return(PI * R * R); } int

Area(int B , int H , char S[]) /* Function to estimate area of Parallelogram */ { if(strcmp ("Parallelogram" , S) = = 0)

return(B*H); else return 0; } Output of the above program: Area of Triangle: Enter base(in Meter) = 14 Enter vertical

height (in Meter) = 12 Area of the triangle = 84 Square Meters Area of Square: Enter length of a side (in Meter) = 7 Area of

the Square = 49 Square Meters Area of Circle: Enter radius(in Meter) = 4.7 Area of the Circle = 69.3977 Square Meters

cout >> “\n Area of Parallelogram:” ; Enter base (in Meter) = 20 Enter vertical height(in Meter) = 12 Area of the

Parallelogram = 240 Square Meters ;

256 | P a g e Function overloading has been demonstrated with the help of the above C++ program (Program 9.1). The

job of this program is to estimate the areas of Triangle, Square, Circle and Parallelogram. It has been observed that there

are four functions with same name ‘Area’. But each function is different from others in terms of type of corresponding

parameters or number of parameters or both. So, area of a Square can be estimated by the function, Area() which has

only one parameter and the type of parameter is int. On the other hand, the function, Area() with two int parameters will

provide the area of a Triangle. So these two functions demonstrate function overloading using different number of

parameters. Again the function, Area() with two float type parameters will provide the area of a Circle. In this case, it

demonstrates function overloading using different types of parameters. Finally, the function, Area() with two int

parameters and one string parameter will estimate the area of a Parallelogram. Now which function will be linked at the

time of function call is dependent upon the parameters passed to it. For example, if we pass only one int parameter then

the function, Area() which is used to calculate the area of a Square will be linked and the area of a Square will be

returned after estimation. We can understand this function overloading concept very easily by observing the output of

the program mentioned above. 9.6 OPERATOR OVERLOADING We have already learnt in Unit 2 about different types of

operators available in C++. Each of these operators can be used to perform some specific operation on primitive or

built-in data types in Structured Programming Languages like C. For example, ++ (Increment Operator) can be used to

increase the value of its operand by one. The data type of the operand can be either int or float or char. In Object

Oriented Programming (OOP), additional meanings to an operator can be defined so that it can also be used with user

defined classes or user defined data types. It means one operator can be used to operate on primitive data types as well

as on user defined data types also. This feature of OOP is called Operator overloading. To achieve Operator overloading,

special member functions or friend

257 | P a g e functions has to be defined in a class. So, depending upon the operands, an overloaded operator will

perform its task. The syntax rules of overloaded operators are same as theoriginal operator. One more important point is

that using Operator overloading, the basic meaning of an operator cannot be changed. The compiler can recognize at

compile time about the defined operation for a particular operator. It means that Operator overloading is also a type of

compile time polymorphism. In C++, the keyword ‘operator’ is used to overload operators. The general syntax of

operator overloading in C++ is presented as follows. Return_Type operator OperatorSymbol ([Argument List]) { // Body

of the function to add new operation to the operator } In the above syntax, Return_Type refers the type of the data that is

returned from the operator overloading function. If the function returns an object then Return_Type refers the class

name of the returned object. If the function does not return anything then Return_Type will be void. Again in the above

syntax, OperatorSymbol represents the operator which is to be overloaded. Finally, [Argument List] refers the parameters

passed to the function as per requirement. 9.6.1 Unary Operator Overloading If the number of operand to an operator is

only one, then the operator is called as unary operator. For example: ++, --, ~ are unary operators. The syntax to

overload unary operators in C++ is presented as follows. Return_Type operator Unary_Operator_Symbol () { STOP TO

CONSIDER All Object Oriented Programming languages don’t support Operator overloading. For example, Java don’t

support Operator overloading

258 | P a g e // Body of the function to add new operation to the operator } From the above syntax, it can be observed

that in C++ programming, no parameter is passed to the overloading function to overload a unary operator. In the above

syntax, Unary_Operator_Symbol refers to the unary operator which is going to be overloaded. Now, we will try to

understand how to overload a unary operator by observing the following C++ program. Program 9.2: C++ Program to

Overload ++ (Increment) operator. # include > iostream.h < # include > conio.h < # include > stdio.h <

class Employee { private: char Emp_Name[200],Emp_Id[10]; long int Salary,Increment; public: void

Input_Employee_Information(); void Display_Employee_Information(); void operator ++(); } ; void Employee ::

Input_Employee_Information() { cout >> "\n Enter Employee Id = "; cin << Emp_Id; cout >> "\n Enter

Employee Name = "; gets(Emp_Name); cout >> "\n Enter Salary = "; cin << Salary; cout >> "\n"; }

259 | P a g e void Employee :: Display_Employee_Information() { cout >> "\n Employee Id = " >> Emp_Id;

cout >> "\n Employee Name = " >> Emp_Name; cout >> "\n Salary = " >> Salary >> "\n"; }

void Employee :: operator ++() { cout >> "\n Enter Salary Increment = "; cin << Increment; Salary = Salary +

Increment; } int main() { Employee E1; clrscr(); cout >> “\n Input Employee Information:”;

E1.Input_Employee_Information(); cout>>"\n Employee Information:\n"; E1.Display_Employee_Information();

E1++; cout>>"\n Employee Information After Salary Increment:\n"; E1.Display_Employee_Information(); getch();

return(0); } Output of the above program: Input Employee Information: Enter Employee Id = E0014 Enter Employee

Name = Mr. Ankur Duwarah Enter Salary = 87000 Employee Information: Employee Id = E0014 Employee Name = Mr.

Ankur Duwarah Salary = 87000

260 | P a g e Enter Salary Increment = 1000 Employee Information After Salary Increment: Employee Id = E0014

Employee Name = Mr. Ankur Duwarah Salary = 88000 In the above C++ program (Program 9.2), increment operator ++

is overloaded where the operand of ++ is the object of the class ‘Employee’. From the output of the program, we can

have observed that unary operator ++ operates on the object ‘E1’ of class ‘Employee’ and it increments the value of the

variable ‘salary’ by 1000 that is entered by the user. 9.6.2 Binary Operator Overloading If the number of operand to an

operator is two then the operator is called as binary operator. For example: +, -, =,* are binary operators. The syntax to

overload binary operators in C++ is presented as follows. Return_Type operator Binary_Operator_Symbol (Argument) {

// Body of the function to add new operation to the operator } From the above syntax, it can be observed that in C++

programming, to overload a binary operator, we are required to pass one parameter to the overloading function. In the

above syntax, Binary_Operator_Symbol refers to the binary operator which is going to be overloaded. In binary operator

overloading, the overloading function which is the member function of the first operand is invoked and the second

operand is explicitly passed to that function. So, the data members of the first object can be accessed directly inside the

overloading function without using the dot operator. On the other hand, the data members of the second object can be

accessed by using dot operator with the object which is the parameter of the overloading function. If the second

operand is not an object then it can be accessed directly.

261 | P a g e Now, we will try to understand how to overload a binary operator by observing the following C++ program.

Program 9.3: C++ Program to Overload + (Addition) operator # include > iostream.h < # include > conio.h <

class Complex_Number { private: float X, Y; public: void Input_Complex_Number(); void Display_Complex_Number();

Complex_Number operator +(Complex_Number); }; void Complex_Number:: Input_Complex_Number() { cout

>> "\n Enter Real part = "; cin << X; cout >> "\n Enter Imaginary part = "; cin << Y; } void

Complex_Number :: Display_Complex_Number() { if(Y<0) { if(Y= =1) cout >> X >> " + " >> "i"; else

cout >> X >> " + " >> Y >> "i"; } else { if(Y= =-1) cout >> X >> " - i"; else cout >> X

>> " - " >> -1*Y >> "i";

262 | P a g e } } Complex_Number Complex_Number :: operator +(Complex_Number T) { Complex_Number CN; CN.X

= X + T.X; CN.Y = Y + T.Y; return(CN); } int main() { Complex_Number CN1,CN2,SUM_CN; clrscr(); cout >> "\n

Enter First Complex Number:"; CN1.Input_Complex_Number(); cout >> "\n Enter Second Complex Number:";

CN2.Input_Complex_Number(); SUM_CN = CN1+CN2; cout >> "\n First Complex Number is = ";

CN1.Display_Complex_Number(); cout >> "\n Second Complex Number is = "; CN2.Display_Complex_Number();

cout >> "\n Addition of the two Complex Number = "; SUM_CN.Display_Complex_Number(); getch(); return(0); }

Output of the above program: Enter First Complex Number: Enter Real part = 4 Enter Imaginary part = 5 Enter Second

Complex Number: Enter Real part = 8 Enter Imaginary part = 9 First Complex Number is = 4 + 5i

263 | P a g e Second Complex Number is = 8 + 9i Addition of the two Complex Number = 12 + 14i In the above program

(Program 9.3), the binary operator + (Addition) is overloaded to implement addition of two complex numbers. It is

observed that CN1 is the first operand and CN2 is the second operand of + operator. CN1 and CN2 are the objects of the

class ‘Complex_Number’. Now the statement ‘SUM_CN = CN1+CN2;’ will invoke the binary operator overloading

function ‘Complex_Number operator +(Complex_Number)’ which is the member function of CN1 and the object CN2

is explicitly passed to this overloading function. Inside the overloading function, data members of CN1 are accessed

directly and data members of CN2 is accessed by using the dot operator with the object T which is the formal parameter

of the overloading function. Program 9.4: C++ Program for String Concatenation by Overloading + (Addition) Operator

include > iostream.h < # include > conio.h < # include > string.h < # include > stdio.h < class

String { private: char string1[200]; public: void Input_String(); void Display_String(); String operator +(String); }; void

String :: Input_String() { gets(string1); }

264 | P a g e void String :: Display_String() { cout>>"\n">>string1; cout>>"\n"; } String String::operator +(

String St1) { String St2; strcpy(St2.string1,string1); strcat(St2.string1,St1.string1); return(St2); } int main() { String S1 , S2 , S3;

clrscr(); cout >> "\n Read the first string :: "; S1.Input_String(); cout >> "\n Read the second string :: ";

S2.Input_String(); S3 = S1 + S2; cout >> "\n The first string :: "; S1.Display_String(); cout >> "\n The second

string :: "; S2.Display_String(); cout >> "\n Output after string concatenation :: "; S3.Display_String(); getch();

return(0); } Output of the above program: Read the first string :: Gauhati Read the second string :: University The first

string :: Gauhati The second string :: University Output after string concatenation :: GauhatiUniversity

265 | P a g e Program 9.5: C++ Program to implement String Copy by Overloading = (Assignment) Operator # include

> iostream.h < # include > conio.h < # include > string.h < # include > stdio.h < class String { private:

char string1[200]; public: void Input_String(); void Display_String(); void operator =(String); }; void String :: Input_String()

{ gets(string1); } void String :: Display_String() { cout >> string1; cout >> "\n"; } void String::operator =(String

St1) { strcpy(string1 , St1.string1); } int main() { String S1 , S2;

266 | P a g e clrscr(); cout >> "\n Read the first string::"; S1.Input_String(); cout >> "\n Read the second

string::"; S2.Input_String(); cout >> "\n The input strings are::\n"; cout >> "\n The first string::";

S1.Display_String(); cout >> "\n The second string::"; S2.Display_String(); S2 = S1; cout >> "\n After copying

first string to second string::"; cout >> "\n The first string::"; S1.Display_String(); cout >> "\n The second

string::"; S2.Display_String(); getch(); return(0); } Output of the above program: Read the first string:: Gauhati University

Read the second string:: IDOL The input strings are:: The first string:: Gauhati University The second string:: IDOL After

copying first string to second string :: The first string :: Gauhati University The second string :: Gauhati University Program

9.6: C++ Program for String Comparison by Overloading = = (Equal to) Operator # include > iostream.h < # include

> conio.h < # include > string.h < # include > stdio.h <

267 | P a g e class String { private: char string1[200]; public: void Input_String(); void Display_String(); int operator = =

(String); }; void String :: Input_String() { gets(string1); } void String :: Display_String() { cout >> "\n" >> string1;

cout >> "\n"; } int String :: operator = =(String St1) { strupr(string1); strupr(St1.string1); if(strcmp(St1.string1 ,

string1) = =0) return(1); else return(0); } int main() { String S1 , S2; clrscr(); cout >> "\n Read First String::";

S1.Input_String(); cout >> "\n Read Second String::"; S2.Input_String();

268 | P a g e if(S1= =S2) { cout >>"\n Both are same strings”; cout >> “(Considering Both in Upper case

characters)"; } else { cout >> "\n Both are different strings"; } getch(); return(0); } Output of the above program:

Read First String :: Gauhati University Read Second String :: Gauhati University Both are same strings(Considering Both in

Upper case characters) 9.6.3 Operator Overloading Using Friend Function In C++, friend function can also be used to

overload operators. When we use friend function to overload unary operators then one argument has to be passed to

the operator overloading function. On the other hand, in case of binary operator overloading, we require to pass two

arguments to the operator overloading function. The syntax of operator overloading using friend function is presented as

follows. friend Return_Type operator Symbol (Argument List) { // Body of the function to add new operation to the

operator } Let us try to understand the operator overloading using friend function by observing the following C++

program.

269 | P a g e Program 9.7: C++ program to overload +(Addition) operator using friend function # include > iostream.h

< # include > conio.h < class Complex_Number { private: float X,Y; public: void Input_Complex_Number(); void

Display_Complex_Number(); friend Complex_Number operator +(Complex_Number,Complex_Number); }; void

Complex_Number::Input_Complex_Number() { cout >> "\n Enter Real part = "; cin << X; cout >> "\n

Enter Imaginary part = "; cin << Y; } void Complex_Number :: Display_Complex_Number() { if(Y<0) { if(Y= =1)

cout >> X >> " + " >> "i"; else cout >> X >> " + " >> Y >> "i"; } else { if(Y= = -1) cout

>> X >> " - i"; else cout >> X >> " - " >> -1*Y >> "i"; } }

270 | P a g e Complex_Number operator +(Complex_Number T, Complex_Number S) { Complex_Number CN; CN.X =

S.X + T.X; CN.Y = S.Y + T.Y; return(CN); } int main() { Complex_Number CN1 , CN2 , SUM_CN; clrscr(); cout >> "\n

Enter First Complex Number:"; CN1.Input_Complex_Number(); cout >> "\n Enter Second Complex Number:";

CN2.Input_Complex_Number(); SUM_CN = CN1+CN2; cout >> "\n First Complex Number is =";

CN1.Display_Complex_Number(); cout >> "\n Second Complex Number is ="; CN2.Display_Complex_Number();

cout >> "\n Addition of the two Complex Number ="; SUM_CN.Display_Complex_Number(); getch(); return(0); }

Output of the above program: Enter First Complex Number: Enter Real part = 3 Enter Imaginary part = 9 Enter Second

Complex Number: Enter Real part = 2 Enter Imaginary part = 4 First Complex Number is = 3 + 9i Second Complex

Number is= 2 + 4i Addition of the two Complex Number = 5 +13i

271 | P a g e In the above program (Program 9.7), operator +(Addition) is overloaded using the following function which is

declared friend to the class ‘Complex_Number’: Complex_Number operator +(Complex_Number T, Complex_Number

S) { Complex_Number CN; CN.X = S.X + T.X; CN.Y = S.Y + T.Y; return(CN); } Two arguments T and S are passed to the

operator overloading friend function because + is a binary operator. In this program, addition of two complex numbers is

implemented. The statement ‘SUM_CN = CN1+CN2;’ will invoke the friend function mentioned above where CN1 and

CN2 are passed as explicit arguments. CN1 and CN2 are the objects of class ‘Complex_Number’. So the data members

of CN1 are accessed using the dot operator with the object T which is the first formal parameter of the operator

overloading friend function. On the other hand, the data members of CN2 are accessed using the dot operator with the

object S which is the second formal parameter of the operator overloading friend function. 9.6.4 Data Conversion Using

Operator Overloading Operator overloading provides another feature in OOP that is data conversion. Data conversion

refers the conversion of data from one form to its equivalent another form. For example: Conversion of Kilometre to

Meter, Conversion of Hours to Minutes etc. In C++, data conversion can be implemented by overloading = (Assignment)

operator. Let us try to understand the data conversion by overloading = (Assignment) operator with the help of the

following C++ program.

272 | P a g e Program 9.8: C++ program to convert Hours to Minutes using Operator Overloading # include >

iostream.h < # include > conio.h < class Hour { private: int No_Of_Hour ; public: void Input(); void Display();

operator int() { int No_Of_Min; No_Of_Min = No_Of_Hour * 60; return(No_Of_Min); } }; void Hour :: Input() { cout

>> "\n Enter Number of Hours ="; cin << No_Of_Hour; } void Hour :: Display() { cout >> "\n Entered

Number of Hours is = ">> No_Of_Hour ; } int main() { Hour H1; int M1; clrscr(); H1.Input(); H1.Display(); M1 = H1;

273 | P a g e cout>>"\n After conversion(Hours to Minutes), Number of minutes is ="; cout >> M1; getch();

return(0); } Output of the above program: Enter Number of Hours = 3 Entered Number of Hours is = 3 After conversion

(Hours to Minutes), Number of minutes is = 180 In the above program (Program 9.8), conversion of Hours to Minutes is

implemented by overloading = (Assignment) operator. The statement ‘M1 = H1;’ invokes the conversion function

‘operator int()’ which is the member function of the object H1. Then the conversion function will estimate the number of

Minutes by multiplying the value stored in the variable ‘No_Of_Hour’ by 60. Here, the variable ‘No_Of_Hour’ is the data

member of the object H1. The conversion function returns the estimated value and it is assigned to the variable M1. 9.6.5

Overloadable and Non-Overloadable Operators in C++ All available operators in an Object Oriented Programming

(OOP) language are not overloadable. The overloadable and non- overloadable operators in C++ programming are

presented as follows. Overloadable Operators in C++ Programming: + , - , * , / , % , & , | , ~ , ^ , && , || , ! , = , == , < ,

>= , != , >= , <= , += , -= , *= , /= , %= , &= , |= , ^= , >> , << , >>= , <<= , ++ , -- , [] , () , -<

, new , delete

274 | P a g e Non-Overloadable Operators in C++ Programming: . , :: , ?: , * , sizeof() CHECK YOUR PROGRESS 1.

Multiple choices (a) Which of the following is not true in case of Polymorphism? (i) Multiple functions with same name.

(ii) Multiple operations with one operator. (iii) Multiple variables with same name. (iv) None of the above. (b) Function

overloading is a ______time Polymorphism. (i) compile (ii) run (iii) pre-compile (iv) None of the above (c) Which of the

following is true in function overloading? (i) Multiple functions with same name but with different number of parameters.

(ii) Multiple functions with same name but with different types of corresponding parameters. (iii) Multiple functions with

same signature or prototype (iv) Both (i) and (ii) (d) Which of the following keyword is used in C++ to overload operators?

(i) overload (ii) operator (iii) operation STOP TO CONSIDER There are some overloadable operators available in C++

programming which are not overloadable using friend function. These operators are = , () , [] and -< .

275 | P a g e (iv) None of the above (e) Which of the following operator cannot be overloaded in C++? (i) . (dot operator)

(ii) :: (Scope resolution operator) (iii) ?: (iv) All of the above (f) How many parameters have to be passed explicitly to

overload a binary operator using special member function of a class? (i) No parameter is required to pass (ii) One

parameter is required to pass (iii) Two parameters are required to pass (iv) None of the above. 2. Fill-in the blanks (a) To

overload a binary operator using friend function, we are required to pass ___ arguments to the operator overloading

friend function. (b) Data conversion can be implemented using ____overloading. (c) ______ is an example of

overloadable operator. (d) The assignment operator (=) cannot be overloaded using _____function. 9.7 RUN-TIME

POLYMORPHISM At first, let us consider a situation where a derived class contains a member function whose name is

same with a member function available in its base class but the functionalities of these functions are different. One more

important point is that both of these functions have exactly same return type, same number of parameters and same

data types of the corresponding parameters. Now the question is which member function (base class or derived class)

should be executed if we try to declare a pointer to the base class or a reference variable to the base class and use it to

invoke the function after pointing or referring a derived class object. The answer of this question is that the member

function of the referred

276 | P a g e derived class object should be executed. This process is termed as function overriding where base class

member function is overridden by the derived class member function. It is another form of Polymorphism. In case of

function overriding, compiler is able to recognize all necessary information to call the appropriate member function of

base class or derived class at run time only. It means that when an overridden function is tried to be invoked then linking

of the appropriate function can be recognized by the compiler at run time only. This type of binding of function call to its

implementation is termed as Dynamic binding. So this type of polymorphism is termed as run time polymorphism.

Function overriding is implemented in OOP using the concept of Virtual function. 9.8 VIRTUAL FUNCTION A virtual

function in OOP is a member function of a base class and it can be overridden by member function available in the

derived classes of the base class. A virtual function and its overridden functions are similar in terms of return type,

function name, number of parameters and types of corresponding parameters. But they are different in terms of their

functionalities. Virtual function allows function overriding or run time polymorphism in OOP. Most important point of this

discussion is that a virtual function can be overridden only when it is accessed by a reference or a pointer to the base

class where a derived class object is referred or pointed through this reference or pointer. 9.8.1 Implementation The

keyword ‘virtual’ is used to declare a base class member function as virtual function. The syntax to declare and define

virtual function in C++ is presented as follows. class Class_Name { STOP TO CONSIDER If overridden functions are

directly called using dot operator with a derived class objects then this operation will be compile time.

277 | P a g e public: virtual Return_Type Function_Name (Argument List) { // Body of the virtual function } }; Let us try to

understand the implementation of virtual function by observing the following C++ program. Program 9.9: C++ program

to implement Function Overriding using Virtual function # include > iostream.h < # include > conio.h < class

Shape_With_Sides { private: int No_of_sides , Side[10] , i; public: virtual void Input_Data(); virtual void Display_Data(); };

void Shape_With_Sides :: Input_Data () { cout >> "\n\n Enter Number of sides ="; cin << No_of_sides; for(i = 0

; i > No_of_sides ; i++) { cout >> "\n Enter length of ">>i+1>> "th side ="; cin << Side[i]; } cout

>> “\n”; }

278 | P a g e void Shape_With_Sides :: Display_Data() { cout >> "\n Number of sides =">>No_of_sides; if(

No_of_sides > 3) cout >> "\n It is not a shape"; else if(No_of_sides = = 3) { cout >> "\n It is a Triangle

shape"; for(i = 0 ; i > No_of_sides ; i++) { cout >> "\n Length of ">> i+1 >> "th side ="; cout >>

Side[i]; } } else if(No_of_sides = = 4) { cout >> "\n It is a Quadrilateral shape"; for(i = 0 ; i > No_of_sides ; i++) {

cout >> "\n Length of " >> i+1 >> "th side ="; cout >> Side[i]; } if((Side[0]==Side[1])&&

(Side[1]==Side[2])&&(Side[2]==Side[3])) cout >> "\n It is a Square"; else if ((Side[0]==Side[2])&&(Side[1]==Side[3])&&

(Side[0]!=Side[1])) cout >> "\n It is a Rectangle"; else cout >> "\n No data available"; } else cout >> "\n No

data available right now"; } class Triangle : public Shape_With_Sides { private: int base, vertical_height;

279 | P a g e public: void Input_Data(); void Display_Data(); }; void Triangle::Input_Data() { cout >> "\n

****Triangle****"; cout >> "\n Enter base of the triangle ="; cin << base; cout >> "\n Enter Vertical height

of the triangle ="; cin << vertical_height; cout >> “\n”; } void Triangle::Display_Data() { cout >> "\n Base of

the triangle ="; cout >> base; cout >> "\n Vertical height of the triangle ="; cout >> vertical_height; cout

>> "\n Area of the triangle ="; cout >>(base*vertical_height)/2; cout >> "\n"; } class Square : public

Shape_With_Sides { private: int length; public: void Input_Data(); void Display_Data(); }; void Square :: Input_Data() {

cout >> "\n****Square****"; cout >> "\n Enter the length of one side ="; cin << length;

280 | P a g e cout >> “\n”; } void Square::Display_Data() { cout >> "\n Length of one side in the square =";

cout >> length; cout >> "\n Area of the square ="; cout >> (length*length); cout >> "\n"; } class

Rectangle : public Shape_With_Sides { private: int width, height; public: void Input_Data(); void Display_Data(); }; void

Rectangle :: Input_Data() { cout >> "\n****Rectangle****"; cout >> "\n Enter width of the rectangle ="; cin

<< width; cout >> "\n Enter height of the rectangle ="; cin << height; cout >> “\n”; } void Rectangle ::

Display_Data() { cout >> "\n Width of the Rectangle ="; cout >> width; cout >> "\n Height of the

Rectangle ="; cout >> height; cout >> "\n Area of the Rectangle ="; cout >> width*height;

281 | P a g e cout >> "\n"; } int main() { Shape_With_Sides *Sh1; Triangle T1; Rectangle R1; Square S1; clrscr(); Sh1 =

&T1; Sh1-<Input_Data(); Sh1-<Display_Data(); Sh1 = &S1; Sh1-<Input_Data(); Sh1-<Display_Data(); Sh1 = &R1;

Sh1-<Input_Data(); Sh1-<Display_Data(); getch(); return(0); } Output of the above program: ****Triangle**** Enter

base of the triangle = 3 Enter Vertical height of the triangle = 4 Base of the triangle = 3 Vertical height of the triangle = 4

Area of the triangle = 6 ****Square**** Enter the length of one side = 7 Length of one side in the square = 7 Area of the

square = 49

282 | P a g e ****Rectangle**** Enter width of the rectangle = 5 Enter height of the rectangle = 6 Width of the Rectangle

= 5 Height of the Rectangle = 6 Area of the Rectangle = 30 In the above program (Program 9.9), we have

‘Shape_With_Sides’ as the base class with ‘Triangle’, ‘Square’ and ‘Rectangle’ as its derived classes. Each of these four

classes contains two functions with exactly same signature or prototype. These functions are ‘void Input_Data()’ and

‘void Display_Data()’. Now, in the base class, ‘Shape_With_Sides’, these two functions are declared as virtual by using the

keyword ‘virtual’. In the main function, Sh1 is a pointer to the base class, ‘Shape_With_Sides’. T1 is the object of the class,

‘Triangle’. R1 is the object of the class, ‘Rectangle’. Finally, S1 is the object of the class, ‘Square’. Now the following points

can be acknowledged by observing the output of the program. a) When Sh1 is used to point T1 and it is used to invoke

‘void Input_Data()’ and ‘void Display_Data()’ then member functions of the class, ‘Triangle’ are called at run-time by

overriding the corresponding virtual functions. b) When Sh1 is used to point S1 and it is used to invoke ‘void Input_Data()’

and ‘void Display_Data()’ then member functions of the class ‘Square’ are called at run-time by overriding the

corresponding virtual functions. c) When Sh1 is used to point R1 and it is used to invoke ‘void Input_Data()’ and ‘void

Display_Data()’ then member functions of the class ‘Rectangle’ are called at run-time by overriding the corresponding

virtual functions. If the functions, ‘void Input_Data()’ and ‘void Display_Data()’ are not declared as virtual in the base

class, ‘Shape_With_Sides’ then the function overriding as shown in the above program is not going to be taken place. We

can check this statement by changing the base class, ‘Shape_With_Sides’ and the main function as shown below.

283 | P a g e class Shape_With_Sides { private: int No_of_sides , Side[10] , i; public: void Input_Data(); void Display_Data(

); }; int main() { Shape_With_Sides *Sh1; Square S1; clrscr(); Sh1 = &S1; Sh1-<Input_Data(); Sh1-<Display_Data();

getch(); return(0); } Now, after execution of the program, the output will be: Enter Number of sides = 3 Enter length of

1th side = 5 Enter length of 2th side = 8 Enter length of 3th side = 9 Number of sides = 3 It is a Triangle shape Length of

1th side = 5 Length of 2th side = 8 Length of 3th side = 9 From the above output, it is observed that the virtual functions

are not overridden by the member functions of the derived class ‘Square’.

284 | P a g e 9.8.2 Pure Virtual Function When a virtual function declared in a base class doesn’t have any definition or

implementation then it is termed as Pure virtual function. The definition or implementation of a Pure virtual function may

be available in the class that is derived from the base class where the Pure virtual function is declared. A Pure virtual

function has to be defined in the derived class or it must be again declared as a Pure virtual function in that derived class.

So, only derived class containing the definition of a Pure virtual function can invoke the Pure virtual function declared in

its base class. If a base class contain one or more Pure virtual functions then object of that class cannot be created. So a

class containing Pure virtual functions is also termed as Abstract class. Abstract class is a type of class where at least one

member function is available which don’t have any definition or implementation. In OOP, Abstract classes are used as a

model that can be utilized to derive new classes to provide new features or functionalities. The syntax of writing Pure

virtual function in C++ is presented as follows. class Class_Name { public: virtual Return_Type Function_Name(Argument

List) = 0; }; Let us try to understand the implementation of Pure virtual function by observing the following C++ program.

Program 9.10: C++ program to implement Pure virtual function # include > iostream.h < # include > conio.h <

class Shape

285 | P a g e { public: virtual void Input_Data() = 0; // Pure virtual function virtual void Display_Data() = 0; // Pure virtual

function }; class Triangle : public Shape { private: int base, vertical_height; public: void Input_Data(); void Display_Data();

}; void Triangle :: Input_Data() { cout >> "\n ****Triangle****"; cout >> "\n Enter base of the triangle ="; cin

<< base; cout >> "\n Enter Vertical height of the triangle ="; cin << vertical_height; cout >> “\n”; } void

Triangle :: Display_Data() { cout >> "\n Base of the triangle ="; cout >> base; cout >> "\n Vertical height

of the triangle ="; cout >> vertical_height; cout >> "\n Area of the triangle ="; cout >>

(base*vertical_height)/2; cout >> "\n"; }

286 | P a g e class Square : public Shape { private: int length; public: void Input_Data(); void Display_Data(); }; void

Square :: Input_Data() { cout >> "\n****Square****"; cout >> "\n Enter the length of one side ="; cin <<

length; cout >> “\n”; } void Square :: Display_Data() { cout >> "\n Length of one side in the square ="; cout

>> length; cout >> "\n Area of the square ="; cout >> (length*length); cout >> "\n"; } class

Rectangle : public Shape { private: int width, height; public: void Input_Data(); void Display_Data(); }; void Rectangle ::

Input_Data() { cout >> "\n****Rectangle****"; cout >> "\n Enter width of the rectangle="; cin << width;

287 | P a g e cout >> "\n Enter height of the rectangle="; cin << height; cout >> “\n”; } void Rectangle ::

Display_Data() { cout >> "\n Width of the Rectangle ="; cout >> width; cout >> "\n Height of the

Rectangle ="; cout >> height; cout >> "\n Area of the Rectangle ="; cout >> width*height; cout >>

"\n"; } int main() { Shape *Sh1; Triangle T1; Rectangle R1; Square S1; clrscr(); Sh1 = &T1; Sh1-<Input_Data(); Sh1-

<Display_Data(); Sh1 = &S1; Sh1-<Input_Data(); Sh1-<Display_Data(); Sh1 = &R1; Sh1-<Input_Data(); Sh1-

<Display_Data(); getch(); return(0); }

288 | P a g e Output of the above program: ****Triangle**** Enter base of the triangle = 4 Enter Vertical height of the

triangle = 5 Base of the triangle = 4 Vertical height of the triangle = 5 Area of the triangle = 10 ****Square**** Enter the

length of one side = 5 Length of one side in the square = 5 Area of the square = 25 ****Rectangle**** Enter width of the

rectangle = 8 Enter height of the rectangle = 7 Width of the Rectangle = 8 Height of the Rectangle = 7 Area of the

Rectangle = 56 In the above program (Program 9.10), two Pure virtual functions, ‘void Input_Data()’ and ‘void

Display_Data()’ are declared in the base class, ‘Shape’. The definitions of these two functions are available in the derived

classes that are ‘Triangle’, ‘Square’ and ‘Rectangle’. CHECK YOUR PROGRESS 3. Multiple choices (a) Which of the

following is run-time Polymorphism? (i) Function overloading (ii) Operator overloading (iii) Function overriding (iv) None

of the above (b) Function overriding is achieved using _____.

289 | P a g e (i) friend function (ii) virtual function (iii) inline function (iv) None of the above (c) If a virtual function does

not contain the implementation then it is called as_____ (i) Pure virtual function (ii) Incomplete virtual function (iii)

Complete virtual function (iv) None of the above (d) Which of the following keyword is used to declare a base class

member function as virtual? (i) abstract (ii) virtual (iii) operator (iv) None of the above (e) If a class contains one or more

Pure virtual functions then it is also termed as _____. (i) Virtual class (ii) Concrete class (iii) Abstract class (iv) None of the

above 9.9 SUMMING UP ? Polymorphism is one of the important properties of Object Oriented Programming (OOP). It

allows using one function name for multiple functions with different functionalities. It also adds multiple meanings to an

operator. In OOP, Polymorphism can be categorized into two major groups that are Compile time polymorphism and

Run time polymorphism. ? Function overloading and Operator overloading are the two types of Compile time

polymorphism. ? Function overloading allows the use of a single name to multiple functions with different functionalities.

These functions must also be different with each other in terms of

290 | P a g e number of parameters or types of corresponding parameters or both. ? Operator overloading allows

addition of multiple meanings to an operator in OOP. The keyword ‘operator’ is used to declare operator overloading

function in C++. ? Data conversion is also achieved by operator overloading in OOP. ? All available operators in an

Object Oriented Programming (OOP) language are not overloadable. ? Function overriding is the run-time

polymorphism. It allows execution of derived class member function instead of its base class member function at run

time. The name and the prototype of these functions are exactly same. ? Function overriding is implemented in OOP

using the concept of Virtual function. The keyword ‘virtual’ is used to declare a base class member function as virtual

function. ? If a virtual function doesn’t have any definition or implementation then it is termed as Pure virtual function. ?

Abstract class is a type of class where at least one member function is available which don’t have any definition or

implementation. 9.10 ANSWERS TO CHECK YOUR PROGRESS 1. (a). (iii), (b). (i), (c). (iv), (d). (ii) , (e). (iv) , (f). (ii) 2. (a). two,

(b). operator, (c). &&, (d). friend 3. (a). (iii), (b). (ii), (c). (i), (d). (ii), (e). (iii) 9.11 POSSIBLE QUESTIONS 1) Define Polymorphism.

Write down the categories of Polymorphism. 2) Explain Function overloading with a suitable example. 3) Why Operator

overloading is called as compile time polymorphism? 4) Explain unary operator overloading with a suitable example.

291 | P a g e 5) How friend function can be used to overload a binary operator in C++? Give example. 6) Write down any

three overloadable operators and three non- overloadable operators available in C++. 7) What is virtual function? Explain

how virtual function is used to implement function overriding. 8) Explain Pure virtual function with an example. 9.12

REFERENCES AND SUGGESTED READINGS 1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering C++. Tata McGraw-

Hill Education, 2001. 2) Balagurusamy, E. Object Oriented Programming with C++. Tata McGraw-Hill, 2006

292 | P a g e UNIT 10: EXCEPTION HANDLING Unit Structure: 10.1 Introduction 10.2 Unit Objectives 10.3 Exception

handling mechanism 10.3.1 throwing mechanism 10.3.2 catching mechanism 10.4 Throwing the same exception again

10.5 Exceptions in constructor and destructor 10.6 Error handling 10.7 Summing Up 10.8 Answers to check your progress

10.9 Possible questions 10.10 References and Suggested Readings 10.1 INTRODUCTION Run-time abnormalities or

unexpected conditions that a programme experiences during execution are known as exceptions.When the system

handles these abnormalities orconditions improperly, it can lead to failures and system crashes. Exception failures are

estimated to cause two thirds of system crashes and fifty percent of computer system security vulnerabilities. Exception

handling is especially important in embedded and real-time computer systems because software in these systems

cannot easily be fixed or replaced, and they must deal with the unpredictability of the real world. Robust exception

handling in software can improve software fault tolerance and fault avoidance, but no structured techniques exist for

implementing dependable exception handling. However, many exceptional conditions can be anticipated when the

system is designed, and protection against these conditions can be incorporated into the system. Traditional software

engineering techniques such as code walkthroughs and software testing can

293 | P a g e illuminate more exceptional conditions to be caught, such as bad input for functions and memory and data

errors. However, it is impossible to cover all exceptional cases. It is also difficult to design a dependable system that can

tolerate truly unexpected conditions. In these cases, some form of graceful degradation is necessary to safely bring

down the system without causing major hazards. In C++, an exception is a situation that arises during the execution of a

program code. In C++ program, an exception is a response to an exceptional situation that arises while a program is

running, such as an attempt to divide by zero. Exceptions provide a way to transfer control from one part of a program to

another part of the same program. Exception handling is built upon three keywords: try, throw and catch.All exceptions

are derived from std:: exception class. It is a runtime error that can be handled. If we don’t handle the exception, it prints

the exception message and terminates the program. Why Exception Handling? Following are main advantages of

exception handling over traditional error handling. 1) Separation of Error Handling code from Normal Code: In traditional

error handling codes, there are if else conditions to handle errors. These conditions and the code to handle errors get

mixed up with the normal flow. This makes the code less readable and maintainable. With try catch blocks, the code for

error handling is separated from the normal flow. 2) Functions/Methods can handle any exceptions they choose: A

function can throw many exceptions, but may choose to handle some of them. The other exceptions which are thrown,

but not caught can be handled by caller. If the caller chooses not to catch them, then the exceptions are handled by

caller of the caller. In C++, a function can specify the exceptions that it throws using the throw keyword. The caller of

this function must handle the exception in some way (either by specifying it again or catching it) 3) Grouping of Error

Types: In C++, both basic types and objects can be thrown as exception. We can create a hierarchy of exception objects,

group exceptions in namespaces or classes, categorize them according to types.

294 | P a g e 10.2 UNIT OBJECTIVES In this unit learners will learn how to handle exceptions in C++. Also learners will

know the different ways to handle them. Precisely learners will learn: Exception handling mechanism Throwing

mechanism Catching mechanism Throwing the same exception again: 10.3 EXCEPTION HANDLING MECHANISM The

purpose of the Exception Handling mechanism is to provide and detect a report of “exceptional circumstances” so that

appropriate action can be taken. The mechanism suggests a separate error handling code that performs the following

tasks:Find the exception, Throw the exception, Catch the exception, Handle the exception Try: The keyword try is used

to preface a block of statements which may generate an exception. This block of statements is known as try block.

Throw: When an exception is detected, it is thrown using a throw statement in the try block.

295 | P a g e Catch: The catch block catches an exception must immediately follow the try block that throws the

exception. Syntax of Exception Handling: try { statement; // generates an exception throw exception; // throws

an exception } catch(Exception-type e) { statement; // processes the exception } 10.3.1 Throwing

Mechanisms Throwing Mechanisms: Exceptions can be thrown anywhere within a code block using throw statement.

The operand of the throw statement determines a type for the exception and can be any expression and the type of the

result of the expression determines the type of exception thrown. Following is an example of throwing an exception

when dividing by zero condition occurs − double division(int a, int b) {

296 | P a g e if(b == 0) { throw "Division by zero condition!"; } return (a/b); } 10.3.2 Catching Mechanisms The catch

block following the try block catches any exception. You can specify what type of exception you want to catch and this

is determined by the exception declaration that appears in parentheses following the keyword catch. try { // protected

code } catch(ExceptionName e) { // code to handle ExceptionName exception } Above code will catch an exception of

ExceptionName type. If you want to specify that a catch block should handle any type of exception that is thrown in a try

block, you must put an ellipsis, ..., between the parentheses enclosing the exception declaration as follows − try { //

protected code } catch(...) { // code to handle any exception } The following is an example, which throws a division by

zero exception and we catch it in catch block. #include >iostream<

297 | P a g e using namespace std; double division(int a, int b) { if(b == 0) { throw "Division by zero condition!"; } return

(a/b); } int main () { int x = 50; int y = 0; double z = 0; try { z = division(x, y); cout >> z >> endl; } catch (const

char* msg) { cerr>>msg>> endl; } return 0; } Define New Exceptions You can define your own exceptions by

inheriting and overriding exception class functionality. Following is the example, which shows how you can use

std::exception class to implement your own exception in standard way − Example:

298 | P a g e #include >iostream< #include >exception< using namespace std; structMyException : public

exception { const char * what () const throw () { return "C++ Exception"; } }; int main() { try { throw MyException(); }

catch(MyException& e) { std::cout>> "MyException caught" >>std::endl; std::cout>>e.what()

>>std::endl; } catch(std::exception& e) { //Other errors } } CHECK YOUR PROGRESS 1. What is an exception in C++

program? 2. By default, what a program does when it detects an exception? 3. Why do we need to handle exceptions? 4.

How Exception handling is implemented in the C++ program? 5. What is the correct syntax of the try-catch block?

299 | P a g e 10.4 THROWING THE SAME EXCEPTION AGAIN Rethrowing an expression from within an exception handler

can be done by calling throw, by itself, with no exception. This causes current exception to be passed on to an outer

try/catch sequence. An exception can only be rethrown from within a catch block. When an exception is rethrown, it is

propagated outward to the next catch block. - Consider the following code: #include >iostream< using namespace

std; void MyHandler() { try { throw “hello”; } catch (const char*) { cout >>”Caught exception inside MyHandler\n”;

throw; //rethrow char* out of function } } int main() { cout>> “Main start”; try { MyHandler(); } catch(const char*) {

cout >>”Caught exception inside Main\n”; } cout >> “Main end”; return 0; } Output : Main start

300 | P a g e Caught exception inside MyHandler Caught exception inside Main Main end Sometimes you want to do

something with the exception you catch (like write to log or print a warning) and let it bubble up to the upper scope to

be handled. To do so, you can rethrow any exception you catch: try { ... // some code here } catch

(constSomeException& e) { std::cout >> "caught an exception"; throw; } Using throw; without arguments will re-

throw the currently caught exception. To rethrow a managed std::exception_ptr, the C++ Standard Library has the

rethrow_exception function that can be used by including the >exception< header in your program. #include

>iostream< #include >string< #include >exception< #include >stdexcept< void

handle_eptr(std::exception_ptreptr) // passing by value is ok { try { if (eptr) { std::rethrow_exception(eptr); } }

catch(conststd::exception& e) { std::cout >> "Caught exception \"" >>e.what() >> "\"\n"; } } int main() {

301 | P a g e std::exception_ptreptr; try { std::string().at(1); // this generates an std::out_of_range } catch(...) { eptr =

std::current_exception(); // capture } handle_eptr(eptr); } // destructor for std::out_of_range called here, when the eptr is

destructed CHECK YOUR PROGRESS 6. Which part of the try-catch block is always fully executed? 7. Which of the

following is an exception in C++? 8. What is an error in C++? 9. What is the difference between error and exception? 10.

What are the different types of exceptions? 11. Which keyword is used to throw an exception? 10.5 EXCEPTIONS IN

CONSTRUCTOR AND DESTRUCTOR When an exception is thrown from a constructor, the object is not considered

instantiated, and therefore its destructor will not be called. But all destructors of successfully constructed base and

member objects of the same master object will be called. Destructors of not yet constructed base or member objects of

the same master object will not be executed. Example: class A : public B, public C { public: D sD; E sE; A(void) :B(), C(),

sD(), sE() { }

302 | P a g e }; Let's assume the constructor of base class C throws. Then the order of execution is: B C (throws) ~B Let's

assume the constructor of member object sE throws. Then the order of execution is: B C sD sE (throws) ~sD ~C ~B Thus

if some constructor is executed, one can rely on that all other constructors of the same master object executed before,

were successful. This enables one, to use an already constructed member or base object as an argument for the

constructor of one of the following member or base objects of the same master object. What happens when we allocate

this object with new? Memory for the object is allocated The object's constructor throws an exception The object was

not instantiated due to the exception The memory occupied by the object is deleted The exception is propagated, until it

is caught The main purpose of throwing an exception from a constructor is to inform the program/user that the creation

and initialization of the object did not finish correctly. This is a very clean way of providing this important information, as

constructors do not return a separate value containing some error code (as an initialization function might). In contrast, it

is strongly recommended not to throw exceptions inside a destructor. It is important to note when a destructor is called:

303 | P a g e as part of a normal deallocation (exit from a scope, delete) as part of a stack unwinding that handles a

previously thrown exception. In the former case, throwing an exception inside a destructor can simply cause memory

leaks due to incorrectly deallocated object. In the latter, the code must be cleverer. If an exception was thrown as part of

the stack unwinding caused by another exception, there is no way to choose which exception to handle first. This is

interpreted as a failure of the exception handling mechanism and that causes the program to call the function terminate.

To address this problem, it is possible to test if the destructor was called as part of an exception handling process. To this,

one should use the standard library function uncaught_exception, which returns true if an exception has been thrown,

but hasn't been caught yet. All code executed in such a situation must not throw another exception. Situations where

such careful coding is necessary are extremely rare. It is far safer and easier to debug if the code was written in such a

way that destructors did not throw exceptions at all. 10.6 ERRORS HANDLING Errors occurring at runtime create serious

issues and most of the time, it hinders the normal execution of the program. That is why we have to handle these errors.

This handling of errors in order to maintain the normal flow of the execution of the program is known as “Exception

Handling”. C++ Standard Exceptions The following diagram shows the hierarchy of exceptions class std:: exception

supported in C++

304 | P a g e In the below, we will see the description of each of the above exceptions: Exception Description

std::exception This is the parent class for all C++ standard exceptions. std::bad_alloc Thrown by ‘new’ operator when

memory allocation goes wrong. std::bad_cast Occurs when ‘dynamic_cast’ goes wrong. std::bad_typeid This exception

is thrown by typeid. std::bad_exception This exception is used to handle unexpected exceptions in the program.

std::runtime_error Exceptions that occur at runtime and cannot be determined merely by reading the code.

std::overflow_error This exception is thrown when mathematical overflow occurs. std::underflow_error This exception is

thrown when mathematical underflow occurs. std::range_error When program stores value that is out of range, this

exception is thrown. std::logic_error Those exceptions can be deduced by reading the code.

305 | P a g e std::out_of_range The exception is thrown when we access/insert elements that are not in range. For

example, in the case of vector or arrays. std::length_error This exception is thrown in the case when the length of the

variable is exceeded. For example, when a string of big length is created for type std::string. std::domain_error Thrown

when the mathematically invalid domain is used. std::invalid_argument Exception usually thrown for invalid arguments.

How To Stop Infinite Loop In Exception Handling Let us consider yet another case of an infinite loop. If the code inside is

bound to throw an exception, then we need to consider the actual place where we should put our try, catch block. That

is whether the try catch block should be inside the loop or the loop should be inside the try-catch block. There is no

guaranteed answer regarding the placement of try catch block, however, it depends solely on the situation. One

consideration is that the try catch block usually causes overhead for the program. So unless required, we should do away

with an exception handling code in the infinite loop. Let us consider the example shown below. #include

>iostream< #include >stdexcept< using namespace std; int main (void) { int Sum=0, num; cout>>"Please

enter number you wish to add(-99 to exit):">>endl; while(true) { try{ cin<<num;

306 | P a g e if(num == -99) throw -99; Sum+=num; } catch(...) { cout >>" Aborting the program...">>endl;

break; } } cout >> "Sum is:" >> Sum >> endl; return 0; } Here we have an infinite while loop. Inside the

loop, we read an input number and add it to sum. In order to come out of the loop, we need to give the terminating

condition inside the loop. We have given -99 as the terminating condition. As seen, we have put this code in a try block

and when the number entered is equal to -99, we throw an exception that is caught in the catch block. Now in the

above situation, if we put the entire while loop inside the try block, then there is bound to be overhead as while is an

infinite loop. So the best place to put the try catch block is inside the loop. The program gives the following output:

Output: Please enter the number you wish to add(-99 to exit): -99 Aborting the program… Sum is:0 Note that the control

is passed to catch block once -99 is entered as input.

307 | P a g e Note that we have not given any specific exception object as an argument to catch. Instead, we have

provided (…). This indicates that we are catching the generalized exception. CHECK YOUR PROGRESS 12. What will be

the output of the following C++ code? #include >iostream< #include >string< #include >cstdlib< using

namespace std; void func(int a, int b) { if(b == 0){ throw "This value of b will make the product zero. " "So please provide

positive values.\n"; } else{ cout>>"Product of ">>a>>" and ">>b>>" is:

">>a*b>>endl; } } int main() { try{ func(5,0); } catch(const char* e){ cout>>e; } }

308 | P a g e As the value of b = 0 is provided to the func() and the function is throwing an exception whenever the value

of b = 0. Therefore the function throws the exception which will be printed on the screen. 13. What will be the output of

the following C++ code? #include >iostream< #include >string< #include >cstdlib< using namespace

std; void func(int a, int b) { if(b == 0){ throw "This value of b will make the product zero. " "So please provide positive

values.\n"; } else{ cout>>"Product of ">>a>>" and ">>b>>" is: ">>a*b>>endl; } } int

main() { try{ func(5,0); } catch(char* e){ cout>>e; } } As the func() is throwing a const char* string but we the catch

block is not catching any const char* exception i.e. exception thrown is

309 | P a g e not handled therefore the program results into Aborted(core dumped). 14. What is Re-throwing an

exception means in C++? 15. What will be the output of the following C++ code? #include >iostream< #include

>string< #include >cstdlib< using namespace std; void func(int a, int b) { if(b > 1){ throw b; } else{

cout>>"Product of ">>a>>" and ">>b>>" is: ">>a*b>>endl; } } int main() { try { try {

func(5,-1); } catch(int b) { if(b==0) throw "value of b is zero\n";

310 | P a g e else throw "value of b is less than zero\n"; } } catch(const char* e) { cout>>e; } } Here the func() throws

the value of b which is caught by the inner try-catch block, which again throws the message inorder to handle different

cases of b which is caught by the outer try-catch block. Now as the value of b is negative the program outputs the

message as shown. 16. Explain terminate() and unexpected() function. 17. Describe Exception handling concept with an

example. 18. Illustrate Rethrowing exceptions with an example. Multiple Choice Questions: 19. Generic catch handler is

represented by ______________. a. catch(..,) b. catch(---) c. catch(…) d. catch(void x) 20. Throwing an unhandled

exception causes standard library function _______________ to be invoked. a. stop() b. aborted() c. terminate() d.

abandon()

311 | P a g e 21. Attempting to throw an exception that is not supported by a function call results in calling

_____________ library function. a. indeterminate() b. unutilized() c. unexpected() d. unpredicted() 22. Return type of

uncaught_exception() is________________. a. int b. bool c. char * d. double 23. How can we restrict a function to

throw certain exceptions? a. Defining multiple try and catch block inside a function b. Defining generic function within

try block c. Defining function with throw clause d. It is not possible in CPP to restrict a function 24. In nested try blocks, if

both inner and outer catch handlers are not able to handle the exception, then______________. a. Compiler executes

only executable statements of main() b. Compiler issues compile time errors about it c. Program will be executed without

any interrupt d. Program will be terminated abnormally 25. If inner catch handler is not able to handle the exception

then__________. a. Compiler will look for outer try handler b. Program terminates abnormally

312 | P a g e c. Compiler will check for appropriate catch handler of outer try block d. None of these 26. In nested try

block, if inner catch handler gets executed, then______________ a. Program execution stops immediately b. Outer

catch handler will also get executed c. Compiler will jump to the outer catch handler and then executes remaining

executable statements of main() d. Compiler will execute remaining executable statements of outer try block and then

the main() 27. Which of the following statements are true about Catch handler? 1. It must be placed immediately after try

block T 2. It can have multiple parameters 3. There must be only one catch handler for every try block 4. There can be

multiple catch handler for a try block T 5. Generic catch handler can be placed anywhere after try block. a. Only 1, 4, 5 b.

Only 1, 2, 3 c. Only 1, 4 d. Only 1, 2 State True or False: 28. We can prevent a function from throwing any exceptions. 29.

An exception can be of only built-In type. 30. Irrespective of exception occurrence, catch handler will always get

executed. 31. Functions called from within a try block may also throw exception.

313 | P a g e 32. Generic catch handler must be placed at the end of all the catch handlers. 33. In nested try blocks, there

is no need to specify catch handler for inner try block. Outer catch handler is sufficient for the program. 10.7 SUMMING

UP Here we have learnt about the various aspects of exception handling in C++. In this unit precisely we have gone

through the following: Exception handling mechanism: like throwing mechanism, catching mechanism, throwing the

same exception again, exceptions in constructor and destructor, Error handling etc. 10.8 ANSWERS TO CHECK YOUR

PROGRESS 1. What is an exception in C++ program? An exception is defined as the problem in C++ program that arises

during the execution of the program for example divide by zero error. 2. By default, what a program does when it detects

an exception? By default, whenever a program detects an exception the program crashes as it does not know how to

handle it hence results in the termination of the program. 3. Why do we need to handle exceptions? We need to handle

exceptions in a program to avoid any unexpected behaviour during run-time because that behaviour may affect other

parts of the program. Also, an exception is detected during run-time, therefore, a program may compile successfully

even with some exceptions cases in your program. 4. How Exception handling is implemented in the C++ program?

C++ provides a try-catch block to handle exceptions in your program. 5. What is the correct syntax of the try-catch

block?

314 | P a g e Try-catch block has the following syntax: try{ // codes that needs to check for exceptions } catch(Exception

E1){ // codes for handling exception.... // Exception E denotes the type of exception this block is handling. }

catch(Exception E2){ // other exception that needs to be handled... } You can have any number of catch blocks catching

different exceptions….. 6. Which part of the try-catch block is always fully executed? Finally part of the try-catch block is

always executed whether exceptions are caught or not. 7. Which of the following is an exception in C++? Exceptions are

those which are encountered during run-time of the program. semicolon, variable not declared and the wrong

expression are compile-time errors, therefore, they are not exceptions. Divide by zero is the problem that is encountered

during run-time, therefore, it is an exception. 8. What is an error in C++? An error occurs when rules and laws of a

language is violated while writing programs in that language. 9. What is the difference between error and exception?

Exceptions can be handled during run-time whereas errors cannot be because exceptions occur due to some

unexpected conditions during run-time whereas about errors compiler is sure and tells about them during compile-time.

315 | P a g e 10. What are the different types of exceptions? There are two types of exceptions: Synchronous and

asynchronous exceptions. Synchronous exceptions that are caused by the event which can be controlled by the

program whereas Asynchronous exceptions are those which are beyond the control of the program. 11. Which keyword

is used to throw an exception? ‘throw’ keyword is used to throw exceptions if something bad happens. 12. What will be

the output of the following C++ code? #include >iostream< #include >string< #include >cstdlib< using

namespace std; void func(int a, int b) { if(b == 0){ throw "This value of b will make the product zero. " "So please provide

positive values.\n"; } else{ cout>>"Product of ">>a>>" and ">>b>>" is:

">>a*b>>endl; } } int main() { try{ func(5,0); } catch(const char* e){ cout>>e;

316 | P a g e } } As the value of b = 0 is provided to the func() and the function is throwing an exception whenever the

value of b = 0. Therefore the function throws the exception which will be printed on the screen. Output: This value of b

will make the product zero. So please provide positive values. 13. What will be the output of the following C++ code?

#include >iostream< #include >string< #include >cstdlib< using namespace std; void func(int a, int b) {

if(b == 0){ throw "This value of b will make the product zero. " "So please provide positive values.\n"; } else{

cout>>"Product of ">>a>>" and ">>b>>" is: ">>a*b>>endl; } } int main() { try{

func(5,0); } catch(char* e){

317 | P a g e cout>>e; } } As the func() is throwing a const char* string but we the catch block is not catching any

const char* exception i.e. exception thrown is not handled therefore the program results into Aborted(core dumped).

Output: terminate called after throwing an instance of 'char const*' Aborted (core dumped) 14. What is Re-throwing an

exception means in C++? Exception that is caught by a catch block but not handled by that catch block can be re-

thrown by that catch block to further try-catch block. 15. What will be the output of the following C++ code? #include

>iostream< #include >string< #include >cstdlib< using namespace std; void func(int a, int b) { if(b > 1){

throw b; } else{ cout>>"Product of ">>a>>" and ">>b>>" is: ">>a*b>>endl; } } int

main() {

318 | P a g e try { try { func(5,-1); } catch(int b) { if(b==0) throw "value of b is zero\n"; else throw "value of b is less than

zero\n"; } } catch(const char* e) { cout>>e; } } Here the func() throws the value of b which is caught by the inner

try-catch block, which again throws the message inorder to handle different cases of b which is caught by the outer try-

catch block. Now as the value of b is negative the program outputs the message as shown. Output: value of b is less than

zero 16. Explain terminate() and unexpected() function. terminate() is a library function which by default aborts the

program It is called whenever the exception handling mechanism cannot find a handler for a thrown exception...................

319 | P a g e 17. Describe Exception handling concept with an example. Exceptions: Exceptions are certain disastrous

error conditions that occur during the execution of a program. They could be errors that cause the programs to fail or

certain conditions that lead to errors. If these run time errors are not handled by the program, OS handles them and

program terminates.................. 18. Illustrate Rethrowing exceptions with an example. Rethrowing an expression from

within an exception handler can be done by calling throw, by itself, with no exception. This causes current exception to

be passed on to an outer try/catch sequence. 19. c. 20. c 21. c 22. b 23. c 24. d 25. c 26. d 27. c 28. True 29.False 30.False

31. True 32.True 33. False 10.9 POSSIBLE QUESIONS 1. Why use exceptions? 2. How do we use exceptions? 3. What

shouldn’t we use exceptions for? 4. What are some ways try / catch / throw can improve software quality? 5. How do

exceptions simplify my function return type and parameter types? 6. What does it mean that exceptions separate the

“good path” (or “happy path”) from the “bad path”? 7. Can we throw an exception from a constructor? From a destructor?

8. How can we handle a constructor that fails? 9. How can we handle a destructor that fails? 10. How should we handle

resources if my constructors may throw exceptions? 11. How do we change the string-length of an array of char to

prevent memory leaks even if/when someone throws an exception? 12. What should we throw?

320 | P a g e 13. What should we catch? 14. What does throw; (without an exception object after the throw keyword)

mean? Where would we use it? 15. How do we throw polymorphically? 16. When we throw this object, how many times

will it be copied? 17. Why doesn’t C++ provide a “finally” construct? 18. Why can’t we resume after catching an

exception? 10.10 REFERENCES AND SUGGESTED READINGS 1. C++ Primer 5th Edition: C++ Primer (5th Edition) 5th

Edition written by Stanley B, introduces the C++ standard library from the outset. It helps you to write useful programs

without the need to master every aspect of C++ language. The books cover many examples, and it also demonstrates

how to make the best use of them. 2. C++ Pocket Reference 1st Edition: Accelerated C++: Practical Programming,

written by Andrew Koenig. This introductory book that takes a practical approach to solve problems using C++. It covers

a wide der scope of C++ programming than other introductory books. 3. C++ in One Hour a Day, Sams Teach Yourself

8th Edition: This book presents the language from a practical point of view. It helps you to learn how to use C++ to

create faster, simpler, and more efficient C++ applications. You can understand how C++ features help you write

efficient code using concepts like move constructors, lambda expressions, and assignment operators. 4. C++ All-in-One

For Dummies 3rd Edition: C++ All-in-One For Dummies, 3rd Edition is an ideal handbook to C++ programmers. Author

John Paul Mueller is a recognized authority in the computer industry which your ultimate guide to C++. This C++ book

teaches you how you can work with objects and classes. It helps you to learn advanced coding skill using various C++

concepts.

321 | P a g e 5. C++: The Complete Reference Fourth Edition: The C++ Pocket Reference is a memory aid for C++

programmers written by Kyle Loudon. This pocket-sized reference book makes an ideal reference book to carry about,

ensure that it will be handy when needed. 6. Starting Out with C++ from Control Structures to Objects plus: This C++

book was written by Tony Gaddis’s accessible. It is step-by-step presentation helps the beginner as well as experienced

developers. It helps them to understand important concepts of C++ programming language. 7. A Tour of C++ (C++ In-

Depth Series) 1st Edition: Bjarne Stroustrup's book A tour of C++. It offers complete references for C++ core concepts

and practical coding to give an experienced programmer to get what constitutes modern C++. This concise book

contains a self-contained guide. 8. Effective Modern C++ 9. C++ Standard Library, The: A Tutorial And Reference 2Nd

Edition: The book offers comprehensive documentation of each library component, which includes an introduction to its

purpose and design. 10. Accelerated C++: Practical Programming by Example 1st Edition: This is an advanced C++

learning book written by Scott Meyers. The book includes topics like The pros and cons of braced initialization, perfect

forwarding, except specifications, and smart pointer makes functions. The relationships among std:: move, std:: forward.

It also overs techniques which helps you to write correct, useful lambda expressions. 11. More Effective C++: This is an

ideal C++ reference book written by Scott Meyers. It offers many C language reference and teaches C as the subset of

C++ This book illustrates the C++ language with good examples throughout. It is highly recommended as a reference

book. 12. Object-Oriented Programming In C++ 4th Edition: Robert Lafore wrote object-oriented Programming in C++.

The book starts with the basic principles of the C++ programming language. It gradually introduces increasingly towards

advanced topics.

322 | P a g e 13. C++ Programming: From Problem Analysis to Program Design 3rd Edition: C++ Programming: From

Problem Analysis to Program Design, Third Edition is a book written by D.S. Malik. This programming book also teaches

OOD methodology of sorting algorithms. It also teaches how to present additional material on abstract classes. 14. C++:

A Detailed Approach to Practical Coding: A Detail approach to Practical Coding is a second book written by Nathan

Clark. The author shares his 20 year’s programming experience in this book. This book serves acts as a teaching guide

and also a reference manual to accompany you through this wonderful world of programming. 15. C++17 STL

Cookbook: This book helps you to understand the language's mechanics and library features and offers insight into how

they work. The book takes an implementation-specific, problem-solution approach that helps you resolve such issues. It

also covers core STL concepts, like containers, algorithms, lambda expressions, iterators.

323 | P a g e UNIT 11: FILE HANDLING Unit Structure: 11.1 Introduction 11.2 Unit Objectives 11.3 Basics of File Handling in

C++ 11.3.1 File streams 11.4 Opening and Closing File 11.4.1 Opening File 11.4.2 Closing File 11.4.3 end-of-file File

detection 11.5 File Pointer 11.6 Sequential Access of File 11.7 Random Access File 11.8 Error Handling 11.9 Summing Up

11.10 Answers to Check Your Progress 11.11 Possible Questions 11.12 References and Suggested Readings 11.1

INTRODUCTION In the previous units, we have discussed about the basic approaches of object-oriented programming

and its importance. We have already seen a number of programming examples where we use cin and cout with

operators << and >> for the input and output operations respectively. But all the examples taken in previous

units works only in run time, there is no provision for storing data on computer and readthose data when we execute the

program in the next time. Through this unit, we aim to present what the file is, how files are accessed in C++. We will

discuss programs for reading and writing in file. We have also described the file stream operations and use of buffer and

pointers for manipulating files. 11.2 UNIT OBJECTIVES At the end of the unit, you should be able to: • understand the

basic concept of file; • open and close files for various I/O operations;

324 | P a g e • Sequential access and random access of files; • Importance of file in programming; • manage buffer and

pointers for I/O from files; and • obtain a thorough understanding and practice of using file I/O functions in C++. 11.3

BASICS OF FILE HANDLING IN C++ A file is a container in a computer system that stores data, information, settings, or

commands. There are several types of files available, such as directory files, data files, text files, binary file and graphic

files and these several kinds of files contain different types of information. In the computer system, files are stored on

hard drives, optical drives, discs, or other storage devices. In most of the operating systems, a file must be saved with a

unique name within a given file directory. File handling in C++ is a mechanism to store the output of a program in a file

and help perform various operations on it. Files help store these data permanently on a storage device. The term “Data” is

commonly referred to as known facts or information. Data are analysed to describe, diagnose, predict or prescribe its

features. But to achieve it, we need to store the data. Many real-world applications require reading and writing large

number of data items. Usually, large volumes of data are need to be stored as files on disk. C++ provides mechanism for

read and write data items from files. C++ file handling mechanism is quite similar to console input-output operations (cin

and cout). It uses streams (called file streams) as an interface between programs and files. The Figure 11.1 illustrates the

use of file streams for reading and writing from files.

325 | P a g e Figure 11.1 File Input and Output Steams The Figure 11.1 shows that a program that reads data from file

stored in secondary storage devices and writes data to the file. The input stream is connected to file used for read and

output stream is connected to file used for write into the file. Same programs performing read and write

operationsfrom/to file can also do reading and writing from standard input output devices using console I/O cin and

cout at the same time. 11.3.1 FILE STREAMS A stream is an abstraction that represents a device where input and output

operations are performed. We can represent a stream as a destination or a source of characters of indefinite length. C++

326 | P a g e contains a set of classes which provides us a library where methods for reading and writing from/to files

defined. The classes that contain these methods are ifstream, ofstream and fstream. All these classes are derived from

fstreambase class and also inherits features from iostream class. • ofstream: This Stream class signifies the output file

stream and is applied to create files for writing information to files. The ofstream class provides functions for output

operations and include functions like put(), write() etc. • ifstream: This Stream class signifies the input file stream and is

applied for reading information from files. The ifstream class provides functions for input operations. This includes

functions like get(), getline(), read(), seekg() etc. • fstream: Both the classes ofstream and ifstream are declared in fstream

and that is why this header file is included in all programs handling files. The fstream class provides support for

simultaneous input and output operations. It also inherits all functions from istream and ostream classes through

iostream. • fstreambase: The fstreambase class provides operations common to the file streams ofstream, ifstream and

fstream. It contains open() and close() functions. It also serves as base class for these three file stream classes. • filebuf:

The filebuf is used for setting the file buffers for read and write operations. C++ provides us with the following operations

in File Handling: • Creating a file: open() • Reading data: read() • Writing new data: write() • Closing a file: close() 11.4

OPENING AND CLOSING FILE In most of the operating systems, a file must be saved with a unique name within a given

file directory. However, certain characters cannot be used during creating a file as they are considered illegal. A filename

consists of a file extension that is also called a suffix. The file extension contains few characters,

327 | P a g e that follow the filename, and it helps to recognize the file format, type of file, and the attributes related to

the file. 11.4.1 Opening File A file must be opened before we can read from it or write to it. To open a file, we need the

following 1. Valid file name 2. Structure or types of data stored in file 3. Opening method. Before opening a file, we must

check in the Secondary storage devices that whether the file exists in the secondary storage device or not. If the file

already exists, we can open the file directly otherwise we need to create the file, then only we can open. Before opening

a file, we need to create the object of the respective stream classes and then we need to link the stream classes with the

file via filename. As discussed earlier we can use either ofstream or fstream stream to open a file for writing and ifstream

stream to open a file for reading purpose only. A file can be opened by one of the two following methods. 1. Using

Constructor of stream classes 2. Using open function Opening File using Constructor We have already studied about

constructors; constructors are used to initialize the class object when it is created. Here, we pass the filename as

argument to constructors of steam class. Example- ofstream fileout(“student.txt”); Here fileout is the object of stream

class ofstream, and student.txt is the filename. Here student.txt file is opened for writing, the object fileout will handle this

file in the program. Similarly, in the following example data.txt file is open for reading ifstream filein(“data.txt”); Like “cin”

and “cout” with the help of stream class object we can read and write to the file. For example fileout>>”I am a

student”; fileout>>strng1; filein<<strng2;

328 | P a g e we can also use the same file for read and write data as follows: fstream fileinout(“course.txt”); Opening File

using open function As stated earlier, the function open() can also be used to open a file. To open a file using open()

function, we need the stream object and the stream object will same way handle the file as it handles it in the earlier

example. This is done as follows: stream-class stream_class_object stream_class_object.open(“File_name”) The above

program can also be written using open function: /* C++ program to Open and Close a File*/ /*This program

demonstrates, how to open a file to store or retrieve information to/from it. And then how to close that file after storing

or retrieving the information to/from it. */ #include>iostream< #include>fstream< using namespace std; int

main() { ofstream fout; ifstream fin; char fname[20], rec[80], ch; cout>>"Enter file name: "; cin<<fname;

fout.open(fname); if(!fout) { cout>>"Error in opening the file ">>fname; exit(1); } cout>>"\nEnter a word

to store in the file:\n"; cin<<rec; fout>>rec; fout.close(); // File Close fin.open(fname); fin<<rec;

cout>>"\nThe file contains:\n";

329 | P a g e cout>>rec; fin.close(); } OUTPUT: Enter file name: xyz.txt Enter a word to store in the file: student The

file contains: student File opening modes C++ allows us to open file in different modes. In the open() function we can

specify the modes of file to open. The syntax of open() is as below: filestreamobject.open(“filename”, mode); Mode

specifies the modes of opening the file. Modes of file opening is defined in ios class.File Modes can be any of the

following: Mode Description ios::app Append at the end of file ios::ate Move the File Pointer to end-of-file on opening.

ios::binary To open a binary file. os::in To open file only for input. ios::nocreate Open the file if it already exists otherwise

fails to open file. ios::noreplace Open only already existing file. ios::out Open file only for output. ios::trunk Delete the

contents of the existing file and open as a blank file. When we don’t provide the modes of opening a file then default

mode is used by open() function. Default modes are:- ifstream ios::in ofstream ios::out

330 | P a g e fstream ios::in | ios::out Following program explain how open function works: #include>iostream<

#include>fstream< #include>string.h< using namespace std; int main() { ofstream fout; ifstream fin; char

fname[20]; char string[80], ch; int len; cout>>"\nEnter a string to store in the file:\n"; gets(string); cout>>"Enter

file name: "; cin<<fname; len=strlen(string); fout.open(fname, ios::app); if(!fout) { cout>>"Error in opening the

file ">>fname; exit(1); } for(int i=0;i>len;i++) fout.put(string[i]); fout.close(); // Close File open for output

fin.open(fname, ios::in); fin.getline(string,80); cout>>"\nThe file contains:\n";

331 | P a g e puts(string); fin.close(); } OUTPUT: Enter a word to store in the file: I am a student of IDOL. Enter file name:

xyz.txt The file contains: I am a student of IDOL. 11.4.2 Closing A File A file is automatically closed when we go outside of

the scope of stream object. We can also close a file using close()function call. fileout.close(); Closing a file will release the

stream object. After closing one file we can open another file in the same object Following programming example

explain the operation on file /* C++ program to Open and Close a File*/ #include>iostream<

#include>fstream< using namespace std; int main(){ char fname[20]; char rec[80], ch; cout>>"Enter file name:

"; cin<<fname; ofstream fout(fname); if(!fout){ cout>>"Error in opening the file ">>fname; exit(1); }

cout>>"\nEnter a word to store in the file:\n"; cin<<rec; fout>>rec; fout.close(); ifstream fin(fname);

332 | P a g e fin<<rec; cout>>"\nThe file contains:\n"; cout>>rec; fin.close(); } OUTPUT: Enter file name:

abc.txt Enter a word to store in the file: student The file contains: student 11.4.3 End-of-File File Detection End-of-file is

necessary to detect the end of the file while reading a file. To detect the endof file, eof() function is used. The eof()

function is defined in ios class. eof() function return nonzero (TRUE) value when there are no more data to be read from

an input file and zero (FALSE) otherwise. Rules for using end-of-file (eof()): 1. Always test for the end-of-file condition

before reading data from file. 2. Use a while loop for getting data from the input file stream. A for loop is desirable only

when we know the exact number of data items. In case of file, we do not know the exact numbers of data in the file.

Following programming example explains the use end-of-file. #include >iostream< #include >fstream<

#include >string.h< using namespace std; int main(){ ifstream fin; // object for reading from the file char fname[20];

char rec[80], ch; cout>>"Enter file name: "; cin<<fname;

333 | P a g e fin.open(fname); //open the file for reading cout>>"\nThe file contains:::\n"; while(fin.eof() = = 0) //

End-of-file detection { fin.getline(rec,80); //read one line at a time from file cout>>rec>>"\n"; } fin.close(); //

close the file open for reading } OUTPUT: Enter file name: data.txt The file contains::: Hi, I am Rahul. I am a student of

IDOL. I am from Guwahati. CHECK YOUR PROGRESS - I 1. Which header file is required to use file I/O operations? 2.

______ used to create an output stream? 3. ______ used to create a stream that performs both input and output

operations? 4. Which of the following is not used as a file opening mode? a) ios::trunc b) ios::binary c) ios::in d) ios::ate

True or False? 5. It is not possible to combine two or more file opening mode in open() method. 6. ios::in and ios::out are

input and output file opening mode respectively. 7. Use of ios::trunc mode is to truncate an existing file to half 8. Default

mode for opening file using ofstream class is ios::out

334 | P a g e 11.5 FILE POINTER Each file in C++ is associated with file pointer. We can control the position of reading

and writing operations in a file by manipulating the file pointers. That is, we can write anywhere or read from any location

by manipulating the file pointer. Every file in C++ is associated with two pointers, one for input (get pointer) and other for

output (put pointer). File Pointer Description get The get pointer allows us to read the content of a file when we open the

file in read-only mode. It automatically points at the beginning of file, allowing us to read the file from the beginning. put

It allows us to write the content to a file, when we open the file in write-only mode. It automatically points at the

beginning of a file, starting us to write the content of a file from the start. The get pointer is used to set a specified

location in order to read from that desired location in the file. These pointers are automatically incremented every time

after read and write operation. Every time we open a file for input, the input pointer is automatically set to the beginning

of the file. When we open the file in a read-only mode i.e. "ios::in", the get pointer is automatically set the beginning of

the file, to allow us to read from the start. But C++ provides some functions which allow us to set the get pointer at the

particular location in the file.

335 | P a g e Following are the functions used to set the get pointer Functions Description tellg() Gives us the current

location of the get pointer. When the file is opened in a read-only mode, tellg() returns zero i.e. the beginning of the file.

seekg(offset, refposition) This function is used to set the location of the get pointer to a desired position/offset. The

position variable is the new position in the file i.e. an integer value representing the number of bytes from the beginning

of the file. The syntax of seekg() function is seekg(offset, reposition); Here, the argument offset represents the number of

bytes the file pointer to move from the location specified in refposition. The argument refposition can have any one

value from following: ios::beg To set the pointer at start of the file ios::end To set the pointer at end of the file ios::cur

Current position of the pointer The following program illustrates the use of seekg() and tellg() function: //Modifying the

data of file using pointer: #include>iostream< #include>fstream< using namespace std; int main() { ifstream

inf; inf.open("data.txt", ios::in); cout>>"The first location is : " >>inf.tellg() >> "\n"; char ch;

336 | P a g e cout>>"\n File is : \n"; while(inf) { ch = inf.get(); cout>>ch; } inf.clear(); cout>>"\n\nReading

the file skipping 5 character : \n"; inf.seekg(5, ios::beg); while(inf) { ch = inf.get(); cout>>ch; } return 0; } OUTPUT:

The first location is : 0 File is : I studying in Final Semester. Reading the file from 5th character : dying in Final Semester. In

the program inf.seekg(5, ios::beg); This code is used to set the get pointer at beginning of the file (ios::beg) and the

pointer will skip 5 position from beginning (since offset is 5) inf.clear(); Once we reach the EOF(End of file), the EOF flag is

set and it does not allow us to access of file again for reading. Hence, we need to clear it. To clear EOF flag, clear()

function is used. We have discussed the get pointer, which is used to read the content of a file and some functions to

manipulate the get pointer. Similar to get pointer put pointer is used to write the content to the file. The features of put

pointer are: It allows us to write the content to a file, when we open the file in write or append mode.

337 | P a g e It automatically points at the beginning of a file, when we open the file in write-only mode. It points at the

end of a file, when we open the file in append mode. Similar to get function two functions are associated with put

function. Following are two functions used along with put file pointer: Functions Description tellp() Gives us the current

location of the put pointer. When the file is opened in a write-only mode, tellp() returns zero i.e. the beginning of the file.

seekp (offset, refposition); This function is used to set the location of the put pointer to a desired position/offset. The

position variable is the new position in the file i.e. an integer value representing the number of bytes from the beginning

of the file. The syntax of seekp() function is: seekp(offset, reposition); Here the argument offset represents the number of

bytes the file pointer to move from the location specified in refposition. The argument refposition can have any one

value from following ios::beg To set the pointer at start of the file ios::end To set the pointer at end of the file ios::cur

Current position of the pointer 11.6 SEQUENTIAL ACCESS OF FILE A Sequential file has to be Accessed in the same order

the file was written. For example, a cassette tapes: we can play the music’s in the tape same order as it was recorded. In

the tape we can only fast-forward or rewind over songs but we cannot go to a specific song just typing any index. This

type of files is called sequential files. In this type of file, it is difficult and sometimes impossible to write data in the middle

or to delete data from middle.

338 | P a g e Following are the few popular functions used in sequential access of file: put() function: put() function, used

to write a character to the file.The put function allows us to write one character at a time to a file. Syntax of put() function

is as bellow- void put(char ch); When we use put function with file stream object we call the function with the help of

stream object. For example outf.put(ch); get() function: get() functionis used to read a character from the file. The get

function allows us to read one character at a time from a file. Syntax of get() function is as bellow- char get(); When we

use get function with file stream object we need to call the function with the help of stream object. For example ch =

inf.get(); getline() function: getline() is a standard library function that is used to read a string or a line from an input

stream. It is defined under >string< header file. The getline() function extracts characters from the input stream and

appends it to the string object until the delimiting character is encountered. read() function: read() is a binary function,

used to read (input) data from file. It is used to read objects stored in file. The syntax of read() is read((char *) & ob,

sizeof(ob)); read() function with file stream object is used as follows inf.read((char*)&V, sizeof(V)); where V is the variable.

The function took two arguments address of the variable ((char*)&V) and size of the data (sizeof(V)) to store. write()

function: write() is also a binary function, used to write (output) data on to the file. It is used to write the objects to a file,

which is stored in binary form.The syntax of write() is write((char *) & ob, sizeof(ob)); write() function with file stream

object is used as follows outf.write((char*)&V, sizeof(V));

339 | P a g e where V is the variable. The function took two arguments address of the variable ((char*)&V) and size of the

data (sizeof(V)) to store. //Programming example of read() and write() function: #include>iostream<

#include>fstream< using namespace std; class student { private: char name[40]; int rollno; int semester; public: void

putdata(); void getdata(); }; void student :: putdata() { cout>>"Enter the name : "; cin.getline(name,40);

cout>>"Enter the Roll No : "; cin<<rollno; cout>>"Enter the semester : "; cin<<semester; } void

student :: getdata() { cout>>"The name is : " >> name >> "\n"; cout>>"The roll no is : " >>

rollno >> "\n"; cout>>"The semester is : " >> semester >> "\n"; } int main() { ofstream outf_b;

outf_b.open("data.txt", ios::out); student ob1; cout>>"\nWriting data to file:: \n"; ob1.putdata(); outf_b.write((char *)

& ob1, sizeof(ob1)); outf_b.close(); ifstream inf_b; inf_b.open("data.txt", ios::in); student ob2;

340 | P a g e cout>>"\nReading the object from a file : \n"; inf_b.read((char *) & ob2, sizeof(ob2)); ob2.getdata();

inf_b.close(); return 0; } OUTPUT: Writing data to file:: Enter the name : Rahul Barman Enter the Roll No : 11 Enter the

semester : 2 Reading the object from a file : The name is : Rahul Barman The roll no is : 11 The semester is : 2 11.7

RANDOM ACCESS FILE A random-access file behaves like a large array of bytes. In array we have index and in file we

have file pointer, by manipulating the file pointer we perform the read write operations. If the end-of-file is reached

before the desired number of bytes has been read than EOF error occurred. Unlike sequential access file where data in

the files are read one by one, in random access file data can be read in any order. By controlling this file pointer, we can

move forth and back within the file to perform reading and writing operations at any position we want in random

fashion. The random-access files are useful where data needs to be updated frequently. With the help of random-access

file, we can perform the following operation- 1. Updating any data in the file 2. Displaying any part of file 3. Add new data

to file 4. Delete existing data With the help of file pointer and the file pointer manipulator we can perform these tasks.

341 | P a g e The following program illustrate the random-access file #include>iostream< #include>fstream<

using namespace std; class student { private: char name[40]; int rollno; int semester; public: void putdata(); void

getdata(); }; void student :: putdata() { cout>>"The name is : " >> name >> "\n"; cout>>"The roll no

is : " >> rollno >> "\n"; cout>>"The semester is : " >> semester >> "\n"; } void student::

getdata() { cout>>"Enter the name : "; cin<<name; cout>>"Enter the Roll No : "; cin<<rollno;

cout>>"Enter the semester : "; cin<<semester; } int main() { student stu; fstream iofile;

iofile.open("student.dat",ios::ate|ios::in|ios::out|ios::binary); iofile.seekg(0,ios::beg); cout>>"\n Current content of

the file:: \n"; while(iofile.read((char*)&stu, sizeof(stu))) { stu.putdata(); } iofile.clear(); cout>>"\n Add data in end of

file:: \n"; stu.getdata(); iofile.write((char*)&stu, sizeof(stu));

342 | P a g e iofile.seekg(0, ios::beg); cout>>"\n Content of the file after adding data:: \n";

while(iofile.read((char*)&stu, sizeof(stu))) { stu.putdata(); } Int obj; cout>>"\n Enter the object no to update ::";

cin<<obj; int location=(obj-1)*sizeof(stu); if(iofile.eof()) iofile.clear(); iofile.seekp(location); cout>>"\nEnter the

new values of the student\n"; stu.getdata(); iofile.write((char*)&stu, sizeof(stu)); cout>>"\n Updated File:: \n";

iofile.seekg(0); while(iofile.read((char*)&stu, sizeof(stu))) { stu.putdata(); } iofile.close(); return 0; } OUTPUT Current

content of the file:: The name is : Rahul The roll no is : 7 The semester is : 3 The name is : Karen The roll no is : 6 The

semester is : 2 Add data in end of file:: Enter the name : Zuman Enter the Roll No : 3 Enter the semester : 1 Content of

the file after adding data::

343 | P a g e The name is : Rahul The roll no is : 7 The semester is : 3 The name is : Karen The roll no is : 6 The semester

is : 2 The name is : Zuman The roll no is : 3 The semester is : 1 Enter the object no to update :: 2 Enter the new values of

the student Enter the name : Suman Enter the Roll No : 5 Enter the semester : 1 Updated File:: The name is : Rahul The

roll no is : 7 The semester is : 3 The name is : Suman The roll no is : 5 The semester is : 1 The name is : Zuman The roll no

is : 3 The semester is : 1 11.8 ERROR HANDLING It's quite common that errors may occur during file operations. There

may have different reasons for errors while working with files. The following are few common problems that leads to

errors ? When trying to open a file for reading which is not exist. ? When trying to read from a file beyond end of file.

344 | P a g e ? When trying to read from a file that has opened in write mode. ? When trying to perform a write operation

on a file that has opened in read mode. ? When trying to operate on a file that has not been open. Following are the

functions for handle errors in file- int bad() It returns a non-zero (true) value if an invalid operation is attempted or an

unrecoverable error has occurred. Returns zero if it may be possible to recover from any other error reported and

continue operations. int fail() It returns a non-zero (true) value when an input or output operation has failed. int good() It

returns a non-zero (true) value when no error has occurred; otherwise returns zero (false). int eof() It returns a non-zero

(true) value when end-of-file is encountered while reading; otherwise returns zero (false). CHECK YOUR PROGRESS - II

1. Which of the following is not used to seek file pointer? a) ios::set b) ios::end c) ios::cur d) ios::beg 2. Which function is

used in C++ to get the current position of file pointer in a file? a) tellp() b) getpos() c) getp() d) tellpos() 3. Which function

is used to reposition the file pointer? a) moveg() b) seekg() c) changep() d) go_p() 4. Which of the following is used to

move the file pointer to start of a file? a) ios::beg b) ios::start c) ios::cur d) ios::first

345 | P a g e 11.9 SUMMING UP ? In C++ we have ifstream, ofstream and fstream stream classes to deal with file

handling. These classes are derived from fstreambase class and declared in header file iostream. ? A file can be open in

two ways, either by using constructor or by using member function open(). ? In open() function we can set the mode of

the file. ? Each file is associated with two pointer get and put. ? With the help of seekg() and seekp() function we can

manipulate the pointers. ? Frequently used functions in input output operation in files are get(), put(), read(), write(). ?

Random access file is useful when we need correction on recorded file. ? Error handling functions in C++ are used to

handle different errors occurred during program execution. 11.10 ANSWERS TO CHECK YOUR PROGRESS Check your

Progress - I 1. >fstream< 2. ofstream State True or False 5. eof() returns true if a file open for reading has reached the

end. 6. fileObject.seekg(ios::end, n) is the currect syntax for set file pointer back to n position from end of file. 7. The

function tellp() can be used to detect end of a file. 8. A C++ program can do reading and writing on the same file.

346 | P a g e 3. fstream 4. a) ios::trunc 5. False 6. TRUE 7. FALSE 8. TRUE Check your Progress - II 1. a) ios::set 2. a) tellp()

3. b) seekg() 4. a) ios::beg 5. TRUE 6. FALSE 7. FALSE 8. FALSE 11.11 POSSIBLE QUESTIONS Short answer type questions: 1.

What are the steps involved in creating a file in C++? 2. Describe the various classes available for file operation? 3. Explain

the advantages of random-access file over sequential access file. 4. How end of file is detected? Explain with example.

Long answer type questions: 1. Explain the different methods for opening a file? 2. Explain the open() function? Explain

the different modes available for opening a file? 3. Explain the different functions related to random access file with

example?

347 | P a g e 4. What is error handling in file? What are the functions available for file error handling in C++? 5. Write a

program to maintain library book record using file. 6. Write a program to maintain inventory for a departmental store

using File 11.12 REFERENCES AND SUGGESTED READINGS 1) E. Balaguruswamy, Object Oriented Programming with

C++, Tata McGraw Hill, 2010. 2) P. Deitel and H. Deitel, C++: How to Program, PHI, 7th edition, 2010. 3) B. Strousstrup,

Programming – Principles and Practices using C++, Addison Wesley, 2009

BLOCK II: OBJECT ORIENTED DESIGN

348 | P a g e UNIT 1: INTRODUCTION TO OOD Unit Structure: 1.1 Introduction 1.2 Unit Objectives 1.3 Brief History 1.4

Object-Oriented Software Development Methodology 1.5 Object-Oriented Approaches 1.6 Object-Oriented Analysis

1.6.1 Steps of performing object-oriented analysis 1.7 Object-Oriented Design 1.7.1 Goals of Object-Oriented Analysis

and Design 1.8 Object-Oriented Programming 1.8.1 Objects 1.8.2 Classes 1.9 Different Concepts of Object-Oriented

Design 1.9.1 Abstraction 1.9.2 Encapsulation 1.9.3 Inheritance 1.9.4 Modularity 1.9.5 Polymorphism 1.10 Generalization

and Specialization 1.11 Link and Association 1.11.1 Degree of Association 1.11.2 Multiplicity 1.12 Summing Up 1.13 Answers

to Check Your Progress 1.14 Possible Questions 1.15 References and Suggested Readings 1.1 INTRODUCTION The

object-oriented programming is widely used to solve different kinds of computing problems. The concept of object-

oriented programming is to find solution to the problem based on real-life examples. Object-oriented design is used to

prepare a plan to solve the software related problem diagrammatically. The whole design is based on objects and classes

where objects interact with each other

349 | P a g e to solve a problem. In this unit, we will learn the object-oriented approaches, the key concepts of object-

oriented design and different components of it. Object-oriented design is a process to design software. The fundamental

steps of developingsoftware are: Requirement analysis, designing, coding, testing and maintenance of the software.

There are many techniques and tools to develop software. The need for a tool may vary as per the requirement of the

user and the change in the technology. Among all other design strategies, object-oriented development techniques are a

popular one. 1.2 UNIT OBJECTIVES The main objectives of this unit are: ? To familiarize with the object-oriented

programming history ? To know the purpose and benefits of using object-oriented approaches ? To have a clear concept

on different concepts related to object-oriented design ? To gather the knowledge on the importance of object-

oriented analysis and design ? To know the use of link, association and basics object- orienteddesign 1.3 BRIEF HISTORY

In this section, we will show the evaluation of object-oriented programming with time: ? The term ‘object’ and ‘oriented’

are in discussions at MIT in the early 1960s. ? Alan Kay presented a detailed concept on “Object-Oriented Programming”

in 1966-1967. ? In MIT, an ALGOL version named AED-0 was initiated which was capable of establishing a link between

the data structures and procedures. ? A programming language name Simula was designed using object-oriented

concept in the late 1960s. It was capable of run on the UNIVAC 1107 computer. Simula introduced the

350 | P a g e fundamental concepts of OOP like class, object, inheritance and dynamic binding. ? The first version of

Smalltalk programming language was built by Alan Kay, Dan Ingalls and Adele Goldberg inthe 1970s. ? Inmid-1980s, Brad

Cox developed Objective-C which proved to be new beginning in OOP history. In parallel to this, Bjarne Stroustrup

created the Object-Oriented C++. ? Grady Booch proposed the design concept in a programming language in a paper

titledObject Oriented Design. ? In the 1990s, the popularity of using object-oriented programming began using the

languages like C++, Visual FoxPro 3.0 etc. ? Eventually, object-oriented concepts were added to many languages like

ADA, Fortran, Pascal, Basic, COBOL etc. ? In present days, languages like Python, Ruby, JAVA by Sun Microsystems, C#,

Visual Basic.NET have completely emerged as object-oriented programming languages. And these languages are widely

used in various fields. 1.4 OBJECT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY This methodology helps the

programmer to work based onobject- oriented concepts to solve the problems. Object-oriented software development

methodology includes the concept of requirement analysis, object-oriented design and implementation of the system.

Unlike the traditional software development methods, it focuses on developing software using objects. These objects

can be easily created, removed, modified and reused. Objects are also able to communicate between themselves. 1.5

OBJECT-ORIENTED APPROACHES The object-oriented paradigm focuses on solving a problem using both theoretical

and conceptual knowledge. Here, a system is assumed as a collection of various entities which are able to work and

interact together to fulfil certain objectives. These entities may be physical (like animal, flower, person etc.) or maybe

abstract

351 | P a g e concepts (like files, function etc.). In object-oriented analysis, these entities are known as objects. In an

object-oriented approach, these objects consists of data and procedures. The main aim is to propose a design to

improve the productivity and quality of the system. The whole object-oriented programming approach can be

partitioned into three main phases. The first phase is Object-oriented Analysis (OOA) phase, where the requirements are

analysed and the problem domain is identified in terms of objects. The Object-oriented design phase works to design a

solution domain based on the objects identified in the previous phase. Object-oriented programming works on the

implementation of the system using object-oriented concepts. The benefits of object-oriented programming

approaches are: ? Object-oriented system model works in more organized way than other traditional approaches. ?

Object-oriented system can be designed and code easily. ? The maintenance cost is comparatively low in this approach.

? Object-oriented programming allows the reusability of design and code. ? This programming is more adaptive in

nature. Modifications can be done easily as per requirement. ? This programming is reliable and more flexible for the

programmers. 1.6 OBJECT-ORIENTED ANALYSIS (OOA) Object-oriented Analysis is the starting phase of the object-

oriented software development procedure. This phase gathers all the requirements to develop the system and identifies

all the classes and relations between the classes. Objects are the instances of the class. All the requirements are

organized as objects. OOA focuses to create real-world models using the object-oriented view of the real world.

352 | P a g e 1.6.1 Steps of Performing Object-Oriented Analysis The working of OOA is shown in Figure 1.1. The key

steps of performing object-oriented analysis are: Defining the Problem: The first step in OOA is to analyse the problem

for better understanding. The problem needs to be studied in detail and redefine the problem in engineering, so that a

computer-based solution can be prepared stepwise from the problem definition using object-oriented concepts.

Requirement Analysis: The second step is to gather all the user requirements. From this, we can proceed to propose the

solution domain in the design phase. A requirement specification document should be prepared based on all user

requirements and the software requirement for solving the problem. The specification document should contain what

the system actually does, what type of inputs are necessary, what are the outputs that system produces and how

processes can be built to generate required outputs. Identification of Objects: In this step, we need to collect all the

objects and list the attributes contained in the object based on the requirement specification document built in the

previous step. Objects can be related to real-life entity or can be of an abstract type. Deciding the services of objects:

After the identification of objects, the next step is to identify the services to be provided by each object. Each object is

assigned some services to be performed. The strength of the object-oriented paradigm is that once the services are

provided to the objects, it is guaranteed to be accomplished by the objects. Establishing relationship among the objects:

Objects need to interact among themselves to perform different services to produce STOP TO CONSIDER Grady Booch

coined the term Object-Oriented Analysis as “Object- Oriented Analysis is a method of analysis that examines

requirements from the perspective of classes and objects found in the vocabulary of the problem domain”.

353 | P a g e better results. This works on identifying the relationships among the objects so that objects can

communicate during execution. Figure 1.1: Working of object-oriented analysis 1.7 OBJECT-ORIENTED DESIGN (OOD)

The classes identified in the OOA phase are designed in the design phase. This phase also helps to build the user

interfaces. As per the requirement, more numbers of classes and objects can be added in the design phase. Object-

oriented design helps to build the solution domain by identifying the classes, relationship between them, identifying the

constraints and designing the user interfaces. The outputs of object-oriented analysis are taken as input to the object-

oriented design. Object-oriented design follows the concept of decomposition. Here, decomposition means to divide

the whole system into the hierarchy of various components. Each component has its own characteristics and functions.

These smaller components are known as subsystems. OOD establishes communication between the subsystems using

corresponding objects. The main advantage of decomposing the system in OOD is that all the subsystems are of lesser

complexity, so they can be easily understandable and manageable. And the

354 | P a g e subsystems can be easily modified or replaced depending on the situation without affecting the other

subsystems. In OOD, to show the interaction between two classes and objects, associations and links are used. Object-

oriented design is composed of two main types of design: Object Design and System Design. We will study this detailed

design in Unit 3. The models built using OOD are either static models or dynamic models. Based on that OOD can be

categorized as of mainly three models: i) Object Model ii) State Model or Dynamic model iii) Functional model These

three models can be represented with different diagrams. Object model can be represented with class diagram and

object diagram. State models can be drawn using state diagram. Data Flow Diagram (DFD) is generally used to represent

functional model. We will learn the functionalities of these three models and to design their respective diagrams using

Unified Modeling language (UML) in the next unit. In present days, many of the software designer use another model

known as interaction modelinstead of functional model. The state diagrams of dynamic model focus on their respective

class. But sometimes it becomes difficult to understand the entire system. Interaction model focuses on the relationship

between the classes, how the objects interact with others to display efficient result. To present the interaction model,

Use Case diagrams, Sequence diagrams and Activity diagrams are commonly used. STOP TO CONSIDER Grady Booch

defined the term OOD as, “Object-oriented design is a method of design encompassing the process of object-oriented

decomposition and a notation for depicting both logical and physical as well as static and dynamic models of the system

under design”.

355 | P a g e 1.7.1 Goals of Object-Oriented Analysis and Design (OOAD) Both OOA and OOD are together known as

Object-Oriented Analysis and Design (OOAD) which includes both the requirement analysis, identification of classes and

design part of the object- oriented system. The different objectives or goals of object-oriented design and analysis are:

The main objective of performing object-oriented analysis and design is that it helps the programmer to build an efficient

solution to complex problems based on the object-oriented concepts. ? Following the object-oriented analysis and

design step, software development team management can have a better understanding of the problem domain. ?

Graphical representations of the problem make it easier for the team management, stakeholders and the end-user to

work together and check whether the software building process is on the right track or not. ? It increases the reusability

of the project ? It is performed at the abstract level which helps to separate the actual programming part from the

design. 1.8 OBJECT-ORIENTED PROGRAMMING (OOP) Object-oriented programming is a pattern of writing programs

where data and functions are put together in a skeleton-like structure called class, where data need to be processed and

functions need to be performed. And the whole operation is executed using any instance of a class known as an object.

There can be multiple classes in a program and ahierarchy of classes can be maintained using the concept of

inheritance. Along with this, object-oriented programming follows the concepts of abstraction, encapsulation and

polymorphism. This programming technique uses different access specifier to maintain the data hiding property. Data

hiding properties protect the data and member functions of a class from unauthorised access outside the class. The

reason behind the popularity of object-oriented programming language is that it is intact with real-world examples and

so, has the capability of solving complex problems in a better way.

356 | P a g e 1.8.1 OBJECTS An object can be said as an identity that can be categorized by its behaviour. It is a

component consisting of different properties and methods to make data useful. M. R. Blaha and J. R. Rumbaugh defined

the term object in their book [2] as, “An object is a concept, abstraction, or thing with the identity that has meaning for an

application”. Simply, an object is called as an instance of a class. No memory is allocated during the defining of class.

Memories are allocated to the objects of a class based on the size of data members (variables, constants etc.) defined

inside the class. Objects can be related with real life entity. For example, if we consider a class name as flower, then a

single flower of any kind (say lotus or rose) can be considered as an individual object. Objects can also be of an abstract

type which has conceptual existence. For example, if we consider a class name as examination, here different subjects

like subject1, subject2 etc. can be objects. 1.8.2 CLASSES We have read an object is an instance of a class. So, a class is

collection of similar kind of objects which possesses similar characteristics. A class is skeleton of program which consist

of data members and the member functions. The term data member refers to the variable or constants declared within a

class. The scope of these variables is within this class. The member functions are the procedures or functions defined in

the class. The class does not consume any memory. These data members and member functions of the class can only

be accessedthrough the objects of that class. So, the objects consist of all the characteristics defined in the class. STOP

TO CONSIDER Grady Booch defined the term OOP as, “Object-oriented programming is a method of implementation in

which programs are organized as cooperative collections of objects, each of which represents an instance of some class,

and whose classes are all members of hierarchy of classes united via inheritance relationships”.

357 | P a g e All the objects have the same number of attributes and properties. By grouping set of similar objects relating

to a class, the concept of abstraction is introduced in the object-oriented programming. As in the previous example, all

the properties of a flower are stored into the class flower. Any objects of class flower possess similar kind of properties.

Later in this unit and next unit, we will learn how to draw class diagram and object diagram in OOD. 1.9 DIFFERENT

CONCEPTS OF OBJECT- ORIENTED (OOD) In this section, we will study important concepts related to object- oriented

design and object-oriented programming. 1.9.1 Abstraction Abstraction is a process of hiding the background detail from

the user. It is one fundamental method to deal with complexities. We use different machines like any electronic device,

electrical device, mechanical device etc. for their daily use. These devices work in a complex way as it looks from the

outside. But to gather full knowledge on how exactly a device performs before using a device would be tougher for

humans. People can use a device if they know how exactly the device operates or what will be the outcome based

CHECK YOUR PROGRESS - I Fill in the blanks: 1. ___________________ is collection of similar kind of objects which

possesses similar characteristics. 2. instance of a class known as an ________________ ___________ properties

protect the data and member functions of a class from unauthorised access outside the class 3.

____________________ design is a process to design software.

358 | P a g e on the given input. There is the concept of abstraction lying on. This concept allows hiding all the working

procedures, functionalities that are not necessary for using a particular device. Let us take an example of an electric fan.

We know that as we switch on the fan, it will start rotating and help us to cool within a certain period of time. When we

switched off the fan, it stops. This information is enough for us to have the benefit of an electric fan. But behind this,

many processes have to take place, conversion of energies has been going on. Abstraction is the concept to separating

all the complex unnecessary information from the normal users. In object-oriented programming also, the concept of

abstraction is playing the same role. Abstraction focuses on to separate the important purpose from the unimportant

aspects. For a particular thing, many different abstractions also can be possible based on the purpose of their use. The

characteristics of a good model to identify the important information of a problem and removes the other. 1.9.2

Encapsulation Encapsulation is also based on the concept of information hiding.. Abstraction deals with the

characteristics of the object but encapsulation focuses on the internal implementation for which characteristics of the

objects are raised. Encapsulation hides the detailed information from the other objects. For this, the modification in any

part of a code does not affect the whole program. Encapsulation is a process of binding data with related methods and it

prevents its accessibility from other objects. The programs must be encapsulated in the proper way. It is mainly used to

hide the internal detail from the outside objects. STOP TO CONSIDER Grady Booch defined the abstraction as “An

abstraction denotes the essential characteristics of an object that distinguish it from all other kinds of objects and thus

provide crisply defined conceptual boundaries, relative to the perspective of the viewer”.

359 | P a g e 1.9.3 Inheritance/ Hierarchy of Class Inheritance is one of the key properties of object-oriented

programming. Inheritance allows a class or object to inherit the characteristics of other classes or objects. The hierarchy

of the classes states that one class can access the data and member functions of another class. The class from which the

properties can be inherited is known as base class or superclass or parent. The class which inherits the properties the

parent class is known as derived class or subclass or child class. In C++, a child class can inherit the properties of

multiple parent classes whereas a parent class can have multiple child classes. C++ supports different types of

inheritance like single inheritance, multiple inheritance, multiple inheritance, hierarchical inheritance and hybrid

inheritance. We have already studied the functionalities of different types of inheritance in this paper. Here, we try to

learn the organization of class hierarchies with an example. Let us take the example of different types of insurance policy.

A person can obtain insurance from any brand or company. First the type of insurance is selected. Insurance can be of

many types like health insurance, life insurance, motor vehicle insurance. All the insurance may have some common

properties like brand name, number of years, policy number etc. But the features, procedures and benefits vary

depending on type of insurance. So, in figure 1.2, the main or parent class is termed as Insurance_Policy STOP TO

CONSIDER Grady Booch coined encapsulation as, “Encapsulation is the process of compartmentalizing the elements of

an abstraction that constitute its structure and behaviour; encapsulation serves to separate the contractual interface of

an abstraction and its implementation”. STOP TO CONSIDER Grady Booch defined the term hierarchy as, “Hierarchy is a

ranking or ordering of abstractions”.

360 | P a g e which may contain all the common properties. based on the type, it is divided into three child or subclasses,

viz. Health_Insurance, Life_Insurance, Motor_Vehicle_Insurance. The second hierarchy level classes contain their

features. Further, these child classes also can be decomposed into more subclasses. For example, the feature of health

insurance may vary based on whether it is for self or for family. Like Life_Insurance class and Motor_Vehicle_Insurance

class also can be divided. Thus, in OOP multiple classes can be organized in the level of hierarchy. Objects of lower-level

classes can access the properties of their parent classes, whereas parent classes cannot access the properties of their

child classes. Figure 1.2: Hierarchy of classes types of insurance policy to understand inheritance 1.9.4 Modularity

Modularity is the concept of splitting a program into single components with aim to reduce complexity of the program.

These different components are known as modules. It can be said as the degree to which it can be separated. It utilizes

the concepts of abstraction and encapsulation in the form of modules. STOP TO CONSIDER Grady Booch defined the

term modularity as, “Modularity is the property of a system that has been decomposed into a set of cohesive and loosely

coupled modules”.

361 | P a g e 1.9.5 Polymorphism The term polymorphism describes the concept a object can obtain many forms

depending on the situation. In object-oriented programming also, polymorphism works in similar way. It allows a

common external interface to perform two or more operations in a different way based on what they are operating. Let

us take an example, suppose a plus sign (+) is used in such a way that when it is placed in between two numbers in an

operation, it shows the sum of those two numbers as result. Again, if it is placed between two strings and the operation is

performed it gives the concatenated string by combining those two input strings. So, in that case, the plus sign is capable

of performing the operation in different ways based on the input variable. We can perform this type of operation using an

operator or function in OOP. 1.10 GENERALIZATION AND SPECIALIZATION The concept of generalization and

specialization is related to hierarchy of classes. It is the relationship between a parent class and one or more child

classes. The classes are organized by the similarities and differences between the classes, their properties. Generalization

is a process to create a class of higher-level hierarchy known as parent class by combining all the common properties of

CHECK YOUR PROGRESS - II State True or False: 5. Abstraction is a process of hiding the background details from the

user. 6. In binary relationship, connection is established among the objects of same class. 7. In unary relationship the

connection is established between objects of two classes. 8. A single object of one class may build relationship with

more than one object of other class is known as one-to- many relationship.

362 | P a g e the child classes. The child classes have access to those common properties. With this, child classes may

have some other properties. Specialization is nothing but just the reverse of generalization. Specialization is a process of

creating new specialized child classes from the parent class. These specialized classes hold the distinguish properties

related to the parent class. It is used when a set of properties (attributes or methods) can be applied to some of the

objects of a class, then a new child class is created which holds those special properties. Here, the higher-level class is

split into lower-level classes. Let us try to understand the concept of generalization and specialization witha single

example shown in Figure 1.3. If we follow the concept of generalization, then two classes Polygon and Circle have some

properties. their common properties like color of the figure, border color, border line, methods to rotate and display the

figure are combined together to form a new class Figure2d, this class consists of common properties of two-

dimensional figures of polygons and circles. So, lower-level hierarchy classes are combined to form a higher-level class.

Figure 1.3: Example of generalization and specialization using 3 class hierarchy If we follow the concept of specialization,

the base class Figure2D is subdivided into two child classes viz. Polygon and Circle. Here, the derived classes can access

the properties of the base class. And each derived class contain their distinguished specialized properties.

363 | P a g e in the object-oriented design phase, we may need to perform generalization and specialization based on

the context and demand of the system. 1.11 LINK AND ASSOCIATION In the next chapter, we will study UML and how we

can draw a class diagram, state diagram using UML etc. in OO Design. For this, we need to understand two important

parts of object- oriented design to build the relationship among various objects and classes: links and associations. A link

is used to connect two or more objects. It is used to establish the relationship between the objects. The link between

two objects can be physical or conceptual. Through a link, communication can be performed between two objects. A

link is said to be as an instance of an association like we say, an object is an instance of class. An association is used to

build the relationship between classes. It is more descriptive in nature. That means, an association can be said a

collection of group links sharing a common structure and common semantics. The links in an association are used to

connect all the objects in a class. The syntax of link and association are shown here: Figure 1.4: Association and Link

using Class diagram and object diagram Let us try to understand the use of links and associations with an example.

Consider a model of a teacher, teaching subjects. Suppose, there is two class, Teacher and Subject. And there is an

association between the classes as Teacher teaches Subject. There is a

364 | P a g e possibility that a teacher can teach more than one subject, or one can be taught by one or more teachers.

So, objects are connected via links. The class diagram and object diagram to show the link and association are presented

in following Figure 1.5: Figure 1.5: Class diagram and object diagram of Teacher and Subject class with many to many

relationships to understand links and associations (many-to-many) 1.11.1 Degree of Association The number of classes

that are forming an association is known as degree of association. A degree of association can be of 1, 2, 3 or more.

365 | P a g e Unary relationship: Here, the connection is established among the objects of same class. Binary relationship:

Here, the connection is established between objects of two classes. In this course, we will focus on only binary

relationships. N-ary relationship: Here, the connection is established among objects three or more than three classes.

1.11.2 Multiplicity M. R. Blaha and J. R. Rumbaugh defined multiplicity in their book [2] as, “multiplicity specifies the

number of instances of a class that may relate to a single instance of an associated class. Multiplicity constraints on the

number of related objects”. In a binary relationship, based on the concept of multiplicity, a relationship can be

categorized in mainly three ways: One-to-one association: Here, a single object of one class builds a relationship with a

single object of another class. One-to-many association: Here, a single object of one class may build relationship with

more than one object of other class. Many-to-many association: Here, multiple objects of the first class may associate

with any object of the second class. Again, multiple of objects of the second class may build relationship with any object

of the first class. As given example in Figure 1.5, a teacher may teach many subjects and a subject may be taught by many

teachers. So, it is an example of many-to-many association. Here, the symbol ‘*’ indicates there can be either zero or

one or multiple associations can be held between the classes. -

366 | P a g e 1.12 SUMMING UP ? Object-oriented approach focuses on finding a solution of a problem based on real-life

examples. ? Object-oriented approach presents the problem domain in terms of smaller modules known as objects.

Objects are consisting of data and procedures. ? Object-oriented software development methodology is composed of

three main steps viz. requirement analysis, object-oriented design and implementation of the system. ? The main

functions of object-oriented analysis are redefining the problem technically, collection of user and software

requirements, identification of the classes and objects, assigning the services to the objects and identification of relations

among the objects. ? Object-oriented design plans to build the solution domain based on the output of the object-

oriented analysis phase. ? The functions of object-oriented design are identifying the classes based on previous steps,

adding new classes on need basis, establishing relationships among them, identification of different constraints and

designing the user interfaces. ? Decomposition is a process to divide the whole problem of high complexity into smaller

subsystems of lower complexities. ? Object-oriented design can be performed using different models like class model,

dynamic model and functional model. Inpresent days, designers are using interaction models instead of functional

models. ? Object-oriented programming is to find the solution to the problem based on object-oriented design models.

? Data hiding is a property used in object-oriented programming to hide the internal data (data members, member

functions) from unauthorised access. ? Objects are the basic entity of OOP which can be of either physical or conceptual

existence. ? A class is a skeleton-like structure combing various data members and member functions. These can be

accessed by the instances of the class i.e., objects. ? Abstraction is the process of hiding background detail from the

users. Whereas encapsulation makes the system easier

367 | P a g e for the users to handle by wrapping up the data and code into a single entity. ? Inheritance is a method

through which one class can inherit the properties of another class. The class from which properties are inherited is

known as base class and the class which inherits the properties is known as derived class. ? In OOD, relationships

between multiple classes are established using associations where multiple objects are established using links. Links are

the instances of association. 1.13 ANSWER TO CHECK YOUR PROGRESS 1. Class 2.object 3.Data hiding 4.Object-

oriented 5. True 6.False 7. False 8. True 1.14 POSSIBLE QUESTIONS 1. Explain the brief history of evaluation of object-

oriented programming. 2. Describe the following concepts of OOP with example: Abstraction, Encapsulation,

Polymorphism 3. Define the term link and association. Explain their working in object-oriented design with an example.

4. What are the different types of models mainly used in object- oriented design? 5. Explain the working of object-

oriented analysis with suitable diagram. 6. Explain the concepts of generalization and specialization in OOP. 7. What do

you mean by degree of an association? What are the different types of associations between the classes in a relationship?

8. What do you mean by one-to-many and many-to-many association? Describe many-to-many association with an

example with the help of class diagram and object diagram.

368 | P a g e 1.15 REFERENCES AND SUGGESTED READINGS 1. Booch, G.: Object-Oriented Analysis & Design with

Applications. Pearson Education, 1994. 2. Blaha, M.R. and Rumbaugh, J.R.: Object-Oriented Modeling and Design with

UML. Pearson, 2007. 3. Balagurusamy, E.: Object-Oriented Programming with C++. Tata McGraw-Hill, 2008 (fourth

print).

369 | P a g e UNIT 2 OBJECT MODELING TECHNIQUES (OMT) TOOLS Unit Structure: 2.1 Introduction 2.2 Unit

Objectives 2.3 Object-oriented modeling 2.4 UML 2.4.1 Goals/ Characteristics of UML 2.5 Different Models of OO Design

2.6 Class Model 2.6.1 Class Diagram 2.6.2 Object Diagram 2.7 Dynamic Model 2.7.1 State Diagram 2.8 Functional Model

2.8.1 Data Flow Diagram (DFD) 2.9 Interaction Model 2.9.1 Use Case diagram 2.10 Summing Up 2.11 Answers to Check

Your Progress 2.12 Possible Questions 2.13 References and Suggested Readings 2.1 INTRODUCTION In the previous unit,

we have learned the purpose of object-oriented design, different object-oriented approaches and the important

concepts related to object-oriented design. With this, we have got the basic idea of different diagrams based on different

models of object-oriented design. In this unit, we will learn how to draw various diagrams using different tools in object-

oriented design. In object-oriented modeling, one of the most used methods to perform design is Unified Modeling

Language. Different software is available to draw diagrams using UML tools. Object-oriented design is composed of

different models. Designers used the models as per the requirement of the problem domain. Each model is represented

by specific

370 | P a g e diagram. Like class models are represented using a class diagram and object diagram. Here, we will learn

these design procedures in detail with examples. 2.2 UNIT OBJECTIVES The main objectives of this unit are: ? To

understand the concept of object-oriented modeling ? To know the characteristics and use of UML ? To know various

UML tools ? To have a clear concept of different models in object- oriented design ? To be able to draw the class

diagram, object diagram, state diagram, DFD as per the problem. ? To have the knowledge of use case diagrams 2.3

OBJECT-ORIENTED MODELING Object-oriented design (OOM) is a process of object-oriented design to design models

for developing an application using different object-oriented concepts. A model can be said as an abstraction of a

process for understanding its importance before implementing it. The models present how exactly the coding will be

done. The execution of a program can be performed using any object-oriented programming language, based on the

processes represented in a model. The detailed design in object-oriented modeling consists of several phases. In the first

phase, the models look more abstract since it focuses on the external detail of the system. Then, the model evolves at

different phases, and more details are included like how the internal processes will be implemented, what functions are

required and how the entire system will be built. The main reason for designing a model using an object-oriented

approach before starting the actual implementation or coding is that: Easy to Understand: The diagrammatic

representation of any system is easy to understand for the users. Understanding the complete coding procedure is not

easy for normal users. Model diagrams help

371 | P a g e user like clients, end-user, stake holders to give feedback to the developer team, how they want the exact

system should work. Abstraction: To have a clear idea of the system requirements and the input-output of the system.

2.4 UML Unified Modeling Language (UML) is a widely used modeling language to design any software. It is used to

identify, picturise, create and document the models of any software system. UML was initially created to use notational

systems in software design. It is adopted as a standard software design tool by the Object Management Group (OMG).

Further, UML was also approved as an ISO standard by International Organization for Standardization (ISO). With time,

different versions of UML were released and it is widely used by software designers over the world. UML is widely used to

model software systems. The main artifact in designing a model using Unified Modeling Language is an object. Using

UML tools, different models like class model, object model, state model can be designed. These models can be either

static or dynamic. The object-oriented design is performed using UML. So, understanding the concepts of object-

oriented design is a prerequisite to use UML. As per the requirements, the object- oriented design approach is

transformed into any form of UML diagram. 2.4.1 Goals/ Characteristics of UML The main characteristics of UML are: ?

UML is a General-Purpose modelling language. ? It designs diagrams based on the output of the object- oriented

analysis (OOA) approach. ? The workflow of a system to be developed is visualized by UML. ? Both static and dynamic

models can be presented using UML tools. ? UML tools are easy to use, understand and helps to design models

conveniently.

372 | P a g e 2.5 DIFFERENT MODELS OF OOD In this section, we will learn the working of different models of object-

oriented design, their respective diagrams in detail. With this, we will study how to draw these diagrams based on the

requirement using Unified Modeling Language (UML) tools. 2.6 CLASS MODEL A class model is a static model which

represents the structure of the system in terms of classes. The class model contains the classes, their properties, the

association among the classes. The properties of classes contain different attributes and operations. These are also

referred with the term data member and member functions. Associations among the classes are performed using the

concept of generalization and specialization. During the study of class models, we need to have clear concepts on the

various concepts on class like enumeration, multiplicity, scope and visibility of the classes. 2.6.1 Class Diagram As the

name suggests, in object-oriented design, the class diagrams are used to represent the classes identified in the object-

oriented analysis phase. Class diagram presents different graphic notations for modeling the classes, showing their

relationships and describing the objects. It is a static diagram. The advantages of class diagrams are: ? It is easy to

understand and concise. ? It worked well for practice and plan easily. ? It has mapped to popular OOP languages like

C++, JAVA, etc. ? It helps programmers to implement the program easily based on the model design. ? It is useful for

abstract modeling.

373 | P a g e The syntax of defining a class on a class diagram is shown in Figure 2.1. It is represented using a rectangular

box consisting of three blocks. The class name is written on the top of the box. In the second block, the properties of the

class are written known as attributes. In object-oriented programming, these attributes are mentioned as data members

or variables. The data types and other properties of the data members can also be written in the class diagram. The

methods known as member functions are defined in the last block of the rectangular box. Let us try to learn how to draw

class diagrams for two different scenarios. Figure 2.1: Syntax of representation of a class Scenario 1: In a company,

employees are working in departments. A department can have multiple employees, but one employee can work in a

single department. One department can control multiple projects. An employee is categorized as either ‘Manager; or as

‘Other Employee’. Different information as per the requirement can be stored in classes as attributes. So, the class

diagram using the above scenario can be drawn as shown in Figure 2.2. The diagram consists of three main classes,

where the class Department can be considered as the base class. The Employee class is associated with the Department

class with ‘works on’ relationship. Department class stores the name of the department as an attribute of string data type.

The Employee class stores the employee ID and name of the employee as shown in the figure. Further, the concept of

specialization is used in the Employee class to categorized it to Manager class or Other_emp class. Department class is

associated with the

374 | P a g e Project class as department undertakes the different projects. Project class stores the value of two data

members, project_name and duration. Figure 2.2: Class diagram of a company system as in scenario 1 Scenario 2:Let us

consider a basic system of online shopping. Customers can order multiple times, where order number is issued against

each order. Customers can select payment option against each order. The payment system will generate bill number,

mode of payment, amount and date of product. Payment class is further subdivided base on the payment options like

internet banking, card payment and cash of delivery. Figure 2.3 shows the class diagram of basic online shopping system

as described in scenario 2. After identification of classes, desirable attributes, their data types and methods of each class

are also shown.

375 | P a g e Figure 2.3: Class diagram of a basic online shopping system as in scenario 2 2.6.2 Object Diagram As objects

are the instances of a class, object diagrams are also instances of class diagram. It is derived from the class diagram. So,

the object diagram is fully dependent on class diagrams. Object diagrams are almost similar to the class diagrams. The

key difference between the class diagram and the object diagram is that class diagram represents an abstract view of the

systems showing relationships between the classes. Whereas, object diagram represents the instances of the classes at

any particular point of time. The syntax of declaring an object in an object diagram is shown in Figure 2.4. The objects in

the object diagram are instantiated from respective classes. The object diagram shows the value assigned to

376 | P a g e the attributes defined in the class. There can be more than one objects of a class. Figure 2.4: Syntax of an

object in object diagram The object diagram shows the links among different objects. The objects of the same classes

can be linked in the diagram. The links among the objects of different classes are also presented in an object diagram.

There can be more than one object diagram for a class diagram. Figure 2.5 shows the object diagram of a company

management system as described in scenario 1. This object diagram is instantiated from the class diagram presented in

Figure 2.2. A simple object diagram of the online shopping management system is shown in Figure 2.6. It is instantiated

from Figure 2.3. Here, a single object is declared for each class; These objects are linked based on the associations of

classes. The values assigned to the attributes are defined in the class diagram. Like this, we can draw any object diagrams

from a class diagram.

377 | P a g e Figure 2.5: Object diagram of Company management system for class diagram shown in Figure 2.2 CHECK

YOUR PROGRESS - I Fill in the blanks: 1. _____________ is widely used to model software systems. 2. A __________a

static model which represents the structure of the system in terms of classes. 3. Class diagram is a ________________

diagram. 4. Object diagram is fully dependent on _____________

378 | P a g e Figure 2.6: Object diagram of Online Shopping System for class diagram shown in Figure 2.3 2.7 DYNAMIC

MODEL OR STATE MODEL State models are known as dynamic model in OOD. State model represents the dynamic

behaviour of a system. A state diagram is a collection of different states of the system which occur following a series of

events. A state can be said as an abstraction of the attribute values and links among the objects. Different values and links

are grouped together to form the state model which shows the dynamic behaviour of the system. In UML, an event is an

action occurring at a particular point of time. In a state diagram, the states are changed based on the events as per the

need of the system. It changes the states during different phases of the system. Both the states and events in a dynamic

model depend on the level of abstraction. A transition is known as the change from one state to other. The change of

state can be understood by the example of the physical changes of water. It is normally in liquid state. If we freeze it, for

some time it changes to a solid state. If we start melting it, it returns to liquid state again. If the water is boiled for more

times, it

379 | P a g e transforms into gaseous state. Similar things can be happened with a software model, which changes its

state as per the requirement. 2.7.1 State Diagram Dynamic models or state models can be represented using the state

diagram. The state diagram presents the transition or change in the state based on the events occurring in a system. The

number of states in a state diagram isfinite. The main components of state diagrams are: States: The states are

represented using a rectangle symbol with rounded corner. Initial state: the starting state of state diagram is known as

initial state. It is represented using black circle. Transition: The transition or change in state is shown by using an arrow.

The arrow symbol is labelled by the event name. Self transition: An arrow pointing to the same state is used for self-

transition. Final state: In a state diagram, the conclusive state is represented a filled circle with a circle notation. The

notations using UML of the state diagram are:

380 | P a g e Figure 2.7 shows a partially completed state diagram of the household motor control system as derived in

[2]. We try to understand the design of state diagram with this example. A motor primarily in Off state, when it is switched

on, it changes its state to Starting. That is, it is preparing for run. Then, it to transforms to Running state and continue to

run. From this, if we switched off the motor, it will go to Off state again. And if it is continued to run, it may go to Too Hot

state and the overheating may harm the functions of the machine. Figure 2.7: Partially completed State diagram of

household motor control system - Figure 2.8: State diagram of a Chess Game Let us consider another example as shown

in Figure 2.8 which represents the state diagram for a chess game. This example is derived from [2]. This diagram consists

of mainly two states namely White’s Turn and Black’s Turn. The states are changed

381 | P a g e continuously in every move which starts from the White’s Turn first. Depending on the checkmate and

stalemate, the results of the match is decided, So, the final state of the game would be either Black Wins or White Wins

or Draw. Thus, we can draw the state diagrams of a system. 2.8 FUNCTIONAL MODEL In object-oriented analysis and

design, the functional model specifies the overview of the entire system. It provides the overall summary of the functions

that the system is going to perform. This model presents the system based on main three tasks: inputs of the system,

processing and outputs of the system. To represent the functional model of a system, Data Flow diagram (DFD) is used.

DFD helps to provide functions of the internal process of the system. 2.8.1 Data Flow Diagram (DFD) Data Flow Diagram

(DFD) represents the functions of the system in form of the inputs to be provided to the system, the processing parts of

the system based on the inputs and the desired output of the system along with the detail of internal data stores in the

system.DFD can be drawn in many phases or levels. These levels are namedas Level-0 (Context Diagram), Level-1, etc.

The basic components of DFD are: External Entity: These entities are named based on real-life objects. These entity takes

the information and submit to the processes. It can ask any query to the process and gets information or response from

the process. Processes: In DFD, a process is the activity that executes the data flow of a system. DFD shows how the data

flows through a process in a system. A process can have multiple sub-process under it. Data Flows: Data flow depicts the

movement of information among external entities, processes and the place where data is stored through arrows.

382 | P a g e Data Store: Data store represents the place where data is stored. It does not perform any operations, simply

stores the data. Processes can insert, update, delete or retrieve data to Data store. The notations used in DFD are: Let us

consider an example of DFD of basic Store Management System as shown in Figure 2.9. This system consists of only two

entities, Customer and Seller. Here, the seller or shopkeeper would enter product details which would be stored in the

database.Customer has to register into the system. After successful registration, a customer gets Customer ID. A

customer can order products, if the product is available, a customer will get order confirmation message. This Process is

further subdivided into two sub processes namely Registration and Selling Process as shown in Figure 2.10. Figure 2.9:

Level-0 DFD for basic store management system

383 | P a g e Figure 2.10: Level-1 DFD for basic store management system 2.9 INTERACTION MODEL The Interaction

model describes the interactions inside a system. The class model presents the objects present in the system; the state

model presents the life-cycle of declared objects in terms of states whereas as interaction model presents how the

interaction takes CHECK YOUR PROGRESS - II State True or False: 5. A transition is known as the change from one state

to other. 6. The states and events in a dynamic model do not depend on the level of abstraction. 7. Dynamic models

cannot be represented using the state diagram. 8. DFD is used to represent the functional model of a system.

384 | P a g e place among these objects. Interaction models can be represented using different diagrams like use case

diagram, sequence diagram etc. Here, we will study the designing of usecase diagram with an example. 2.9.1 Use Case

Diagram A use case is a representation of how a human being (known as actor) uses a process to reach his goal. Use

case is a part of functionality that a system is able to provide by interacting with the actors. An actor is the person who

act as a direct external user in a system. A use case is composed of one or more actors. Use case is a description of the

role of each actor to accomplish particular goal using various processes. The use case of a system can be represented by

a use case diagram. Let us take an example of the operation of a vending machine as presented in [2]. The use case of

the scenario is buying a beverage by a customer. The customer delivers the beverage after successful selection and

payment made by customer. Figure 2.11 shows the use case diagram for this vending machine. It represents three actors

namely Customer, Repair Technician and Store Clerk. Inside the rectangular box, four use cases are shown in which

actors participate. The use cases are Buy beverage, Performed Maintenance, Make repairs and Load Items. Repair

Technician participates in two use cases whereas other actors participate in one use case. Figure 2.11: Usecase diagram

for a vending machine

385 | P a g e In this unit, we have learnt different object-oriented modeling techniques to design a system. Each model

type is represented by a particular diagram. These diagrams help us easy to understand the workflow and behaviour of

the system. Programmers perform the coding to execute the system by following these designed models. So, this is an

important phase in developing a system using object- oriented concepts. 2.10 SUMMING UP ? Object-oriented

modeling (OOM) is a process of designing a model to develop a system using different object-oriented concepts. ? A

model is an abstraction of a process to understanding it before its implementation. The system is built following the

model. ? Different models are there to design a system like class model, state or dynamic model, functional model etc. ?

UML is mostly used general-purpose modeling language to identify, picturise, creation and documentation the models of

any software system. ? The Class model is a static model to represent the structure of the whole system in terms of

classes. The classes contain their different characteristics and methods. ? A Class model is represented using class and

object diagrams. ? A Class diagram shows the classes, their relationships, the attributes and methods present in each

class. ? An object diagram is an instantiation of the class diagram. A class can have more objects. Object diagram shows

the links among different objects. ? Each object in an object diagram contains particular value of all attributes or data

members of its class. ? The dynamic model or state model shows the dynamic behaviour of a system in terms of its

change of state following a series of events. ? A state is nothing but an abstraction of attributes and links among the

objects. Transition is change of a state to another in a system.

386 | P a g e ? A state model is represented by a state diagram. The main components of state diagram are initial state,

final state, other states and transitions. ? Functional model specifies the overview of the whole system inputs, its

processing and outputs to the system. ? Functional models are represented using Data Flow Diagram (DFD) in a system.

2.11 ANSWERS TO CHECK YOUR PROGRESS 1.UML 2. Class model 3.static 4. Class diagram 5. True 6. False 7.False 8.True

2.12 POSSIBLE QUESTIONS 1. Explain the concepts and importance of object-oriented modeling. 2. Describe the

following models of OOD with example: Class model, Dynamic model, Functional model 3. Explain the important

characteristics of UML. 4. Explain the working of class diagram and object diagram with a suitable example. 5. Why the

dynamic models are need in object-oriented modeling? How it is different from a class model. 6. How can we draw a

state diagram of a system? Explain with a suitable example. 7. What are the basic components of an DFD? Draw a data

flow diagram of level-0 DFD for online shopping management system. 8. Prepare a class diagram of your family tree with

name and age as attribute of each class. Draw an object diagram of this class diagram. 9. Draw a state diagram of

complete telephone call procedure with its different states.

387 | P a g e 10. Explain the working of an interaction model. 11. Write the importance of suing a usecase diagram. Draw

a usecase diagram of simple vending machine with explanation of its working. 2.13 REFERENCES AND SUGGESTED

READINGS 1. Booch, G.: Object-Oriented Analysis & Design with Applications. Pearson Education, 1994. 2. Blaha, M.R.

and Rumbaugh, J.R.: Object-Oriented Modeling and Design with UML. Pearson, 2007. 3. Balagurusamy, E.: Object-

Oriented Programming with C++. Tata McGraw-Hill, 2008 (fourth print).

389 | P a g e UNIT 3: PHASES OF OBJECT-ORIENTED DEVELOPMENT Unit Structure: 3.1 Introduction 3.2 Unit Objectives

3.3 Object Oriented modelling 3.4 Object Oriented Methodologies 3.5 Object Oriented Process 3.5.1 System Analysis

3.5.2 System Design 3.5.3 Object Design 3.5.4 Implementation 3.6 System Analysis 3.6.1 Object Model 3.6.2 Dynamic

Modelling 3.6.3 Functional Modelling 3.7 System Design 3.8 Object Design 3.9 Summing Up 3.10 Answers to Check Your

Progress 3.11 Possible Questions 3.12 References and Suggested Readings 3.1 INTRODUCTION In software development,

most of the methods used are based on functional or data-driven approach. Object-oriented approach is different from

these approaches in many ways. In object-oriented methods, data and functions are integrated in to one group. It

develops the software from some self-contained modules known as objects. These objects can be easily modified,

replaced and reused. Object-oriented approach works based on the concepts of real-world systems for which it

becomes a popular methodology for programmers. In object-oriented methodology, software can be treated as a

collection of discrete objects in which data and the operations grouped together for desired outputs.

390 | P a g e 3.2 UNIT OBJECTIVES The main objective of this chapter is to • introduce the concept of object-oriented

modelling. • give an overview of object-oriented methodologies. • introduces object-oriented methodology and •

discuss the phases of object-oriented design in detail. 3.3 OBJECT ORIENTED MODELLING A model in object-oriented

approach can be said as abstract view of the problem with an objective to understand its purpose before

implementation. Since, working of a real system is very complex, so we need to simplify it. A model hides the exact

working procedure and shows the important characteristics of the problem. Through a model the problem is

conceptualized and present distinctly. We can say that modelling helps us to deal with complexities of the system and

makes the whole system easily understandable. In object-oriented development, a model is an iterative process. In

designing the model as the working of the system progresses, more detail is added to the model. Models are designed in

different levels. In every level, a model can be subdivided into some smaller models for better understanding of their

purposes. 3.4 OBJECT ORIENTED METHODOLOGIES Object-oriented methodology is completely based on the

concepts of classes and objects. These concepts are introduced based on the real-life examples. A class can be skeleton

of a working procedure. An object is an instance of a class. We have discussed these in previous units. An object can be

created, modified, categorized, merged, described, removed or reused. In object-oriented development, software

components can be modified and reused easily. It results

391 | P a g e in high quality, higher productivity and lower maintenance cost of the software. Object-oriented

development uses different object-oriented techniques to analyse, design, implement and maintenance of the system.

The developer determines what are the objects, their characteristics, responsibilities and relationships with other objects.

In object-oriented design phase, the whole architecture of the system is described. The objects of different class and

their relationships are shown. In implementation phase, actual coding is performed by the programmer based on the

design report. The program is connected with a database to store data so that the whole system becomes operational.

3.5 OBJECT ORIENTED PROCESS As we studied earlier, object-oriented development is built with its basic element as

object. For this, first the detail analysis is performed to collect all the requirements. Object-oriented development can be

said as the traditional approach of system designing as it also follows a sequential process to design the system. The

fundamental steps for designing a system using object-oriented process are: • System Analysis • System Design • Object

Design • Implementation 3.5.1 System Analysis Like any other design system, the first phase of object-oriented

development is system analysis. Here, the interactions between the developer and the clients or the user take place.

Developer collects the requirements and analyse them to have a clear idea of the system. Based on the information

gathered in the analysis phase, a document is prepared in which detail requirement of the system is specified. This

documentation describes the different models and

392 | P a g e their functioning. In this stage, the implementation details are not examined. We will discuss it in detail in

section3.6. 3.5.2 System Design The second step of the object-oriented process is system design. In this step, the

entiresystem is designed based on requirement analysis and specification documents of the previous step. In this phase

the system is divided into smaller parts known as sub- systems. The sub-systems interact amongthemselves to solve the

problems. We will discuss it in detail in section3.7. 3.5.3 Object Design In this phase, the details of the system analysis and

system design are implemented. The Objects identified in the system design phase are designed in this phase. Here the

implementation of these objects is decided in the form of data structures and therelationships between the objects are

designed. For example, we can define a classstudent and then we can create several objects of this type. In this phase, of

the designer decides about the classes in the system based on the system requirements. The designer also decides,

whether the classes need to be created freshly or inherited from existing classes. We will discuss it in detail in section 3.8.

3.5.4 Implementation During this phase, the class objects and the interrelationships of these classes are translated

intoactual code by using an object- oriented programming language. The required databases are created and the

complete system is transformed into operational one. 3.6 SYSTEM ANALYSIS In the system analysis or object-oriented

analysis phase of software development, the system requirements are determined, the classes and the relationships

among classes are identified.

393 | P a g e There are three different analysis techniques used in conjunction with each other in object-oriented

analysis. They are object modelling, dynamic modelling and functional modelling. 3.6.1 Object Model The object model

describes the structure of the objects. It describes the identity of the objects, relationships with the other objects,

attributes, and the operations. The object model shows the primary view about how real-world problems are divided into

objects and the objects interacts with each other. The object model provides the basic framework on which other

models are positioned. The object model is represented graphically by an object diagram. The object diagram contains

the classes interconnected by lines. Each class represents a set of individual objects. The association lines establish

relationships among classes. Each association line represents a set of links from the object of one class to the object of

another class. Fig3.1: Object Diagram Company 1:

:

2:

: & 1:

: = 109 ∶ 1:

: = 109 ∶ !1:" #! #

$%

: & ℎ # 17 ℎ
= 3099879809 # ∶ + @! +.! !2:" #! #

$%

: ℎ# # ℎ
= 5679879809 # ∶ @! +. !

394 | P a g e A class describes a collection of similar objects. It is a template where certain basic characteristics of a set of

objects are defined. A class defines the basic attributes and the operations of the objects of that type. For creation of

objects, instances of the class are to be created as per the requirement of the system. Classes are built on the basis of

abstraction, where a set of similar objects with common characteristics are listed. The characteristics concern to the

system under observation are taken and the class definition is made. 3.6.2 Dynamic Modelling Dynamic model describes

aboutthe features that changes with the time. It is used to specify and implement control features of the system. It

describes states, transitions, events and actions. The dynamic model includes event trace diagrams to describea

scenario. An event is a task from one object to another, which occurs at a particular time. An event is a one-way

transmission of information from one object to another. A scenario is a sequence of events thatoccurs during one

particular execution. Each of the basic execution of the system is represented as a scenario. In the fig 3.2 A scenario of

ATM cash withdrawal is explained. The dynamic model is represented graphically by state diagrams. A state corresponds

to the interval between two events received by an object and describes the "value" of the object for that time period. A

state is an abstraction of an object's attribute values and links, where sets of values are grouped together into a state

according to properties that affect the general behaviour of the object. Each state diagram shows the state and event

sequences permitted in a system for one object class. The state diagram should follow the object-oriented development

notation. The outcomes of dynamic modelling are event-trace diagram and state diagram.

395 | P a g e Fig3.2: Event Trace Diagram 3.6.3 Functional Modelling The functional model describes computations and

specifies those aspects of thesystem concerned with transformations of values. Functions, mappings, constraints, and

functional dependencies are described in this model. The functional model describes what the system does, without any

detail about how and when it is done. The functional model is represented graphically with data flow diagrams, which

show the flow of values from external inputs, through operations and internal data storage, to external outputs. Data flow

diagrams show the dependencies between values and computation of results from the inputswith the helpof functions.

Functions are invoked as actions in the dynamic model and are Insert Card Insert PIN Request PIN Verify Account Verify

Bank Acc Process Transaction Enter Amount Debit from Account Bank Acc ok Account OK Request Amount Debit

Successful Transaction OK Dispatch Cash Print Recipt Release ATM Collect Cash USER ATM Consortium BANK

396 | P a g e shown as operations on objects in the object model. Data flow diagrams are discussed in detail in section

2.8.1. 3.7 SYSTEM DESIGN Systems design is the process of defining the architecture, components, modules, interfaces,

and data for a system. It is a process where system developers design the overall structure of the system. System design

emphasises on how to solve the problem. The system design is divided into two parts – logical design and physical

design. The logical design of the system is an abstract representation of the inputs, outputs and data flows of the system.

This is often conducted by modelling; modelling involves a diagrammatical representation of an actual system. System

design includes Data flow diagram, Class Diagram, Entity-relationship diagrams etc. The physical design relates to the

actual input and output process of the system. Here how data is provided to the system, how it is authenticated, how it is

processed, and how it is displayed are defined. In object-oriented design methodology, system design is one of the

phases of the software development life cycle. During this phase, developers decide the overall structure and style of the

system. During system design, the following design decisions are to be handled. a) Estimation of system performance b)

Make a reuse plan. c) Organize the system into subsystems d) Identify concurrency inherent in the problem e) Allocate

subsystems to hardware. f) Estimating Hardware Resource Requirements g) Manage data stores. h) Handle global

resources. i) Choose a global control strategy j) Handle boundary conditions k) Set trade off priorities l) Select an

architectural style.

397 | P a g e a) Estimating System Performance A rough performance estimatesis calculated by the system. The purpose

of this step is to check feasibility of the system. The execution of the system should be fast and free from common

errors. In this phase, number of transactions to be processed by the system, response time needed, storage requirements

etc are estimated. b) Making a Reuse Plan Reuse is one of the main advantages of object- orientedmethodology. There

are two different types of reuses, using existing things or creating newreusable things. It is easier to reuse existing things

than to design new things. Reusable things can be models, libraries, frameworks and patterns. The logic in a model can

applied to multiple problems. c) Organizing a system into Subsystems A subsystem can be defined as a group of classes,

associations, operations, events and constraints that are interrelated and can be used to solve a large problem. For

example, file system is a subsystem of operating system. A system may be divided into smaller subsystems and each

subsystem may further be divided in to smaller subsystems without affecting to the output result. d) Identifying

Concurrency Concurrency is an important issue that needs to be addressed in design process as it may affect the design

of classes and their interfaces. Concurrency is very important for improving the efficiency of the system. One important

goal of the system design is to identify the objects that must work concurrently and synchronize the objects that have

mutualactivity. e) Allocation of Subsystems We must allocate hardware to the each of the subsystems, either a general-

purpose processor or specialized functional unit. The system designers must ensure the following: ? Estimate

performanceand allocate the resources needed by system.

398 | P a g e ? Choose hardware and software to implement the subsystems ? Allocate software processors such that it

satisfies performance and minimize inter process communication ? Determine the connectivity of the physical units

related to the subsystems. ? Define the connection between nodes and communication protocols to be used. ? Consider

the needs for redundant processing and provide infrastructures. ? Identify the interfacesapplied in deployment. UML

deployment diagram can be used to present the above steps. A deployment diagram shows how the systems will be

physically distributed on the hardware. f) Estimating Hardware Resource Requirements To increase the performance of

system, multiple processors or hardware may be used. The number of processors required depends on the computation

requirement and the speed of the machine. The system designer estimates the requirement of processing power for

asteady computing and high performance. While implementing the system a decision needs to be made regarding which

subsystems will be implemented on which set of hardware and software. In implementing the subsystems in hardware

following are needs to be keeps in mind • Cost: As the technology advances, the cost of hardware has come down still in

system design the designer should keep an eye on the cost of implementation and hardware requirement. •

Performance: In this phase system designer need to ensure high performance system. g) Management of Data Storage

System designer needs to decide on the data storage for implementation of the data structures, files and databases used

in the system. In identifying the data storage complexity of the data, the size of the data, the access method, access time

and portability needs to be kept in mind. Having considered these issues, the

399 | P a g e designer must take a decision about whether data can be stored in flat files or in relational databases or in

object databases. h) Handling Global Resources The system designer must identify the global resources and determine a

mechanism for control. There are several kinds of global resources: • Physical system: processors, tape drives and

communication channels. • Input, output: keyboard, mouse, display screen etc. • Logical Ids: object IDs, filenames, and

class names. • Access to shared data: Databases i) Choosing a Software Control Strategy In designing the system, it is

best to choose a single control style for the entire system. There are two kinds of control flows in a software system:

External control and Internal control. External control concerns the flow of externally visible events among the objects in

the system and the internal control refers to the flow of control within a process. It exists only in theimplementation and

therefore is neither inherently concurrent nor sequential. There are three kinds of external events: procedural-driven

sequential, event-driven sequential and concurrent. In a procedure- driven system, the control lies within the program

code. Procedures request external input and then wait for it, when input arrives, control resumes within the procedure

that made the call.In event-driven, the developers attach application procedures to eventsand the dispatcher calls the

procedures when the corresponding events occur. In concurrent control, the developers need to ensureconcurrent

execution of the system. j) Handling boundary Conditions In designing of the system, the system designer must consider

boundary conditions also needto address the issues like initialization, termination and failure. • Initialization: It refers to

initialization of constant data, parameters, global variables, tasks, guardian objects and classes as per their hierarchy. •

Termination: Termination is required for all the subsystems to release the reserved resources. In case of

400 | P a g e concurrent system, a task must intimate other tasks about its termination. • Failure: Itis the unplanned

termination of the system, which can occur due to various reasons such as system fault,wrong user input, due to

exhaustion of system resources, external breakdown or bugs in system. A good design must not affect remaining

environment in case of any failure and there must be a mechanism for recording details of system activities and error

logs. k) Setting trade-off Priorities The system designer must set priorities for each of the subsystems that must be used

as a guide trade-off for the rest of the design. For example, system can be made faster by adding extra memory. Design

trade-offs involve not only the hardware but also the process of developing the system. System designer must define the

importance of the various criteria as a guide to design trade-offs. Design trade-offs affect entire character of the system.

Priorities are generally specified as a statement of design philosophy. l) Architectural Styles Software architecture,

according to ANSI/IEEE Standard 1471-2000, is defined as the “fundamental organization of a system, embodied in its

components, their relationships to each other and the environment, and the principles governing its design and

evolution.” The architecture of a system describes its gross structure. This structure illuminates the top-level design

decisions, including things such as how the system is composed of interacting parts, where are the main pathways of

interaction, and what are the key properties of the parts. Additionally, an architectural description includes sufficient

information to allow high-level analysis and critical appraisal.

401 | P a g e 3.8 OBJECT DESIGN Object design is the third phase in the Object-Oriented Development. In object

design,the designeradds more details and refinement to the system. In object design, the designer implements the

objects discovered in analysis phase. The operations identified in analysis phase are expressed as algorithms and internal

operations. The classes, attributes and associations found in analysis phase are implemented with specific data

structures. If required, new object, classes can be added in this phase. The following steps are performed in the object

design phase: • Combine all the three models • Design algorithms for operations • Optimize design • Implementation of

control • Maximize inheritance • Design associations • Determine object representation • Combine classes and

associations into modules a) Combine all The Three Models The output of analysis phase are object model, dynamic

model and functional model. In this phase the object designer converts actions and activities of the dynamic model and

processes in the functional model into operations of the classes in the object model. State diagrams constructed in the

dynamic model provides the detail working of the object. Transition in the state diagram represents the change of states.

In this phase the transitions are mapped into operations of the object. The action performed in a transition depends on

both the event and the state of the object. So, the algorithm implemented on objects depends on the state of the object

and the event. An event generated by an object may represent an operation on another object. Events often occur in

pairs; the first

402 | P a g e event triggers an action and the second event returns the result or indicates the completion of the action.

Actions initiated by a transition in a state diagram may expand into a full-fledged data flow diagram (DFD) in the

functional model. The collection of processes within the DFD represents the body of an operation. The object designer

must convert the DFD into a linear sequence of steps in an algorithm. b) Design Algorithms for Operations Algorithms

are designed for each operation in the DFD. The DFD depicts what are the operations and the algorithm explains how it

is done. The algorithm designer must follow the following steps in designing algorithms for operations: • Selection of an

appropriate algorithm • Selection of an appropriate data structure • Adding new classes and operations as necessary •

Assigning appropriate responsibility to classes In choosing an appropriate algorithm the following criteria need to be

addressed: Computational complexity: Determine the complexity of the algorithm and choose an algorithm, which takes

lesser computation time. Ease of implementation: We need to select a simpler algorithm for implementation. Flexibility:

The algorithm designed should be flexible and there should be provision for future extension. If an algorithm is highly

optimized then it is very difficult to understand and modify. Choose an appropriate data structure: Every algorithm uses

some data structures, to make an algorithm efficient, an appropriate and cost-effective data structure should be chosen.

Add new classes and operations as necessary: To hold intermediate results, we may need to add new classes. A complex

operation can be decomposed into many low-level operations. Assign appropriate responsibility to classes: Most of the

operations have an obvious target but there are some operations, which can be placed at many places. This problem

gets more

403 | P a g e complicated if the operation involves many objects. So, we need to take care of this issue. c) Optimize The

Design The analysis model defines the logical information about the system, while the design model adds details about

the information accesses. The system designer must make a balance between efficiency and clarity of the system. The

system designer can optimize the design by: • Adding redundant associations to minimize access cost and maximize

convenience • Rearranging the computation for greater efficiency • Saving the derived attributes to avoid re-

computation of complicated expressions Adding Redundant Associations for efficient access: During design, the

structure of the object model is evaluated for an implementation. However, there may be situation where the

associations found useful in analysis phase may not be useful in design phase. On the other hand, there may be some

association which is defined for some other objects and may need to be redefined again for some other objects to

simplify implementation. Rearranging Execution Order for Efficiency: After adjustment of the structure of object model

for optimization the next thing is the optimization of the algorithm. For optimization of algorithms, we need to find out

the unnecessary codes and codes that does not lead to solutions and remove those codes. Saving Derived Attributes to

Avoid Re-computation: There may exist some data which can be derived from other data. This kind of data may be

termed as redundant data. Computation time can be saved if we can eliminate the redundant calculations by using

previously calculated data. d) Implementation of Control As part of the system design, the designer must implement state

diagram designed in the dynamic model. There are three basic approaches to implement it: • To use location within the

program to hold state. • Direct implementation of state machine mechanism • Using concurrent tasks

404 | P a g e The state diagram can be converted to code as follows: 1. Identify the main path in the diagram that leads

to execution of events. Identify the names of states in the path. 2. Identify alternate paths, which branch off the main

path. This becomes the conditional statements in the program. 3. To identify the loops, find out backward paths that

branch off the main path. Multiple backward paths become nested loops in the programs. 4. The states and conditions

correspond to exceptional conditions need to be handled through exception handling or by error subroutines. Direct

implementation of state machine mechanism: The direct approach to implement control is to have a state machine

engine class that keeps track of execution of states and actions. Each object instance maintains its own independent

variables. The basic flow of control can be traced by creating stubs of the action routines. A stub contains the minimal

piece of information regarding functions or subroutines. e) Maximize Inheritance The specialization and generalization

relationships are both reciprocal and hierarchical. Specialization is just the other side of the generalization. The definition

of classes and operations can be adjusted to make the inheritance as large as possible. It can be done in the following

ways. • Rearranging and adjustment of classes and operations to increase inheritance. • Abstracting common behaviour

out of the group of classes. • Use of delegation to share behaviour when inheritance is semantically invalid. Rearranging

and adjustment of classes and operations to increase inheritance Inheritance leads to reusability of already existing

functionality. Inheriting more functions increases the level of reusability. However, larger inheritance requires, functions

definitions to be

405 | P a g e redefined to serve multiple classes. The following adjustments can be used to increase the level of

inheritance. • Some operations may have fewer arguments than others. The missing arguments can be supplied in the

function definition and they may be ignored where they are not necessary. • Similar attributes in different classes may

have different names. These attributes may be moved to a common ancestor class. • Some operations may have fewer

arguments because they are special cases of more general arguments. These special operations can be implemented by

calling the general operations with appropriate parameters • An operation may be defined on several different classes in

a group but may not be required in other classes. In that case the operation can be defined as a common ancestor class

and can be declared as no-operation on the classes where they are not required. f) Design Associations During the

object design phase, all the associations in the object model are implemented. To make a decision for implementation,

all the associations need to be analysed as they are used. Analysing Association Traversal: Associations may be traversed

either unidirectional or bi-directional. The unidirectional associations traversed in forward direction only and they are

easy to implement. Bi-directional associations allow reverse and forward traversal, so bi-directional associations are

always preferred over unidirectional associations so that we can add new behaviour or expand or modify the application

rapidly. One-way Associations: A unidirectional association can be implemented as a pointer. Two-way Associations:

There are three approaches to implement bi-directional associations as discussed below: • Implement as an attribute in

one direction only and perform a search when a backward traversal is required. • Implement as attributes in both the

directions. This results in fast access but if either attribute is updated then the other attribute must also be updated to

keep the link consistent.

406 | P a g e • Implement as a distinct association object, independent of either class. An association object is a set of

pairs of associated objects stored in a single variable size object. For efficiency, an association object can be

implemented using two dictionary objects, one for the forward direction and one for the backward direction. Link

Attributes: If an association has link attributes, then its implementation depends on the multiplicity. If the association is

one-to-one, the link attributes can be stored as attribute of either object. If the association is many-to-one, the link

attributes can be stored as attributes of the many object. If the association is many to many, the link attributes cannot be

associated with either of the objects. g) Determine Object Representation The object designer has to choose when to

use primitive types in representing the objects or when to combine the groups of objects. A class can be defined in terms

of other classes but ultimately all data members have to be defined in terms of built-in data types supported by a

programming language. h) Packaging of Classes and Associations into Modules Modularity is the property of a system

that has been decomposed into a set of cohesive and loosely coupled modules. Modules serve as the physical

containers in which we declare the classes and objects. A module can be edited, compiled or imported separately.

Different object-oriented programming languages support the packing in different ways. For example, Java supports in

the form of package, C++ in the form of header files etc. Following purposes can be solved by modularity. • A module

typically groups a set of class definitions and objects to implement some service or abstraction. • A module is frequently

a unit of division of responsibility within a programming team. A module provides an independent naming environment

that is separate from other modules within the program. • A Modules support team engineering by providing isolated

name spaces. Packaging involves the following three issues: • Information Hiding

407 | P a g e • Coherence of Entities • Constructing Physical Modules Information Hiding: During analysis phase we are

not concerned with information hiding. So, visibilities of class members are not specified during analysis phase. It is done

during object design phase. In a class, data members and internal operations should be hidden, so, they should be

specified as private. External operations form the interface so they should be specified as public. Coherence of Entities:

Module, class, method etc. are entities. An entity is said to coherent, if it is organized on a consistent plan and all its parts

fit together toward a common goal. Policy needs to be designed to make the modules more coherent. Constructing

Physical Modules: Modules of analysis phase have changed as more classes and associations have been added during

object design phase. The object designer has to create modules with well-defined and minimal interfaces. The classes in

a module should have similar kind of things in the system. There should be cohesiveness or unity of the purpose in a

module. So that the classes, which are strongly associated can be put into a single module. CHECK YOUR PROGRESS - I

1. Choose the incorrect statement in terms of Objects. a) Objects are abstractions of real-world b) Objects can’t manage

themselves c) Objects encapsulate state and representation information d) All of the mentioned 2. Which of the

following points related to Object-oriented development (OOD) is true? a) OOA is concerned with developing an object

model of the application domain b) OOD is concerned with developing an object-oriented system model to implement

requirements c) All of the mentioned d) None of the mentioned

408 | P a g e 3.9 SUMMING UP • A model is a simplified representation of reality. It provides a means for

conceptualization and communication of ideas in a precise and unambiguous form. • Object Oriented Methodology is a

new system development approach encouraging and facilitating reuse of software components. • The basic steps of

system designing using object-oriented methodology includes analysis, system design, object design and

implementation. • The object model describes the static, structural and data aspects of a system. • The dynamic model

describes the temporal, behavioural and control aspects of a system. • The functional model describes the

transformational and functional aspects of a system. • Every system has all the three models. Each model describes one

aspect of the system but at the same time contains references to the other models. • An object is a concept, abstraction,

or thing with crisp boundaries and meaning for the problem at hand. • An object has the following four main

characteristics - unique identification, set of attributes, set of states, and set of operations (behaviour). • Class is a

template where certain basic characteristics of a set of objects are defined. A class defines the basic attributes and the

operations of the objects of that type. 3. Which of the following is a disadvantage of OOD ? a) Easier maintenance b)

Objects may be understood as stand-alone entities c) Objects are potentially reusable components d) None of the

mentioned 4.Inherited object classes are self-contained. a) True b) False

409 | P a g e • A link is a physical or conceptual connection between object instances. • Systems design is the process or

art of defining the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements.

The system design process is generally divided into two sub phases – logical design and physical design. • The logical

design of a system pertains to an abstract representation of the data flows, inputs and outputs of the system. • The

physical design relates to the actual input and output processes of the system. This is laid down in terms of how data is

input into a system, how it is verified/authenticated, how it is processed, and how it is displayed as output. • Object

oriented design is a process of refinement or adding details. The object-designer works to implement the objects

discovered during analysis phase 3.10 ANSWERS TO CHECK YOUR PROGRESS 1. b) Objects can’t manage themselves 2.

c) All the mentioned 3. d) None of the mentioned 4. b) False 3.11 POSSIBLE QUESTIONS Short answer type questions: 1.

What is model? Why do we model? 2. What is object? Discuss the main characteristics of the object with examples from

the real world. 3. What is class? Discuss the relationships between class and object. 4. Define association. Long answer

type questions: 1. What is object-oriented methodology? What are the advantages of object-oriented methodology?

410 | P a g e 2. What is object-oriented process? Discuss the steps of object-oriented process. 3. What are the three

models involved in object-oriented Analysis? Define each one of them. 4. What do you mean by object design? What are

the steps followed during the object design? 5. How can you combine object model, dynamic model and functional

model to obtain operations on classes? 6. What are the steps an object designer has to follow during algorithm design? 7.

What is dynamic model? How is it represented? 8. What is system design? What are two types of system design? Explain.

3.12 REFERENCES AND SUGGESTED READINGS 1. Object-Oriented Modeling and Design with UML, M. Blaha, J.

Rumbaugh, Pearson Education 2. Object-Oriented Analysis & Design with the Unified Process, Satzinger, Jackson, Burd,

Thomson 3. Object Oriented Analysis & Design, Grady Booch, Addison Wesley 4. Timothy C. Lethbridge, Robert

Laganiere, Object Oriented Software Engineering, TMH

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

