
Document Information

Analyzed document INF_1026.pdf (D164968062)

Submitted 4/25/2023 7:40:00 AM

Submitted by Dipankar Saikia

Submitter email dipgu2009@gmail.com

Similarity 4%

Analysis address dipgu2009.gauhati@analysis.urkund.com

Sources included in the report

URL: https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-

fr...

Fetched: 11/1/2021 11:44:10 AM

20

URL: https://handwiki.org/wiki/Instruction_cycle

Fetched: 2/14/2023 2:51:51 PM
1

URL: https://www.docsity.com/en/combinational-logic-components-and-techniques-for-digital-systems-

l...

Fetched: 3/30/2023 9:49:04 PM

4

URL: https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-

Barr__Hesham_El-Re...

Fetched: 10/5/2021 2:04:21 PM

3

URL: https://home.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf

Fetched: 11/21/2020 8:49:37 AM
2

URL: https://www.math.tamu.edu/~dallen/m640_03c/lectures/chapter2.pdf

Fetched: 9/25/2019 11:46:36 AM
2

URL: https://odl.ptu.ac.in/slm/mca/6th/MCA603%20Advanced%20Comp%20Architecture.pdf

Fetched: 1/11/2022 10:24:28 AM
3

URL: https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelini...

Fetched: 4/25/2023 7:41:00 AM
42

URL: http://wikimili.com/en/Delay_slot

Fetched: 4/25/2023 7:41:00 AM
8

URL: http://d.umn.edu/~gshute/arch/register-renaming.html

Fetched: 4/25/2023 7:41:00 AM
5

URL: https://www.cs.umd.edu/~meesh/411/CA-online/chapter/advanced-concepts-of-ilp-dynamic-

schedulin...

Fetched: 4/25/2023 7:41:00 AM

1

Entire Document

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html
https://handwiki.org/wiki/Instruction_cycle
https://www.docsity.com/en/combinational-logic-components-and-techniques-for-digital-systems-lecture-slides/285980/
https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewini%5D_Fundamenta(BookZZ.org).pdf
https://home.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf
https://www.math.tamu.edu/~dallen/m640_03c/lectures/chapter2.pdf
https://odl.ptu.ac.in/slm/mca/6th/MCA603%20Advanced%20Comp%20Architecture.pdf
https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_and_hazzard.pdf
http://wikimili.com/en/Delay_slot
http://d.umn.edu/~gshute/arch/register-renaming.html
https://www.cs.umd.edu/~meesh/411/CA-online/chapter/advanced-concepts-of-ilp-dynamic-scheduling/index.html

(1) M.Sc.-IT-19-I-1026 GAUHATI UNIVERSITY Institute of Distance and Open Learning Semester- I M.Sc.IT Paper: INF 1026

ADVANCED COMPUTER ORGANIZATION AND ARCHITECTURE CONTENTS: BLOCK I: INSTRUCTION SET ARCHITECTURE AND

PROCESSOR DESIGN Unit 1 : Instruction Set Design and Architecture Unit 2 : Combinational Circuits and its Applications Unit 3 :

Computer Arithmetic Unit 4 : Register Transfer Language and Processor Logic Design BLOCK II: MEMORY AND INPUT OUTPUT

ORGANIZATIONS Unit 1 : Memory Organization Unit 2 : Cache Memory Unit 3 : Virtual Memory and Paging Unit 4 : Basic Input

Output System-I Unit 5 : Basic Input Output System-II BLOCK III: ADVANCED CONCEPTS OF PARALLEL ARCHITECTURES Unit 1 :

Basic Parallel Architecture and Instruction Pipeline Unit 2 : Vector Processing Unit 3 : Advanced Concepts of Computer

Architecture Implicit Parallelism Unit 4 : Advanced Concepts of Pipelining Schedule Unit 5 : Advanced CPU Architecture

(2) SLM Development Team: HoD, Department of Computer Science, GU Programme Coordinator, MSc-IT (GUIDOL) Prof.

Shikhar Kr. Sarma, Department of IT, GU Dr. Khurshid Alam Borbora, Assistant Professor, GUIDOL Dr. Swapnanil Gogoi, Assistant

Professor, GUIDOL Mrs. Pallavi Saikia, Assistant Professor, GUIDOL Dr. Rita Chakraborty, Assistant Professor, GUIDOL Mr.

Hemanta Kalita, Assistant Professor, GUIDOL Contributors: Mr. Kalyanbrat Medhi (Block I : Unit- 1) Faculty, Dept. of Computer

Science Bhattadev University, Bajali, Assam Dr. Manash Protim Bhuyan (Block I : Unit- 2) Asstt. Prof., Dept. of Computer Science

and Engineering Golaghat Engineering College, Golaghat, Assam Mrs. Manjula Kalita (Block I : Unit- 3) Asstt. Prof., Dept. of

Computer Science and Engineering GIMT, Guwahati, Assam Mr. Rahul Lahkar (Block I : Unit- 4) Asstt. Prof., Dept. of Computer

Science Pub Kamrup College, Assam Mr. Dipankar Dutta (Block II : Units- 1 & 2) Asstt. Prof., Dept. of Computer Science NERIM,

Guwahati, Assam Dr. Pranab Das (Block II : Unit- 3, Block III: Unit 1) Asstt. Prof.(Sr.), Dept. of Computer Applications Assam Don

Bosco University, Guwahati, Assam Mrs. Manasi Hazarika (Block II : Units- 4 & 5) Asstt. Prof.(Sr.), Dept. of of Computer Science

and Engineering Assam Don Bosco University, Guwahati, Assam Dr. Kshirod Sarmah (Block III : Unit- 2) Asstt. Prof., Dept. of

Computer Science PDUAM, Bajali, Assam Mr. Deepjyoti Saikia (Block III : Unit- 3) Asstt. Prof., Dept. of Computer Science

Mangaldai College, Darrang, Assam Mrs. Epsita Medhi (Block III : Unit- 4) Research Assistant, Dept. of Information Technology

Gauhati University, Assam Mr. Subhomoy Dey (Block III : Unit- 5) Asstt. Prof., Dept. of Computer Science PDUAM, Goalpara,

Assam

(3) Course Coordination: Director IDOL, Gauhati University Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Dipankar Saikia Editor SLM, GUIDOL Content Editing: Prof. Kandarpa Kumar Sarma Professor, Deptt. of Electronics and

Communication Engineering, Gauhati University, Assam Cover Page Designing: Bhaskar Jyoti Goswami IDOL, Gauhati University

ISBN: May, 2022 © Copyright by IDOL, Gauhati University. All rights reserved.

90% MATCHING BLOCK 1/91

No part of this work may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,

mechanical, photocopying, or otherwise.

Published on behalf of Institute of Distance and Open Learning, Gauhati University by the Director, and printed at Gauhati

University Press, Guwahati- 781014.

BLOCK I: INSTRUCTION SET ARCHITECTURE AND PROCESSOR DESIGN

1 | P a g e Space for learners: UNIT 1: INSTRUCTION SET DESIGN AND ARCHITECTURE Unit Structure: 1.1 Introduction 1.2 Unit

Objectives 1.3 Instruction Set Design 1.3.1. How many addresses 1.3.1.1. 3-address machines 1.3.1.2. 2-address machines 1.3.1.3.

1-address machines 1.3.1.4. 0-address machines 1.3.2. Types of Instructions 1.3.2.1. Data Transfer Instructions 1.3.2.2. Arithmetic

Instructions 1.3.2.3. Bit Manipulation Instructions 1.3.2.4. Program Execution Transfer Instructions 1.3.2.5. Processor Control

Instructions 1.3.2.6. Iteration Control Instructions 1.3.2.7. Interrupt Instructions 1.4. Addressing Modes 1.4.1. Immediate Addressing

1.4.2. Direct Addressing 1.4.3. Indirect Addressing 1.4.4. Register Addressing 1.4.5. Register indirect Addressing 1.4.6. Displacement

Addressing 1.4.7. Stack Addressing 1.5. Processor Organisation 1.6. Register Organisation 1.6.1. User visible registers 1.6.2. Control

and status registers 1.7. Instruction Cycle 1.7.1. The Indirect Cycle 1.7.2. Data Flow 1.8. Data Representation 1.8.1. Number

Representation 1.8.1.1. Complements 1.8.2. Fixed point representation 1.8.3. Floating point representation

2 | P a g e Space for learners: 1.8.4. Character representation 1.9. Summing up 1.10. Answers to Check Your Progress 1.11. Possible

Questions 1.12. References and Suggested Readings 1.1 INTRODUCTION In this unit, we will discuss addressing types, addressing

modes and representation of characters. The organization of computer processor as well various registers is explained in brief.

Here, machine languages program using different addressing type is elaborated. We will also know about the instruction cycle. At

the end of the chapter integer, fixed point representation, floating point representation and character representation inside

computer are discussed. 1.2 UNIT OBJECTIVES The objective of the unit is: • To know the addressing type • To know the

addressing mode • Overview of processor • Overview of registers • To know about instruction cycle • Data representation in

computer 1. 3 INSTRUCTION SET DESIGN An instruction set is collection of machine language or assembly language instructions

that are understood by central processing unit (CPU). The following issues are considered in instruction set design: • Whether

operands are to be stored in registers, memory, stack or accumulator

3 | P a g e Space for learners: • How many operands are present in instructions 0, 1, 2, or 3 • Whether access mode of operand

are register, immediate, indirect and so on. • What are the operations that are supported in instruction add, sub, mul etc. 1.3.1

How many addresses Let us assume the statement in a high level programming language given bellow a = a + b + a * c It is clear

that the value of a multiply with c is added with a, b and the final result is stored in the variable a. You know the precedence and

associativity rules of high level languages. However, you cannot expect the computer hardware to directly understand these

rules. It requires operations to be performed in small steps. The desired result will be produced after going through sequence of

simple steps. Hence, it eliminates the necessity for the machine to understand about these rules. In most of the cases operands

name i.e. address is used rather than value. The machine may be following types depending on addresses: • 3-address machines

• 2-address machines • 1-address machines • 0-address machines Here number 0, 1, 2, 3 indicates maximum number of

address/operand the machine can have. Here we will use the convention that ‘first operand is destination’ in an instruction. This

means we will consider that the result of operation will be stored in first operand of the instruction. STEP TO CONSIDER The

address may be either memory or computer registers. In a particular machine final result of operation may be stored in first, or

last operand. Here, we consider that the first operand will hold the result of the operation.

4 | P a g e Space for learners: 1.3.1.1 3-address machines The general format of a 3-address machine instruction is: operation dst,

op1, op2 Here, operation indicates opcode of the operation to be performed, the first operand dst represent destination operand

i.e. where the result of operation will be stored, op1 and op2 indicates two source operands between which operation is to be

performed. Thus the following instruction means: ADD R2, R1, R0 Add the values stored in register R1 and R0, and store result in

the register R2. When all operands of instructions are only in register then we call it a register-register machine or a load-store

machine. Instead of that if all operands of instructions are only in memory then we call it a memory-memory machine. The

following is such an example: ADD X, Y, Z Add the value of variable y to the value of variable z and then store the result in the

memory location x. In a memory-memory machine the CPU has to get the operands from memory prior to execution of the

operation. After that it has to store the result back in memory. There are several ways to specify the address of an operand. We

will discuss this topic in addressing mode section. Let us now see how to implement a3-address instruction for the statement a =

a + b + a * c Answer: MUL R4, a, c # store a*c in R4 ADD R1, a, b # store a + b in R1 ADD R1, R1, R4 # Store result in R1 The final

result of the expression can be found in register R1.

5 | P a g e Space for learners: 1.3.1.2 2-address machines The general format of 2-address machine instruction is: operation dst,

op where, operation is opcode of the operation, dst represent the source operand as well as destination, op represent the second

source operand. Let us see the following instruction ADD R1, R2 The meaning of this instruction is to add the values stored in

registers R1 and R2, and then store the result back in register R1. The advantage of 2-address instructions over three-address

instructions is that it helps in preserving memory, since they are shorter. Moreover shorter instructions take less time for fetching.

The drawback having two-address instructions is that one of the source operands is destroyed. It requires extra moves to retain

the operand as sometimes operand may be needed later. Let us now see how to implement a 2-address instruction for the

statement a = a + b + a * c Answer: MUL c, a # multiply a, b and store in c MOV R1,c # move content of c to R1 ADD b,a # add a,

b and store in b MOV R2,b # move content of b to R2 ADD R1, R2 #add R1, R2 and store in R1 The final result of the expression

can be found in register R1. 1.3.1.3 1-address machines In a 1-address machine accumulator has a source operand and result of

operation is put back implicitly in the accumulator. The instruction needs to indicate the second source operand. The format of a

1-address instruction is as follows:

6 | P a g e Space for learners: operation op The opcode ‘operation’ is the name of the operation to be done, op indicates either

source or destination operand. Here the instruction: ADD a It means addition of value of variable a with the content of

accumulator. The result of addition is put in the accumulator. The accumulator is a special purpose register. Let us now see how

to implement a 2-address instruction for the statement. a = a + b + a * c Answer: LOAD a # load content of a in accumulator

MUL c # multiply accumulator i.e. a and c ADD b # add b to previous contents of the accumulator i.e. a * c + b ADD a # a * c + b

+ a STO a # store the final result in location a The final result of the expression can be found in the memory location a. 1.3.1.4

Zero-address machines The zero-address machines are implemented using stack. A stack is last in first out (LIFO) data structure

that is operated by using PUSH and POP. PUSH moves an operand from computer memory into top of stack, on the other hand

POP gets out the last item from top of the stack. Only PUSH and POP indicates an operand. No other opcode specify any

operand. This is the reason why it is called a zero address machine. The question is how then operands are handled by the

machine for the operation. It is done by STOP TO CONSIDER As the number of address reduced the number of instruction

increases to do the same task.

7 | P a g e Space for learners: extraction top two elements of stack and putting the result back into stack. Let us see how to

implement a zero-address instruction for the statement a = a + b + a * c Answer: PUSH a # push the value of a PUSH c # push

the value of c MUL # multiply top two value a * c PUSH b # push the value of b; ADD # add top two value b + a * c PUSH a #

push the value of a ADD # add top two value a + b + a * c POP a # store in top of stack in a The final result of the expression can

be found in the memory location a. 1.3.2 Types of Instructions The computer supports the following types of instructions: • Data

Transfer Instructions • Arithmetic Instructions • Bit Manipulation Instructions • Program Execution Transfer Instructions •

Processor Control Instructions • Iteration Control Instructions • Interrupt Instructions 1.3.2.1 Data Transfer Instructions These

instructions transfer data from the source to the destination location inside the computer. The common data transfers are among

registers or between registers and memory or between the register (s) and the input/output devices. Different computer uses

various mnemonics for the same instruction. The following are some of the data transfer mnemonics with their meaning.

8 | P a g e Space for learners: • MOV: Transfer data from register to resister or resister to memory. • ST: Store from register

(accumulator) to memory • LD: Load data from memory to register • PUSH: Transfer data from CPU register to top of the stack. •

POP: Transfer data from top of stack to CPU register • XCHG: Exchange data between two given locations. • IN: Read data from

an input port to accumulator. • OUT: Transfer data from accumulator to particular output port. 1.3.2.2 Arithmetic Instructions The

basic arithmetic operations are addition, subtraction, multiplication and division between two numbers. These arithmetic

operations are performed between two operands. Some of the arithmetic operations may be performed on a single operand too.

Following a few arithmetic instructions: • ADD: Add the contents of two source locations. • MUL: Multiply the contents of two

source locations. • DIV: Divide content of one source locations with the other. • SUB: Subtract content of one source locations

from the other. • ADC: Add the contents of two source locations with carry. • INC: Increment the content of source location by 1.

1.3.2.3 Bit Manipulation Instructions These instructions manipulates data in bit level i.e. operations like shift or logical. Below is a

few instructions of this group with meaning are given: • NOT: This invert each bit of source bit pattern.

9 | P a g e Space for learners: • AND: Logical AND operation between each corresponding bit of both source operand. • OR:

Logical OR operation between each corresponding bit of both source operand. • XOR – Perform logical Exclusive-OR operation

between each corresponding bit of both source operand. • SHL: Perform bits shift towards left and fill zero in LSBs. • SHR:

Perform bits shift towards left and fill zero in MSBs. 1.3.2.4 Program Execution Transfer Instructions These instructions transfer the

control during an execution of instructions. The transfer of control during execution of instruction may be conditional or

unconditional. A few such examples are listed below: • CALL: It calls a subprogram and saves the return address on top stack. •

RET: Returns from subprogram/function to the main program. • JMP: Jumps to the given address and process the next

instruction. • JC: Jumps when value of carry flag is 1 • JNC: Jumps when value of carry flag is 0 1.3.2.5 Processor Control

Instructions These instructions set or reset the flag values and thus control the actions of the processor. Following are the

instructions under this group: • STC: Set the carry flag (CF) to 1 • CLC: Reset the carry flag i.e. CF = 0 • CMC: Complement state

of carry flag. • STI: Set the interrupt flag to 1. • CLI: Reset the interrupt flag to 0.

10 | P a g e Space for learners: 1.3.2.6 Iteration Control Instructions These instructions can execute a group of instructions

repeatedly. A few list of iteration control instructions are: • LOOP: Execute a group of instructions repeatedly until the condition is

true. • JCXZ: Jump to a given address if CX = 0 • 1.3.2.7 Interrupt Instructions These instructions call an interrupt during execution

of instructions. • INT: Interrupt the process and call service routine. • INTO: Interrupt the process if OF = 1 • IRET: Return to main

program from interrupt service. Check Your Progress-1 1. When all operands of instructions are only in register then we call it a

____________machine. 2. If all operands of instructions are only in memory then we call it a ____________ machine. 3. The

drawback having two-address instructions is that one of the source operands is ____________. 4. In a one-address machine the

result of operation is put back implicitly in the _____________. 5. The zero-address machines are implemented using ______.

State TRUE or FALSE: 6.The processor has three types of organization. 7. The advantage of two-address instructions over three-

address instructions is that it helps in preserving memory. 8. The accumulator is a special purpose register. 9. MOV is control

transfer instruction. 10. POP insert an operand from computer memory into top of stack.

11 | P a g e Space for learners: 1.4 ADDRESSING MODES In a typical instruction, we see the address fields are relatively small. The

purpose of addressing mode is to reference main memory locations as large as possible. This is the reason why a variety of

addressing modes have been implemented. The most commonly used addressing modes are: • Immediate • Direct • Indirect •

Register • Register indirect • Displacement • Stack Mode Algorithm Advantage Disadvantage Immediate Operand=A No memory

reference Limited operand magnitude Direct EA=A Simple Limited address space Indirect EA=(A) Large address place Multiple

memory reference Register EA=R No memory reference Limited address space Register indirect EA=(R) Large address place Extra

memory reference Displacement EA=A+(R) Flexibility Complexity Displacement EA= top of stack No memory reference Limited

applicability Table 1.1Basic Addressing Modes The Table 1.1depicts the address calculation procedure for each addressing mode.

Each of the addressing modes will be represented with different opcodes. The opcode may be one or more bits in the instruction

format. STOP TO CONSIDER The effective address of operand is calculated after decoding the opcode.

12 | P a g e Space for learners: 1.4.1 Immediate Addressing The immediate addressing holds the operand value in the instruction.

Operand = A This addressing mode is generally used to set initial values of variables or constants. The primary advantage is that

there is no need of memory reference. Thus it saves one memory or cache cycle in the instruction cycle. The disadvantage of

immediate addressing mode is that size of the number is limited to size of the address field. 1.4.2 Direct Addressing In direct

addressing mode the address field holds the effective address of the operand: EA = A The advantage of direct addressing mode is

that it needs only one memory reference. The disadvantage this addressing mode is limited address space accessibility. 1.4.3

Indirect Addressing In direct addressing mode usually length of the address field is less than word length. It causes limitation in

address range. If the address field refers to address of a word in memory, it can access a full- length address of the operand. This

way of accessing memory word is known as indirect addressing. In indirect addressing mode the address field contains address of

another memory location where the value of actual operand remains. EA = (A) The parenthesis interpreted as contents of ‘A’ is

another address. The disadvantage of indirect addressing is that it requires two

13 | P a g e Space for learners: memory references to fetch actual operand value, first to get its address and next to get its value.

1.4.4 Register Addressing The register addressing mode has similarity to direct addressing. The difference here is that address field

indicates a register instead of main memory address: EA = R The register R specifies the address where the operand value

contains. The advantages of this mode are that a small address field is needed and no memory references needed means less

time required for fetching instruction. The disadvantage of this mode is that the available address space is limited to registers

only. 1.4.5 Register Indirect Addressing The register indirect addressing mode is similar to indirect addressing mode. The only

difference is that address field refers to a register instead of memory location. Let us see the register indirect address. EA = (R) The

advantages and disadvantages of register indirect addressing mode are similar to indirect addressing mode. But, register indirect

addressing mode has one more advantage since it uses one less memory reference it save one cycle time when it is executed.

1.4.6 Displacement Addressing The displacement addressing mode combines the direct addressing with register indirect

addressing. The effective address in this mode looks like as: EA = A + (R)

14 | P a g e Space for learners: This addressing mode the instruction contains two address fields, out of which at least one of it is

explicit. The value stored in one of the addresses field (i.e. A) is used directly. The contents of second address field i.e. register is

added to A to obtain the effective address. We will discuss three most commonly used displacement addressing: • Relative

addressing • Base-register addressing • Indexing RELATIVE ADDRESSING: The relative addressing is also known as PC-relative

addressing. In this mode of addressing the register that implicitly referenced is program counter (PC). As we know PC contains

the address next instruction to be executed. Hence, it is added to the address field in order to produce the EA. This is how the

effective address in this addressing mode is a displacement relative to the address of the instruction. EA= PC + address field value

BASE-REGISTER ADDRESSING: In the base-register addressing mode, the referenced register contains a main memory address.

The address field indicates a displacement from that address, which is usually an unsigned integer. EA=base register + address

field value INDEXING: In this addressing mode, the effective address of the operand is calculated by adding content of index

register with address field value. EA= IR+ address field value The indexing mechanism is extensively used for implementing

iterative operations. Suppose a list of numbers present in memory location starting from A and we want to add 1 to each number

on that list. Here, we have to fetch each number and after adding 1 to it, store it back to that location. The effective addresses that

requires are A, A + 1, A + 2, . . ., and so on to last location. It can be done easily with indexing. The value of A is

15 | P a g e Space for learners: stored in the instruction’s address field value, and the index register is initialized to 0. At the end of

each operation, index register is incremented by 1. 1.4.7 Stack Addressing The stack addressing is also referred to as a last-in-first-

out or queue pushdown list. In this addressing mode items are placed to the top of the stack so that. Hence, the stack is partially

filled at any given time. The stack is associated with a pointer called stack pointer (SP) whose value refers to the top address of

the stack. If the top two item of the stack is in processor registers, the SP references the third item of the stack. The stack pointer

is a dedicated special purpose register. It is a form of implied addressing. The instructions do not require a memory reference; it

always implicitly indicates the top of the stack. Check Your Progress-2 11. The purpose of addressing mode is to reference

______________ as large as possible. 12. The immediate addressing mode generally used to set initial values of _________ or

________. 13. In direct addressing mode address field holds __________address of the operand. 14. In indirect addressing mode

the address field contains ________ of another memory location. 15. The displacement addressing mode combines the direct

addressing with _____________ addressing. State TRUE or FALSE: 16.The advantage of direct addressing mode is that it needs

only one memory reference. 17. In register addressing mode one memory references needed. 18. The stack is associated with a

pointer called stack pointer. 19. Effective address is calculated after decoding an instruction. 20. In stack addressing two memory

references needed.

16 | P a g e 1.5 PROCESSOR OR The computer processor need an instruction: • Fetch instruction: The p memory i.e. from

register, ca • Interpret instruction: Af to know what action to be pe • Fetch data: During the ex read data from computer mem •

Process data: In execution perform either arithmetic or l • Write data: At the end of need to write data to In order to do these, it

clears store intermediate data. H internal memory. Figure 1.1 is a block diagram to the rest of the system thr of the central

processing unit • Arithmetic and logic • Control unit (CU). • Registers Figure1.1: Th R ORGANISATION or needs to do the following

things to execute The processor has to read instructions from ter, cache or main memory. After reading an instruction it is

decoded be performed. the execution of an instruction it may need to er memory or input/output (I/O) module. ecution time of

an instruction, it may have to tic or logical operation on data. nd of an instruction execution, the results may to main memory or

an I/O module. t clears that the processors sometimes have to ta. Hence, the processor requires a small iagram of a processor

depicting its connection m through system bus. The vital components g unit are logic unit (ALU) .1: The block diagram of CPU

Space for learners:

17 | P a g e Space for learners: The ALU performs the actual processing of data. The CU controls the data and instructions

movement in the processor. It also controls the operations of the ALU. The figure also depicts internal memory of processor,

called registers. In general, CPU or processor organization has three categories depending on the number of address fields: •

Single Accumulator organization • General register organization • Stack organization In accumulator based organization, a special

purpose register called accumulator is used for performing the operations. In general, register organization involves different

registers in the computation tasks. In the stack organization the calculations performed on top of the stack. The instruction of

stack organization does not contain any address field. In general, a combination of different organizations is mostly used. 1.6

REGISTER ORGANISATION The computer system consists of memory in different level called hierarchy. At top levels of the

hierarchy means memory is faster than the bellow level. In this level it is smaller as well as more expensive. The register inside the

processor is top level memory followed by cache memory and main memory respectively. The registers have two categories: •

User-visible registers • Control and status registers STOP TO CONSIDER The address bus, data bus and control bus are together

called system bus. Operand address bits can travel through address bus, data bits travel trough data bus and CPU generated

signal travel through control bus. The processor interaction with main memory is done through these buses.

18 | P a g e Space for learners: 1.6.1 User-Visible Registers The user-visible registers are used by assembly language programmer

in order to minimize main memory references. It can be in the following types: • General purpose register • Data • Address •

Condition codes General-purpose registers are used to store temporary data during execution of instruction. For a given opcode

the general-purpose register can holds the operand. This is true use of general purpose registers. The general-purpose registers

sometimes can be used for addressing purpose (e.g., register indirect, displacement). Data registers can be used to hold data

only. It cannot be used for calculating of operand address. Address registers may either general purpose or devoted to an

individual addressing mode. The following are examples of it: • Segment pointers: The segment register is used to hold the

address of the base of the segment. • Index registers: These registers are used for auto indexing in indexed addressing. • Stack

pointer: In stack addressing a dedicated register is used called stack pointer. Condition codes (flags): These are bits set by the

processor depending on result of an operation. As we know, result of arithmetic operation may be positive, negative, zero, or

overflow. In this case a condition code (flag) is set and result is stored in memory or register. Subsequently the code may be

tested during execution of conditional branch operation.

19 | P a g e Space for learners: 1.6.2 Control and Status Registers The operations of processor are controlled by variety of internal

registers. In general, these registers are not visible to programmer or user. Here, we will discuss four such essential registers. •

71% MATCHING BLOCK 2/91

Program counter (PC): It holds the address of the next instruction to be executed. •

Instruction register (IR): It holds the address of currently executed instruction. • Memory address registers (MAR): It holds the

address of an instruction to be fetched. • Memory buffer registers (MBR): Holds data that needs the current instruction or result

produced by the instruction. Another of register that includes in a processor is called the program status word (PSW). It contains

condition code and other status information. The followings are status flags: • Sign: It holds sign bit of the recent arithmetic

operation. • Zero: It is set when the result of operation is 0. • Carry: It is set if addition operation produce a carry or borrow (for

subtraction) from lower order bit. • Equal: Set if a logical comparison of two operands is equal. • Overflow: When arithmetic

operation produces overflow it is set. • Interrupt Enable/Disable: This flag is used to enable or disable the interrupts. • Supervisor:

It indicates the execution mode of processor (supervisor or user). Some of the privileged instructions are executed only in

supervisor mode. Similarly, certain memory location can be accessed through supervisor mode only. 1.7 INSTRUCTION CYCLE

An instruction cycle goes through the following stages: •Fetch: The processor reads the next instruction from PC

20 | P a g e Space for learners: •Execute: Decode the opcode and perform the required operation. • Interrupt: If interrupt occurs,

pause the current process, save status of it and go to the interrupt. Before elaborating instruction cycle it’s important to know

one additional stage called indirect cycle. 1.7.1 The Indirect Cycle During instruction execution it may have one or more operands

that need memory access. In case of indirect addressing additional memory accesses are needed. The Figure 1.2 depicts

instruction cycle. After fetching the instruction it is checked to see if it involves any indirect addressing. If indirect addressing

involves the operands are fetched according to indirect addressing. After execution, an interrupt will process if occurs before

fetching the next instruction. Check Your Progress-3 21. The _______ performs the actual processing of data. 22. The CPU

organization has _______ categories. 23. The computer system consists of memory in different level called _______. 24.

__________registers are used to store temporary data during execution of instruction. 25. The execution mode of processor

either _______or _____. State TRUE or FALSE: 26.The CU controls the data and instructions movement in the processor. 27. The

segment register is used to hold the address of the base of the segment. 28. PC holds the address of current instruction

executing. 29. MBR holds the address of an instruction to be fetched. 30. Carry flag is set if addition operation produce a carry.

21 | P a g e Space for learners: Figure 1.2 Instruction Cycle After fetching the instruction the operand are fetched from memory. If

the operand are in register then fetching is not required. Once execution of instruction is completed the result may be needed to

store in main memory. 1.7.2 Data Flow In an instruction cycle sequence of events occurs according to the design of processor.

Suppose, a processor consist of a program counter (PC), a memory address register (MAR), a memory buffer register (MBR), and

an instruction register (IR). Figure 1.3 Data Flow, Fetch cycle Figure 1.3 depicts the data flow during fetch cycle. The PC holds the

address of the next instruction to be fetched. This address is placed on the address bus through the MAR.

22 | P a g e The CU requests a main me instruction. The requested re to the MBR and finally reac incremented for fetching the

cycle, the CU checks the operand specifier using indir found, indirect cycle is pe depicts this simple cycle. Th transferred to the

MAR. A request. Then desired addre through address bus. Figure 1.4 D The fetch and indirect cycl may have various stages. It

transfer of data, read/write o other hand the interrupt cy cycle. It is depicted in figur status of the PC must be in o interrupt. So,

the contents of written to memory. For thi reserved and it is loaded int memory may be a stack poin interrupt routine. Hencefort

the desired instruction. in memory read to fetch the required for the sted result is placed on the data bus and goes y reached the

IR. In the mean time, the PC is ing the next instruction. At the end of fetch s the IR to know whether it’s holding an g indirect

addressing. If indirect addressing is is performed after fetch cycle. Figure 1.4 le. The address reference bits of the MBR are R. After

that the CU place a memory read address of the operand is placed in MBR 1.4 Data Flow, Indirect cycle t cycles are very simple.

The execute cycle es. It many involve ALU operation, register write operation from memory or I/O. On the t cycle is as simple as

fetch and indirect figure 1.5. Before going to interrupt current in order to resume normal activity after the ents of the PC is

transferred to the MBR and or this purpose special memory location is ded into the MAR from the CU. The special k pointer. The

PC is filled with the address of ceforth, the next instruction cycle will fetch Space for learners:

23 | P a g e Figure 1.5 Da 1.8 DATA REPRESE A digital computer represen number system due to follow • In digital computers all el

mode. • Computers use binary syste • Whatever can be done usi done using a binary number s 1.8.1 Number represen The

numbers in computer system. An r base number sy number has 10 digits. So, system. The binary numbers called base 2 number

system digits 0, 1, 2, 3, 4, 5, 6 and written as follows with powe STOP TO The instruction cycle has dif opcode, effective address

calcu data and writing data in memor 1.5 Data Flow, Interrupt Cycle RESENTATION epresents all types of information in binary

following reasons: all electronic components operate in binary y system where only two digits present. ne using decimal number

system can also be mber system. resentation puter are represented using binary number ber system uses r distinct digits. The

decimal . So, decimal numbers are 10-base number mbers system has two digits ‘0’ and ‘1’. It is system. The octal numbers

system has eight 6 and 7. The decimal number 831.6 can be power of base 10. P TO CONSIDER as different stages fetching,

decoding s calculation, execution of operation on emory that are executed in sequence. Space for learners:

24 | P a g e Space for learners: 8 x 10 2 + 3 x 10 1 + 1x 10 0 + 6 x 10 -1 When a binary number 101101 is written in this way with

power of base 2, it provides decimal equivalent. 1 x 2 5 + 0 x 2 4 + 1 x 2 3 + 1 x 2 2 + 0 x 2 1 + 1 x 2 0 = 45 The decimal number

can be converted to r base number system by using the steps: • At first the number is separated into its integer and fraction parts

and then each part converted separately. • The integer part is converted to r base by dividing it successively with r until it

becomes zero. • The remainders in reverse order give the r base equivalent. • The fraction part is converted to r base by multiply it

repeatedly by r until its fraction part becomes zero. Suppose, decimal number 112.8125 has to convert into binary. Here integer

part is 112 and fraction part is 0.8125. At first, we will convert integer part 112 into binary then fraction part according to above

rules. Since binary number system is 2 base we will divide 112 by 2 until it become zero. The following table depicts the process.

Division Remainder 112 / 2 = 56 0 56 / 2 = 28 0 28 / 2 = 14 0 14 / 2 = 7 0 7 / 2 = 3 1 3 / 2 = 1 1 1 / 2 = 0 1 Now write down the

remainder in reverse order i.e. 1110000 which is binary equivalent number of decimal integer 112. Next, the fraction part 0.81252

is multiplied by 2. The fraction of that result is again multiplied by 2until fraction part become zero. STOP TO CONSIDER The

hexadecimal numbers system has 16 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.

25 | P a g e Space for learners: Multiplication Resultant integer part (R) 0.81252 x 2= 1.625 1 0.6252 x 2= 1.25 1 0.252 x 2= 0.50 0

0.50 x 2= 1.0 1 0 x 2 = 0 0 The binary equivalent of fraction will be 0.11010. Using the same rules we can convert a decimal

number to any base system. 1.8.1.1 Complements Complements simplify the subtraction and logical manipulation in digital

computer. There are two types of complements present in r base system namely r’s and (r – 1)’s complement. If a number N in r

base contains n digits, the (r – 1)’s complement of N is calculated as (r n – 1) – N. For a decimal number, the 9’s complement of

N is (10 n – 1) – N. Thus, 9’s complement of 545700 is 999999 – 545700 = 454299. In case of binary number, the 1’s

complement of N is calculated as (2 n – 1) – N. Thus, 1’s complement of 1011000 is 1111111 – 1011000 = 0100111. Simply, 1’s

complement is obtained by just toggling all bits. The r’s complement of a number N with n- digit is calculated as n – N. This is like

adding 1 to the (r – 1)’s complement of the number. Thus, 10’s complement of 2389 is 7610 + 1 = 7611. Similarly, 2’s complement

of 101100 is 010011 + 1 = 010100. Check Your Progress-4 31. Computers use ________ system where only two digits present.

32. The octal numbers system has _______ digits. 33. The hexadecimal numbers system has _______ digits. 34. Complements

simplify the ___________ operation. State TRUE or FALSE: 35. The decimal integer part is converted to r base by dividing it

successively with r until it becomes zero. 36. There are two types of complements present in r base system namely r’s and (r + 1)’s

complement 37. 1’s complement is obtained by just toggling all bits. 38. The binary number system has base 2.

26 | P a g e 1.8.2 Fixed-Point Repr All positive integer numbers number. In order to represen numbers must be used. Beca these

sign are represented by bit of signed number is 0 for point number representation • Sign field • Integer field • Fractional field.

Figure 1.6: F The 2’s complementation r due to easier for arithmetic o In a 32 bit register 1 bit res reserved for the integer part

number -43.625 can be repre 1.7. Figure 1.7: R The sign bit 1 represent - equivalent for decimal 43 an binary equivalent for

fraction 1.8.3 Floating-Point Re The floating number consists fixed point number that is ca Representation mbers and zero can be

considered as unsigned present negative numbers in computer signed . Because + and – signs are not present, rather ted by

either ‘0’ or ‘1’. The most significant s 0 for positive and 1 for negative. The fixed- tation has three parts as depicts in figure 1.6.

Fixed-point number representation tion representation is common in computer etic operations. bit reserved for the sign. Assume

15 bits are r part and 16 bits for the fractional part. The represented in register as depicted in figure 1.7: Representation of -43.625

and 000000000101011 is 15 bit binary l 43 and 1010000000000000 represent 16 bit raction 0.625. int Representation onsists of

two parts. The first part is a signed t is called mantissa. The second part exponent Space for learners:

27 | P a g e represents the position of th point mantissa is either fr number always represent in t Figure 1.8: Floating The mantissa

M and the expo sign as depicted in figure 1.8 base 10 for the exponent a exponent. A floating-point n significant bit (MSB) of the

MSB, or sign bit, is 0 a magnitude. On the other h sign bit, is 1. The rest of th three ways Signed-magnitude representa Signed-1’s

complement repre Signed-2’s complement repre Using floating point repres represented in the normalize use as sign bit, 8 bits

use for represents fractional part. represented as depicted in fig is (-110101.1) 2 and normalize Figure 1.9: Floatin 1.8.4 Character

Repres Different character codes characters in bits 0 and 1. T of the decimal (or binary) point. The fixed her fraction or integer.

The floating point nt in the form M x r e . oating point representation in register e exponent e present in the register with their ure

1.8. A floating-point decimal number use nent and binary number use base 2 for the oint number is called normalized if the most

of the mantissa is 1. For positive integer, the s 0 and the remaining bits represent the ther hand for negative number, the MSB, or t

of the number can be represented in one of resentation t representation t representation representation any non-zero number

can be alized form. Suppose, in 32-bit register 1 bit se for signed exponent, and remaining 23 bits part. Now the decimal number

−53.5 can d in figure 1.9. The binary equivalent of -53.5 rmalized representation is (-1.101011)x2 5 loating point representation of

-53.5 epresentation odes are used to represent alphanumeric d 1. The most commonly used character code Space for learners:

28 | P a g e Space for learners: is American standard Code for Information Interchange (ASCII). ASCII uses 7-bits that provides 128

bit-patterns. In ASCII there are 26 lowercase and uppercase letters, 10 digits, and 32 punctuation marks. The remaining

represents whitespace characters and special control characters. The uppercase A-Z, lowercase a-z and the digits 0-9 are in

continuous series. Bit positions 654 Bit positions 000 001 010 011 100 101 110 111 3210 NUL DLE SP 0 @ P ‘ p 0000 SOH DC1 ! 1

A Q a q 0001 STX DC2 “ 2 B R b r 0010 ETX DC3 # 3 C S c s 0011 EOT DC4 $ 4 D T d t 0100 ENQ NAK % 5 E U e u 0101 ACK SYN

& 6 F V f v 0110 BEL ETB ‘ 7 G W g w 0111 BS CAN (8 H X h x 1000 HT EM) 9 I Y i y 1001 LF SUB * : J Z j z 1010 VT ESC + ; K [k {

1011 FF FS , > L \ l | 1100 CR GS - = M] m } 1101 SO RS . < N ^ n ~ 1110 SI US / ? O _ o DEL 1111 1.9 SUMMING UP • An

instruction set is collection of machine language or assembly language instructions that are understood by central processing

unit (CPU).

29 | P a g e Space for learners: • The machine may be 3-address machines, 2-address machines, 1-address machines and 0-

address machines • The computer supported instructions types are Data Transfer Instructions, Arithmetic, Bit Manipulation,

Program Execution Transfer, Processor Control, Iteration Control and Interrupt Instructions. • The most commonly used

addressing modes are Immediate, Direct, Indirect, Register, Register indirect, Displacement and Stack addressing. • CPU or

processor organization has three categories: Single Accumulator organization, General register organization and Stack

organization. • The register inside the processor is in top level memory hierarchy followed by cache memory and main memory

respectively. • The registers have two categories: user-visible registers and control and status registers • General-purpose

registers are used to store temporary data during execution of instruction. • Data registers can be used to hold data only. It

cannot be used for calculating of operand address. • Address registers may either general purpose or devoted to an individual

addressing mode. •

75% MATCHING BLOCK 3/91

PC holds the address of the next instruction to be executed. • IR holds the

address of currently executed instruction. • MAR holds the address of an instruction to be fetched. • MBR holds data that needs

the current instruction or the result produced by the instruction. • The use of status flags: Sign: It holds sign bit of the recent

arithmetic operation. Zero: It is set when the result of operation is 0. Carry: It is set if addition operation produce a carry or

borrow (for subtraction) from lower order bit. • The numbers in computer are represented using binary number system. • The

floating number consists of two parts. The first part is a signed fixed point number that is called mantissa. The second part

exponent represents the position of the decimal (or binary) point.

30 | P a g e Space for learners: • In ASCII there are 26 lowercase and uppercase letters, 10 digits, and 32 punctuation marks. The

remaining represents whitespace characters and special control characters. 1.10 ANSWERS TO CHECK YOUR PROGRESS 1.

Register-register 2. Memory-memory 3. Destroyed 4. Accumulator 5. Stack 6. True 7. True 8. True 9. False 10. False 11. Memory

location 12. Variable, constant 13. Effective 14. Address 15. Register indirect 16. True 17. False 18. True 19. True 20. False 21. ALU 22.

Three 23. hierarchy 24. General 25. Supervisor, user 26. True 27. True 28. False 29. False 30. True 31. Binary 32. Eight 33. Sixteen 34.

Subtraction 35. True 36. False 37. True 38. True 1.11 POSSIBLE QUESTIONS Short answer type questions: 1. What is an instruction

set? 2. Write the type of instruction for the following: JUMP, ADD 3. What are the types of CPU organization? 4. Arrange the

followings in ascending order of access time: Secondary memory, Register, Main Memory, Cache Memory 5. What type of buses

the system bus has? 6. What is the use of immediate addressing? 7. What is the Indirect Addressing? Give examples.

31 | P a g e Space for learners: 8. What is an accumulator? 9. Write assembly language code to evaluate X = (A-B) + (C-D) for

stack based CPU 10. What are the categories of registers? 11. What happens to PC when interrupt occurs? 12. What is floating

point representation? 13. What is 1’s complement of 10011010? 14. What is 2’s complement of 11000111? 15. Convert the decimal

number 26.578 into binary number. Long answer type questions: 1. Briefly explain the various addressing modes. 2. Briefly explain

the instruction cycle. 3. List any five instruction types with adequate examples. 4. Convert decimal number 56.789 into binary,

octal and hexadecimal number. 5. Briefly explain the data flow process with block diagram. 1.12 REFERENCES AND SUGGESTED

READINGS • Computer Architecture and Organization by B. Govindarajalu.; TMH publication. • Advanced Computer Architecture

A systems Design Approach by Richard Y. Kain; PHI Publication • Computer Organization and Architecture Designing for

Performance by William Stallings; Pearson Education • Computer System Architecture by M. Morris Mano, PHI Publication. ---×--

-

Space for learners: 32 | P a g e UNIT 2: COMBINATIONAL CIRCUITS AND ITS APPLICATIONS Unit Structure 2.1 Introduction 2.2

Unit Objectives 2.3 AND-OR logic combinational circuit 2.4 AND-OR-Invert logic combinational circuit 2.5 Exclusive-OR logic 2.6

Exclusive-NOR logic 2.7 Implementing Combinational logic 2.7.1 Logic circuit design from boolean expression 2.7.2 Logic circuit

design from truth table 2.8 The universal property of NAND and NOR gates 2.8.1 The NAND gate as a universal logic element

2.8.2 The NOR gate as a universal logic element 2.8.3 Combinational circuit using NAND gate 2.8.4 Combinational circuit using

NOR gate 2.9 Combinational logic circuit Functionalities 2.9.1 The comparison function 2.9.2 The Arithmetic function 2.9.3 Basic

Adders 2.9.3.1 The Half-Adder 2.9.3.2 The Full-Adder 2.9.3.3 Parallel Binary Adders 2.9.3.4 Truth table for 4-bit parallel adder 2.9.4

Binary Subtractor 2.9.4.1 The Half-Subtractor 2.9.4.2 The Full-Subtractor 2.9.5 Comparators 2.9.5.1 Equality 2.9.5.2 Inequality 2.9.6

Decoders 2.9.6.1 The Basic Binary Decoder 2.9.6.2 3-to-8 line Decoder 2.9.7 Encoders 2.9.7.1 Decimal to BCD Encoder 2.9.8

Multiplexers 2.9.9 Demultiplexers 2.10 Summing up

Space for learners: 33 | P a g e 2.11 Key terms 2.12 Answers to check your progress 2.13 Possible Questions 2.14 References and

Suggested Readings 2.1 INTRODUCTION This chapter describes the combinational circuits and the applications of combinational

circuits. Sum of Product (SOP) and Product of Sum (POS) forms are the basic building blocks of the combinational circuits. When

the logic gates are connected together to produce some specific output the resulting electronic circuit is known as

combinational circuits, the combinational circuits don’tpossess any memory capacity. The output of the circuit always depends

on the combination of the input variables. 2.2 UNIT OBJECTIVES The unit is describing the designing and applications of

combinational logic circuits. After completing the unit students′ will able to: ● Analyze and apply different combinations of the

logic gates. ● Design combinational circuits from the Boolean expressions. ● Design combinational circuits from the truth table. ●
Describe the universal behaviour of NAND and NOR logic gates. ● Explain and describe adder circuits. ● Analyze the comparator

circuits. ● Describe decoders and encoders ● Describe multiplexers and demultiplexers ● 2.3 AND-OR LOGIC COMBINATIONAL

CIRCUIT: The Figure 2.1 shows an AND-OR circuit consisting of two input AND gates and one two input OR gate. The Boolean

expression for

34 | P a g e the AND gate outputs and output Y are shown on the can have any number of AND Figure 2.1 A The truth table for

the abo Table-2.1. The outputs of the INPUTS P Q R 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1

1 1 1 1 1 Table 2.1 Truth table 2.4 AND-OR-INVERT LO If the output of the AND-OR the resultant circuit is called s and the resulting

SOP expression for the the circuit diagram. The AND-OR circuit f AND and OR with any number of inputs. e 2.1 AND-OR logic

diagram he above combinational circuit is shown in of the AND gates are also shown in the table. PQ RS OUTPUT Y S 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 table for the logic

circuit of Figure 2.1 T LOGIC COMBINATIONAL CIRCUIT OR circuit is complemented i.e. inverted, called AND-OR-Inverted

circuit. The AND- Space for learners:

35 | P a g e OR logic implements the S POS expressions can be obta The logic circuit diagram F circuit and development of th Y =

(P′+Q′)(R′+S′) = (PQ +((RS)′))′)′ = (PQ + RS)′ Figure 2.2 In general, an AND-OR-Inve gates each with any numb developed from the

AND- changing all 1s to 0s and all 0 STOP ● The AND-OR logic other words, the SO AND-OR logic. ● The AND-OR-Invert in

other words, the P AND-OR-Inverted lo 2.5 EXCLUSIVE-OR L The exclusive-OR gate is c own unique symbol; it is act one OR

gate, and two invert The output is 1 only if the tw the SOP expression and the corresponding e obtained using the AND-OR-

Inverted logic. ram Figure 2.2 shows an AND-OR-Inverted nt of the POS output expression. = (PQ)′(RS)′ = (((PQ)′(RS)′)′)′ = (((PQ)′)′
re 2.2 AND-OR Invert logic Invert circuit can have any number of AND number of inputs. A truth table can be -OR truth table in

Table 2.1 by simply nd all 0s to 1s in the output column. TOP TO CONSIDER logic implements the SOP expressions, in he SOP

expressions are implemented using Inverted logic implements POS expressions, , the POS expressions are implemented using

rted logic OR LOGIC: e is considered a type of logic gate with its actually a combination of two AND gates, inverters (NOT gate)

as shown in Figure 2.3. the two inputs are at opposite levels. Space for learners:

36 | P a g e Figure 2.3 The output expression for the i.e. Y = A ⊕ B The truth table for exclusive A 0 0 1 1 Table 2.2: Tru 2.6

EXCLUSIVE-NOR The complement of exclus which is derived as follows: Y = (AB′+A′B)′ = (AB′)′(The output Y is 1 only if th level.

The exclusive-NOR ca the output of an exclusive- ure 2.3 Exclusive-OR logic for the circuit in Figure 2.3 is Y = AB′ + A′B lusive-

OR is shown in Table 2.2. B Y 0 0 1 1 0 1 1 0 .2: Truth table of exclusive-OR NOR LOGIC exclusive-OR is known as exclusive-NOR,

lows: AB′)′(A′B)′ = (A′ + B)(A+B′) = A′B′ + AB ly if the two inputs A and B are at the same OR can be implemented by simply

inverting -OR. The following Figure 2.4 (a) shows Space for learners:

37 | P a g e the exclusive-NOR and implementation of the expres Figure 2.4 Figure 2. STOP ● Exclusive-OR (XOR) gates, one OR

gate, and ● Exclusive-NOR (XNO gates, one OR gate, an is obtained by applying 2.7 IMPLEMENTING This section will describe t

circuits. The first method d and Figure 2.4(b) shows the direct expression A′B′+AB. ure 2.4(a) Y = (AB′+A′B)′ ure 2.4(b) Y = A′B′ + AB

TOP TO CONSIDER XOR) logic is a combination of two AND te, and two inverters (NOT gate) (XNOR) logic is a combination of

two AND ate, and three inverters (NOT gate) or XNOR plying an inverter at the output of XOR. ING COMBINATIONAL LOGIC ribe

the methods of implementing the logic thod describes the implementation from the Space for learners:

38 | P a g e Boolean expression and implementation from the trut 2.7.1 Logic circuit design fr Let us consider the fo Y = (A+B)(C+

A closer observation shows t two terms. The first term is formed by and the second term is forme and E. The two terms are th

output Y. The OR operation operation. To design the combinational form the term A+B and a 3 term C+D+E. A 2-input AN two

OR terms. The resulting Figure 2.5. Logic circuit fo Let us implement the followi Y = (Like the previous example, l The terms A+B

and (C′D′+ term C′D′+EF is first formed and F and then performs O Before getting the expression EF, before these two terms

operation must be perform and the second method describes the he truth table. sign from Boolean expression the following

Boolean expression: +B)(C+D+E) hows that the above expression ′Y′ consists of ed by doing OR operation between A and B,

rmed by doing OR operation among C, D, are then AND together to produce the final erations must be performed before the

AND tional circuit, a 2-input OR gate is required to nd a 3-input OR gate is required to form the ut AND gate is then required to

combine the ulting logic circuit is shown in Figure 2.5. rcuit for the expression Y =(A+B)(C+D+E) ollowing expression as another

example. Y = (A+B)(C′D′+EF) ple, let′s have a closer look at the expression. ′D′+EF) are AND together to form Y. The formed by

doing AND between C′ and D′, E rms OR operation between these two terms. ression C′D′ +EF, you must have the C′D′ and terms

you must have C′ and D′. So, the logic erformed in proper order. The logic gates Space for learners:

39 | P a g e required to implement the e follows: a. Two NOT gates to ge b. Two 2-input AND ga c. Two 2-input OR gate d. One

2-input AND gat The logic circuit of this expre Figure 2.6. Logic diagram f 2.7.2. Logic circuit design f Instead of using the SOP e

circuit you can use the truth can deriveusing the SOP exp of such an implementation. Inputs A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0

1 1 1 0 1 1 1 Table 2.3: Tru t the expression Y = (A+B)(C′D′+EF) are as s to get C′ and D′ ND gates to form C′D′ and EF R gates to

form A+B and C′D′+EF D gate to form Y. s expression is shown in Figure 2.6 ram for the expression Y = (A+B)(C′D′+EF) sign from

truth table SOP expression to design the combinational e truth table and from the truth table thatyou OP expression. Table 2.3

shows one example tion. Output Y Product Terms C 0 0 1 A′BC′ 0 1 AB′C′ 0 0 1 ABC 3: Truth table for logic function Space for

learners:

40 | P a g e The Boolean expression obta Y = A The expression Y is obtaine product terms for which the are formed by doing

AND op and (A, B, C) respectively. the circuit are as follows: a. Three NOT gates. b. Three 3-input AND g c. One 2-input OR gate.

Figure 2.7 Log Reduce the combinational l minimum form. Figure 2.8 Comb The expression for (A′B′C′)′C+(A′B′C′)′+ n obtained for

the Table 2.3 is given below: = A′BC′+AB′C′+ABC obtained by doing OR operations among the ch the output is 1. The first,

second, and third ND operations among (A′, B, C′), (A, B′, C′), ively. The logic gates required to implement ND gates. gate. .7 Logic

diagram for the expression Y = A′BC′+AB′C′+ABC ional logic circuit shown in Figure 2.8 to a Combinational logic circuit to be

reduced n for the output of the circuit is Y = ′B′C′)′+D Space for learners:

41 | P a g e Applying D′ Morgan′ Y = ((A′)′+(B′)′+(C′)′ = AC+BC+CC+A+ =C(A+B+1)+A+B+ Y=A+B+C+D The simplified circuit is a 4

2.9 Figure 2.9 Reduce Note: Before implementing reduce the algebraic express number of gates required to leads to reduction of

propag number of gates, the more t produced by the circuit will i STOP ● The implementation from the Boolean exp ● The

expression shou identify the number o ● Before implementing reduce the expression ● If the number of gat circuit then the

propa CHECK Y 1. POS stands for _____ 2. SOP stands for _____ 3. An Exclusive-OR can 4. The number of AND boolean

expression A organ′s theorem and Boolean algebra, ′+(C′)′)

85% MATCHING BLOCK 4/91

C+(A′)′+(B′)′+(C′)′+D C+A+B+C+D A+B+C+D

is a 4-

input OR gate as shown in the Figure educed form the logic circuit of Figure 2.7 nting the logic circuit directly it is better to

xpressions to its minimized form so that the red to implement the circuit is minimum. This propagation delay among the gates.

More the more the propagation delay and also the heat t will increase. TOP TO CONSIDER tation of combinational logic circuits

is either expression or truth table. n should be carefully observed and has to mber of AND, OR, inverters required. enting the logic

circuit, it is advisable to ression by applying the boolean algebra of gates are less in the final combinational propagation delay will

also be minimal. ECK YOUR PROGRESS _______ _______ R can be represented as ______ AND gates required to implement

the sion ABC is ____ Space for learners:

42 | P a g e 2.8 THE UNIVERSAL PRO GATES Till now, you have studied AND and OR, and NOT universal property of NAND NAND

means it can be used NAND gates can be used t operations. Similarly, the N inverter, AND, OR, and NAN 2.8.1 The NAND gate as a

u The NAND gate is a univ produce the NOT, the AND inverter can be made from inputs together and creating, Figure 2.10(a) for

a 2-inp generated by the use of NA 2.10(b). An OR function c gates, as shown in Figure 2. also be produced as shown in Figure

2.10(a) NA Figure 2.10(b) Two NAND L PROPERTY OF NAND AND NOR tudied combinational circuits designing with NOT gates.

This section will describe the NAND and NOR gates. The universality of e used as an inverter and the combinations of used to

implement the AND, OR, and NOR the NOR gate can be used to implement the d NAND operations. as a universal logic element

a universal gate because it can be used to AND, the OR, and the NOR functions. An from a NAND gate by connecting all of the

ating, in effect, a single input as shown in the input gate. An AND function can be of NAND gates alone as shown in Figure tion

can be implemented with only NAND ure 2.10(c). Similarly, the NOR function can own in Figure 2.10(d). (a) NAND gate as inverter

or NOT NAND gates are combined to produce AND operation Space for learners:

43 | P a g e Figure 2.10(c) Three NAN Figure 2.10(d) Four NAND In Figure 2.10(b), a NAND g form the AND function whic Y = ((AB)

′)′ = AB In Figure 2.10(c), NAND ga the two input variables befo The OR gate output is derive theorem: Y = ((A′B′)′ = A + B In Figure

2.10(d), NAND ga to the circuit of part (c) to pro Finally, we can conclude tha implement any logic function 2.8.2 The NOR gate as

a Un The NOR gate can also be us NAND functions. A NOT c NOR gate by connecting al create a single input, as sh example.

Also, an OR gate shown in Figure 2.11(b). An e NAND gates are combined to produce OR operation NAND gates are combine to

produce NOR operation AND gate is used to invert a NAND output to n which is given below: ND gates G1 and G2 are combined

to invert s before they are applied to NAND gate G3. derived as follows by applying DeMorgans′s A + B ND gate G4 is used as an

inverter connected) to produce the NOR operation (A+B)′. de that using the NAND gate it is possible to nction. s a Universal logic

element o be used to produce the NOT, AND, OR, and NOT circuit, or inverter, can be made from ting all of the inputs together

to effectively as shown in Figure 2.11(a) with a 2-input gate can be produced from NOR gates as b). An AND gate can be

produced using the Space for learners:

44 | P a g e NOR gates as shown in the G2 are used as inverters and DeMorgan′s theorem as follo Y = (A′+B′)′ = AB Figure 2.11(d)

shows the im NOR gates. Hence we can work as a universal gate like Figure 2.11(a) Figure 2.11(b) NOR gates a Figure 2.11(c) NOR

gates ar Figure 2.11(d) NOR gat 2.8.3 Combinational circuit NAND gates can work as eit DeMorgan′s theorem. (AB)′ = A′ + B′ in the

Figure 2.11(c), the NOR gates G1 and rs and the final output is derived by the use of s follows: the implementation of NAND

function using e can conclude that the NOR gate can also te like the NAND gate. .11(a) NOR gate used as inverter gates are

combined to produce OR operation ates are combined to produce AND operation R gates are combined to produce NAND

operation circuit using NAND gate as either NAND or negative OR by applying Space for learners:

45 | P a g e Consider the NAND logic expression is developed in th Y = ((AB′)(CD′))′ = ((

100% MATCHING BLOCK 5/91

A′+B′)(C′+D′))′ = (A′+B′)′+(C′+D′) = (A′)′(B′)′ + (C′)′(D =

AB + CD Figure 2.12 Implementation usin 2.8.4 Combinational circuit The NOR gate can work a shown by DeMorgan′s theore

(A+B)′ = A′B′ Consider the NOR logic in developed as follows: Y = ((A+B)′+(C+D)′)′ = ((A+ Figure 2.13 Implementa (A+B)(C+ STO ●
NAND and NOR gat ● NAND and NOR can logic like AND, OR, ● NAND can produce N NAND. logic as shown in Figure 2.12. The

output d in the following steps: ′+D′))′ ′+D′)′ (C′)′(D′)′ tation of the Boolean expression Y= AB+CD using NAND gate circuit using

NOR gate ork as either a NOR or negative AND, as theorem. gic in Figure 2.13. The output expression is = ((A+B)′)′((C+D)′)′ = (A+B)

(C+D) ementation of the boolean expression Y= +B)(C+D) using NOR gate STOP TO CONSIDER R gates are called universal

gates. R can be used to implement all the primary , OR, NOT(invert). duce NOR and, similarly, NOR can produce Space for

learners:

46 | P a g e CHECK 5. The number of NOR g ____ 6. The number of NAND is/are ____ 7. The number of NAND A′+B is/are

_____ 8. The number of NOR g is/are _____ 2.9 COMBINATIONAL LO FUNCTIONALITIES In this section, many types circuits are

introduced, viz. A code converters, multiplexer, 2.9.1 The comparison funct The magnitude of compariso a comparator. A

comparison whether or not they are equa function, one number in bin other number in binary for indicate the relationship of t

proper output line. Suppose applied to input A and a bi applied to input B. A ′1′ (H indicating the relationship be Figure 2.14 Ba ECK

YOUR PROGRESS OR gate(s) required to implement OR is/are AND gates(s) required to implement AND AND gates(s) required to

implement Y = OR gates(s) required to implement Y = A′+B AL LOGIC CIRCUIT types of fixed functions of combinational , viz.

Adders, comparator, decoders, encoders, plexer, demultiplexer etc. function parison performed by a logic circuit is called parison

compares two quantities and indices re equal. Figure 2.14 represents a comparison in binary form is applied to input A, and the ry

form is applied to input B. The outputs ip of the two numbers by producing 1 on the ppose that the binary representation of 3 is d

a binary representation of the number 6 is ′1′ (HIGH) will appear on the A>B output, ip between the two numbers. .14 Basic

magnitude comparator Space for learners:

47 | P a g e 2.9.2 The Arithmetic functi Addition is performed by a l two binary numbers on inpu generates a sum (Σ) and a 2.15.

Figure Subtraction is also perfor requires three inputs, viz.,t and a borrow input. The tw borrow output. The subtra addition

operation. Multiplication: A multipl multiplication. Because num inputs are necessary. The Multiplication can be achiev other

circuits since it is mere positions of the partial produ Division: Division can be comparisons, and shifts, t conjunction with other

circu and the quotient and remaind Code conversion: The log conversion. A code is a co pattern and used to represen type of

coded data into ano Conversion from binary to B code. Encode: The encoder is a l function. The encoder turns d functions by a

logic circuit called adder. An adder adds n inputs A and B with a carry input (C in) and nd a carry output (C out) as shown in

Figure Figure 2.15 Basic Adder performed by a logic circuit. A subtractor ,the two numbers that are to be subtracted The two

outputs are the difference and the subtraction operation is a special case of ultiplier is a logic circuit that performs e numbers are

always multiplied in twos, two . The product is the multiplier′s output. achieved using an adder in conjunction with s merely a

series of additions with shifts in the products. n be achieved with a series of subtraction, ifts, therefore an adder can be used in r

circuits. The division requires two inputs, mainder are generated as outputs. e logic circuits can also be used for code s a

collection of bits arranged in a specific present data. A code converter converts one to another type of coded data. For example,

ry to Binary Coded Decimal (BCD) or Gray is a logic circuit that performs the encoding turns data into a coded representation,

such as Space for learners:

Space for learners: 48 | P a g e a decimal number or an alphanumeric letter. One form of encoder, for example, turns all of the

decimal digits, 0 through 9, to binary code. Decoder: A logic circuit called a decoder performs the decoding operation. The

decoder translates coded data, such as binary numbers, to uncoded data, such as decimal numbers. One form of decoder, for

example, translates a 4-bit binary code into the appropriate decimal digits. Data selection function: The multiplexer and the

demultiplexer are two types of circuits that select data in the data selection function. A multiplexer, often known as a MUX, is a

logic circuit that transfers digital data from many input lines to a single output line in a predetermined time sequence. A

multiplexer can be thought of as an electronic switch that links each of the input lines to the output line in a sequential manner. A

demultiplexer (DEMUX) is a logic circuit that converts digital data from one input line to multiple output lines in a predetermined

order. The demux is a reverse mux. When data from numerous sources needs to be sent across one line to a distant place and

then redistributed to multiple recipients, multiplexing and demultiplexing are utilized. STOP TO CONSIDER ● The AND, OR, and

NOT can be used to design the complex logic circuits to perform specific operations. 2.9.3 Basic Adders Adders are essential not

only in computers, but also in a wide range of digital systems that process numerical data. The study of digital systems requires a

basic understanding of the adder action. The half- adder and full-adder are described in this section. 2.9.3.1 The Half-Adder

Recall the basic rules for binary addition 0+0 = 0 0+1 = 0

49 | P a g e 1+0 = 1 1+1 = 10 A logic circuit known as a ha The half-adder takes two bi binary digits, a sum bit an shows a half-

adder represent Figure 2.16 Log Half-Adder Logic from the o Table 2.3, expressions can be carry as functions of the inpu 1 only

when both A and B ar the AND of the input variabl Table 2.3 A 0 0 1 1 Now, observe that the sum (and B, are not equal. The s

exclusive-OR of the input implementation required f developed using Σ and C out gate with A and B on the in with an exclusive-

OR (XO Remember, the XOR is imp and inverters. as a half-adder performs the operations. two binary digits as inputs and

produces two bit and a carry bit, as outputs. Figure 2.16 resented by the logic symbol. 16 Logic symbol for a half-adder the

operation of the half-adder as stated in can be derived for the sum and the output e inputs. Note that the output carry (C out) is

a d B are 1s, therefore, C out can be expressed as ariables. C out = AB. le 2.3 Half-adder truth table B C out Σ 0 0 0 1 0 1 0 0 1 1 1

0 sum (Σ) is a 1 only if the input variables, A The sum can therefore be expressed as the input variables. Σ = A ⊕B. The logic ired

for the half-adder function can be out . The output carry is produced with AND the inputs, and the sum output is generated R

(XOR) gate, as shown in Figure 2.17. is implemented with AND gates, an OR gate, Space for learners:

50 | P a g e Figure 2.17 H 2.9.3.2 The Full Adder The second category of ad accepts two input bits and an and an output carry. The

ba half-adder is that the full symbol for a full-adder is sh in Table 2.4 shows the opera Figure 2.18 Log Table 2.4 A B 0 0 0 0 0 1 0 1

1 0 1 0 1 1 1 1 2.17 Half-adder logic diagram of adder is the full-adder. The full-adder and an input carry and generates a sum

output he basic difference between full-adder and a full-adder accepts an input carry. A logic r is shown in Figure 2.18, and the

truth table operation of a full-adder. 18 Logic symbol for a full-adder le 2.4 Full-adder truth table C in C out Σ 0 0 0 1 0 1 0 0 1 1 1

0 0 0 1 1 1 0 0 1 0 1 1 1 Space for learners:

51 | P a g e Full-Adder Logic The full input carry. From the half-ad bits A and B is exclusive input carry (C in) to be added ORed

with A⊕B, yielding full-adder. Σ = (A⊕B)⊕C in . This mean function, two 2-input exclu must generate the term A⊕ output of the

first XOR gate 2.19(a). Figure 2.19(a) Logic req Figure 2.19(b) Comp The output carry is a 1 when or when both inputs to the se this

fact by studying Table therefore produced by the e full-adder must add the two input bits and adder you know that the sum of

the input usive-OR of those variables. A⊕B. For the added to the input bits, it must be exclusive- lding the equation for the sum

output of the s means that to implement the full-adder sum exclusive-OR gates can be used. The first ⊕B, and the second has as

its inputs the gate and the input carry, as shown in Figure gic required to form the sum of three bits Complete logic circuit for a

full-adder when both inputs to the first XOR gate are 1s the second XOR gate are 1s. You can verify Table 2.4. The output carry of

full-adder is y the inputs A ANDed with B and A⊕B Space for learners:

52 | P a g e ANDed with C in . These two expression of C out . This func the sum logic to form a co Figure 2.19(b). Notice that

adders, connected as shown with their output carries OR 2.20(b) will normally be used Figure 2.20(a) Arrangement Figure 2.20(b)

2.9.3.3 Parallel Binary Add Parallel binary adders are fo adders. The basic operatio associated input and output A single full-adder

can add t carry. Additional full-adders with more than one bit. As one binary number is added bit and a 1 or 0 carry bit to th se

two terms are ORed, as expressed in the is function is implemented and combined with a complete full-adder circuit, as shown in

e that in Figure 2.19(b) there are two half- hown in the block diagram of Figure 2.20(a), es ORed. The logic symbol shown in

Figure be used to represent the full-adder. ement of two half-adders to form a full-adder .20(b) Full-adder logic symbol y Adders

are formed by connecting two or more full- perations of such adders, as well as their utput functions, are described in this

section. add two one-bit numbers as well as an input adders must be used to add binary numbers it. As shown above with 2-bit

integers, when added to another, each column creates a sum it to the next column to the left. 10 +10 --------------- 100 Space

for learners:

53 | P a g e In this case, the second c column′s sum bit. A full add numbers to be added. So two four adders are required for carry

output is connected t input, as shown in Figure 2.2 carry input to the least signif the carry input of a full-adde 2.21 the least

significant represented by A 1 and B 1 . Th by A 2 and B 2 . The three sum output carry from the le significant bit (MSB) in the s Fig

2. Four-bit Parallel Adders A nibble is a collection of fo a basic 4-bit parallel adder is The LSBs (A 1 and B 1) of ea the right-most

full-adder; th gradually higher-adders as il each number are applied to th of each adder is connected to adder as indicated. These

are ond column′s carry bit becomes the third ll adder is required for each bit in two binary So two adders are required for 2-bit

numbers, ed for 4-bit values, and so on. Each adder′s cted to the next higher-order adder′s carry ure 2.21 for a 2-bit adder.

Because there is no t significant bit location, either a half-adder or adder can be set to 0 (grounded). In Figure icant bits (LSB) of

the two numbers are . The next higher-order bits are represented ee sum bits are Σ 1 , Σ 2 , and Σ 3 . Notice that the he left-most

full-adder becomes the most n the sum Σ 3 . Fig 2.21. A 2-bit adder n of four bits. As demonstrated in Figure 2.22, dder is

developed with four full-adder stages.) of each number being added are applied to der; the higher-order bits are applied to the rs

as illustrated; and the MSBs (A 4 and B 4) of ed to the left-most full-adder. The carry output cted to the carry input of the next

higher-order ese are called internal carries. Space for learners:

54 | P a g e In terms of the method use there are two types: the rip adder. A ripple carry adder i full-adder is connected to th

stage (a stage is one full-ad any stage cannotbe produc causes a time delay in the a delay for each full-adder is th carry until the

output carry o are already present. Figure 2 Look-ahead carry addition addition process by elimina ahead carry adder predicts e

using either carry generatio input bits of each stage. Carry generation occurs (generated) internally by the when both input bits

are 1s. the AND function of the two Carry Propagation occurs w the output carry. An input ca when either or both of the i Cp, is

expressed as the OR fu 2.9.3.4 Truth table for 4-bit Table 2.5 is the truth table f truth tables may be called fu The subscripts n

represent th d used to handle carries in a parallel adder, ripple carry adder and carry look-ahead adder is one in which the carry

output of each d to the carry input of the next higher-order adder). The sum and the output carry of duced until the input carry

occurs. This the addition process. The carry propagation er is the time from the application of the input arry occurs, assuming

that the A and B inputs igure 2.22 A 4-bit Adders dition is a technique for speeding up the liminating the ripple carry delay. The

look- dicts each stage′s output carry and produces it ration or carry propagation based on the curs when an output carry is

produced by the full-adder. A carry is generated only re 1s. The generated carry, C g , is expressed as he two input bits, A and B. C

g =AB. curs when the input carry is rippled to become put carry may be propagated by the full-adder f the input bits are 1s. The

propagated carry, OR function of the input bits. C p = A + B. bit parallel adder table for a 4-bit adder. On Some data sheets,

function tables or functional truth tables. sent the adder bits and can be 1, 2, 3, or 4 for Space for learners:

Space for learners: 55 | P a g e the 4-bit adder. C n-1 is the carry from the previous adder. Carries C 1 , C 2 , and C 3 are

generated internally. C 0 is an external carry input and C 4 is an output. Table 2.5 Truth table for 4-bit parallel adder C n-1 A n B n

Σ n C n 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 STOP TO CONSIDER ● A half-adder has two

inputs and two outputs. ● A full-adder has three inputs and two outputs. ● A 4-bit parallel adder can add two 4-bit binary

numbers. ● Two half-adders can be used to design a full adder. CHECK YOUR PROGRESS State whether true or false 9. The sum

expression for a half adder is A+B 10. The carry out C out expression for a full adder is AB+C in 11. A 4-bit parallel adder has four

full adders. 12. There are two types of carry, they are ripple carry and look ahead carry 13. Carry generation occurs when an

output carry is produced. 2.9.4 Binary Subtractor Binary subtractors are special circuits which subtract two binary numbers from

each other. Binary subtractor produced a difference and borrow output after the completion of the subtraction operation. Binary

subtraction has two digits, subtracting a “0” from a “0” or a “1” leaves the result unchanged as 0-0 = 0 and 1-0 = 1. Subtracting

56 | P a g e a “1” from a “1” results in a requires a borrow. In other w borrow 1 then the minuend becomes 10-1 which will giv

borrow bit 1. The half-subtr below. 2.9.4.1 The Half-Subtractor A half subtractor is a logic operation on two binary d difference (D)

and a borrow Figure 2.23 shows the logic s Figure 2.23 Logi Table 2.6: Truth Inputs A B Diffe 0 0 0 1 1 0 1 1 From the Table 2.6 of

the ha can be obtained by doing ex Borrow (B out) can be obtaine and B. The Boolean expressi lts in a “0”, but subtracting a “1”

from a “0” other words, 0-1 requires a borrow and if you inuend 0 becomes 10 and the operation 0-1 ill give the output 1, this

also leads to set the subtractor and full-subtractor are discussed ractor a logical circuit that performs a subtraction ary digits. The

half subtractor produces a borrow out (B out) bit for the next stage. The logic symbol of a half-subtractor circuit. 3 Logic symbol

of Half-Subtractor : Truth Table of a Half-Subtractor Outputs Difference(D=A-B) Borrow (B out) 0 0 1 1 1 0 0 0 the half

subtractor, the difference (D) output ing exclusive-OR between A and B and the btained by doing AND operation between A′
pression for a half subtractor is as follows. D = A⊕B B out = A′B Space for learners:

57 | P a g e Figure 2.24 Logi The Boolean expressions for half-subtractor are exactly output carry of the half-adde circuit,

difference between t the minuend input A. The disadvantage of the h multiple bits there is no o stages. So, we need a full su

borrow-in input from the ear 2.9.4.2 The Full-Subtractor The full-subtractor has three (minuend) and B (subtrahe additional

Borrow-in (B in) in the subtraction process from 2.25. Figure 2.25 : Logi 4 Logic circuit for Half-subtractor ns for ‘sum’ in half-

adder and ‘difference’ in actly the same. The only difference is the adder and the borrow out of the subtractor ween these two

quantities is the inversion of the half-subtractor is that if you subtract no option for ‘borrow-in’ from its earlier full subtractor

circuit to take into account this he earlier stages. ractor three inputs. The two single bit data inputs A btrahend) are the same as

before plus an) input to receive the borrow generated by s from a previous stage as shown in Figure : Logic symbol of a Full-

Subtractor Space for learners:

58 | P a g e The “full subtractor” combin operation on three binary bit D and borrow B out . Like the a be thought of as two half su

first half subtractor passing as shown in the Figure 2.26 full-subtractor is shown in th Figure 2.26: Arrangement Table 2.7: Tru

Input A B 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 The truth table Table 2.7 sho and B, the truth table operati a. If A = 0, B = 0, and are 0. b. In

the second set of i so before performin have to increment the ombinational circuit performs the subtraction ary bits resulting in

outputs for the difference e the adder circuit, the full subtractor can also half subtractors connected together, with the ssing its

borrow to the second half subtractor re 2.26 and the complete logic circuit of the n in the Figure 2.27. ement of two half-

subtractors to form a full- subtractor 7: Truth for the Full-Subtractor Inputs Outputs B in D B out 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0

0 0 0 1 1 1 .7 shows the subtraction operation between A perations are explained below: , and B in = 0, then the output D and B

out both et of inputs the A = 0, B = 0, but the B in =1, orming the subtraction operation, first, you ent the B by 1 unit then the B

will change to 1 Space for learners:

Space for learners: 59 | P a g e (B in =1 indicates there was a borrow in the previous step of the series of operations here previous

step is not referring the first set of input operation of the Table 2.7), now if you perform the A-B i.e. 0-1 you need a borrow then

only the operation will be possible, so, if you borrow 1 then the A will change to 10 and the subtraction operation 10-1 will give 1,

i.e. D=1, since the operation was performed using borrow, the B out =1. c. In the third set of inputs A=0, B=1, B in = 0, since B in

= 0, so, it is not necessary to increment the B, but A-B i.e. 0-1 in this step needs a borrow, so you have to borrow 1 to A, the A will

change to 10 and the operation will change to 10-1=1, so, D=1, B out =1. d. In the fourth set of inputs A=0, B=1, B in = 1, this time

B in = 1, so, you have to increment the B by one unit, then B will change to 10, now, if you perform the subtraction operation A-B,

i.e. 0-10 then you need a borrow, if you borrow 1 the A will change to 10 and the operation becomes 10-10=0, therefore D=0,

since the operation was completed using a borrow so, B out = 1. e. In the fifth set of inputs A=1, B=0, B in = 0, since B in = 0, so

the B will not change and the A-B i.e. 1-0 does not need any borrow therefore D=1 and B out = 0. f. In the sixth set of inputs A=1,

B=0, B in = 1, since B in = 1, so, B will be incremented by 1 unit and B becomes 1 i.e. B=1 and the operation A-B will be 1-1=0,

hence D=0 and B out = 0. g. In the seventh set of inputs A=1, B=1, B in = 0, since B in = 0, so, B will not change and the A-B i.e.

1-1 does not need any borrow therefore D=0 and B in = 0. h. In the eighth set of inputs A=1, B=1, B in = 1, since B in = 1, so, B will

be incremented by 1 unit and the value of B becomes 10, now, the operation A-B becomes 1-10 which is not possible therefore A

needs borrow to complete the operation, after 1 borrow to A the A becomes 11 and A-B = 11-10. Hence D=1 and B out = 1.

60 | P a g e Figure 2.27: Complete STOP ● Subtractor circuits ar ● Subtraction operation that works in normal ● The difference

expres same as the sum expr ● The Full-subtractor su stages. ● B in = 1 indicates there ● If A>B+B in then A ne 2.9.5

Comparators A comparator′s primary role binary quantities in order to i comparator circuit, in its mos are equal. 2.9.5.1 Equality

Because its output is 1 when when they are equal, the exc comparator. As a 2-bit c exclusive-OR gate. mplete logic circuit for a

full-subtractor TOP TO CONSIDER uits are similar to the adder circuits. eration in binary works in the same pattern ormal

mathematics. expression of the subtractor circuit is the expression of the adder circuit. ctor supports borrow in from the previous

s there is a borrow in the previous step. n A needs borrow from its y role is to compare the magnitudes of two er to identify their

relationship. A its most basic form, determines if two integers when the two input bits are not equal and 0 the exclusive-OR gate

can be used as a basic bit comparator, Figure 2.28 depicts the Space for learners:

61 | P a g e Figure 2.28 Ba An additional exclusive-OR values comprising two bit numbers′ least significant bi two most significant

bits (M numbers are equal, their corr exclusive-OR gate′s output i are not equal, the exclusive Figure 2.29 2-bits Two inverters and

an AND output representing the equ shown in Figure 2.29. Each and applied to the AND gate input bits are identical. The resulting

in a 1 on both AN When the two numbers a corresponding bits are diffe AND gate input, resulting i result, the AND gate′s outpu

equal (1) or unequal (0). .28 Basic comparator operation OR gate is required to compare binary o bits each. Gate G 1 compares

the two ant bits (LSBs), while gate G 2 compares the its (MSBs), as seen in Figure 2.29. If the two ir corresponding bits are also

equal, and each utput is a 0. If the corresponding sets of bits sive-OR gate output is set to 1. bits binary number comparison AND

gate can be used to produce a single he equality or inequality of two values, as . Each exclusive-OR gate′s output is inverted D

gate′s input. When each exclusive-two OR′s l. The numbers′ corresponding bits are equal, oth AND gate inputs and a 1 on the

output. bers are not equal, one or both sets of e different, and a 0 appears on at least one lting in a 0 on the AND gate′s output.

As a output indicates whether the two numbers are Space for learners:

62 | P a g e 2.9.5.2 Inequality Many IC comparators have equality output that show w compared is greater. As ind comparator in

Figure 2.30, number A is larger than n indicates when number A is s Figure 2.30 Logic To determine an inequality examine the

highest-order conditions are possible: 1. If A 3 =1 and B 3 =0, nu 2. If A 3 =0 and B 3 =1, nu 3. If A 3 = B 3 , then you m for an

inequality. These three operations are va The general procedure use inequality of the bit position (MSB). When such an ineq two

numbers is established order bit positions must be opposite indication to occur; precedence. CHECK State whether true or false

14. The exclusive-OR gate is 15. The HIGH output will ap 16. LSB stands for Least Sig s have additional outputs in addition to the

how which of the two binary integers being As indicated in the logic symbol for a 4-bit 30, there is an output that indicates when

than number B (A<B) and an output that r A is smaller than number B (A>B). Logic symbol for a 4-bit comparator uality of

binary numbers A and B, you first order bit in each number. The following =0, number A is greater than number B. =1, number A

is less than number B. you must examine the next lower bit position are valid for every bit position in the number. re used in the

comparator is to check the osition, starting from the mostsignificant bit n inequality is found, the relationship of the lished, and

any other inequalities in lower- ust be ignored because it is possible for an occur; the highest-order indication must take ECK

YOUR PROGRESS false gate is a basic comparator. will appear if we compare 11 2 and 11 2 . st Significant Bit. Space for learners:

63 | P a g e 2.9.6 Decoders A decoder′s basic task is combination of bits (code) o with a specific output level handle n bits and 1 to

2 n outp more n-bit combinations in it 2.9.6.1 The Basic Binary De Assume you need to figure digital circuit′s inputs. Bec when all

of its inputs are HIG basic decoding element. As occurs, you must ensure that this may be done by invertin in Figure 2.31. (a)

Figure 2 The logic equation for the de illustrated in Figure 2.31(b). except when A 0 =1, A 1 =0, A A 0 is the LSB and A 3 is the

number, the LSB is the righ and the top-most bit in a otherwise. If the NAND gat Figure 2.31, a LOW output binary code, which is

1001 in sk is to identify the presence of a specific ode) on its inputs and to signify that presence t level. A decoder contains n input

lines to output lines to signal the presence of one or ns in its most basic form. ary Decoder figure out when a binary 1001 appears

on a . Because it provides a HIGH output only are HIGH, an AND gate can be utilized as the t. As a result, when the binary number

1001 re that all of the AND gate′s inputs are HIGH; verting the two middle bits (the 0s) as shown (b) igure 2.31 Binary decoder the

decoder of Figure 2.31(a) is developed as .31(b). You should verify that the output is 0 =0, A 2 =0, and A 3 =1 are applied to the

inputs. is the MSB. In the representation of a binary he right-most bit in a horizontal arrangement in a vertical arrangement, unless

specified D gate is used in place of the AND gate in utput will indicate the presence of the proper 001 in this case. Space for

learners:

64 | P a g e 2.9.6.2 3 to 8 line Decoder Figure 2.32 shows a decode outputs. It uses all AND gat note that for a given input co

output corresponding to the code (for example, only whe become HIGH). The decode can be called a 3-8 line dec output lines.

It can also be ca because it takes a 3-digit bin eight (octal) outputs correspo of 8 decoder because only 1 Figure 2.3 Table 2.8: 3-

to-8-line Deco Inputs Decoding Function C B A O 0 0 0 0 C′B′A′ 1 0 0 1 C′B′A 0 0 1 0 C′BA′ 0 0 1 1 C′BA 0 oder decoder circuit

with three inputs and 2 3 = 8 D gates, so the output is active high. Please put code, the only valid output (HIGH) is the to the

decimal equivalent of the binary input ly when CBA = 101 2 = 5 10 , the O 5 output will ecoder can be referenced in various ways.

It ne decoder because it has 3 input lines and 8 o be called a binary octal decoder or converter git binary input code and activates

one of the orresponding to that code. It is also called a 1 nly 1 of the 8 outputs is activated at a time. ure 2.32 3-to-8-line decoder

e Decoder truth table with decoding function Outputs O 1 O 2 O 3 O 4 O 5 O 6 O 7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 Space for learners:

65 | P a g e 1 0 0 CB′A′ 0 1 0 1 CB′A 0 1 1 0 CBA′ 0 1 1 1 CBA 0 CHECK Y 17. An n-bit decoder can hav 18. Determine the logic expr

HIGH level on the output 2.9.7 Encoders An encoder is essentially a c opposite of a decoder. An en of its inputs representing a

converts it to a coded outp devise an encoder for encod process of converting the coded form is called encodin 2.9.7.1 Decimal

to BCD En As shown in Figure 2.33, thi each decimal digit, and fou code. This is a simple ten-to Figure 2.33 Logic sym 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ECK YOUR PROGRESS an have ____ output lines c expression for the input 0111 by

producing lly a combinatorial logic circuit that does the An encoder accepts an active level from one ting a number such as

decimal or octal and d output such as BCD and binary. You can encoding various symbols or characters. The the familiar symbols

and numbers into a ncoding. D Encoder 33, this form of encoder has 10 inputs, one for nd four outputs that correspond to the

BCD to-four line encoder. ic symbol for a decimal to BCD encoder Space for learners:

Space for learners: 66 | P a g e Table 2.7 lists the BCD (8421) code. To evaluate the logic, you can use this table to explore the

relationship between each BCD bit and the decimal digits. For instance, the most significant bit of the BCD code, A 3 , is always a

1 for decimal digit 8 or 9. An OR expression for bit A 3 in terms of the decimal digits can therefore be written as A 3 =8+9. Bit A 2

is always a 1 for decimal digit 4, 5, 6 or 7 can be expressed as an OR function as follows: A 2 = 4+5+6+7 Bit A 1 is always 1 for

decimal digit 2, 3, 6, or 7 and can be expressed as A 1 = 2+3+6+7 Finally, A 0 is always a 1 for decimal digits 1, 3, 5, 7, or 9. The

expression for A 0 is A 0 = 1+3+5+7+9 Table 2.9: Decimal to BCD encoder truth table Decimal Digit BCD code A 3 A 2 A 1 A 0 0 0

0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 Let us now use the logic expression we

just generated to implement the logic circuitry required for encoding each decimal digit to a BCD code. Each BCD output is

easily formed by ORing the relevant decimal digit input lines. Figure 2.34 depicts the basic encoder logic that results from these

expressions. The circuit in Figure 2.34 has the following fundamental operation: The appropriate levels are displayed on the four

BCD output lines when HIGH occurs on one of the decimal digit input lines. If input line 9 is HIGH (and all other input lines are

LOW), for instance, this

67 | P a g e condition will result in HIG outputs A 1 and A 2 , which is t Figure 2.34 B STOP ● Encoders perform the ● Encoders

convert fam forms. ● An encoder having output lines in the ou 2.9.8 Multiplexers The multiplexer (MUX) is a from multiple sources

to be over that line to a common several data input lines and o input, allowing you to chang out. The multiplexer is also c Figure

2.35 shows a logic sy Because there are two data input lines can be picked wit n HIGH on outputs A 0 and A 3 and LOW on ich is

the BCD code (1001) for decimal 9. 2.34 BCD encoder logic circuit TOP TO CONSIDER rm the reverse operation of the decoders

ert familiar symbols or numbers to coded 2 n input lines in the input will have n the output. X) is a device that allows digital

information to be routed to a single line for transmission mmon destination. The basic multiplexer has s and one output line. It

also has a data select change digital data from any input to the line also called a data selector. gic symbol for a 4-input

multiplexer (MUX). o data select lines, any one of the four data ed with two select bits. Space for learners:

68 | P a g e Figure 2.35 Logic s In Figure 2.35, a 2-bit code the data on the selected data If a binary 0 (S 1 =0 and S 0 =0 data on

input D 0 appear on t and S 0 =1) is applied to the appear on the data output. If the data on D 2 appear on the applied, the data

on D 3 are s of this operation is shown in Table 2.10: 4 to 1 Data select in S 1 0 0 1 1 Let′s have a look at the logi requires. The

status of the data output. As a result, you output from the data input an The data output is equal to D The data output is equal to

D The data output is equal to D The data output is equal to D When these terms are ORed, is ogic symbol of a 4-input multiplexer

code on the data-select (S) inputs will allow d data input to pass through to the data output. =0) is applied to the data-select

lines, the n the data-output line. If a binary 1 (S 1 =0 to the data-select lines, the data on input D 1 tput. If a binary 2 (S 1 =1 and S 0

=0) is applied, on the output. If a binary 3 (S 1 =1 and S 0 =1) is are switched to the output line. A summary wn in Table 2.8. : 4 to 1

line multiplexer truth table lect inputs Input selected S 0 0 D 0 1 D 1 0 D 2 1 D 3 e logic circuits that this multiplexing process f the

selected data input is replicated in the lt, you can construct a logic expression for the put and the inputs you choose. al to D 0

only if S 1 =0 and S 0 =0; Y= D 0 S′ 1 S′ 0 al to D 1 only if S 1 =0 and S 0 =1; Y= D 1 S′ 1 S 0 al to D 2 only if S 1 =1 and S 0 =0; Y= D

2 S 1 S′ 0 al to D 3 only if S 1 =1 and S 0 =1; Y= D 3 S 1 S 0 ORed, the total expression for the data output Space for learners:

69 | P a g e Y = D 0 S′ 1 S′ 0 + D 1 S′ 1 S 0 +D 2 The implementation of this gates, a 4-input OR gate, complements of S 1 and S 0

can be selected from any on referred to as a dataselector Figure 2.36 Circuit STOP ● Multiplexers are also ● A 4-input data lines

m ● A 8-input data lines m ● A 2 n input data lines m ● The output depends o 2.9.9 Demultiplexer The demultiplexer (DEMUX

function. It takes digital info to a specified number of ou is also called a data distribu also be used as a demultiplex 2 S 1 S′ 0 + D 3

S 1 S 0 of this equation requires four 3-input AND gate, and two inverters to generate the 0 as shown in Figure 2.36. Because data

any one of the input lines, this circuit is also tor. ircuit diagram of 4-to-1 multiplexer TOP TO CONSIDER e also known as data

selectors. lines multiplexer has two select lines. lines multiplexer has three select lines. lines multiplexer has n select lines. ends on

the input data and select lines bits. EMUX) basically reverses the multiplexing al information from one line and distributes it of

output lines. Therefore, the demultiplexer istributor. As you will learn, the decoder can ltiplexer. Space for learners:

70 | P a g e A 1-to-4-line demultiplexer 2.37. The data-input line is gate is enabled at a time by t data-input line passes via th

output line. Figure 2.37 Circuit diag Table 2.11: 1 to 4 Select code S 1 S 0 0 0 0 1 1 0 1 1 The algebraic expressions fo D 0 = IS′ 1 S′
0 D 1 = IS′ 1 S 0 D 2 = IS 1 S′ 0 D 3 = I S 1 S 0 plexer (DEMUX) circuit is shown in Figure ine is connected to all AND gates. Only

one e by the two data-select lines, and data on the via the selected gate to the associated data it diagram of a 1-to-4 line

demultiplexer 1 to 4 line demultiplexer truth table Outputs D 3 D 2 D 1 D 0 0 0 0 I 0 0 I 0 0 I 0 0 I 0 0 0 ons for the functions

shown in Table 2.9 are: Space for learners:

Space for learners: 71 | P a g e CHECK YOUR PROGRESS 19. Demultiplexer basically ______ the multiplexing function. 20. In

demultiplexer only _____ gate is enabled at a time by the data-select lines. 21. Data on the data-input line passes via the selected

gate to the associated data _____ line. 2.10 SUMMING UP ● AND-OR logic produces an output expression in SOP form ● AND-

OR-Invert logic produces a complemented SOP form, which is actually a POS form. ● Combinational circuits are designed either

using Boolean expression or truth tables. ● The operational symbol for exclusive-OR is ⊕. An exclusive-OR expression can be

stated in two equivalent ways: AB′+A′B=A⊕B ● To do an analysis of a logic circuit, start with the logic circuit, and develop the

Boolean output expression or the truth table or both. ● Implementation of a logic circuit is the process in which you start with the

Boolean output expressions or the truth table develop a logic circuit that produces the output function. ● Minimization of

Boolean expressions should be tried before implementing a logic circuit. ● NAND and NOR gates are called universal logic gates.

● All NAND or NOR logic diagrams should be drawn using appropriate dual symbols so that bubble outputs are connected to

bubble inputs and non-bubbleoutputs are connected to non-bubbleinputs. ● When two negation indicators (bubbles) are

connected, they effectively cancel each other. ● The basic logic functions are comparison, arithmetic, code conversion,

decoding, encoding, data selection, storage, and counting. ● Addition, subtraction, multiplication, division, encoding, decoding,

multiplexing, demultiplexing, etc. are the functionalities of the combinational logic circuits.

Space for learners: 72 | P a g e ● To perform the addition operation half-adder, full-adders, parallel adders are used. ● Half-adders

can be combined to design the full-adders. ● Ripple carry and look-ahead carry are the examples of carries seen in the adder

circuits. ● Comparator circuits are used to compare any two binary numbers and MSB are given more precedence while

comparing two binary numbers. ● Subtractor circuits also have a similar design like the adder circuits. ● Encoder and decoder are

the code converter circuits, they perform reverse operation with each other. ● Multiplexer and demultiplexer are data selector

and data distributor, they also perform reverse operation with each other. 2.11 KEY TERMS ● SOP: Sum of Product expressions ●
POS: Product of Sum expressions ● Half-adders: add two binary numbers and produce sum and carry in the output. ● Full-

adders: add two binary numbers with input carry and produce sum and carry in the output. ● Half-subtractor: subtract binary

numbers and produce difference and borrow out. ● Full-subtractor: subtract two binary numbers with borrow in and produce

difference and borrow out. ● Comparators: Compare two binary numbers ● Decoders: Detect the specific combination of bits in

the input. ● Encoders: An encoder converts understandable alphabet to numbers into the coded forms. ● Multiplexers:

Multiplexers are the data selectors. Multiplexers transmit data coming from different sources over a single line. ● Demultiplexers:

Demultiplexers show the reverse operation of multiplexers. It takes digital data from a single line and distributes them in several

lines.

Space for learners: 73 | P a g e 2.12 ANSWERS TO CHECK YOUR PROGRESS 1. Product of Sum 2. Sum of Product 3. A′B+AB′ 4.

One (one 3-input AND gate) 5. Two 6. Two 7. Four 8. Three 9. False 10. False 11. True 12. True 13. True 14. True 15. True 16. True 17.

2 n 18. I′ 3 I 2 I 1 I 0 19. Reverses 20. One 21. Output 2.13 POSSIBLE QUESTIONS Short answers type questions 1. Determine the

output (1or 0) of a 4-variable AND-OR- Invert circuit for each of the following input conditions: a.

78% MATCHING BLOCK 6/91

A=1, B=0, C=1, D=0 b. A=1, B=1, C=0, D=1 c. A=0, B=1, C=1, D=1 2.

Draw the logic diagram for an exclusive-NOR circuit. 3. Determine the output of an exclusive-OR gate for each of the following

input conditions: a. A=1, B=0 b. A=1, B=1 c. A=0, B=1 d. A=0, B=0 4. Implement the following boolean expressions: a. Y =

ABC+AB+AC b. Y = AB(C+DE) 5. Reduce Question 4 to minimum SOP form.

Space for learners: 74 | P a g e 6. Use NAND and NOR gates or combination of both to implement the following logic

expressions: a. Y = A′B+CD+(A+B)′(ACD+(BE)′) b. Y = ABC′D′+DE′F+(AF)′ 7. Find out the full adders input for the following set of

outputs: a. Σ =0 , C out =0 b. Σ =1 , C out =0 c. Σ =1 , C out =1 8. Implement the expression Y = ((A′+B′+C′)DE)′ using NAND

logic. 9. Implement the expression Y = ((A′B′C′)+(D+E))′ using NOR logic. 10. Develop a logic circuit that produces a 1 on its

output only when all three inputs are 1s or when all three inputs are 0s. Long answers type questions: 1. Define combinational

logic circuits. Explain the various components used to design the combinational logic circuits. 2. Design combinational logic

circuit for the following expression Y = AB(C+DEF)+CE(A+B+F) 3. Develop the truth table for a certain 3-input logic circuit with

the output expression Y = AB′C+A′BC+A′B′C′+ABC′+ABC 4. Develop truth for the following expressions and draw the circuits: a.

A′B+ABC′+(AC)′+AB′C b. P′+QR′+ SR+PQ′R 5. From the following truth table draw the logic circuit in minimized form Inputs

Output Y A B C 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1

Space for learners: 75 | P a g e 1 1 0 0 1 1 1 1 6. Design a 6-bit parallel adder. 7. Design a 4-to-2 line encoder using logic gates. 8.

Design a 8-to-1 line multiplexer using logic gates 9. Design a 4-to-16 line decoder using logic gates 10. Design a 1-to-8 line

demultiplexer using logic gates 11. Design an adder-subtractor circuit. 2.14 REFERENCES AND SUGGESTED READINGS 1. Mano,

M. Morris, Digital Logic and Computer Design, Pearson Education. 2. Mano, M. Morris, Computer System Architecture, Pearson

Education. 3. Jain, R. P., Modern Digital Electronics, Mc Graw Hill India. ---×---

76 | P a g e Space for learners: UNIT-3: COMPUTER ARITHMETIC Unit Structure: 3.1 Introduction 3.2 Unit Objectives 3.3

Multiplication of Numbers 3.3.1 Multiplication of Unsigned Numbers 3.3.2 Multiplication of Signed Numbers 3.3.3 Hardware

Implementation of Multiplication Operation 3.3.4 Booth’s Multiplication Algorithm 3.4 Division Operation 3.5 Floating Point

Arithmetic Operations 3.5.1 Addition/Subtraction of two Floating point numbers 3.5.2 Multiplicationof two Floating point numbers

3.6 Summing Up 3.7 Answer to check your progress 3.8 Possible Questions 3.9 References and Suggested Readings 3.1

INTRODUCTION A separate section in central processing unit used to execute arithmetic operations is called arithmetic

processing unit. The arithmetic instructions are performed generally on binary or decimal data. Fixed-point numbers are used to

represent integers or fractions. We can have signed or unsigned negative numbers. Fixed-point addition is the simplest arithmetic

operation. In digital computers data is manipulated by using arithmetic instructions. Data is manipulated to produce results

necessary to give solution for the computation problems. The addition, subtraction, multiplication and division are the four basic

arithmetic operations. We can derive some other operations by using these four operations.

77 | P a g e Space for learners: 3.2 UNIT OBJECTIVES This unit is an attempt to give an idea of multiplication and division of

numbers in digital computer. After going through this unit you will be able to- • understand the multiplication operation •

understand the division operation • explain the floating-point arithmetic operation 3.3 MULTIPLICATION OF NUMBERS

Multiplication of two fixed point unsigned binary numbers can be done by a process of successive shift and add operations. But

the multiplication of two fixed point signed binary numbers in 2’s complement representation requires special consideration. 3.3.1

Multiplication of Unsigned Numbers Multiplying unsigned numbers in binary is quite easy. We already know that with 4 bit

numbers we can represent numbers from 0 to 15. For Multiplication of binary numbers only we have to remember the number

facts: 0*1=0 and 1*1=1 (this is the same as a logical "and"). Multiplication is different than addition. Multiplication of an n bit

number by an m bit number results in an n+m bit number. Let's discuss with an example where n=m=4 and the result of

multiplication is 8 bits:

78 | P a g e Space for learners: Example 1: Decimal Binary 10 x 6 60 1010 (Multiplicand) x 0110(Multiplier) 0000 1010 Partial

Product 1010 +0000 0111100 (Product) In this case of binary multiplication the result is 7 bit, which can be extended to 8 bits by

adding a 0 at the left. Example 2: Decimal Binary 7 x 6 42 0111 x 0110 0000 0111 0111 +0000___ 0101010 3.3.2 Multiplication of

Signed Numbers For multiplying binary integers in signed 2’s complement representation requires special consideration. Example

3: Decimal Binary 7 x -6 -42 0111 x 1010 (2’s complement) 0000 0111 0000 +0111___ 1000110 (The result is incorrect) So, there

is an error

79 | P a g e Space for learners: Solution: We must sign extend to the product bit width. The additional values out to the MSB

position are called sign extension. Decimal Number 3 bits 4 bits 8 bits 16 bits 6 110 0110 0000 0110 0000 0000 0110 -6 110 1110

1111 1110 1111 1111 1110 7 111 0111 0000 0111 0000 0000 0111 -7 111 1111 1111 1111 1111 1111 1111 As we know that multiplication

of two 4 bit numbers results in8 bits. So for signed multiplication of two 4 bit numbers we must sign extent the numbers to the

product bit width i.e, 8 bits. Example 4: Decimal Binary 7 x -6 -42 0111 x 1010 After Sign extension 00000111 x 11111010

00000000 00000111 00000000 00000111 10000111 00000111 00000111 +00000111_______ |11010110 (2’s complement of

42) Stop after 8 bits So the result is correct

80 | P a g e Space for learners: 3.3.3 Hardware Implementation of Multiplication Operation The multiplier and multiplicand are

stored in two registers Q and M. A third register A is initially set to 0. A 1-bit register C is used to store the carry bit resulting from

addition. Control logic reads the bit of the multiplier one at a time. The multiplicand is added to the register A if Q 0 is 1 and then

stored the result back to register A with C bit is used to store carry. Then all the bits of CAQ are shifted one position right. No

addition is performed if Q 0 is 0. The process is repeated for each bit of the multiplier. The resulting 2n bit product is the contain

of QA register Figure 1: Hardware for Multiplication Operation 3.3.4 Booth’s Multiplication Algorithm Booth’s algorithm gives a

procedure for multiplying binary integers in signed 2’s complement representation. CHECK YOUR PROGRESS 1. Do the binary

multiplication of (-7) and (-6) 2. Do the binary multiplication of (-7) and (-6)

81 | P a g e Space for learners: Figure 2: Flow chart of Booth’s Algorithm for multiplication of signed numbers Example 5: Here,

number of bits (n) required for this calculation is 4 bits (1 bit to represent the sign and 3 bits to represent the numbers). Since 6

can be represented using 3 bits and negative sign is represented using 1 bit. Decimal -6 (Multiplicand) x 3 (Multiplier) -18 (Product)

82 | P a g e Space for learners: So, the size of registers M, Q, A(Accumulator) is 4 bits and register q 0 is 1 bit. M=(-6) 10 = 2’s

complement of (0110) 2 = (1010) 2 -M = (0110) 2 Q = (3) 10 =(0110) 2 = Q (q 4 q 3 q 2 q 1) Operations: (i) If q 1 q 0 bits are 1 0

then then do A = A – M = A + (-M) (ii) If q 1 q 0 bits are 0 1 then then do A = A + M (iii) Otherwise Arithmetic Shift Right of (A Q q 0

) is done. Suppose (A Q q 0) = (0 1 1 0 0 0 1 1 0) Then ASR will yield the result = (0 0 1 1 0 0 0 1 1). Here sign bit(MSB) is restored

and all bits (including the sign bit) is shifted one position right. TABLE 1: Multiplication of Example 5 using Booth’s Algorithm n A Q

(q 4 q 3 q 2 q 1) q 0 Action/Comment 4 3 2 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 Initialization A = A – M ASR of (A Q q 0) ASR of (A Q q 0) A = A + M ASR of (A Q q 0) ASR of (A Q

q 0) Result is content of AQ i.e, 1 1 1 0 1 1 1 0 Here, LSB (Sign bit) is 1 so the result is –ve.

83 | P a g e Space for learners: Therefore result: - (2’s complement of 1 1 1 0 1 1 1 0) = - (0 0 0 0 1 0 0 1 0)= - (18) 10 3.4 DIVISION

OPERATION The division operation involves repetitive shifting and addition or subtraction. First, the bits of the dividend are

examined from left to right to search a number greater than or equal to the divisor. Until this event occurs, 0s are placed in the

quotient from left to right. When such a number is found and the divisor divides the number, a 1 is placed in the quotient and the

divisor is subtracted from the partial dividend. The result is referred to as a partial remainder. In the subsequent cycle, additional

bits from the dividend are appended to the partial remainder until the result is greater than or equal to the divisor. The divisor is

subtracted from this number to produce a new partial remainder. The process continues until all the bits of the dividend are

exhausted. 3.5 FLOATING-POINT ARITHMETIC OPERATIONS Arithmetic operations on floating point numbers are addition,

subtraction, multiplication and division. A floating point number can be represented as m x r e , where m is called mantissa, r is

called radix and e is called exponent part. In computer memory two registers: mantisa and exponent is used to represent a

floating point number. SAQ 1. Do the binary multiplication of -7 and 3 using Booth’s Algorithm. CHECK YOUR PROGRESS 1.

Divide 1001 by 11 2. Divide 111000 by 111

84 | P a g e Space for learners: For example, the decimal number 423.75 can be represented in a register with m=42375 and e=3

and is interpreted to represent the

52% MATCHING BLOCK 7/91

floating point number . 42375 x 10 3 3.5.1 Addition/Subtraction of two Floating point numbers: Steps to add/subtract two

floating point numbers

are as discussed below: (i) Alignment: Compare the magnitudes of two exponents and align the number with smaller magnitude

of exponents (ii) Addition/Subtraction: Addition or subtraction is done following the addition or subtraction rules. (i) Normalize

the result: If MSB of mantissa part of the product is 1, the product is already normalized. If it is 0 underflow occurs and the

mantissa of the product is shifted left and decrement the exponent value. If overflow occurs, mantissa is shifted right and

exponent is incremented Example 6: Add 1.1010 x 2 4 and 1.101x 2 2 Solution: Step (i), Here 1.101 x 2 2 is aligned to 0.01101 x 2 4 .

Step (ii), Add the two numbers 1.1010 x 2 4 and 0.01101 x 2 4 to get 10.00001 x 2 4 Step (iii), Result = 10.00001 x 2 4 . So, overflow

in the result. After normalization the result is 0.1000001 x 2 6 SAQ 1. Add 1.1100 x 2 4 and1.100 x 2 2 .

85 | P a g e Space for learners: 3.5.2 Multiplication of two Floating point numbers: (ii) Add the exponents: Exponents of two

numbers are added to get the exponent of the product. (iii) Multiply the mantissas: Multiplication of mantissas are done following

multiplication rule. (iv) Normalize and round the result: Overflow cannot occur during multiplication. If MSB of mantissa part of

the product is 1, the product is already normalized. If it is 0, then the mantissa of the product is shifted left and decrement the

exponent value. Example 7: Multiply 1.000 x 2 -2 and 1.010x 2 -1 Solution: Step (i), (-2) + (-1)=-3, this is the exponent value of the

product. Step (ii), Multiply the mantissas: 1.000 x (1.010) = 1.010000 Step (iii), Result = 1.010000 x 2 -3 Under flow in the result. So

after normalization result is = 0.10000 x 2 -2 3.6 SUMMING UP STOP TO CONSIDER In floating point multiplication if either

operand is equal to zero, the product is set to zero and operation is terminated. Procedure for arithmetic operations on floating

point numbers is different than integers.

86 | P a g e Space for learners: • Procedure to do multiplication of signed and unsigned number is different. • Multiplication of

two fixed point unsigned binary numbers can be done by a process of successive shift and add operations. • Multiplication of

signed numbers can be done using Booth’s Algorithm. • The multiplier and multiplicand are stored in two registers Q and M. •

The division operation involves repetitive shifting and addition or subtraction. • Arithmetic operations on floating point numbers is

done in a different way. 3.7 ANSWER TO CHECK YOUR PROGRESS 1. State the Booth's algorithm for multiplication of two

numbers, Draw a block diagram for the implementation of the Booth's algorithm for determining the product of two 8−bit signed

numbers. 2. Multiply 1.1100 x 2 -3 and 1.01 x 2 2 3.8 POSSIBLE QUESTIONS 1. Perform binary multiplication of -8 and -3 using

sign extension method 2. Perform binary multiplication of 9 and -4 using Booth’s Algorithm. 3. Write the steps of Booth’s

Algorithm. 4. Discuss the hardware implementation of multiplication operation. 5. Write the steps of division operation. 6. How

the alignment and normalization is done in addition of two floating point numbers? 3.9 REFERENCES AND SUGGESTED

READINGS 1. Computer System Architecture, M. Morries Mano ---×---

87 | P a g e Space for learners: UNIT4: REGISTERTRANSFER LANGUAGE AND PROCESSOR LOGIC DESIGN Unit Structure:

4.1Introduction 4.2 Unit Objectives 4.3 Register Transfer Language 4.3.1 Representation of Registers 4.3.2 Register Transfer

Representation 4.3.3 RTL Representation of Memory Transfers 4.4Datapath 4.4.1 One-Bus Data path 4.4.2 Two-Bus Data path

4.4.3 Three-Bus Data path 4.5 ALU Design 4.5.1 Arithmetic Circuit 4.5.2 Various Arithmetic Micro operations 4.5.3 Logic Circuit

4.5.4 Some Applications of Logic Micro operations 4.5.5 Shift Micro operations 4.6 Control Unit 4.6.1 General Model of the CU

4.6.2 Hardwired Control Unit 4.6.3Microprogrammed Control Unit 4.7Summing Up 4.8 Answers to Check Your Progress 4.9

Possible Questions 4.10References and Suggested Readings 4.1 INTRODUCTION As you know, all the operations or instructions

in a digital computer are carried out by a processor with the help of various other interconnected modules. The elementary

operations are also called as micro operations that are performed on the data stored on the processor registers. This unit

contents the fundamentals of micro operations and the language used to represent various micro operations which is known as

Register Transfer Language (RTL),

88 | P a g e Space for learners: the concept of Data paths and other significant parts of the Central Processing Unit (CPU) such as

the Arithmetic and Logic Unit (ALU) where you will be able to understand the functioning of the Arithmetic Circuit and Logic

Circuit and lastly in the Control Unit (CU) part you will be able learn the design of CU and its functionalities and also about

alternative designs of the CU - hardwired and micro programmed control unit. 4.2 UNIT OBJECTIVES After completing this unit,

you will be able to learn: The concepts Micro operation and representation of Register and uses of Register Transfer Language

(RTL) Concepts of one-bus, two-bus and three-bus organization Concepts related to ALU (basic design of Arithmetic Circuit and

Logic Circuit) Concept of the Control Unit (Micro programmed and Hardwired Control Unit) 4.3 REGISTER TRANSFER

LANGUAGE The internal hardware organization of a digital computer exhibits an interconnection of digital modules such as

registers, decoders, arithmetic logic, and control logic etc. The complete digital system is interconnected with data and control

paths commonly known as bus. The elementary operations performed by the CPU on the data stored in one or more registers

are termed as micro operations. clear, count, load and shift are some examples of such micro operations. Various categories of

micro operations: The most commonly used micro operations in a digital computer are listed below- Register transfer micro

operations: The micro operations that are used to transfer binary information among various registers.

89 | P a g e Space for learners: Arithmetic micro operations: The micro operations that are used to perform various arithmetic

operations (add, subtract, increment, decrement) on arithmetic data stored in the registers. Logic micro operations: The micro

operations that are used to perform logical operations (AND, OR, NOT) on the data stored in the registers. Shift micro operations:

The micro operations that are used to perform either left or right shift operations (logical, arithmetic, circular) on the data stored

in the registers. The Register Transfer Language (RTL) is the representation system used to describe the sequence of micro

operations in a symbolic form. The term register transfer refers to the transfer of binary information among the registers via a

common path or bus. 4.3.1 Representation of Registers In a digital computer system the registers are represented using upper

case letters (and followed by a numeral sometimes). PC- Program Counter, IR- Instruction Register etc. are examples of special

purpose registers and R 1 , R 2 , R 3 … etc. are examples of general purpose registers. A register is represented by a rectangular

box containing the name inside and the bit numbers can be marked at the top of the box starting from left to right as shown in

figure 4.1 (a) & (b). Each bit of the data stored in the register can be represented as shown in the figure where each individual bit is

assigned a letter along with a numeral subscript that indicates the position of the bit. Considering a 16-bit register the bits

numbered from 0 to7 are termed as low byte (L) while the bits from 8 to 15 are termed as high byte (H) of the register as shown in

figure 4.1 (c) & (d).

86% MATCHING BLOCK 8/91

A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 A 7 A 0 R 1 A 15 A 0 (a) (b) 90 |

P a g e

Space for learners: Fig4.1: Block diagram of Register 4.3.2 Register Transfer Representation The transfer of contents from one

register to another register can be shown with the help of replacement operator (). For example, transfer of data from register R 1

to register R 2 can be symbolically expressed using the following statement in RTL. R 2 R 1 When this statement gets executed

contents of R 2 will be replaced by contents of R 1 , but the contents of R 1 remains unchanged. The execution of this statement

can be controlled by putting some control condition also. That means when the control condition satisfies then only the transfer

takes place, otherwise not. This is shown in the following expression: If (P = 1) then (R 2 R 1) Here, P=1 is the control statement or

control function which is a Boolean variable. The statement can also be written as P: R 2 R 1 The colon (:) separates the control

condition from the rest. The hardware implementation of the statement P: R 2 R 1 is shown below: H L R 2 A 15 A 8 A 7 A 0 (c) (d)

91 | P a g e Space for learners: Fig4.2: Hardware implementation of P: R 2 R 1 4.3.3 RTL Representation of Memory Transfers Data

flow from memory to external environment is known as memory read operation while data from external environment is stored

in memory is referred to as memory write operation. In RTL, the memory word is symbolized by the letter M followed by square

brackets [] having the address of the memory word. For example, transferring a data word M from memory whose address is

stored in Address Register (AR) to Data Register (DR) can be symbolized as: Read: DR ←M[AR] Similarly, the write operation can

be symbolized as: Write: M[AR] ← R 1 which means transfer of data from register R 1 to the memory word M whose address is

stored in the Address Register (AR). Check Your Progress 1. The operations executed on data stored on registers are called

_______________. a) macro operations b) micro operations c) Byte Operations d) Bit Operations 2. Which of the following

register transfer statements is correct? a) P, R 1 ←R 2 b) P : R 1 ←R 2 : R 3 ←R 4 c) P : R 1 ←R 2 , R 3 ←R 4 d) None of the these 3.

What does the following transfer statement indicate? R 2 ← M[R 1] a) Read a memory word at the address stored in R 1 b) Read a

memory word at the address stored in R 2 c) Write a memory word at the address stored in R 1 d) Write a memory word at the

address stored in R 2

92 | P a g e Space for learners: 4.4 DATAPATH The Central Processing Unit of a digital computer

93% MATCHING BLOCK 9/91

can be divided into a data section and a control section. The data section, also called

as data path, contains the registers and the Arithmatic Logic Unit (ALU) and the Buses. There are three types of buses- Address

bus, Data bus and Control bus. The data path is accomplished for performing certain operations on data items stored in various

memory units. The control section is basically comprised of the control unit, which issues various control signals to the data path.

Internal data (which may be data, instructions or addresses) transfers are carried out via local buses. Externally, data transfer from

registers to memory and Input-Output devices, often carried out by a system bus. The local bus organization to perform internal

data transfer among registers and the ALU may be of different organizations like one-bus, two-bus, or three-bus organization.

4.4.1 One-Bus Data path In this organization,

100% MATCHING BLOCK 10/91

the CPU registers and the ALU use a single bus to

transfer data. This bus organization is least expensive and simplest in design,

91% MATCHING BLOCK 11/91

but it restricts the amount of data transfer that can be done in the same clock cycle, which

results in decrease of overall performance of the system. Figure 4.3 shows a one-bus data path organization comprising

100% MATCHING BLOCK 12/91

of a set of general-purpose registers, a memory address register (MAR), a memory data register (MDR), an instruction register

(IR), a program counter (PC), and an ALU,

all are interconnected via a single data path. 4. State TRUE or FALSE: a) Considering a 16-bit register the bits numbered from 0 to7

are termed as low byte (L). b) Shift micro operations are used to perform various logical (AND, OR, NOT) operartions. c) A register

transfer can’t occur unless the specified control condition becomes true.

93 | P a g e Space for learners: Fig4.3: One-bus data path 4.4.2 Two-Bus Data path In two-bus organization, two buses are used

which results a faster performance than the one-bus organization. In this case, the general- purpose registers are connected to

both the

81% MATCHING BLOCK 13/91

buses. Data can be transferred from two different registers to the input point of the ALU at the same time. Therefore, an

operation having two operands can fetch both operands in the same clock cycle.

There may be a need of

78% MATCHING BLOCK 14/91

an additional buffer to hold the output of the ALU when the two buses remain busy

in

100% MATCHING BLOCK 15/91

carrying the two operands. Figure (4.4-a) shows a two-bus organization.

There may be another implementation of

66% MATCHING BLOCK 16/91

two bus organization where one of the buses is dedicatedly used for moving data into registers (in-bus), while the other

bus is dedicatedly used

83% MATCHING BLOCK 17/91

for transferring data out of the registers (out-bus). For this purpose, the buffer register may be used additionally, as one of the

ALU inputs, to hold one of the operands. The ALU output can be connected directly to the in-bus, which transfers the result to

one of the registers. A two-bus organization with in-bus and out-bus

is shown in Figure (4.4-b). (a)

94 | P a g e Space for learners: (b) Fig4.4 :(a) Two bus datapath(b) Two bus datapath with in-busand out- bus 4.4.3 Three-Bus

Datapath In case of

89% MATCHING BLOCK 18/91

three-bus organization, two buses may be used as source buses whereas the third

bus is used as destination. The source buses are used to transfer data out from registers (out-bus), and the destination bus may

be used to transfer

100% MATCHING BLOCK 19/91

data into a register (in-bus). Each of the two out-buses is connected to an ALU input point

and

100% MATCHING BLOCK 20/91

the output of the ALU is connected directly to the in-bus. As

we have more buses in this organization,

72% MATCHING BLOCK 21/91

more data can be transferred within a single clock cycle. However, increasing the number of buses also increases the

complexity

as well as cost of the hardware. Figure (4.5) shows the organization of a three-bus data path. Fig 4.5 : Three-bus data path

95 | P a g e Space for learners: 4.5 ALU DESIGN The arithmetic and logic unit (ALU) is a combinational circuit in a digital computer

which performs the following operations- Arithmetic operations such as add, subtract, increment and decrement etc. Logic

operations such as AND, OR, XOR and compliment etc. Bit Shifting operations such as logical left and right shift used for

multiplication purpose. Therefore, we can say ALU is the combination of arithmetic unit, logic unit and shift unit all the three

circuits together. It is usually a part of the central processing unit (CPU). Many CPUs have separate units for arithmetic operations

(Arithmetic Unit-AU) and for logic operations (Logic Unit-LU). 4.5.1 Arithmetic Circuit The 4-bit arithmetic circuit which is shown

in Figure 4.6 is able to perform different basic arithmetic operations such as add, subtract, increment and decrement. It employs

parallel full adders (FA) to perform these operations depending on the inputs. The select inputs S 0 and S 1 are used to provide

different inputs to the multiplexers (MUX) present in the circuit in order to obtain different arithmetic operations as outputs.

Check Your Progress 5. The data section of the CPU is also known as ________. 6. In-bus, out-bus organization is related to

____________. a) one-bus data path b) two-bus data path c) three-bus data path d) None of these. 7. In __________ all the

General Purpose Registers (GPR), Special Purpose Registers (SPR) and the ALU are connected via a single data path. a) one-bus

data path b) two-bus data path c) three-bus datapath d) None of these. 8. Two-bus datapath is more efficient than Three-bus

datapath. (State TRUE or FALSE)

96 | P a g e Space for learners: The output of the arithmetic circuit is calculated from the following arithmetic expression- D = A

+ y + C in Where A is the 4-bit number (A 0 ,A 1 ,A 2 ,A 3) to the x input (X 0 ,X 1 ,X 2 ,X 3) of the full adders, y is the 4-bit number

(the outputs from the multiplexers) to the y inputs (Y 0 ,Y 1 ,Y 2 ,Y 3) to the full adders and C in is the input carry which is either 0

or 1. Depending on the values of S 0 , S 1 and C in , the arithmetic circuit performs eight different micro operations as listed in the

function table shown in Table 4.1. Let’s consider a few cases for better understanding the functioning of the arithmetic circuit.

CASE I:S 1 = 0 andS 0 = 0 In this situation, the input pins of multiplexers I 0 (i.e. the bits of B) are chosen as the output and as a

result B directly goes to they inputs of the full adders (FA). i.e. y = B. Now, if C in = 0 then the output becomes D = A + B and if C

in = 1 then D = A + B + 1. This is how add micro operation is performed. CASE II: S 1 = 0 andS 0 = 1 In this situation, the input pins

of multiplexers I 1 (i.e. the complimented bits of B) are chosen as the output and as a resultB goes to the y inputs of the full

adders (FA). i.e. y = B . Now, if C in = 0 then the output becomes D = A+B which is equivalent to D = A-B–1 and if C in = 1 then D

= A+B +1 which is equivalent to D = A-B. This is how subtract micro operation is performed. CASE III:S 1 = 1 andS 0 = 0 In this

situation, the input pins of multiplexers I 2 (connected to logic 0) are chosen as the output and as a result0 goes to the y inputs of

the full adders (FA). i.e. y = 0. Now, if C in = 0 then the output becomes D = A+0 i.e. D = A which means transfer operation is

done from A to Dand if C in = 1 then D = A+1 which means increment operation is performed.

97 | P a g e Space for learners: CASE IV:S 1 = 1 andS 0 = 1 In this situation, the input pins of multiplexers I 3 (connected to logic 1)

are chosen as the output and as a result 1 goes to the all y inputs of the full adders (FA) and we know that if all bits of a number

are 1 then it’s equivalent to -1. So, y =-1 here. Now, if C in = 0 then the output becomes D = A-1 which means decrement

operation is done and if C in = 1 then D = A-1+1 i.e. D = A which means which means transfer operation is done from A to D. Fig

4.6 : A 4-bit Arithmetic Circuit

98 | P a g e Space for learners: Table 4.1 Function Table of Arithmetic Circuit Inputs Outputs Micro operations S 1 S 0 C in Y D = A

+ y + C

34% MATCHING BLOCK 22/91

in 0 0 0 B A + B Add 0 0 1 B A + B + 1 Add with Carry 0 1 0 B A + B orA – B - 1 Subtract with Borrow 0 1 1 B A + B + 1 or A - B

Subtract 1 0 0 0 A Transfer A 1 0 1 0 A + 1 Increment A 1 1 0 1 A – 1 Decrement A 1 1 1 1 A Transfer A 4.5.2

Various Arithmetic Micro operations Add, subtract, increment and decrement are the basic set of arithmetic micro operations

which are described below- Add: To add the contents of two or more registers and store the resultant sum in either one of the

registers or in a third register, this micro operation is used. For example, to add

75% MATCHING BLOCK 23/91

the contents of two registers R 1 and R 2 and store the result in a third register R 3 , the

micro operation can be symbolized as: R 3 = R 1 + R 2 Subtract: When the contents of one register needs to be subtracted from

another register and store the result in either one of the registers or in a third register, then this micro operation is used. The

subtraction operation is implemented through complement and addition operation. For example, to subtract the contents of

register R 2 from register R 1 and store the result in a third register R 3 , the micro operation can be symbolized as: R 3 = R 1 +R 2

+ 1 [Equivalent to R 3 =R 1 -R 2] Here, first we take the complement of R 2, add 1 to it and then the content of R 1 is added to it.

In other words, the 2’s complement ofR 2 is added with R 1 in order to carry out R 1 - R 2 operation.

99 | P a g e Space for learners: Increment: This type of micro operation is used to increase the contents of a register by 1. For

example, to increase the contents of register R 1 by one the symbolic micro operation will be: R 1 = R 1 + 1 Decrement: This type

of micro operation is used to decrease the contents of a register by 1. For example, to decrease the contents of register R 1 by

one the symbolic micro operation will be: R 1 = R 1 – 1 4.5.3 Logic Circuit The basic logic circuit of the ALU performs various

logic micro operations such as AND, OR, XOR and Compliment at bit-level. Fig 4.7: Single stage of Logic Circuit with Function

Table Fig 4.7 shows the hardware implementation for four common logic micro operations. The circuit is consisting of a 4×1

multiplexer with four inputs (I 0 , I 1 , I 2 and I 3) and two select pins (S 0 and S 1) to perform one of the four logic micro

operations and direct it as the output E i as shown in the function table.

100 | P a g e Space for learners: 4.5.4 Some Applications of Logic Micro operations The basic logic operations (AND, OR, NOT,

XOR) can be applied to achieve various operations like set, clear, masking and inserting new bits etc. Let’s discuss such common

applications here- Selective-set: To set selected bits in register R 1 to 1 where there are corresponding 1’s in register R 2 . The 0’s

in are not considered. For example, before operation if R 1 =0011 and R 2 =0101then after selective-set operation the contents of

R 1 will be 0111.This operation is achieved by the OR logic micro operation, for above example this will be symbolized as:R 1 ← R

1 ∨ R 2 Selective-clear: This operation clears those bits in register R 1 to 0where there are corresponding 1’s in registerR 2 . For

example, before operation if R 1 =0011 and R 2 =0101then after selective-clear operation the contents of R 1 will be 0010.This

operation is achieved by the AND logic micro operation with R 1 and complement of R 2 , for above example this will be

symbolized as: R 1 ← R 1 ∧ R 2 Selective-complement: This operation complements those bits in register R 1 where there are

corresponding 1’s in register R 2 . For example, before operation if R 1 =0011 and R 2 =0101then after selective-complement

operation the contents of R 1 will be 0110.This operation is achieved by the XOR logic micro operation with R 1 andR 2 , for above

example this will be symbolized as: R 1 ← R 1 ⊕ R 2 Mask: This operation clears those bits to 0 in R 1 where there are

corresponding 0’s in R 2 . For example, before operation if R 1 =0011 and R 2 =0101then after mask operation the contents of R 1

will be 0001.This operation is achieved by the AND logic micro operation with R 1 andR 2 , for above example this will be

symbolized as: R 1 ← R 1 ∧ R 2 Clear: To compare the contents of two registers and results in all 0’s if the contents of both the

registers are same. For example, before operation if R 1 =0011 and R 2 =0011then after clear operation the contents of R 1 will be

0000.This operation is achieved by the XOR logic micro operation

101 | P a g e Space for learners: with R 1 andR 2 , for above example this will be symbolized as: R 1 ← R 1 ⊕ R 2. Thus, XOR

operation can be implemented to determine whether two binary numbers are equal. Insert: This operation is used to insert new

group of bits in a register. To perform this operation, first the unwanted bits of the register are masked and then OR operation is

performed with the desired value. For example, if R 1 =00111100 and we want to insert 0110 in the rightmost four bits. For this,

first we mask the rightmost four bits which is done by ANDing the contents of R 1 with the value 11110000. After this mask

operation we get R 1 =00110000. Now the contents of R1 are ORed with the desired value (00000110) and after this operation

we get R1 = 00110110. Thus, the new bits (0110) are inserted at the rightmost four bits. 4.5.5 Shift Micro operations The shift

micro operations move the contents (bits) of a register either to the left or to the right. There are three types of shift micro

operations: arithmetic, logical and circular shifts. Let’s discuss them one by one here. Arithmetic Shift: It shifts a signed binary

number either to left or right without changing the sign of the number. To understand the arithmetic shift operation, let’s

consider a n- bit signed binary numberb n-1 , b n-2 ,……, b 1 , b 0 where b n-1 denotes the sign bit and b n-2 denotes most

significant bit (MSB) and b 0 denotes the least significant bit (LSB). The arithmetic shift operations can be symbolized as: R 1

←ashr R 1 [1-bit arithmetic shift right R 1]

102 | P a g e Space for learners: R 1 ←ashl R 1 [1-bit arithmetic shift left R 1] In arithmetic shift right operation, as the sign bit must

be kept unchanged; all the bits including the sign bit are shifted to the right. So, the rightmost bit is lost. The b n-1 remains the

same, while b n-2 is replaced by b n-1, b n-3 is replaced by b n-2 , and so on and at last b 0 is lost. In arithmetic shift left

operation, all the bits are shifted to the left and a 0 is inserted in the previous b 0 bit position. The original value of b n-1 is lost as

it is replaced by b n-2 ;b n-2 is replaced by b n-3 and so on. After this operation if the value of b n-1 changes then a sign reversal

occurs which happens because of overflow which occurs if b n- 1 ≠b n-2 before the shift operation. The overflow condition can

be checked by XO Ring the bit b n-1 withbitb n-2. If the XOR operation results in 1 then there is overflow; otherwise not. Logical

Shift: This micro operation moves the contents (bits) of a register either to the left or to the right. After left or right shift the

empty/lost (the leftmost or the rightmost) bit is replaced by a 0. Symbolically they are represented as: R 1 ←shr R 1 [1-bit shift

right R 1] R 1 ←shl R 1 [1-bit shift left R 1] Circular Shift: This micro operation is almost same as the logical shift, except there is

no bit lost occurs here as the leftmost or rightmost bit which is shifted out at one end is circulated back to the other end.

Symbolically they are represented as: R 1 ←cir R 1 [1-bit circular shift right R 1] R 1 ←cil R 1 [1-bit circular shift left R 1]

103 | P a g e Space for learners: 4.6 CONTROL UNIT The main unit of the CPU is the control unit (CU) which generates control

signals to the data path to direct the entire system operations. Data inside the CPU, memory unit and I/O devices are controlled

by Check Your Progress 9.The full form of ALU is ____________________ 10.The ALU gives the output of the operations and the

output is stored in the ________. a) Memory Devices b) Registers c) Flags d) Output Unit 11. The content of an 8-bit register is

initially is 10011100. The content of the register after an arithmetic right shift opearation will be _________. a) 11001110 b)

11001111 c) 11001101 d) 01001110 12. In arithmetic left shift, overflow occurs when __________. a)

55% MATCHING BLOCK 24/91

b n-1 =b n-2 b)b 0 =b n-1 c)b n-1 ≠b n-2 d)b 0 ≠b n 13. A

digital computer performs which one of the following micro operations to subtract R2 from R1? a) R 3 = R 1 +R 2 +1 b)R 3 = R 1 -

R 2 c) R 3 = R 1 + 2 +1 d)R 2 = R 1 -1 14. State TRUE or FALSE: a) The ALU performs logic operations only. b) XOR operation can

be used to check whether the contents of two registers are same. c) In Circular Shift the bit in either end is circulated back to the

other end.

104 | P a g e these control signals issued uses the control bus to carry flow between the CPU and o performed by the CU are:

Sequencing: The CU sequence for the micr currently being execu Execution: The C operations by gener closing of gates to

performing ALU ope 4.6.1 General Model of the The Control Unit (CU) has state of the system and ou function of the whole syste

must include the logic req execution which are the main a general model of a contro clock, Instruction Register (the control bus.

The outputs CPU and control signals to c Fig 4.8: Ge The inputs of the control unit Clock: The control u and sequence of mic

issued by the control unit. The CU generally o carry the control signals to control the data and other external units. The two basic

tasks he CU is responsible for generating a proper e micro operations depending on the program executed by the CPU. he CU

causes the execution of micro- generating control signals for opening and tes to let the data pass through, while U operations.

he CU) has inputs that empower it to identify the nd outputs that empower it to control the system. In addition to input and

outputs it ic required to perform the sequencing and e main functions of the CU. Fig 4.8 illustrates control unit consisting of four

major inputs: ister (IR), flags, and the control signals from utputs from the CU are: control signals within ls to control bus. :

General Model of the CU ol unit are described below: ntrol unit uses a clock to keep track the time of micro operation execution.

For each clock Space for learners:

105 | P a g e Space for learners: pulse the control unit executes one micro operation or a set of concurrent micro operations

which can be referred to as clock cycle time or processor cycle time. Instruction Register (IR): Micro operations that are fetched

from the memory are stored in the IR. The opcode part of the instruction used for decoding the type of instruction to be

executed. Flags: These are certain memory units capable of holding just 1 bit of information that are used to indicate the CU the

current state of the processor and the results of recent ALU operations. Control signals form control bus: Interrupt signals,

acknowledgement signals are such signals that are received by the CU from the control bus. The outputs from the CU are

described below: Control signals within CPU: Two types of control signals are generated by the CU within the CPU; one of these

causes the register transfers and the other one is used to activate specific ALU functions. Control signals to control bus: Two

types of control signals are generated by the CU to the control bus; one goes to the I/O modules and another goes to the

memory. The control unit of a digital computer can be implemented in two alternate ways: hardwired and micro programmed

implementation. In hardwired implementation the control unit is comprised of logic gates, decoders, flip-flops and other control

signal generating digital circuits etc. In micro programmed implementation, the control unit is comprised of a control memory

where the control information is stored, which is programmed in such a way to initiate proper sequence of micro operations as

required. Let’s discuss both the implementations one by one. 4.6.2 Hardwired Control Unit If the control signals are generated by

the hardware using conventional logic design then control unit is said to be hardwired controlled. Fig 4.9 depicts the block

diagram of a hardwired control unit consisting of a sequence counter (SC) and a number of logic

106 | P a g e Space for learners: circuits which may include decoders, flip-flops and other control logic gates. Fig 4.9 : Hardwired

Control Unit The hardwired organization is very complicated if we have a large control unit. In this organization, if the design has

to be modified or changed then it requires changes in the wiring among various components. Thus the modification of all the

combinational circuit may be very difficult. Advantages: It works fast because of the use of combinational circuits to generate

control signals. It can be optimized to operate in fast mode. It is faster than micro programmed control unit. Disadvantages:

Hardwired control unit is expensive. If the design has to be modified or changed then it demands changes in the wiring among

various components. The design becomes complex if the number of control points in the CPU is large. 4.6.3 Micro programmed

Control Unit A micro programmed control unit’s design is based on the concepts of microprogramming. Unlike the hardwired

CU where the control signals are generated via combinational circuits, here control signals are generated using a sequence of

microinstructions that specify the internal control signals for executing the micro operations. Fig 4.10 depicts the organization of

a micro programmed control unit.

107 | P a g e Fig 4.10 :Micro The micro programmed cont which are described below: Control Address R address of the micro

memory. It can also (). Control Data Reg specified in the CA microinstruction fetc also be termed as mi Control Memory:

programmed CU has memory to hold th programs that canno control memory ca changes in the micro is under operation. Next-

address gener micro operations g required to find the The next-address gen address of the next m why it can be termed

Advantages: The design of a m complex. It is cheaper as numb error prone to implem It can efficiently c floating-point arithme

icro programmed Control Unit d control unit comprises of four components, low: ess Register (CAR):The CAR specifies the

microinstruction that is read from the control n also be termed as the micro program counter a Register: Depending upon the

address he CAR the control data register holds the fetched from the control memory. It can as microinstruction register () ory: In

addition to the main memory, a miro U has a separate memory called the control old the microinstructions and fixed micro

cannot be changed by a general user. The ry can be read only memory (ROM) as micro programs are not required once the CU

tion. generator: After having executed all the ons generated by a microinstruction, it is nd the address of the next

microinstruction. ess generator is responsible for computing the next microinstruction to be executed. This is termed as micro

program sequencer. a micro programmed control unit is less s number of hardware units is lesser and less mplement. ntly

compute complex functions such as rithmetic etc. Space for learners:

108 | P a g e Space for learners: It offers more flexibility to modification or change; as the modification can be brought just by

changing the micro- program residing in the control memory to specify a different control sequence. Disadvantages: It is slower

than the hardwired control unit that means it requires more time to execute an instruction. In case of limited hardware resources

it costs more than the hardwired control unit. For smaller CPU, the design duration of micro programmed control unit is more

than the hardwired control unit. 4.7SUMMING UP In a digital computer, the elementary operations are also termed as micro

operations which are performed on the data stored on the processor registers. Check Your Progress 15. Control Memory is

associated with _____________. a) Hardwired CU b) Micro programmed CU c) Both a) & b) d) None of these 16.Which one is not

a function of a Control Unit? a) Control Signal b) Execution c) Sequencing d) Programming 17.Which one of the followings is also

known as Microprogram Counter? a) Address Register b) Program Counter (PC) c) Control Address Register d) Data Register (DR)

18. State TRUE or FALSE: a) Control Data Register is also known as Microinstruction Register (). b) Micro programmed CU is faster

than Hardwired CU. c) Control Signals are carried by Control Bus.

109 | P a g e Space for learners: The language used to specify the sequence of micro operations is known as Register Transfer

Language. Various types of micro operations are register transfer micro operations, arithmetic micro operations, logical micro

operations and shift micro operations. The data section of the CPU is data path. There are three types of Buses: address bus, data

bus, control bus. One-bus, two-bus and three-bus are the various types of data path organization. The arithmetic logic unit (ALU)

performs arithmetic, logical and bit-shifting operations using various circuits. Arithmetic circuit for various arithmetic operations

and logic circuit for logical operations. The shifting operation can be done with the help of Arithmetic Logic Shift Unit. Another

major part of the CPU which is the control unit (CU) responsible for generating control and timing signals to maintain the proper

sequence of micro operation executions. The CU can be differentiated based on its design approach as hardwired CU and mirco

programmed CU. 4.8 ANSWERS TO CHECK YOUR PROGRESS 1. (a), 2 (c), 3 (a), 4.a True, 4.b False, 4.c True, 5. Data path, 6. (b), 7.

(a), 8. False, 9.Arithmetic Logic Unit, 10. (b), 11. (a), 12. (c), 13. (c), 14.a False, 14.b True, 14.c True, 15. (b), 16. (d), 17. (c), 18.a True, 18.b

False, 18.c True. 4.9 POSSIBLE QUESTIONS Short answer type questions: What do you mean by RTL? Explain. What is control

function of an RTL? How memory transfers are represented by RTL? What is datapath? What are its types? What are the

operations performed by the ALU?

110 | P a g e Space for learners: How subtraction operation is performed by the arithmetic circuit? How overflow occurs in

arithmetic shift left operation? What operations can be performed by the logic circuit of the ALU? What are the functions

performed by the CU? What are various types of CU available? What are the components of a hardwired CU? What are the

components of a micro programmed CU? Long answer type questions: Explain the arithmetic circuit with its function table.

Explain the logic circuit with its function table. Explain the general model of the Control Unit? What are the various types of CU

available? What is hardwired CU? Discuss its advantages and disadvantages. What is micro programmed CU? Discuss its

advantages and disadvantages. List out various differences between Hardwired and micro programmed Control Unit. 4.10

REFERENCES AND SUGGESTED READINGS M. Morris Mano, Computer System Architecture, Pearson Education, Latest edition.

Express Learning Series- Computer Organization and Architecture, ITL Education Solutions Limited. ---×---

BLOCK II: MEMORY AND INPUT OUTPUT ORGANIZATIONS

111 | P a g e Space for learners: UNIT 1: MEMORY ORGANIZATION Unit Structure 1.1 Introduction 1.2 Unit Objectives 1.3 Memory

Operations 1.4 Memory Chip 1.5 Memory Locations and Addresses 1.5.1 Byte addressability 1.5.2 Big – Endian and Little – Endian

assignments 1.6 Memory hierarchy 1.7 Secondary memory 1.8 Main memory 1.8.1 RAM 1.8.1.1 SRAM 1.8.1.2 DRAM 1.8.2 ROM

1.8.2.1 PROM 1.8.2.2 EPROM 1.8.2.3 EEPROM 1.9 Cache memory 1.10 Virtual memory 1.11Classification of memory based on the

access method 1.11.1 Sequential access 1.11.2 Random access 1.11.3 Direct access 1.12 Memory management hardware 1.13.

Solved examples 1.14 Summing Up 1.15 Answers to Check Your Progress 1.16 Possible Questions 1.17 References and Suggested

Readings 1.1 INTRODUCTION A computer consists of three primary building blocks as input /output unit, control unit, and

memory unit. It is used as a storage device in a system to store programs or a set of instructions, data,

112 | P a g e Space for learners: and the intermediate results of arithmetical and logical computations. Depending on storing

strategy the memories are classified into two prime categories – main memory or primary memory and auxiliary or secondary

memory. Memory can be classified into different categories based on some key characteristics such as: a. Depending on location

memory are classify as CPU-based, internal memory, and external memory. b. Depending on media used for manufacturing

memory i.e. physical type memory is classified as semi-conductor based and magnetic surface-based. c. Depending on physical

characteristics volatile / non-volatile and erasable / non-erasable. d. Depending on the access method memories are classified as

sequential access, direct access, and random access memory. 1.2 UNIT OBJECTIVES After completing this unit, you will be able

to learn: • Learn about the functions of the memory unit. • Memory operations • Representation memory location in terms of

byte • Big-endian and little-endian assignment • Composition of a memory chip. • Learn about the memory hierarchy. • Learn

about the key factors that affect memory performance. • Know about the different types of RAM and ROM • Mapping of a

memory chip and required amount of memory.

113 | P a g e Space for learners: • Learn about the memory access methods. • Learn about the concepts of cache and virtual

memory. • Learn about the hardware used in memory management. • Concepts of secondary memory • Functions of MMU. 1.3

MEMORY OPERATIONS Computers memory is used to store both program instructions and data operands. To execute an

instruction the processor should load or transfer the instruction or set of instructions into the processor from the primary

memory. During the processing of instructions, the operands or the results are also transferred between the memory and the

CPU. Thus the basic operations involving in the memory can be classified into two categories such as Load or Read / Fetch and

store or Write. The READ operation transfers a copy of the contents from the memory location specified by the CPU. During the

transfer, the memory contents remain unchanged. The READ operation is initiated by the CPU sending a request to the memory

with a specific memory location in the address bus. The memory unit will read the contents from the specified address by the

CPU and send them to the processor by loading the data into the databus. The WRITE operation transfers data from the

processor to a specific memory location specified by the instruction. This operation will overwrite the contents in that memory

location. The processor sends the data along with the memory location where it has to be store or write. In a single operation,

one word or 1 byte of data can transfer between the memory and the processor.

114 | P a g e Space for learners: 1.4 MEMORY CHIP An integrated circuit (IC) consists of several capacitors and transistors with the

capacity of storing information can be defined as a memory chip. Memory chips can be used for process code also. Memory

chips can hold data either temporarily or permanently through RAM and ROM respectively. The size or shape and storage

capacity of the memory chip can vary. A RAM chip is used to communicate with the CPU through control lines. Through a

bidirectional data bus, RAM chips are allowed to communicate either from memory to CPU during a read operation or from CPU

to RAM during a write operation. Following figure Fig.1.1 shows a typical block diagram of a RAM chip. The chip capacity is 128

words of 8 bits per word. This 128 x 8 chip required a 7-bit address and an 8-bit bidirectional data bus. The signal RD and WR are

used to specify memory operations Read/Write respectively during communication. The chip select (CS) line is a control line

through which the microprocessor can select and enable a particular chip. The functions of a RAM chip can be depicted as

shown in Table 1. STOP TO CONSIDER The two main memory operations are READ and WRITE READ operation perform to fetch

data from memory to processor WRITE operation perform to store data from processor to memory

115 | P a g e Space for learners: The RAM chip is in operation only when the value of CS1 = 1 and 2 = 0. The barin 2 indicates that

the input is enabled for its complements i.e. for the value 0. If the select controls are not enabled or if it is enabled, but Read and

Write lines are not enabled, then the memory is inhibited and the data bus is in high impedance. The high impedance is a state

where it behaves like an open circuit i.e. the output does not carry any signal.It leads to very high resistance and hence no current

flows. When the CS1 = 1 and 2 = 0 the memory can be in reading or write mode. When the WR input line is enabled, then a byte

of information will be transferred from the data bus into the memory location specified by the address lines. When the read input

line is enabled, a byte of information from the memory specified by the address line is transferred into the data bus. The ROM

chip is also organized the same as that of the RAM chip. In the ROM chip there is no need for reading and write input control

because the unit can only read. Thus if the chip is selected the bytes as specified by the address line will be appeared in the data

bus. Table 1: Functions table for RAM Chip CS1 RD WR Memory function State of data bus 0 0 x x Inhibit High impedance 0 1 x x

Inhibit High impedance 1 0 0 0 Inhibit High impedance 1 0 0 1 Write Input data to RAM 1 0 1 x Read Output data from RAM 1 1 x x

Inhibit High impedance

116 | P a g e Space for learners: Generally, the size of RAM and ROM varies from machine to machine. If a system required more

memory storage than the capacity of a chip then many chips are required to get the necessary memory size. If the required size

of memory is M x N and the chip capacity is m x n then the required number of chips can be calculated as k = ∗
∗ 1.5 MEMORY LOCATIONS AND ADDRESSES Program instructions, operands, and results of arithmetical logical operations are

stored in computer memory. The computer memory is composed of millions of storage cells. Each storage cell can store STOP

TO CONSIDER Memory chips hold data temporarily or permanently through RAM and ROM. A RAM chip is used to communicate

with CPU through control lines Depending on the requirement of memory the number of memory chip may vary. CHECK YOUR

PROGRESS 1. A. Calculate the number of memory chips of capacity 128 x 8 RAM needed to provide a memory capacity of 2048

bytes? B. How many lines of the address bus must be used to access 2048 bytes of memory? How many of these will be

common to all chips? C. How many lines must be decoded for chip select? Specify the size of the decoder.

117 | P a g e Space for learners: one bit of information in the form of 0 or 1. To perform basic memory operations the cells are

grouped into a fixed number of cells. Each group with n-bit is referred to as a “word” of information and the “n” will be known as

“word length”. It can be depictedin figure 1.2. Now a day’s modern computers are typically ranging between 16 – 64 bits of word

length. A computer with 64 bit means that the address bus can carry an address of 64 bit for a specified memory location in

computer memory. The address of memory locations is represented by 64-bit numbers. A computer with 32 bit can represent 2

32 = 4294967296 Figure 1.2 Memory words

118 | P a g e Space for learners: Thus the addressing scheme of a system determined the maximum size of computer memory or

address space. For example, a system with a 16-bit computer i.e. with an addressing scheme of 16-bit addresses can address up

to 2 16 = 64 K number of memory locations. Similarly, a machine with 32-bit addresses can generate 2 32 = 4GB memory

locations. The memory location of a system determines the address space. Thus the addresses of each memory location are

represented with k bits and using k address bit, 2 k nos. of locations or addresses can be represented. The address bit and number

of locations is depictedin Table 2. Most computer systems are byte-addressable and memory is usually designed to store or

access data in word-length quantities. For a computer, the word length can be defined as the number of bits that store or are

retrieved in one access. The processor reads the memory data by loading the address of the required memory location into the

Memory Address Register (MAR). Similarly, during a write operation, the processor writes data into a memory location by loading

the address of that location into MAR. To perform the read/write operation on a set of consecutive memory locations in the main

memory, then a block transfer operation may perform by sending the first address of the memory locations. Table 2: Address bit

and number of locations K Number of Locations 10 2 10 = 1024 = 1 K 16 2 16 = 65,536 = 64 K 20 2 20 = 1,048,576 = 1 M 24 2 24

= 16,777,216 = 16 M

119 | P a g e Space for learners: 1.5.1 Byte addressability A nibble is always 4 bits and a byte is 8 bits. The word length of a

computer system can range between 16 – 64 bits. To assign an individual address for each of the bit locations in memory will

increase the complexity of memory organization. In modern practices, each successive address refers to successive byte

locations in memory. For a computer system with 32 bits, successive words will be located at addresses 0000, 0004, 0008,……….

with each word of four bytes. 1.5.2 Big – Endian and Little – Endian assignments To assign the addresses across the words, there

are two ways known as big-endian and little-endian assignments. The big-endian is used when the lower order byte addresses

are used for the more significant bytes (MSB) or the leftmost bytes as shown in Figure 1.3. The little-endian is used when the

lower order byte addresses are used for the less significant bytes (LSB) or rightmost bytes of the word as shown in Figure 1.3.

Commercial machines are used both ways of assignment. To specify the address ordering of bytes within a word it is mandatory

to specify the labelling of bits within a byte or a word as shown in Figure 1.4.

120 | P a g e Space for learners: Figure 1.4 labelling of bits within a byte or a word Figure 1.3 Big-endian and little-endian

assignment STOP TO CONSIDER The processor reads the memory data by loading the address of the required memory location

into the Memory Address Register (MAR). A computer with 64 bit means that the address bus can carry an address of 64 bit for a

specified memory location in computer memory. To assign the addresses across the words, there are two ways known as Big –

endian and little – endian assignments. In modern practices each successive addresses refers to successive byte locations in

memory. CHECK YOUR PROGRESS 1. An address space is specified by 24 bits and the corresponding memory space by 16 bits. a.

How many words are there in the word space? b. How many words are there in the memory space? 2. If a page consists of 2K

words, how many pages and blocks are there in the system?

121 | P a g e Space for learners: 1.6 MEMORY HIERARCHY Memory performance mainly depends on some key parameters – a.

Memory access time –It is defined as the total time requirement from submission of a request for the required piece of

information by the CPU for getting or availability of the information in the CPU. CPU registers are local memory for the CPU and

the access time is few nanoseconds. Cache memory takes small multiple access times of CPU registers. Cache memory is

portions of memory made up of very high- speed static RAM (SRAM). Primary memory access time is few tens of nano seconds.

For secondary memory, the access time is at least 10 msec. and it may measure in seconds if the data is to be fetched/write from

or to a drive. b. Storage capacity: The storage capacity of memory has a greater role in performance. As the capacity increase, the

access time of the memory is also increased. CPU registers are good for almost 128bytes. Cache memory can be range as for L1

cache – 8 KB to 64 KB, for L2 cache – 256 KB to 512 KB, and for L3 cache 8 MB to 32 MB. Primary memory storage capacity

ranges from 512 MB to 32 GB. The storage capacity of Secondary memory can vary from few gigabytes to terabytes or more than

that.

122 | P a g e Space for learners: The memory hierarchy shows the organization of different types of memories depending on their

performance. It can explain with a block diagram as shown in the following figure Fig.1.5. At the top of the memory hierarchy,

CPU registers are located which are compact and accessible at full CPU speed. The next high-speed and high-cost memory is

cache memory. CPU collects the required piece of information from cache memory. From the peak to the bottom of the

hierarchy diagram, memory access time and size of the memory are gradually increase and the costs of memory decrease. The

memory hierarch primarily depends on some key parameters such as access time and storage capacity of the memory. STOP TO

CONSIDER Depending on the key factors such as storage capacity, accessibility, average access time memory can be organized

in a pyramid structure known as memory hierarchy. Fastest and smallest memory lies on top or peak of the pyramid structure.

Slower and bigger storage capacity memories are lies in bottom side of the pyramid.

123 | P a g e Space for learners: 1.7 SECONDARY MEMORY Memory devices where data are kept permanently for a long time can

call secondary memory. Secondary memories are non-volatile i.e. can store data permanently during a power cut or off mode.

Some of the secondary memory devices are computer hard drive disk, pen drive, floppy disk, CD, etc. In comparison to the main

memory size of the secondary or auxiliary memory is very large. The memory access rate of auxiliary memory is comparatively

very less than main memory. Hence the cost is also relatively inexpensive. Thus we can say that cost is directly proportional to the

storage capacity of the memory. 1.8 MAIN MEMORY The CPU directly communicated with a memory unit known as the main

memory. The storage capacity of this type of memory is very large in comparison to cache memory and very small in comparison

to secondary memory. The main memory can be classified into two different categories such as RAM and ROM. 1.8.1 Random

Access Memory (RAM) RAM can be defined as a read/write memory. Users can read the memory contents from RAM and also

can write into RAM. It is volatile, i.e. it loses all the data when the power goes down. As the power supply goes down the memory

contents or stored information in RAM are lost. In RAM any memory location can be accessed randomly without going through

any other memory location. The access time for each location is the same. RAM can be classified

124 | P a g e Space for learners: into two categories as static or SRAM and Dynamic memory or DRAM. 1.8.1.1 Static RAM (SRAM):

SRAM consists of CMOS technology and uses transistors. For storing binary data it is used two cross-coupled inverters which is

similar to flip-flops along with two other transistors for access control. The binary information exits in SRAM as long as the power

supply is on. Figure 1.6illustrates how an SRAM cell is implemented. Two inverters are cross-coupled to form a latch.

55% MATCHING BLOCK 25/91

Two transistors T1 and T2 are used to connect the latch with the two-bit lines. Using the word

line the transistors can be open or closed. When the word line is at ground level, the transistors are turned off and the latch

retains its state. To read the state of the SRAM cell, the word line is activated to close the switches T1 and T2.The signal on bit line

b will be high and b / will be low for cell state 1. Similarly, for cell state 0, the signal on bit line b is low and the signal in b / is high.

Thus b and b / are complements of each other. The state of the cell is set by activating the word line and putting the appropriate

value for the bit line b and its complement b / . Required signals on the bit line are generated by the sense/write circuit.

125 | P a g e Space for learners: Figure 1.6 a static RAM cell 1.8.1.2 Dynamic RAM (DRAM): DRAM is constructed using capacitors

and few transistors. The term dynamic in DRAM indicates that the charges are continuously discharging even in presence of an

uninterrupted power supply and hence the capacitors must refresh periodically through refreshing the DRAM. DRAM is available

in the market as it is less expensive. SRAM is an on-chip memory with very little access time whereas DRAM is off-chip memory

with a large access time in comparison to SRAM. So SRAM is faster than DRAM. The storage capacity of SRAM is less than DRAM.

Cache memories are comprised of SRAM whereas the main memory is comprised of DRAM. Power consumption in DRAM is

more in comparison to SRAM. STOP TO CONSIDER Memory can be volatile or non-volatile in nature. RAM is volatile and ROM is

non-volatile memory. SRAM and DRAM are the two categories of random access memory (RAM).

126 | P a g e Space for learners: 1.8.2 Read Only Memory (ROM) ROM is a non-volatile memory, i.e. contents of this type of

memory remain the same or permanently in the memory and not erased due to power cut. Contents of ROM can be read or

access during operation and nothing can be writing into it by the user or programmer. The manufacturing company decides and

writes permanently into the ROM during manufacture. Different types of ROMs are PROM, EPROM, and EEPROM. Programs or

sets of instructions that are required for starting a computer i.e. bootstrap programs are stores in ROM. ROM is used in some

electronic gadgets such as fridges, refrigerators, washing machines, microwaves, etc. 1.8.2.1 Programmable read-only memory

(PROM) PROM was first developed in 1956 by Wen Tsing Chow. It is a memory chip that can be programmed once after is

created. Once the memory chip is programmed, the information written on it becomes permanent and cannot be erased or

deleted. PROM was used in computer BIOS in early day’s computers and now it is replaced by EEPROM. 1.8.2.2Erasable

Programmable Read-Only Memory (EPROM) EPROM is a memory chip that can store data even after a power cut also. Data from

EPROM can be erased using ultraviolet light and makes it re-writable or programmable. It was first developed by Dov Frohman in

1971 at Intel. The contents of EPROM can be erased limitedly. Too much deletion can make the memory unit unreliable by

destroying the silicon dioxide layer. It is not possible to erase the

127 | P a g e Space for learners: EPROM contents partially. The whole data from EPROM is erased. For erasing and

reprogramming the EPROM, the chip has to remove from the computer system and it consumes lots of time to erase data. The

process of programming on EPROM is known as Burning and it is not a reversible process. It was developed to overcome the

drawbacks of ROM and PROM. EPROM is successfully used in some microcontrollers such as Intel 8048, bootstrap loader, video-

game, personal computers, etc. 1.8.2.3Electrically Erasable Programmable Read-Only Memory (EEPROM) It is a memory chip that

can be erased by exposing electrical charge. Like other ROM, EEPROM retains its stored data even power is turned off. In the year

1978, George Perlegos developed the concept of EEPROM at INTEL. To erase the contents of EEPROM consumes approximately

5 milliseconds. In EEPROM erasing and reprogramming can be done without switching off the electrical circuit of the system. 1.9

CACHE MEMORY The processing speed of the CPU in comparison to the access time of primary memory is very high. Due to this

bottlenecking CPU cannot be utilized at its utmost level and remains idle. To remove this barrier a smaller memory is used in the

system such that the average access time got increases and makes the computer memory more efficient. This chip-based

smaller and faster memory is known as cache memory. It is a temporary storage area from which the CPU can retrieve data easily

during processing. Sometimes it is

128 | P a g e Space for learners: called the CPU Memory as it is typically integrated directly with the CPU chip or placed on a

separate chip that has a direct connection with the CPU through a separate bus. As the cache memory is smaller in size and

faster access time in comparison to primary memory, it increases the average access time and efficiency of the processor. The

access time of cache memory is 10 to 100 times faster than the primary memory of a system. Cache consumes only a few

nanoseconds to respondto a CPU request. Cache memory built with high-speed SRAM. It can be categorized into three different

levels such as L1, L2, and L3 cache. L1 cache is extremely fast and usually embedded in the processor chip. L2 or secondary

cache can be implanted on the CPU with a system bus. L3 cache is used to increase the performance of L1 and L2. The speed of

L3 is comparatively slower than L1 and L2 but two times faster than DRAM. 1.10 VIRTUAL MEMORY A computer has a limited

amount of memory space in primary memory or RAM. During programming, a user or developer has to concern about the

limited amount of free memory address in RAM which increases the complexity of programming. To overcome this difficulty a

technique called virtual memory has arisen. Virtual memory allows using more addresses than that the amount physically exists in

the system. The main advantage of this memory is that the program may be larger than the size of the primary memory that

physically exists. Using the concept of virtual memory the logical and the physical memory can be separated. This separation

allows using of a large virtual memory for the developers over the actual physical memory in the system. It gives an illusion to

129 | P a g e Space for learners: the programmer that large memory locations are available at their end even though the system

has a smaller main memory. The address generated by the user program is called a virtual address. A set of virtual addresses

makes the virtual address space. The set of main memory addresses or locations are called memory space or physical address

space. Usually, the virtual address space is larger than the physical address space. To map between virtual addresses with physical

addresses, memory mapping techniques are used by the memory controller of the system. Consider a computer system with

RAM of a storage capacity of 32K words. To specify a location in RAM with 32K physical address space (32K = 2 15) 15 bit is

required. Consider that the system has 2 20 = 1024K storage capacity auxiliary memory. Assume the memory space is M and the

P is the address space. Hence M=32K and P=1024K. Thus the address bit of the instruction code will have 20bits whereas the

memory address must be specified by 15bit only. CPU will ask for reference instructions with the address of 20bit, but at this

point, the reference address must be taken from the primary memory of the address with 15 bit rather than auxiliary memory.

Thus there is a requirement of mapping of virtual addresses of 20 bit to physical 15 bit. STOP TO CONSIDER Cache memory is

typically integrated into CPU chip or placed on a separate chip that has direct connection with the CPU through a separate bus.

To specify a location in RAM with 32K physical address space (32K = 2 15) 15 bit is required. Speed of CPU is very high then the

average access rate of primary memory. Cache is used to remove this bottleneck between CPU and RAM. This bottlenecking

problem can decrease the performance of the computer system.

130 | P a g e Space for learners: 1.11CLASSIFICATION OF MEMORY BASED ON THE ACCESS METHOD There are three types of

memory access methods as Sequential access, Random access, and direct access. 1.11.1 Sequential access: In this system, the

stored data are accessed in afixed ordered manner i.e. in a specific linear specific manner. Here the access time depends on the

location where the data exist. To go from memory location 1001 to 1010 in sequential access, it has to pass through all

intervening memory locations. No one can jump from 1001 to 1010 directly as shown in figure 1.7. Examples of sequential media

access memory devices are magnetic tape, magnetic disk, optical memories, DVDs, CDs, hard drives, etc. Figure 1.7 Sequential

and random access method

131 | P a g e Space for learners: 1.11.2 Random access: It refers to access data randomly from the storage device. In the random

access method, one can jump from memory location 1001 to 1010 directly without passing through all the intervening locations

i.e. 1002, 1003,…. etc. Examples of random access memory devices are disk, RAM, ROM. 1.11.3 Direct access: In this method, a

unique address has been assigned for each block or record based on physical location. It can be seen as a hybrid of random and

sequential access methods. The direct access method is used in magnetic hard disks as it contains a huge number of rotating

storage tracks. Each track is associated with its own read/write head. Magnetic tracks are accessed randomly, but within the track,

the data are accessed sequentially. Magnetic hard disk is a good example of using a direct access method for accessing memory

contents. STOP TO CONSIDER Data stored in memory can be access three different ways. Sequential access READ or Write data

sequentially where as in Random access READ or WRITE operation are performed randomly on memory locations. Magnetic hard

disk is good example of using direct access method for accessing memory contents.

132 | P a g e Space for learners: 1.12 MEMORY MANAGEMENT HARDWARE To manage the operations performed by memory

dedicated hardware is placed in between the processor and main memory called Memory Management Unit (MMU). If the

processor does not have an on-chip MMU, then use an external MMU. The operations done by MMU are performed by the

operating system. But to reduce the load on the operating system MMU is used. The logical address can be defined as the

memory address which is being used by a program. A logical address represents or specifies the location of an instruction or data

in a program relative to the starting address of the program. During the compilation of a program statement, the logical

addresses are represented by a memory pointer consisting of two parts namely segment selector and offset. For a page-oriented

system, the memory pointer has a page address and page offset. The physical address will be represented in terms of page

number and page offset. The virtual memory concept is also performed by the MMU to provide a very large memory space to

users. The concept of virtual memory allows the users to use more memory than that a system has in reality. A computer

processor can access the data from the main memory during the execution of an instruction. For the execution of a program

statement, it has to store or load into the main memory. The MMU allows users to store the program instructions into the

secondary memory and it transfers a block of instructions to the main memory which is currently required by the processor.

Similarly, the parts of the program statements are sending back to the secondary memories which are not being used by the

processor currently. This to and fro data transferring process between main memory and secondary memory is known as

swapping.

133 | P a g e Space for learners: When a request for data or instruction sends by the processor to the MMU by specifying a logical

address, the MMU checks the segment containing that logical address in the main memory. If it is available in the physical

memory then the MMU calculates the physical address corresponding to the logical address specified by the processor. If the

required segment is not available in the physical memory then MMU interrupts the CPU. On receiving an interrupt signal from the

MMU, the CPU access or read the desired segment from the secondary memory. 1.13 SOLVED EXAMPLES 1. 16K x 8 RAM chips

are used to construct 64K x 16 RAM. Calculate the required number of chips for construction. Solution: Number of chips required

= ∗ ∗ = 8 chips 2. 1K x 4 RAM chips are used to construct 1K x 8 RAM. Calculate the required number of chips for construction.

Solution: Number of chips required = ∗ ∗ = 2 chips 3. Direct Mapping Question: Assume a computer has 32-bit addresses. Each

block stores 16 words. A direct-mapped cache has 256 blocks. In which block (line) of the cache would we look for each of the

following addresses? Addresses are given in hexadecimal for convenience. a. 1A2BC012 b. FFFF00FF c. 12345678 d. C109D532

Solution: Of the 32-bit address, the last four bits denote the word on the line. Since four bits are used for one hex digit, the

134 | P a g e Space for learners: last digit of the address is the word on the line. With 256 blocks in the cache, we need 8 bits to

denote the block number. This would be the third to last and second to last hex digit. a. this would be blocking 01, which is block

1 b. this would be 0F which is block 15 c. this would be 67 which is block 103 (remember, 67 is a hex value) d. this would be 53

which is block 83. CHECK YOUR PROGRESS: 1. Choose the correct options from the following: (Multiple choice questions) i.

What is true about the memory unit? A. Memory is the collection of storage units or devices together. B. The memory unit stores

the binary information in the form of bits. C. Both A and B D. None of the above ii. When the power of a computer system shuts

down, then which type of memory loses its data? A. Non-volatile memory B. Volatile memory C. Both A and B D. None of the

above iii. The fastest data access is provided using______________ A. Cache memory B. DRAM C. SRAM D. Registers iv. The

minimum time delay between two successive memory read operations is_________. A. Cycle time B. Latency C. Delay D. None

of the above

135 | P a g e Space for learners: v. The effectiveness of the cache memory is based on the property of____________. A. Locality

of reference B. Memory localization C. Memory size D. None of the above vi. The drawback of building a large memory with

DRAM is A. Large cost factor B. Inefficient memory organization C. Slow speed of operation D. All of the above vii. The memory

which is used to store the copy of data or instructions stored in larger memories, inside the CPU is called ____________. A. L1

cache B. L2 cache C. Registers D. TLB viii. Four memory chips of 16 x 4 sizes have their address bases connected. The system will

be of size A. 64 x 64 B. 16 x 16 C. 32 x 16 D. 256 x 1 ix. In a virtual memory system, the address space specified by the address

lines of the CPU must be ____________ than the physical memory size and __________ then the secondary storage size. A.

Smaller, smaller B. Smaller, larger C. Larger, smaller D. Larger, larger x. For the synchronisation of the read head we make use of a

____________. A. Framing bit B. Synchronization bit C. Clock D. Dirty bit xi. The BOOT sector files of the system are stored in

__________. A. RAM

136 | P a g e Space for learners: B. ROM C. Hard disk D. Fast solid-state chip in the motherboard. xii. The technique where the

controller is given complete access to the main memory is A. Cycle stealing B. Memory stealing C. Memory con D. Burst mode

xiii. How many address bits are required to represent a 32K memory? A. 10bits B. 12 bits C. 14 bits D. 16 bits xiv. Which of the

following memories stores the most number of bits? A. 64 K x 8 memory B. 1 M x 8 memory C. 32 M x 8 memory D. 64 x 6

memory xv. In a virtual memory system, the addresses used by the programmer belongs to A. Memory space B. Physical address

C. Address space D. Main memory address 1.14 SUMMING UP 1. The memory unit is a key part of a computer system. 2.

Computer memory can be divided into two categories namely primary and secondary memory. 3. The central processing unit of

a system directly communicates with the primary memory. 4. The processor can access the secondary memory through primary

memory.

137 | P a g e Space for learners: 5. Primary memory can be categorized as RAM and ROM. 6. To increase the throughput of a

system cache memory is used in between the primary memory and CPU. 7. Different types of ROMS are available such as ROM,

PROM, EPROM, and EEPROM. 8. If the required chip size is M x N and if the chip capacity is m x n, then the number of the

required chip is k = ∗ ∗ 9. A set of physical addresses is known as memory space. 10. The address space can be divided into

groups of equal size known as a page. 11. The memory space is broken into groups of equal size called blocks. 12. A computer

processing speed can represent using the address bit. 13. Big-endian and Little-endian assignments are used in byte addressing.

14. MMU is used to control the communication between the CPU and memory. 15. The concept of virtual memory allows users

to use memory space during programming which does not exist physically. 16. Lower order bytes are used to represent MSB in

big-endian assignments. 17. Lower order bytes are used to represent LSB in little-endian assignments. 18. In modern practices,

each successive address refers to successive byte locations in memory 19. Cache memory can be categorized into three different

levels such as L1, L2, and L3 cache. 20. SRAM is an on-chip memory with very little access time whereas DRAM is off-chip

memory with a large access time in comparison to SRAM.

138 | P a g e Space for learners: 1.15 ANSWERS TO CHECK YOUR PROGRESS Answers to question no. 1: i. C ii. B iii. D iv. A v. A vi.

C vii. A viii. B ix. C x. C xi.B xii.D xiii.D xiv.C xv. C 1.16 POSSIBLE QUESTIONS 1) How many 128 x 8 RAM chips are needed to

provide a memory capacity of 2048 bytes? 2) How many 128 x 8 RAM chips are needed to provide a memory capacity of 4096 x

16? 3) What is the bit storage capacity of a ROM with a 1024 x 8 organization? 4) Find the total number of cells in a 64k x 8

memory chip. 5) What is virtual memory? 6) Differentiate between ROM and EEPROM. 7) What are the key factors for memory

efficiency? 8) What is memory access time? 9) What is clock cycle and CPU burst time? 10) Differentiate between sequential and

random access? 11) What are SRAM and DRAM? 12) What is a memory chip? How the number of chips is calculated for the

required number of memory? 13) What is memory hierarchy? 14) Why DRAM is slower than SRAM? 15) What is cache memory?

16) Explain the memory hierarchy with a block diagram. 17) What are the classifications of memory depending on access method,

Explain?

139 | P a g e Space for learners: 18) Explain the organization of a RAM chip. 19) What are the different types of ROM? Explain the

differences between them. 20) Explain some data structures which are using sequential access and random access. 21) How

direct memory is different from random access memory? 22) Discuss static and dynamic RAM. 23) Explain the functions of the

memory management unit (MMU) of a computer system. 1.17 REFERENCES AND SUGGESTED READINGS • William Stallings,

Computer Organization and Architecture Designing for Performance, Pearson Education India. • Carl Hamacher, ZvonkoVranesic,

SafwatZaky, Computer Organization, McGraw Hill Education. • M. Morris Mano, Computer System Architecture, Pearson

Education India. ---×---

140 | P a g e Space for learners: UNIT 2 : CACHE MEMORY Unit Structure: 2.1 Introduction 2.2 Unit Objectives 2.3 Basic

operations 2.4 Performance 2.5 Mapping process 2.5.1 Associative mapping 2.5.2 Direct mapping 2.5.3 Set associative mapping

2.6 Cache replacement policies 2.6.1 Least recently used (LRU) algorithm 2.6.2 Least frequently used (LFU) algorithm 2.6.3 First in

first out (FIFO) algorithm 2.6.4 Segmented LRU (SLRU) algorithm 2.6.5 Optimal block replacement 2.6.6 Random replacement

(RR) algorithm 2.6.7 Pseudo – least recently used (PLRU) algorithm 2.6.8 Lowest latency first (LLF) 2.7 Cache optimization

technique 2.8 Write Policies 2.8.1 Write through 2.8.2 Write back 2.8.3 Dirty bit 2.8.4 Write allocation 2.8.5 Write around 2.9 Cache

coherence 2.9.1 sharing of variable data 2.9.2 process migration 2.9.3 I / O activity 2.10 Coherency mechanism 2.10.1 Directory-

based 2.10.2 Snooping 2.10.3 Snarfing 2.11 Summing Up 2.12 Answers to Check Your Progress 2.13 Possible Questions 2.14

References and Suggested Readings

141 | P a g e Space for learners: 2.1 INTRODUCTION To compensate for the speed of primary memory access time and CPU, a

high speed memory is used called cache memory. Cache memory increases the processing speed of the CPU by making the

required data available to it. Thus the cache memory has a great role in increasing the throughput of a system. It is placed in

between the processor and main memory. The memory access time of cache memory is very high in comparison to main

memory and compatible with the speed of the processor. The cache is used to store the program segment currently executed by

the CPU and the data used by the CPU frequently. Since the memory space of the cache is much smaller than the main memory,

mapping is required to identify the location in the main memory as specified by the CPU. Using cache replacements algorithms

the contents of the cache can be changed by new program segments as required by the processor. 2.2 UNIT OBJECTIVES The

primary objectives of the chapter are • to know about cache memory and its use • to understand how to measure the

performance of cache memory • to explore what are the operations of cache memory? • to learn about the mapping process of

cache memory. • to find the different mapping processes • to visualize cache replacement policies. • to understand the cache

optimization techniques. • to know how to write into the cache. • to discuss the different levels of cache memory. • to learn

about cache coherency

142 | P a g e Space for learners: 2.3 BASIC OPERATIONS When the processor needs a particular data during its execution, at first it

searches the data in cache memory. If it is found then the content is extracted from the memory location of cache as specified

by the processor. If the word addressed by the CPU is not available in the cache memory, the main memory is accessed to read

the word. The program segment or a block of the word containing the desired one will be transferred from the main memory to

the cache memory. In multilevel cache, it can be categorized into two; internal cache, typically located inside the CPU chip and

external cache, normally placed in the system board. Internal caches are known as primary or L1 cache and the range may have

within 1– 32 KB. External caches are known as secondary or L2 cache and the range may vary between the range 64 KB – 1 MB.

Figure 2.1 Cache memory

143 | P a g e Space for learners: 2.4 PERFORMANCE The performance of cache memory can determine by the ratio of finding the

required data by the processor. If the required data is available in cache memory then it can be defined as a HIT, if it is not

available in the cache then it is called a MISS. Three different types of cache miss may exist namely – compulsory miss, conflict

miss and capacity miss. Compulsory miss may occur when a memory location is accessed for the first time. Conflict miss can

occur due to insufficient space when two blocks are mapped on the same location. Capacity miss may take place due to smaller

space in cache memory. The time taken to check the presence of data in the cache is called hit latency. For every hit, the CPU

accesses the data from the cache directly but for a miss, the CPU has to wait for responding from the main memory. The block of

data will be transferred from the main memory to cache memory and then the required word will transfer from the cache to the

CPU. The ratio between the hit and the total number of references by the CPU (the summation of hit and miss) can be defined as

the hit ratio. The hit ratio “h” always lies between the range 0 and 1. Let us consider that the STOP TO CONSIDER • In multilevel

cache, it can be categorized into two; internal cache, typically located inside the CPU chip and external cache, normally placed in

the system board. • Internal caches are known as primary or L1 cache and the range may have within 1kb – 32kb. • External

caches are known as secondary or L2 cache and the range may vary between the range 64kb – 1mb.

144 | P a g e Space for learners: h is the hit ratio,t m is

62% MATCHING BLOCK 26/91

the memory access time, t c is the cache access time ̅ is the average access time.

Then the average access time ̅ can be calculated by the relation: ̅ = ht c + (1 – h) (t c +t m) …………………………….. (1) The relation (1)

is derived using the fact that for a cache hit, the main memory will not access by the processor. For a miss, both the cache and

main memory will be accessed by the CPU. Consider that the ratio between cache and main memory access time is t m t c γ =

then the efficiency (Λ) of a system using cache memory can be derived as: () ()() () () () () c c c c m c m c c t t t ht h t t t t t h h

t h h h h h h γ γ γ Λ = = + − + = ? ? ? ? + − + ? ? ? ? ? ? ? ? = + − + = + − + − = + − 1 1 1 1 1 1 1 1 1 1 1 1 For the value of h = 1, the

efficiency Λ = 1, i.e. efficiency will be maximum for h = 1 or all the CPU references are confined to the cache.

145 | P a g e Space for learners: Example 2.1: Calculate average access time (t), the ratio between main memory access time and

cache access time (γ),and efficiency (Λ) of a memory system whose parameters are indicated as: c t =150 ns, m t =950 ns, and

h=0.90. Solution: Since the average access time c c m t=ht +(1-h)(t +t) =0.90*150+(1-0.90)(150+950) =135+0.1(1100) =245ns

And since the . m c t t γ = = = 950 6 33 150 And efficiency ()h γ Λ = + − 1 1 1 . . (.) . . = = = = + − + + 1 1 1 0 612 1 6 33 1 0 9 1 0

633 1 0 633 Example 2.2: The access time of cache memory is 50 ns. And the access time for the main memory is 500 ns. It is

estimated that 80% of the main memory requests are for reading operation and the remaining are for the write operation. The hit

ratio for reading operation is 0.09 and a write-through policy is used. STOP TO CONSIDER • An INTEL motherboard of 100MHz

consume 180ns to retrieve information from main memory, whereas 45ns from the cache memory. • Static RAM (SRAM) is

typically used to build cache memory. • Systems with Multi-core CPUs are generally used a separate L1 and L2 cache for each

core and L3 is shared by each core.

146 | P a g e Space for learners: a. Compute the average access time for the memory read cycles only? b. Calculate the average

access time for both read and write requests? c. What is the hit ratio regarding the write cycle? Solution: a. Since the average

access time c c m t=ht +(1-h)(t +t) =0.90*50+(1-0.90)(50+500) =45+55 =100ns b. For both read and write cycle Average access

time = P r * average access time for read + (1 - P r) * t m = 0.8 * 100 + 0.2 * 500 = 80 + 100 = 180 ns. c. Hit ratio when write

cycle is also considered is h = P r * h r + (1 - P r) * h w [h w is the hit ratio for write cycle] = 0.8 * 0.9 + 0.2 * 0 = 0.72 2.5 MAPPING

PROCESS There are three different types of mapping techniques in cache organization such as a. Associative mapping b. Direct

mapping c. Set – associative mapping

147 | P a g e 2.5.1 Associative mapping In the case of the associative memory contents is associa execution of a program stat

referring to or specifying any are searched by matching wi the cache memory contains address of the correspondin address bit

sent by the CPU for searching the required data in the cache memory is matched with the stored addresses in the cache. If any

address is matched, the corresponding word ping ciative mapping procedure, each of the cache associated with an address. But

during the m statement, the data is not read or fetch by ng any memory address. Instead of it, the data ing with the contents. In

associative mapping, ntains the data along with the main memory ponding data as shown in Figure 2.2. The Space for learners:

148 | P a g e Space for learners: from that memory location will be fetched by the CPU. For a miss or if no match is found for the

required word, then it will be searched in the main memory. Then the word from the main memory along with the address will be

transferred into the cache memory. If the cache is full, using any replacement technique must make room for the new word.

Associative mapping is a very fast access method. But the manufacturing difficulties and cost are more in comparison to other

mapping methods. 2.5.2 Direct mapping Consider a computer system with the main memory storage capacity is 4K, i.e. 4 x 1024

= 2 12 bytes. Then the required number of bits to address the main memory location will be 12. Consider a cache memory of 1K

= 2 10 bytes, i.e. 10 bits are required to address a cache memory location. Thus the main memory required a 12- bit address line

whereas the cache memory required only 10 bits of the address. In the direct mapping method, the address sent by the CPU is

divided into two parts namely tag field and index field. The index field contains an equal number of bits that are required to

address a word in cache Figure 2.3 Block diagram showing direct mapping

149 | P a g e Space for learners: memory. The remaining bits are used in the tag field. If a system contains the main memory of

capacity 2 m and cache of capacity 2 n , then the bits in the index field will be n bits and in the tag field is an (m-n) bit. In the

example cited above, the index field and the tag field are consist of 10 bits and 2 bits respectively. In direct mapping, the cache

memory stores the data as well as the tag field as shown in Figure 2.3. In the cache, the words are stored in a memory location as

the index field defined. When an address is requested by the CPU, the index part of the address is used to get the location in the

cache memory. If the tag of the cache is matched with the tag of the requested address, the word will be fetched by the CPU.

Else there will be a miss and the data will be searched in the main memory. For a miss, the block of data from the main memory

has to be transferred into the cache memory by dividing the main memory address into index and tag fields. The main

disadvantage of direct mapping is that, if the index field is the same for more than one word in cache memory with a different tag

value, the hit ratio may drop considerably. CHECK YOUR PROGRESS Question: A digital computer has a memory unit of 64k x 16

and a cache memory of 1K words. The cache uses direct mapping with a block size of four words. A. how many tags are there in

the tag, index, block and words fields of the address format. B. how many bits are there in each word of cache, and how are they

divided into functions? Include a valid bit. C. How many blocks can the cache accommodate?

150 | P a g e Space for learners: 2.5.3 Set associative mapping In direct mapping, two words or data of a similar index field cannot

be store at the same time. To overcome this drawback of direct mapping, the third method of mapping is used which is known as

set-associative mapping. In this method, cache memories are allowed to store more than one word with a similar index in the

same word location along with a different tag. The number of tags– data pair in the one-word location of the cache is said to be

as a set. An example of set-associative mapping has been depicted in Figure 2.4. As shown in the figure, the word stored in the

memory addresses 001010011001 and 011010011001 of main memory is stored in cache memory at index address 1010011001.

Similarly, the word stored at address 101010000111and 111010000111 of main memory is stored in cache memory index address

1010000111. Figure 2.5 Block diagram of set associative mapping STOP TO CONSIDER • If a system contains main memory of

capacity 2 m and cache of capacity 2 n , then the bits in index field will be n bits and in tag field is an (m-n) bit. • In direct mapping

when an address is request by the CPU, the index part of the address are used to get the location in the cache memory.

151 | P a g e Space for learners: 2.6 CACHE REPLACEMENT POLICIES When the cache memory of a system is full, then cache

replacement policies are used to make a decision about which page or data has to be replaced from the cache to make room for

new data. The main problem in cache is that how to identify the page or data to be removed from cache memory. Lots of

algorithms for cache replacement are being developed. The efficiency of those algorithms depends on the factors such as time,

number of misses and balancing cost, etc. An efficient algorithm takes less time, lower number of miss rate and balancing cost.

Some of the cache replacement algorithms are discussed as follows. 2.6.1 Least recently used (LRU) algorithm This algorithm

discards the least recently used data from the cache to make space for new data. A variable known as the aging bit is used to

keep the record of all data items such as which data is used when or kept at what time in the cache. It is one of the most popular

algorithms among all others as it provides better performance. The implementation policy of the LRU algorithm is also very

simple and time and space overhead are constant. CHECK YOUR PROGRESS Question: A block set associative cache consists of

a total of 64 blocks divided into 4 blocks sets. The main memory contains 4096 blocks each consisting of 128 words. 1. How

many bits are there in main memory address? 2. How many bits are there in each of the TAG, SET and WORD fields?

152 | P a g e Space for learners: Example 2.3: Let us consider a set of data items 7 0 1 2 0 3 0 4 2 3 0 3 2, which have to load into

the cache memory of size 4 word. How many misses will occur if the LRU technique is being used as a cache replacement

policy? Solution: Initially the cache was empty, so for the first four data items namely 7, 0, 1, and 2, there will be 4MISS as shown

in figure 2.6. For the 5 th element 0, does already exist in the cache so 0 MISS. For the 6 th element 3, which does not exist in the

cache, it will replace the least recently used 7 from the cache – 1 MISS For the 7 th element 0, does already exist in the cache so

0 MISS. For the 8 th element 4, which does not exist in the cache, it will replace the least recently used 1 from the cache – 1 MISS

For further referencing all the data exist in the cache, so no more replacement is required for any one of them. The total number

of MISS is 6 and the number of hits is 7. 2.6.2 Least frequently used (LFU) algorithm The LFU counts the number of uses of a

particular data item or it counts how frequently the data item has been used. The data which Figure 2.6 Example of Cache least

recently used replacements

153 | P a g e Space for learners: is used very few will be identified and removed from the cache first. If all the data items in the

cache have the same count then randomly any one of the items has been chosen and deleted. The min-heap data structure is a

suitable one to implement this algorithm. 2.6.3 First in first out (FIFO) algorithm FIFO algorithm removes the data which has been

come first into the cache and has not been used for a long time. It is the simplest algorithm to implement. Here the system keeps

track of all the blocks or words in memory in a queue. The oldest page is in the front of the queue. When a replacement is

required, the data from the front of the queue will be selected for removal. Belady’s anomaly – proves that it is possible to have

more MISS for an increasing number of frames while using the FIFO replacement algorithm. For example consider a set of data

items such as 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4, and 3 and 3 slots frame. The number of a miss for 3 slots frame will be 9, whereas the

MISS is 10 for 4 numbers of slots in a frame. Example 2.4: Let us consider a block referencing strings 1, 3, 0, 3, 5, 6, 3 with 4 block

frames. Find the number of misses. Solution: Initially the frame is empty, so for the first three elements 1, 3, and 0, there will be

three miss consecutively. Further referencing has been shown in the following figure 2.7. Figure 2.7 Example of FIFO replacement

algorithms

154 | P a g e Space for learners: A third iteration when 3 comes, is already in the queue, so one hit occurred. Again at the 7 th

iteration when 3 come, one hit occurred. At steps 5 th when 6 come, the data do not exist in the queue. The element entered

first into the queue i.e. 1 will be replaced by 6 as shown in figure 2.7. 2.6.4 Segmented LRU (SLRU) algorithm SLRU algorithm

divided the cache memory into two parts as protected and unprotected. The protected part is reserved for the most used

objects. One the first request for an object is done by the CPU; it has been transferred into the unprotected section.The least

recently used technique is used to manage both the portion. A count variable 2.6.5 Optimal block replacement In this method

that block will be replaced from the cache which would not be used for a longer period in the future. Optimal page replacement

is theoretically perfect, but the operating systems could not know or guess the future request. Example 2.5 Consider a set of

cache block references as 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 slots frame. Find the number of MISS that occurred during

cache access. Solution:Initially there will be four miss for the first four data items 7, 0, 1, and 2 as the slots were empty. 0 is already

exit, 0 – MISS or HIT,

155 | P a g e Space for learners: When 3 came, the algorithms identified 7 as the not-used item for the longest period in the future

and replace it by 3. – 1 MISS. 0 is already exit, 0 – MISS, When 4 came, the algorithms identified 1 as the not-used item for the

longest period in the future and replace it by 4. – 1 MISS. Thus there will be 6 misses. 2.6.6 Random replacement (RR) algorithm

The RR algorithm randomly selects any of the data items from the cache memory and replaces it with the required one. It never

keeps track of the history of removable data items and does not follow any data structure. 2.6.7 Pseudo – least recently used

(PLRU) algorithm It is one of the most popular and common block replacement policies for the current generation’s cache

memory. It is widely used by the industry and a common policy for AMD and INTEL products. It uses the data structure binary

tree for saving the status of cache memory and hence it is also known as Tree – LRU. The tree structure is used to identify the

block position which is to be replaced in case of a miss. Figure 2.8 Example of Cache optimal block replacements

156 | P a g e Space for learners: 2.6.8 Lowest latency first (LLF) LLF algorithm keeps the average and minimum latency by

removing the objects with the lowest latency. It shows the best performance during the execution of database queries in the

relational database. All the algorithms discussed above can be classified into several classes such as – a. Recency-based

algorithms, b. Frequency-based algorithms c. Function-based algorithms d. Randomized algorithm 2.7 CACHE OPTIMIZATION

TECHNIQUE Cache optimization can be achieved by reducing the miss penalty, miss rate, and hit time and increasing the cache

bandwidth. These can be obtained using different optimization techniques. To decrease the gap between CPU cycle and memory

latency, a multilevel cache can be used. Generally, the cache memory can be categorized into three levels such as L1, L2, and L3

cache. L1 is comparatively the smallest and fastest cache memory in comparison to L2 and L3 levels. It is located within the CPU

itself and hence it is called on-chip memory. L2 is faster than L3 cache. L3 is larger and slower in comparison to other levels of

cache memory. In a multiprocessor system, each processor hasownL1 and L2 cache memories and the L3 cache is shared by all

processor. Miss rate of L1 cache can be reduced by introducing L2 cache. User-level cache-control (ULCC) is another technique

through which space allocation in the cache can be controlled by the user.

157 | P a g e Space for learners: Less hit rate and minimal cache pollution can be produced using this technique. The

implementation is very complex. Cache memory optimization can be achieved by optimizing the loop in compiler-level

implementation. A set of compiler algorithms are being used to predict the data to be reuse in near future. This will help to

achieve a better hit ratio in cache access. The performance of the cache can be improved by producing the next data to be used

by the cache. To produce the next data a process called data perfecting can be used in advance. 2.8 WRITING INTO THE CACHE

The cache is a technique to keep a copy of one or more blocks of data from the main memory into the fastest memory storage

such that the processor can access it easily. Cache mostly works as a buffer in between the processor and RAM and increases the

speed of the processor by making the data available. Whenever the CPU wants to write data or a word, at first it checks the

address where the word to be written is available in cache or not. If the address is available in cache memory then it is known as a

write-hit. During the write operation, if the main memory is not updated simultaneously, it may lead to inconsistency of data.

That is the content in cache and main memory may be different for the same reference address. If the system memory is sharing

with more than one device then problems may arise due to this inconsistent data. Hence the two methods write through and

write back is come into the picture to perform the write operation in cache effectively and efficiently. If the referred address is not

available in the cache during a written request a write-miss will occur. For a write-miss, two other processes are being used to

maintain the data consistency

158 | P a g e Space for learners: in cache and main memory namely write allocation and write around. 2.8.1 Write through When

the number of the write operation in cache is less than this process is used. It is comparatively simpler and reliable to perform the

write operation. In write-through, both the memory cache and main memory are updated simultaneously. During a write

operation, a data or word has to write in both the memory locations and due to this, the write-through process experienced

delays in the write operation. This process has been solved the problem of inconsistent data but raisesa question about the use of

cache memory during the write operation. Because the access of main memory along with the cache during writes operation

increases the cost of the write operation and decreases the CPU performance. 2.8.2 Write back In this process, the cache is

updated during the write operation and the main memory is updated later. 2.8.3 Dirty bit A status bit is used to indicate whether

the data present in the cache memory is modified or not during a write operation. It is known as dirty bit. If the status bit is set to

clean-bit, no need to update the main memory later as the data is not modified in the cache. For a dirty bit, the main memory has

to be updated as it represents that the cache has been updated during the write operation. But if power fails due to any cause the

modified data will be lost in the cache. Lost data from the cache cannot be restored.

159 | P a g e Space for learners: 2.8.4 Write allocation In this process, data has to be loaded from the main memory into cache

memory and then updated. It works with both write-through and write-back processes. 2.8.5 Write around Write around process

allows for writing or updating the main memory without interrupting the cache memory. 2.9 CACHE COHERENCE During the

write operation of cache memory, data inconsistency may occur among adjacent or within the same level of the memory

hierarchy. It is possible to have many copies of one instruction operand in a shared memory multiprocessor system. If any

operand value is changed in one memory, then it should reflect in the main memory as well as all the levels of cache memories

simultaneously. Consider a system with three processors P1, P2, and P3. The P1 reads the data X with the value 25 from the main

memory and stores it into the cache. The P2 also reads the same data X = 25 from the main memory and stores it into the cache.

In the next instruction cycle, the P1 writes the X as 55 locally into cache but not updated into the RAM. If the P3 reads the data

from RAM, what value it will get against X? For the main memory and P2, it will be 25, whereas for P1 it will be 55. Thus in caches

write operation can create multiple copies of data in different levels of cache and main memory which may lead to the cache

coherence problem. Cache coherence can be defined as a protocol or discipline which ensures that the values of shared

operands are propagated throughout the system in a timely fashion.

160 | P a g e Space for learners: Generally, cache coherence may occur from three different sources of inconsistency problem –

i. Sharing of writable data ii. Process migration iii. Input / Output (I/O) activity. 2.9.1 Sharing of writable data When two processors

P1 and P2 read the same word X from shared memory into their local cache and P1 writes to the word as X1 using the write-

through method, then the shared memory will be updated from X to X1. Now when the P2 will read the data from its local cache

it will be X which is become outdated as shown in Figure 2.9. Figure 2.9Sharing of writable data

161 | P a g e Space for learners: 2.9.2 Process migration Consider that the process P1 has a data operand X and P2 does not hold

any data in its cache. The process P2 first writes on data operand X as X1 and then migrated to P1. Now the process P1 starts

reading outdated data X. So P1 writes the data operand X onto the main memory and migrated to P2 as shown in figure 2.10.

After migration P2 will start reading the data element and found X in the main memory which is outdated for P2. 2.9.3 I/O activity

As shown in Figure 2.11, an input/output device is added to the bus in a multi-processor system. As shown in the figure initially

both the processor P1 and P2 holds the data operand X. If the I/O peripheral write the data operand as X1 into the main memory,

then the process P1 and P2 will get outdated data in the successive read operation. Then the process P1 will modify the operand

as X into the main memory as well in the local cache. Now if the I/O device wants to transfer the data, it will get a copy of

outdated data. Figure 2.10Process migration

162 | P a g e Space for learners: 2.10 COHERENCY MECHANISM Coherency mechanisms are categorized into four categories –

2.10.1 Directory-based In this method, the data which is to be shared is placed into a common directory, which helps to maintain

the cache coherency. Before each read / writes operation by the processor from the main memory into the local cache, the

common directory have to be checked once. Once the directory is changed by any processor, immediately invalidates or updates

the other cache with that entry. 2.10.2 Snooping It is a process where the individual cache monitors the address lines for

checking the memory location where the cache is mapped. When a write operation is observed at that location in the main

memory, the cache controller invalidates its copy of the snooped memory location. It is known as the write invalidate protocol.

Figure 2.11I/O activity

163 | P a g e Space for learners: 2.10.3 Snarfing It is quite similar to snooping. This method is used to monitor both the memory

location that has been cached as well as the actual information that is store in the main memory. During a memory write

operation, the cache can be updated by new data. Check Your Progress: 1. Choose the correct options from the following for

each question: a. Assume that there are 3-page frames that are initially empty. If the page reference string is 1, 2, 3, 4, 2, 1, 5, 3, 2,

4, 6, the number of page faults using the optimal replacement policy is__________. (A) 5 (B) 6 (C) 7 (D) 8 b. Consider the virtual

page reference string 1, 2, 3, 2, 4, 1, 3, 2, 4, 1 on a demand paged virtual memory system running on a computer that main

memory size of 3 pages frames which are initially empty. Let LRU, FIFO, and OPTIMAL denote the number of page faults under

the corresponding page replacements policy. Then (A) OPTIMAL > LRU > FIFO (B) OPTIMAL > FIFO > LRU (C)

OPTIMAL = LRU (D) OPTIMAL = FIFO c. A virtual memory system uses First in First out (FIFO) block replacement policy and

allocates a fixed number of frames to a process. Consider the following statements: P: Increasing the number of page frames

allocated to a process sometimes increases the page fault rate. Q: Some programs do not exhibit locality of reference.

164 | P a g e Space for learners: Which one of the following is TRUE? (A) Both P and Q are true, and Q is the reason for P (B) Both

P and Q are true, but Q is not the reason for P. (C) P is false, but Q is true (D) Both P and Q are false d. A process has been

allocated 3-page frames. Assume that none of the pages of the process are available in the memory initially. The process makes

the following sequence of page references (reference string): 1, 2, 1, 3, 7, 4, 5, 6, 3, and 1 If an optimal page replacement policy is

used, how many page faults occur for the above reference string? (A) 7 (B) 8 (C) 9 (D) 10 e. A system uses 3-page frames for

storing process pages in the main memory. It uses the Least Recently Used (LRU) page replacement policy. Assume that all the

page frames are initially empty. What is the total number of page faults that will occur while processing the page reference string

given below? 4, 7, 6, 1, 7, 6, 1, 2, 7, 2 (A) 4 (B) 5 (C) 6 (D) 7 f. The optimal page replacement algorithm will select

71% MATCHING BLOCK 27/91

the page that (A) Has not been used for the longest time in the

past. (B) Will not be used for the longest time in the future. (C) Has been used least number of times. (D) Has been used most

number of times. g. Consider a virtual memory system with a FIFO page replacement policy. For an arbitrary page access pattern,

increasing the number of page frames in main memory will

165 | P a g e Space for learners: (A) always decrease the number of page faults (B) always increase the number of page faults (C)

sometimes increase the number of page faults (D) never affect the number of page faults h. A system uses a FIFO policy for page

replacement. It has 4-page frames with no pages loaded, to begin with. The system first accesses 100 distinct pages in some

order and then accesses the same 100 pages but now in the reverse order. How many page faults will occur? (A) 196 (B) 192 (C)

197 (D) 195 i. Which of the following is not a written policy to avoid cache coherence? (A) Write through (B) Write within (C) Write

back (D) Buffered write j. The transfer between CPU and cache is ____________________. (A) Block transfer (B) Word transfer

(C) Set transfer (D) Associative transfer k. Which of the following is a common cache? (A) DIMM (B) SIMM (C) TLB (D) Cache l.

How many possibilities of mapping does a direct-mapped cache have? (A) 1 (B) 2 (C) 3 (D) 4

166 | P a g e Space for learners: m. In which writing scheme does all the data writes go through to the main memory and update

the system and cache? (A) Write-through (B) Write-back (C) Write-buffering (D) No caching of writing cycle n. In which writing

scheme does the cache is updated but the main memory is not updated? (A) Write-through (B) Write-back (C) Write-buffering (D)

None of these o. What is the main idea of the writing scheme in the cache memory? (A) Debugging (B) Accessing data (C) Bus

snooping (D) Write allocate 2. Answer the following questions and fill up the bllanks: (A) Which cache has a separate comparator

for each entry? (B) What is the disadvantage of a fully associative cache? (C) Which mechanism splits the external memory

storage into memory pages? (D) Which of the following cache mapping can prevent bus thrashing? (E) Which cache mapping has

a sequential execution? (F) Which address is used for a tag? (G) What do you mean by locality of reference? (H) The number of

failed attempts to access memory, stated in the form of a fraction is called as ______________. (I) The extra time needed to

bring the data into cache memory in case of a miss is called as __________________. (J) The counter that keeps track of how

many times a block is most likely used is __________________.

167 | P a g e Space for learners: 2.11 SUMMING UP 1. Cache memory is smaller in size and one of the faster memory used in a

computer system. 2. The cache is used to place in between CPU and RAM. 3. The memory access time of cache memory is very

high in comparison to the main memory 4. L1 cache and L2 cache may embed on the CPU chip, hence it is known as an on-chip

cache. 5. The cache is a very high-speed memory and is used to increase the processing speed by making the data available to

the CPU at a rapid rate. 6. Cache works as a buffer between the CPU and the RAM. 7. Performance of cache memory is measured

in terms of hit- ratio. 8. If the CPU finds the referred address in the cache then it can be defined as a hit. 9. If the CPU does not

find the referred address in the cache then it can be defined as a miss. 10. The ratio between the hit and the total amount of

address referred by the CPU can be defined as hit-ratio. 11. Through the mapping process, data can be transfer from main

memory to cache memory. 12. There are three different types of mapping processes in cache memory such as – associative

mapping, direct mapping, and set-associative mapping. 13. In associative mapping, the cache memory contains the data along

with the address references of that data in the main memory. 14. Direct mapping divides the main memory reference done by the

CPU into two fields – index and tag field.

168 | P a g e Space for learners: 15. If a system contains the main memory of capacity 2 m and cache of capacity 2 n , then the

bits in the index field will be n bits and in the tag field is an (m-n) bit in the direct mapping. 16. Cache replacement policies are

used to make room for the new data in cache memory if it is full. 17. Some of the cache replacement policies are LRU, LFU, FIFO,

RR, etc. 18. Belady’s anomaly – proves that it is possible to have more MISS for an increasing number of frames while using the

FIFO replacement algorithm. 19. User-level cache-control (ULCC) is one technique for block replacement, through which space

allocation in the cache can be controlled by the user. 20. Cache optimization can be achieved by reducing the miss penalty, miss

rate, and hit time and increasing the cache bandwidth. 21. Generally, the cache memory can be categorized into three levels such

as L1, L2, and L3 cache. 22. When the CPU wants to write into cache and the CPU referred address is available in cache memory

then it is known as a write-hit. 23. When the CPU wants to write into cache and the CPU referred address is not available in cache

memory then it is known as a write-miss. 24. To write into cache two methods are used – write through and write back. 25. In

the write-through process, both the memory cache and RAM are writing simultaneously. 26. In the write-back process, the cache

is used to write first and the main memory is updated later with the help of dirty-bit.

169 | P a g e Space for learners: 27. Two other processes write-allocation and write around are used, when a write miss has

occurred. 2.12 ANSWERS TO CHECK YOUR PROGRESS Answers to the question number 1: a) C b) C c) B d) A e) C f) B g) C h) A i)

B j) B k) C l) A m) A n) B o) C Answers to the question number 2: (A) Fully associative cache. (B) Hardware (C) Index mechanism (D)

N-way set associative (E) Burst fill (F) Logical address (G) The surroundings of the recently accessed block are called the locality of

reference.

170 | P a g e Space for learners: (H) MISS rate (I) MISS penalty (J) Reference counter 2.13 POSSIBLE QUESTIONS a. Consider block

reference strings 1, 3, 0, 3, 5, 6, and a block frame size 3 is used. Count the cache block miss when the FIFO replacement

algorithm is used. b. Consider the reference string: 0, 2, 1, 6, 4, 0, 1, 0, 3, 1, 2, 1. Count the number of miss using FIFO page

replacement algorithm. c. Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 block frame. Find number of miss

using optimal block replacement technique. d. Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 with 4 block

frames. Find the number of misses using the Least recently used method. e. Consider page reference strings 1, 3, 0, 3, 5, 6 with

the frame size of 3. Find the number of misses using the FIFO replacement technique. f. What is cache memory? Explain the role

of cache memory in program statements execution. g. Explain different cache mapping processes for example. h. Why block

replacement is necessary for cache memory? What are the replacement policies; explain the pros and cons of each. i. Why cache

optimization is required? Discuss any two cache optimization techniques. j. What types of problems may arise during cache write

and how it can be solved? Explain.

171 | P a g e Space for learners: k. What is Belady’s anomaly? Explain with an example. l. How the multilevel cache is

implemented? m. Discuss the factors on which the cache optimization techniques are dependent. n. How in compiler level

cache memory can be optimized? Explain. o. Define the terms: cache access time, efficiency, average access time, hit-ratio, miss,

memory access time. 2.14 REFERENCES AND SUGGESTED READINGS • William Stallings, Computer Organization and

Architecture Designing for Performance, Pearson Education India. • Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer

Organization, McGraw Hill Education. • M. Morris Mano, Computer System Architecture, Pearson Education India. ---×---

172 | P a g e Space for learners: UNIT 3: VIRTUAL MEMORY AND PAGING Unit Structure: 3.1 Introduction 3.2 Unit Objectives 3.3

Paging 3.3.1 Paging Hardware Support 3.4 Segmentation 3.4.1 Segmentation Hardware 3.5 Virtual memory 3.5.1 Demand Paging

3.6 Summing Up 3.7 Answers to Check Your Progress 3.8 Possible Questions 3.9 References and Suggested Readings 3.1

INTRODUCTION Even though the focus of the subject is computer hardware, there is one area of software that needs to be

addressed and that is the operating system. An operating system is a software that acts as an interface between a computer

hardware and computer user. The operating system manages computer hardware, software resources and allocates resources

and services, such as memory, processors and devices. One of the most important function of operating system is memory

management that includes the hardware support in processor for paging, virtual memory and segmentation. Virtual memory

allows a program with memory space larger than the size of the main memory to be available in the system. This is possible by

allowing only that section of the code that is active at that point of time without the need of having all instructions and data of

the process being present in main memory at the same time. The

173 | P a g e Space for learners: concept of paging and segmentation eliminates the need of allocating main memory to the

process in contiguous manner. 3.2 UNIT OBJECTIVES After going through this unit, you will be able to: • Explain the mapping of

logical address to physical address using paging memory management scheme. • Analyze and solve problems on paging. •

Explain the working of paging hardware. • Explain the mapping of logical address to physical address using segmentation. •

Explain the working of segmentation hardware. • Explain Virtual memory management scheme. 3.3 PAGING To understand the

concept of paging we have to go through the following concepts: • Process: It is a program in execution or a program placed in

main memory for execution. • Logical Address: It is the address that is generated by the CPU for a program while it is running. As

the address does not exist physically it is also called virtual address. The hardware unit of memory known as memory

management unit (MMU) maps logical address to physical address. • Physical Address: A physical address is the actual address in

the main memory. Paging is a memory management scheme that is used to map CPU generated logical address of a process to

physical address in main

174 | P a g e Space for learners: memory. A process consists of fixed size blocks; Figure 3.1 shows an example of a process with 4

blocks each of size 1 kilobyte. Size of a block depend upon architecture of the computer and varies between 512 bytes to 16

megabytes. Figure 3.1: A Process with 4 blocks each of size 1 kilobyte. Page 1 1KB Frame 1 1KB Page 2 1KB Frame 2 1KB Page 3

1KB Frame 3 1KB Page 4 1KB Frame 4 1KB Logical Memory Physical Memory Figure 3.2: A Process with 1KB block size in logical

and physical memory. The paging technique divides the logical memory to blocks of the fixed size known as pagesand divides

physical memory into blocks of fixed-size known as Frames. Figure 3.2 shows an example of pages and frames in logical and

physical memory respectively. Paging scheme allows a process to be stored in the main memory in noncontiguous manner. It

also solves the problem of searching and fitting blocks of different sizes in main memory by having all block of same size. One

more advantage of the paging scheme is that it prevents from external fragmentation that is if the main memory P1K Block 1

Block 2 Block 3 Block 4 1KB 1KB 1KB

175 | P a g e Space for learners: blocks are of varying sizes and the size of the free blocks are smaller than the size of the pages,

then the operating will be required to merge two or more blocks into a single block large enough to fit a page. By keeping block

of equal sizes for both pages and frames, such problems are resolved.Figure 3.3shows paging model of physical and logical

memory. A page table is used for mapping between logical addresses and physical addresses. A page table resides in the main

memory.Figure 3.3 shows noncontiguous allocation of a process in main memory. The mapping of logical address to physical

address is achieved using the page table. Page Frame Frame Number Page 0 0 5 0 Page 1 1 4 1 Page 3 Page 2 2 7 2 Page 3 3 1 3

Logical memory Page Table 4 Page 1 5 Page 0 6 7 Page 2 8 Main Memory Figure 3.3: Paging model of physical and logical

memory. The hardware support for paging is demonstrated using an example in Figure 3.4. The logical address generated by the

CPU is divided into two parts namely page number and displacement within the page. The page number is used as an index in

the page table to search for the corresponding frame number. The displacement is combined with frame number to get the

physical address. In the Figure 3.4, the logical address

176 | P a g e Space for learners: having page number 3 is searched for the corresponding frame number in the page table which is

frame number 15. The frame number 15 is combined with the displacement 7 to form the physical address. Figure 3.4: Paging

hardware support If the size of the logical address space is 2 m and size of a page is 2 n bytes/words, then “m-n” bits of a logical

address designate the page number the “n” bits designate the displacement or offset. Therefor the logical address is: Page

Number Displacement p d m - n n Paging Example -1: Assume a page size of 1K and a 15-bit logical address space. How many

pages are in the system? Page Table of Process Page Number Displacement Frame Number Displacement Logical Address

Physical Address 3 7 15 7 1 13 2 18 3 15 4 14 Page 1 of Process P Page 4 of Process P Page 3 of Process P Page 2 of Process P

Frame Number 13 14 15 16 17 18

177 | P a g e Space for learners: Solution: Page size = 1K = 2 10 i.e. displacement, n=10 bits No. of bits in logical address = 15, i.e.

m=15 bits. Therefore, no. of bits used for page number is, m - n = 5 bits Total no. of pages in the system is 2 5 =32. Paging

Example -2: Assume that a CPU has a 15-bit logical address space with 8 logical pages. How large are the pages? Solution: There

are 8 logical pages, that means3 bits are required to address 8 logical pages (2 3 = 8). Therefore, m - n=3 bits Logical address is

15 bits, m=15 bits Displacement = 15 -3 = 12 bits. So, the pages are of size 2 12 = 4096 = 4K bytes 3.3.1 Paging Hardware Support

Operating system provides support for storing page table of a process. Generally, a page table can be stored in following ways: •

Set of dedicated registers • In main memory • Translation lookaside buffer (TLB) The feasibility of the first approach using a set of

dedicated registers is that the page table should be reasonably smaller in size like 256 entries. With the second approach page

table can be very large like millions of entries can be stored in the main memory with a pointer to the starting address of the page

table for referencing. However, in this case the time required to access the page table is slower by a factor of two as it involves

first accessing memory for the page table to locate the frame number which is combined with the displacement to get the

physical address and then a second memory access to read the byte.

178 | P a g e Space for learners: The solution to the disadvantages of the first two approaches is resolved using a fast lookup

hardware support called Translation Look aside Buffer (TLB). TLB is a small, expensive but very fast associative memory. It can

store entries in the range of 64 to 1024. Associative memory has two parts: a tag and a value. When a page/key needs to be

searched the key is compared simultaneously with all the tags of the in the associative memory. There are possibly two cases for

a page search in TLB. Figure 3.5 illustrates the paging hardware with TLBfor these two cases: • If the search key/page is found it is

called as a TLBhit and corresponding value/frame is returned from the TLB. Displacement is combined with frame number and

the physical address is accessed. • If the search key/page is not found it is called as a TLB miss and the page is searched in the

page table stored in main memory. The frame number corresponding to the search page is combined with the displacement to

access the address in the physical memory. Also the page number and frame number is added to the TLB so that if the same

page is referred next time it is found quickly. In case the TLB is full, operating system selects a page replacement algorithm to

replace an existing page with the new entry. The percentage of times that a particular page number is found in the TLB is called

the hit ratio. If the hit ratio is 60% that means 60 times out of 100 references,the page will be found in TLB and remaining 40

times the page is found in the page table.

179 | P a g e Figure 3.5: Paging hardware Paging Example -3: If it takes 25 nanoseconds to access memory. If the hit ra access

time. Solution: If the page is in the TLB, tim = Time taken to se memory = 25 +75 =10 If the page is not in the T address = Time

taken access page table = 25 +75 +75 = 175 nanosec Hit ratio is 70%, therefore dware with Translation Look aside Buffer [1]. nds

to search the TLB and 75 nanoseconds to hit ratio is 70%, calculate effective memory B, time taken to access the physical address

to search the TLB + Time taken to access 75 =100 nanoseconds the TLB, time taken to access the physical taken to search the

TLB + Time taken to + Time taken to access memory 5 +75 anoseconds Space for learners:

180 | P a g e Space for learners: Effective access time = 0.70 X 100 + 0.30 X 175 =122.5 nanoseconds. 3.4 SEGMENTATION

Segmentation is a memory management scheme similar to paging that allows a process to be stored in the main memory in

noncontiguous manner. Unlike paging where all the pages or frames are of fixed size, segmentation allows blocks or segments of

variable size. Segmentation maps the user’s view of a program onto the physical memory. Looking at the user’s view in Figure 3.6,

a program contains several variable size segments, such as the main program, subroutine, symbol table, methods etc. It also

includes data structures like arrays, objects, variables, stacks etc. These segments and data structures are referred by their name

without concerning about the address these segments are stored in memory. Users are not concerned about the order in which

the segments are stored in the memory. Figure 3.6: User’s view of a program

181 | P a g e The logical address space is a name and a length.From segments are numbered in address is represented using

Segment-num 3.4.1 Segmentation Hardw The mapping of the displacement<to the physica segment table and the segm 3.7.

Each entry of the seg segment base. The base r segment in the main memory segment. The segment table i Figure 3.7: Se The

working of segmentation segment number, s and the The segment number is used indexed on the segment num address should

be between satisfied, it means that the segment limit and a trap int the operating system. ace is a group of segments. Each

segment has h.From the implementation point of view, instead of using name and the logical using the two tuple: umber

Displacement Hardware the logical address >segment-number, hysical address is achieved with the help of segmentation

hardware as shown in Figure he segment table has a segment limit and ase represents the starting address of the emory and the

limit specifies the length of the table is indexed on the segment number. : Segmentation Hardware[1]. ntation hardware starts by

first identifying the d the displacement, dof the logical address. is used to search the segment table, which is nt number. The

displacement, dof the logical tween 0 and limit. If the condition is not at the logical address is going beyond the rap interrupt is

initiated which is handled by Space for learners:

182 | P a g e Space for learners: A segmentation example is shown in Figure 3.8. There are 5 segments numbered from 0 through

4. The segments are stored in physical memory in noncontiguous manner. Also, no specific ordering is followed for storing the

segments as can be observed in the example. The segment table has an entry for each of the segment, the starting address of the

segment mentioned as baseand the length of the segment mentioned as limit. For example, segment 0 begins at address 5100

and length of the segment is limited to 500 bytes. Therefore, a reference to byte 17 of segment 0 is mapped to 5100 (base of

segment 0) + 17 = 5117. Similarly, a reference to byte 88 of segment 4 is mapped to 7300 + 88 = 7388.A trap interrupt will be

called if byte 1700 of segment 4 is referenced as the limit is 1500. Figure 3.8: Segmentation Example 3.5 VIRTUAL MEMORY The

memory management scheme discussed in previous section requires the entire process to be in the main memory for execution.

Most of the times there can be a requirement of many processes to be in the memory simultaneously for execution. This

situation can

183 | P a g e Space for learners: prevent simultaneous execution of multiple processes

38% MATCHING BLOCK 28/91

due to the size of the main memory, which may not be large enough to hold all the processes. So the concept of virtual

memory was introduced.

A virtual memory management scheme allows execution of a process even if it is not completely in memory. That is, it requires

only that section of the code of the process to be in the memory that will be executed. Generally, a process contains several

functions or procedures and not all the functions are required to be in the memory at the same time. So the function or the

procedure that will be executed needs to be in the main memory while the other functions or procedures can be placed in the

secondary memory and wait for their turn of execution. So whenever a function is not available in the main memory, it is brought

from the secondary memory to main memory for execution. The main advantage of this scheme is that a program larger than

main memory can still run on a smaller physical memory. This is how a games like Need for speed or Call of Dutywhich require

respectively 30 GB and 90 GB of memory can still run on a system having 6 GB RAM with sufficient hard disk space. Also, as only

a section of the process’s code needs to be in memory so many process can be there in memory simultaneously. Thereby

increasing CPU utilization and throughput.

184 | P a g e Figure 3.9: Example showin Figure 3.9 shows an exam physical memory. The prog about the size of the main m on

the problem to be program pages from the large virtual secondary memory and the p whenever a call to those pa does not have

any free s replacement algorithms are memory with the pages from 3.5.1 Demand Paging Suppose a user wants to ru loaded to

main memory fro the program runs only one on the user input, it is impra other cases my never be call technique known as

demand showing virtual memory larger than physical memory[1]. example of a larger virtual memory than e programmer thus

need not have to worry main memory available, thus can concentrate rogrammed. As can be seen in the Figure 3.9, virtual

memory address space is stored in the d the pages are brought back to main memory ose pages are required. If the main

memory free slot for the pages, then some page s are used to replace the pages in main s from secondary memory. to run a

program, so the entire program is ry from the secondary memory. However, if one option/case out of the several cases based

impractical to load the code for all the cases, be called for execution. So, a virtual memory mand paging is used to load only

those pages Space for learners:

185 | P a g e of the process when they are for the page occurs during th In Figure 3.10 shows and exa 5, 6 and 7 of Program A is

sw and 19 of Program B is mo demand for the pages 17, 18 a pager program responsible Figure 3.10: Examp CHECK i. Fixed-sized

bloc ________ a) Block b) Frame c) Pages d) Segment ii. In paging CPU _____________a a) Page offset & b) Page number c)

Frame offset d) Frame numbe ey are required or whenever there is a demand ring the program execution. nd example of demand

paging where pages 4, is swapped out of memory and pages 17, 18 is moved in to the memory because of the 17, 18 and 19. The

method is implemented by nsible for demand paging. xample showing Demand Paging [1]. ECK YOUR PROGRESS blocks in

physical memory is called CPU generated logical address has two parts ____and _____________. fset & Frame bit mber & Page

offset ffset&Displacement umber& page offset Space for learners:

186 | P a g e Space for learners: iii. Fixed-sized blocks in logical memory is called ________ a) Block b) Frame c) Pages d)

Segment iv. Paging does not suffer from ________. a) Internal Fragmentation b) External Fragmentation c) Both a) and b) d) None

of the above v. If it takes 10 milliseconds to search the TLB and 80 milliseconds to access the physical memory. If the TLB hit ratio

is 0.6, the effective memory access time (in milliseconds) is _________. a) 120 b) 122 c) 134 d) 124 vi. The displacement ‘d’ in a

logical address must be ____________ a) Greater than segment limit b) Greater than the segment number c) Between 0 and the

segment number d) Between 0 and segment limit vii. In segmentation, each address is specified by ____________ a) A key and

value b) A displacement and value c) A segment number & displacement d) A value and segment number viii. A CPU generated

memory larger than main memory is called as a) Logical Memory b) Secondary Memory c) Virtual Memory

187 | P a g e Space for learners: d) All of the above ix. The virtual memory manager loads only those component of a program

during execution as a when required is known as _____. a) Segmentation b) Swapping c) Virtual memory d) Demand Paging x.

Virtual memory can be implemented with a) Swapping b) Paging c) Segmentation d) Both b) and c) 3.6 SUMMING UP • Logical

address is the address that is generated by the CPU for a running program. • A physical address is the actual address in the main

memory. • Paging is a memory management scheme that is used to map CPU generated logical address of a process to physical

address in main memory. • The logical address generated by the CPU is divided into two parts namely page number and

displacement with the page. • Translation Lookaside Buffer is a small, expensive but very fast associative memory. • In a TLB, if the

search page is found it is called as a TLB hit if the page is not found it called as TLB miss. • The percentage of times that a

particular page number is found in the TLB is called the hit ratio.

188 | P a g e Space for learners: • Segmentation is a memory management scheme similar to paging that allows a process to be

stored in the main memory in noncontiguous manner. • The mapping of the logical address >segment-number,

displacement< to the physical address is achieved with the help of segment table and the segmentation hardware. • A virtual

memory management scheme allows execution of a process even if it is not completely in memory. • A virtual memory

technique known as demand paging is used to load only those pages of the process when they are required or whenever there is

a demand for the page occurs during the program execution. 3.7 ANSWERS TO CHECK YOUR PROGRESS i, b ii, b iii, c iv, b v, b vi,

d vii, c viii, c ix, d x, d 3.8 POSSIBLE QUESTIONS Q1 Differentiate betweenphysical and logical address space. Q2 Explain paging

memory management scheme. Q3 Define a page table. Why it is needed in paging? Q4 What is hit ratio? Why page should be

replaced in the memory? Q5 Explain the working of a paging memory management scheme. Q6 Consider a logical address

space of 16 pages of 512 words each, mapped on to a physical memory of 64 frames. How many bits are there in the logical

address? How many bits are there in the physical address?

189 | P a g e Space for learners: Q7 If it takes 125 nanoseconds to search the TLB and 500 nanoseconds to access memory. If the

hit ratio is 90%, calculate effective memory access time. Q8 Assume a page size of 4K and an 18-bit logical address space. How

many pages are in the system? Q9 Assume that a CPU has a 16-bit logical address space with 4 logical pages. How large are the

pages? Q10 What is segmentation? Explain. Q11 Define a virtual memory. With a neat diagram, explain the working of a virtual

memory. What are the benefits of a virtual memory? Q12 What is demand paging? Explain. Q13 What is the benefit of demand

paging? Q14 Consider logical address 1025 and the followingpage table for some process P0. Assume a 15-bit address space

with a page size of 1K. What is the physical address to which logical address 1025 will be mapped? 6 2 3 Q15 Consider the

following segment table: Segment Base Length 34 100 100 21 2500 200 0 1200 50 90 1700 300 7 500 500 2 600 50 99 650 200

What are the physical address for the following logical address? i. 0,25 ii. 2,89 iii. 90,345

190 | P a g e Space for learners: iv. 34,50 v. 99,201 3.9 REFERENCES AND SUGGESTED READINGS • Computer Organization and

Architecture, 10 th edition, William Stallings, Pearson. • Computer System Architecture Third Edition, M. Morris Mano, Rajib Mall,

Pearson • Computer Organization, 5 th Edition, Carl Hamacher, McGraw Hill • Operating System Principles 8th edition by

Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin, Willey ---×---

191 | P a g e Space for learners: UNIT 4: BASIC I/O SYSTEM-I Unit Structure: 4.1 Introduction 4.2 Unit Objectives 4.3 Bus

Interconnection 4.3.1 Structure of Bus 4.3.2 Aspects of Bus Design 4.4 I/O Devices 4.5 I/O Interfacing using I/O Modules 4.5.1

Functions of an I/O Module 4.5.2 Structureof I/O Module 4.6 I/O Addressing 4.7 Interrupts 4.7.1 Types of Interrupts 4.7.2 Interrupt

Latency 4.8 Direct Memory Access 4.9 Summing Up 4.10 Answers to Check Your Progress 4.11 Possible Questions 4.12

References and Suggested Readings 4.1 INTRODUCTION Input and Output (I/O) devices are integral parts of computer systems.

I/O devices and I/O modules are the functional units of a computer along with the Central Processing Unit (CPU) and the

memory units. There exist a wide variety of I/O devices having different characteristics. Thus I/O devices are not directly

connected to the CPU; rather they are connected via I/O modules. I/O modules take the responsibility of establishing the

communication between the CPU and I/O devices by bridging the gap between an I/O device and the CPU. Each I/O module

connects with the system bus or to the central switch. An I/O module can control more than one device.

192 | P a g e Space for learners: This unit will provide an understanding of basics of I/O interfacing. We begin this chapter with an

overview of bus interconnection and bus arbitration, and then we illustrate the functioning of I/O operations via I/O module. At

the end of the unit we present the basics of interrupts and direct memory access (DMA). 4.2 UNIT OBJECTIVES On completion of

this unit students will be able to: • Explain the basics ofbus structures, bus arbitration and roles of different buses. • Get

familiarized with various input output devices. • Comprehend various aspects of input outputinterfacing. • Learn the functioning

of input output modules • Understand the significance of interrupts in communicationwith input output. • Learn the concept of

data transfer using direct memory access 4.3 BUS INTERCONNECTION A bus is a pathway via which two or more devices can

perform data transfer. Buses are shared transmission media; multiple units can use the same bus for the data transfer but at a

time only one unit can send data.A bus can be used to connect either the major components of a computer or the internal

components of a CPU or two different computers. Typically a bus is comprised of multiple lines. Each line can transmit a single

bit (0 or 1); thus it can transfer a group of bits in parallel in a single transfer.The number of bits that can be

193 | P a g e Space for learners: transferred in parallel is called as the bus width. For example, an 8- bit wide bus can transmit 8

bits at a time. Computer systems have different types of buses for different levels of communications. The internal components

of a CPU are connected via internal CPU bus. The major components of a computer system, i.e., the CPU, memory modules and

I/O are connected via a special type of bus called as system bus. STOP TO CONSIDER Buses are used by different modules of a

computer to transfer data to other modules. Via buses various forms of data are transferred. 4.3.1 Structure of Bus As mentioned

earlier, a system bus is a common bus shared by the CPU, memory and the I/O. A typical system bus comprises of about 50 to

hundreds of separate lines. The connected modules can send different types of information such as data, address and control

signals over these lines. Thus lines are usually divided into three groups: data, address and control lines. The schematic diagram

of a typical system bus structure is shown in Fig 4.1. The data lines or data bus is used to transfer the data among the

components attached to it. The width of data bus of a contemporary machine can be 32, 64 or even more. This width

determines the amount of data that can be transferred at a time. The width of the data bus is a key parameter to determine the

performance of the system. For example, if the length of an instruction is of 64 bit, then the processor would need to access

memory only once if the data bus if 64-bit wide; on the other hand if the data bus is of 16-bit, then

194 | P a g e Space for learners: the processor would need to access the memory 4-times to fetch the 64-bit instruction. Thus

wider the bus faster will be the data transfer. The address lines, also known as address busidentifies the location of the source or

the destination of the data available on the data bus. For example, if the processor has to read the data from memory location X,

then it places the address X onto the address bus. The width of the address bus determines the system’s memory capacity. For an

instance, a system with 16-bit address bus can support a memory of 2 16 blocks. Moreover, the address bus is also used to locate

an I/O port. The higher order bits usually identify a particular I/O module and the lower order bits identify the particular port of

the selected module. The control lines or control bus are used to carry control signals and timing information to the various

computer components. Control signals help in enabling a system to understand what has to be done and timing information

indicates the validity of the information available in the data and the address bus. Typical control signals are Memory Read,

Memory Write, I/O Read, I/O Write, Bus Request, Bus Grant, Interrupt etc.

195 | P a g e Space for learners: Fig. 4.1Interconnection of Computer Modules via System Bus STOP TO CONSIDER A common

bus structure is used to connect the major components of a computer. Such a structure is called as system bus. System bus

allows a computer module to transmit data, address and control signals to another module. Thus the bus lines are grouped into

data, address and control lines. 4.3.2 Aspects of Bus Design There are a few aspects whichareneeded to be considered while

designing a bus structure. The key aspects are bus type, bus width, method of arbitration, timing and data transfer type. Bus

Types: Buses can be categorized into two broad types: dedicated and multiplexed. Dedicated buses are used either for a specific

function (e.g., for data or address) or to connect specific physical modules.The advantage of dedicated bus is higher throughput.

However, it increases the size as well as the cost of the system. Data Bus Address Bus Control Bus CPU Memory I/O Module I/O

Module . . .

196 | P a g e Space for learners: On the other hand, multiplexed buses are ones either for used multiple functionalities or to be

shared amongst multiple physical modules. For example, a common bus can be used to share both data and address

information. The main advantage of having multiplexed bus is that it uses of fewer lines which helps in making the system

compact as well as cost effective. A major disadvantage of it is that it needed a more complex circuitry for each connecting

module. Bus Width: We have already addressed the role of the bus width while discussing different bus types. It determines the

amount of data that can be transferred at a time. Higher is the width of the data bus higher is the transfer rate. Thus the width of

the data bus has an impact on the performance of a system while width of the address bus determines the system’s capacity to

address memory blocks. Bus Arbitration: In case of a shared bus system more than one module may require to have the control

of the buses. Typically, the CPU has the main control of the buses; however when a module wishes to perform the data transfer

without CPU’s intervention then the device which controls the data transfer may need to have the control of the buses. In such a

scenario, the CPU has to transfer the control of the buses to the device managing the data transfer. The process of transferring

the control of the buses from one device to another is called as bus arbitration. There are basically two types of bus arbitration

methods: centralized and distributed. In case of centralized arbitration, a special hardware called as bus arbiter performs the

allocation of the buses to the module requiring the buses. This device can be a part of the CPU or can be a standalone module.In

distributed method, the modules mutually share the control of the buses without relying on any centralized arbiter.

197 | P a g e Space for learners: Timing: Timing is a very important criterion of bus design. It defines a way to coordinate the

events occurred on the bus. It can be synchronous or asynchronous. Fig. 4.2 Timing Diagram of Memory Read and Write Cycle

The occurrences of the events in synchronous timing are controlled by the clock. A clock line is attached to the bus that

transmits an alternating sequence of 0s and 1s repetitively. One single transition Clock Status lines Address lines Address Enable

Data lines Read Write Data lines Read cycle Write cycle t1 t2 t3

198 | P a g e Space for learners: of 1-0 is termed as one clock cycle. A clock cycle defines a slot. All the modules attached to the

bus can access the clock line and triggers all events at the beginning of a clock cycle. The Fig. 4.2 presents a sample the timing

diagram of both memory read and write cycles. In this example, a memory address is placed onto the address bus at the

beginning of a clock cycle. Once the entire address is placed onto the bus, the processor asserts the address enable signal.

During read cycle, the processor enables the read signal at the beginning of the second clock cycle; the system identifies the

address and places the data from the designated memory address (a) Memory Read Cycle Acknowledgement Data Valid Status

lines Address lines Data lines Read

199 | P a g e Space for learners: (b) Memory Write Cycle Fig. 4.3 Timing Diagram of Asynchronous Bus Operations onto the data

bus at the start of the third cycle. The processor reads the data from the bus and disables the read signal on completion of the

read operation. During the write cycle, the processor places the data onto the data bus followed by activating the write

command. The memory reads the data from the bus during the third cycle. In asynchronous timing no clock is used to

coordinate the occurrence of the events, rather the occurrence of one event depends on a previous event. To coordinate the

events, the processor asserts special status signals. During read cycle, the processor first places the address onto the address bus

and asserts the status signals. The read command is issued once the address is stabilized to indicate the validity of the address.

The memory module recognizes the address and copies the data from the corresponding memory address onto the data bus.

The memory module confirms the accomplishment of the transfer of data to the bus by asserting the acknowledgement signal.

The read signal is disabled once the data is read by the processor. The memory module then drops the acknowledgement Write

Acknowledgement Status lines Address lines Data Valid Data lines

200 | P a g e Space for learners: signal and the processor desserts the read signal. Fig. 4.3(a) demonstrates the sequence of events

of the read cycle with asynchronous bus. During write cycle, the processor places the address, status and data onto the

respective buses at the same time. The write signal is asserted by the processor to indicate data valid. The address is recognized

by the memory module and fetches the data from the data bus to copy it to the address given. Once write is accomplished, the

memory module sends the acknowledgement signal. The write signal is then dropped by the processor or the bus master after

on receiving the acknowledgement. The write cycle events with asynchronous bus are shown in Fig. 4.3(b). STOP TO CONSIDER

To design a bus structure, various criteria like bus type, bus width, type of arbitration and timing are needed to be considered.

Based on different parameters chosen for different criteria, the bus has to be designed. 4.4 I/O Devices I/O devices are external

devices which facilitate the exchange of data between the processor and the external environment. Such devices are also known

as peripheral devices or simply peripherals. An I/O device is connected with the processor via an I/O module port. An I/O device

can be used either for input or output or both. Some of the input devices are keyboard, mouse, mic, scanner etc while the output

devices include monitor, speaker, printer etc. I/O devices can be classified broadly into human readable, machine readable and

communication. Human readable devices used to allow the users to interact with the computer. These enable the user

201 | P a g e Space for learners: either to give input or to see the output. Keyboard, monitor and printer are some examples of

human readable I/O devices. The machine readable I/O devices are used to establish the communications between various

devices or components of the computer. The magnetic disks, tapes, sensors and actuators are some examples of machine

readable I/O devices. The communication devices are used to transmit data to a remote device. Examples of communication

devices include modems, Infrared, Bluetooth and network interface card (NIC). The remote devices can be a human readable

device like a terminal or can be a machine readable device or can even be another computer. Fig. 4.4 demonstrates the generic

block diagram of I/O device.The control logic performs the controlling of overall operations of the I/O device. It decodes the task

to be performed by the device based on the received control signal. It is also responsible for error detection and status reporting

to the I/O module. The transducer’s job is to convert the data received from the external environment to the format

understandable by the device during input operation and converts the data from device understandable to the format which the

external environment understands.The data buffers stores data temporarily to be exchanged between the external environment

and the I/O module.

202 | P a g e Space for learners: Fig. 4.4 Generic model of an I/O device The most common I/O devices that almost every

computer possesses are keyboard, mouse, monitor and Disk drives. A brief discussion on these four is presented below. Keyboard

This is the universal input device for all computers. The keyboard layout is identical to that of a standard QWERTY typewriter. It

also has several additional command and function keys. It has between 101 and 104 keys in total. Through this, a user can enter

alphabets, numbers and symbols called as characters. Each character is associated with a unique 7 or 8 bit code. One of such

code representation is American Standard Code for Information Interchange (ASCII). To enter data, you must press the precise

combination of keys. The transducer in the keyboard interprets the electrical impulses generated by a keystroke and converts it

into its corresponding 7 or 8 bit binary code. Mouse Another input device which is used most commonly is the mouse. It has two

or three buttons on the top and rolls on a little ball. Different buttons are used to perform different actions. The screen cursors of

the mouse move in the direction of mouse movement when you roll it across a flat surface. With the mouse, the cursor moves

quite Control Logic Data Buffers I/O Module Control Lines Data to/from Environment Data Lines Transducer

203 | P a g e Space for learners: quickly, providing you more freedom to operate in any direction. Moving using a mouse is easier

and faster. Monitor It is the most common output device that is common in all the computers. It is a unit that displays the

characters entered through the keyboard and to display any message. The message can be in the form of text, image or video. So

monitors are also called as video display devices. In market various types of video display devices are available. In earlier time

Cathode Ray Tubes (CRT) were used to design the monitors. Such monitors were either monochromatic or colored. Although,

CRT monitors are still present, however Liquid Crystal Display (LCD) based monitors are more common in recent time. These

monitors have a flat panel display and consume less power than the CRT monitors. Disk Drive It is a device used for data storage

in the computer. It has mechanisms to exchange data and control signals with an I/O module. An I/O module can perform both

read and write operations on the disk drive. The transducer on a fixed-head disk can transform magnetic patterns on the moving

disk surface to bits in the device's buffer. The disk arm of a moving-head disk must be able to move radially in and out across the

disk's surface. STOP TO CONSIDER I/O devices are external devices which enable exchange of data between external

environment and the computer. There exists a variety of I/O devices for performing various tasks. Keyboard, mouse, monitor and

magnetic disks are the most common I/O devices. 4.5 I/O Interfacing using I/O Modules A computer is connected with a diverse

set of I/O devices. The devices differ largely in terms of data rates, data representations, data formats, word lengths and error

conditions. The data rates of the devices differ from the main memory and the processor. Often

204 | P a g e Space for learners: peripheral devices are slower than the processor and the memory. But there are some devices

faster than the memory and the processor. So there is a big gap between the processor and any I/O. In such a scenario direct

communication between an I/O device and the processor is not easy. To solve this, I/O modules are used as a mediator between

an I/O device and the processor. I/O modules interface to the memory and the processor through the system bus, which

interface one or more I/O devices by the ports. 4.5.1 Functions of an I/O Module As mentioned earlier I/O devices are connected

with the processor via the I/O modules. For this, an I/O module needs to interact with both the processor and the I/O devices.

Theprocessor initiates the I/O operations and selects the I/O module that connects the target peripheral. The I/O devicessend or

receive the data to the I/O module to besent to the processor. The major tasks performed by the I/O module are as follows: •

Control and timing • Communication between the device and the processor • Data buffering • Error Checking Control and

Timing The processor may need to interact with multiple peripheral devices, memory and buses as per the requirement of the

program leading to multiple data transfer among various units.So there must be a proper coordination andsequencing of events

in order to avoid any conflict. The events generated by a peripheral device are monitored and synchronized by the connected I/O

module. The I/O module controls the activities of the peripheral based on the signals received from the processor.

Communication between the device and the processor During an I/O transfer, the I/O module performs four major tasks, namely

command decoding, status reporting, data exchange and address recognition.

205 | P a g e Space for learners: Command decoding:The processor sends commands to the I/O module in the form of control

signal. The I/O module decodes the command and instructsthe I/O device to perform the necessary task. Status reporting:As

there is a speed mismatch between an I/O device and the processor, it is necessary for the processor toknow the current status

of the I/O device before and during any data transfer. The processor requests the I/O module to checkstatus of the I/O device.

Typical status signals include ready and busy. The I/O module reports back the status of the I/O device to the processor. Data

Exchange:When the I/O device is ready to send or receive the data, the processor requests the I/O module to initiate the transfer.

In case of input operation, the I/O module gets the data from the I/O device and forwards the same to the processor. And for

output operation, the I/O module gets the data from the processor and then forwards them to the I/O device. Address

Recognition: To uniquely identify the I/O devices, each device is assigned a unique address. During I/O transfer, the processor

refers the I/O devices using their unique address or identifier. The I/O module recognizes the specific I/O device it controlling

based on the address received from the processor. Data Buffering The data buffering is an essential task that the I/O module has

to perform as the data rates of processor or memory is much higher than most of the peripherals. The I/O devices cannot receive

the data at the speed of memory or processor. The I/O module buffers data received from memory or processor till the I/O

device gets ready to receive the data. Similarly, if the data rates of I/O devices are faster than the memory or the processor, the

I/O module buffers data received from I/O device to match the speed of processor and memory. Error Checking Errors are

inevitable while transferring data over any medium. The error may be mechanical or electrical due to technical malfunctions of

the devices or may due to transmission. The transmission errors alter the sequence of bit-pattern of the data. The I/O module

206 | P a g e Space for learners: includes error detecting codes to detect any transmission error. The module checks for error for

each every data it receives. 4.5.2 Structure of I/O Module The general structure of an I/O module is presented Fig. 4.5. It contains

has a register set for storing data, status and control information. The data registers are used to store the buffered data. The status

registers stores the current status information. The control information received from the processor is stored in the control

registers. The register set is connected with the processor via the data bus. The processor uses the address lines and the control

lines to send the address information and command to the I/O modules respectively. The control logic unit recognizes an I/O

device based on the address information received via the address lines. It decodes the command received via the control lines. It

also has logic to interface with the I/O devices. STOP TO CONSIDER Direct exchange of data between the CPU and I/O devices

are difficult due to the difference in data transfer rates, data representation and unit of transfer. I/O modules are thus used a third

party to establish the communication between CPU and I/O.

207 | P a g e Space for learners: Fig. 4.5 Block Diagram of an I/O Module 4.6 I/O ADDRESSING The I/O devices are given unique

identifiers using any of two addressing modes: memory mapped I/O and isolated I/O. In memory mapped I/O, the I/O devices

and memory locations share the same address space. For example, if a system has a 12-bit address bus supporting 4096 unique

addresses, then these addresses will be shared among the memory locations and the I/O devices. That means if there is a

memory address X, then the address X cannot be assigned to an I/O device. The processor treats I/O transfers exactly same as

the memory transfer. Thus, only a single pair of read write lines is required for both memory read/write and I/O read/write. The

processor uses the same instructions to access both memory and I/O. The advantage of memory mapped I/O is a large number

of instructions are available for I/O operations. However it limits the address space for both memory and I/O. Control Lines

Address Lines Data Buffers Status Registers Control Register I/Odevice interface logic I/O device interface logic I/O device

interface logic Control logic Data Lines Data Status Control Data Status Control Data Status Control System Bus Interface Device

Interface

208 | P a g e Space for learners: In isolated I/O, memory locations and I/O devices do not share the same address space. If there

is a memory address X, then there can be an I/O device with address X as memory locations and I/O have different address

space. Thus, a full range of address space is available for both I/O and memory locations. The processor uses different

instructions for memory transfer and I/O transfer. It uses separate lines for memory read and I/O read and same holds true for I/O

write and memory write. When the memory read/write line is high then the address in the address bus is treated as a memory

address and when the I/O read/write line is high then the address in address bus is treated as anI/O address. 4.7 INTERRUPTS In

computer system, an interrupt is a signal generated by hardware to request the processor to give immediate service suspending

the current executions. Hardware interrupts are generally used for handing I/O transfers. As most of the I/O devices are slower

than the processor and the memory, the processor does not wait for the I/O to transfer the data. When the I/O is preparing to

send or receive data, the processor remains busy with other execution. The I/O device sends interrupt signal to the processor via

the I/O module when it gets ready to send or receive data. For each interrupt, the processor has a routine called as interrupt

service routine (ISR). This is a special routine that has the code to accomplish the task requested via the interrupt. The processor

executes the ISR as a response to the interrupt suspending the current execution. After giving the service to the interrupt, the

processor resumes it suspended work.

209 | P a g e Space for learners: Apart from hardware interrupts, there are interrupts raised by softwares. These are basically

exceptions occurred during the execution of a program. Divide by zero, not a number (NaN), overflow and underflow are some

examples of software interrupts. 4.7.1 Types of Interrupts A computer system supports a variety of hardware interrupts.These can

be broadly classified into two categories: maskable and non- maskable. Maskable interrupts are the ones that can be ignored.

There is a facility to disable such interrupts. These interrupts can be ignored only if they are disabled. The non-maskable

interrupts are the highest priority interrupts and cannot be ignored at any cost. Thus, there no option is available to disable such

interrupts. TRAP is the example of a non-maskable interrupt. 4.7.2 Interrupt Latency When the processor suspends the current

execution in order to provide the service to interrupt request, it saves the necessary data including the program return address to

resume the program execution. The program return address is usually saved onto the processor’s stack memory. After saving

these data, the program counter is updated by assigning the routine address. This causes a time delay to start the execution of

ISR from the time interrupt request has been received. This delay is called as interrupt latency. STOP TO CONSIDER When a

process or event requires immediate attention, hardware or software emits an interrupt signal.

210 | P a g e Space for learners: 4.8 DIRECT MEMORY ACCESS DMA is a feature of computer systems that allows certain

hardware subsystems to access primary system memory (random-access memory) without the intervention of the CPU. When

employing programmed I/O or interrupt driven I/O, without DMA the CPU is often totally engaged for the duration of the read or

write operation, leaving it unavailable to execute other tasks. The CPU initiates the transfer via DMA, then does other tasks while

the transfer is ongoing, and ultimately receives an interrupt from the DMA controller when the operation is completed. When the

CPU can't keep up with the rate of data transfer, or when the CPU needs to do work while waiting for a relatively slow I/O data

transfer, this capability comes in handy. DMA is used by many hardware systems, including disk controllers, graphics cards,

network interface cards, and sound devices. In multi-core CPUs, DMA is also employed for intra-chip data transfer. DMA

channels allow computers to transport data to and from devices with significantly less CPU overhead than computers without

them. A processing element inside a multi-core processor can also transmit data to and from its local memory without

consuming processor time, permitting processing and data transfer to happen in parallel. STOP TO CONSIDER DMA is technique

used to perform data transfer without actively involving the CPU. During the DMA transfer the CPU remains free and can perform

some other operations which do not require the system bus.

211 | P a g e Space for learners: CHECK YOUR PROGRESS: i. The key advantage of adopting a single bus structure is that it

______ a. faster transfer b. ease of access c. cost effective d. none of the above ii. System bus is used to transmit a. data b.

address c. control signal d. all of the above iii. Width of ______ bus determines the performance of the overall system. a. data b.

address c. control signal d. all of the above iv. Width of the address bus determines___________ a. the performance of the

system b. system’s memory capacity c. both a and b d. none of the above v. Usual bus structure used to connect I/O devices

follows a. single bus structure b. multiple bus structure c. star bus structure d. none of the above vi. I/O modules are used to

overcome difference in ________ between I/O and CPU. a. speed of data transfer b. data representation c. units of data transfer

d. all of the above vii. Memory mapped I/O has the following advantage over Isolated I/O a. fewer address lines b. more

instructions for I/O operations c. bigger buffer space d. all of the above

212 | P a g e Space for learners: viii. Isolated I/O has the following advantage over Memory mapped I/O a. fewer address lines b.

more instructions for I/O operations c. bigger buffer space d. all of the above ix. What is the mechanism for synchronizing the

CPU with the I/O device in which the device sends a signal when it is ready? a. DMA b. interrupt c. signal handling d. exception x.

DMA transfer has the following advantage a. faster data transfer b. increased CPU throughput c. both a and b d. none of the

above 4.9 SUMMING UP • A bus is a pathway via which two or more devices can perform data transfer. Buses are shared

transmission media; multiple units can use the same bus for the data transfer but at a time only one unit can send data. • The

major components of a computer system, i.e., the CPU, memory modules and I/O are connected via a special type of bus called

as system bus. The system bus has three groups of lines for data, address and control. • The key aspects of bus design are bus

type, bus width, method of arbitration, timing and data transfer type. • I/O devices are external devices which facilitate exchange

of data between the processor and the external environment. Such devices are also known as a peripheral device or simply a

peripheral. An I/O device is connected with the processor via an I/O module port. • I/O devices are not directly connected to the

CPU; rather they are connected via I/O modules. I/O modules take the

213 | P a g e Space for learners: responsibility of establishing the communication between the CPU and I/O devices by bridging

the gap between an I/O device and the CPU. Each I/O module connects with the system bus or to the central switch. An I/O

module can control more than one device. • The I/O devices are given unique identifiers using any of two addressing modes:

memory mapped I/O and isolated I/O. In memory mapped I/O, the I/O devices and memory locations share the same address

space. • In computer system, an interrupt is a signal generated by hardware to request the processor to give immediate service

suspending the current executions. • DMA is a feature of computer systems that allows certain hardware subsystems to access

primary system memory (random-access memory) without the intervention of the CPU. 4.10 ANSWERS TO CHECK YOUR

PROGRESS i, c ii, d iii, a iv, b v, a vi, d vii, b viii, a ix, b x, c 4.11 POSSIBLE QUESTIONS Q1. What is the role of a computer bus? Q2.

Differentiate between multiplexed and dedicated bus. Q3. What are the various aspects of bus design? Q4. Why is it not possible

to connect an I/O device directly to a computer? Q5. Explain the tasks performed by an I/O module. Q6. What are the signals

shared by an I/O module?

214 | P a g e Space for learners: Q7. What do you mean by an interrupt in terms of a computer system? Q8. What do you mean by

DMA? What are the advantages of using DMA? Q9. Discuss various types of I/O devices. Q10. Differentiate between maskable and

non-maskable interrupt. 4.12 REFERENCES AND SUGGESTED READINGS • William Stallings, Computer Organization and

Architecture Designing for Performance, Pearson Education India. • Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer

Organization, McGraw Hill Education. • M. Morris Mano, Computer System Architecture, Pearson Education India. ---×---

215 | P a g e Space for learners UNIT 5: BASIC I/O SYSTEM-II Unit Structure: 5.1 Introduction 5.2 Unit Objectives 5.3 Programmed

I/O 5.4 Interrupt Driven I/O 5.5 Direct Memory Access 5.6 Summing Up 5.7 Answers To Check Your Progress 5.8 Possible

Questions 5.9 References and Suggested Readings 5.1 INTRODUCTION I/O operations are performed through a large variety of

I/O devices. These devices provide a way of interchanging data between the external environment and the computer. Different

I/O devices have different data transfer rates, different data formats and different word lengths. These variations make the direct

interaction between I/O devices and processor (or memory) very complex. Thus, the processor or the memory does not interact

with the I/O devices rather I/O modules are used to establish the interactions between I/O devices and the processor (or

memory) as a mediator. For an instance, if the processor wishes to send some data to an I/O device, it sends it to the I/O module

which forwards the same to the specific I/O device. The I/O operations are performed using three techniques: programmed I/O,

interrupt driven I/O and direct memory access. This unit begins with a discussion on the three mentioned I/O operation

techniques. The unit also presents a discussion on various way of handling multiple interrupts.

216 | P a g e Space for learners 5.2 UNIT OBJECTIVES On completion of this unit students will be able to: • Explain the various

aspects of I/O transfer based on Programmed I/O, Interrupt Driven I/O and DMA Transfer • Compare Programmed I/O, Interrupt

Driven I/O and DMA Transfer • Explain different ways of handling multiple interrupt requests 5.3 PROGRAMMED I/O In

programmed I/O, the processor exchanges data with the I/O module. The processor allows the I/O module to control the I/O

operations directly. The I/O module can read the device status, send read or write command and transfer data. The processor

sends a command to the I/O module and waits for the I/O module to complete the operation. When the processor sees an

instruction associated with I/O, it issues necessary commands to the concerned I/O module. The I/O module then loads the

status register with appropriate values. The processor checks the status of the I/O module periodically until the module is ready

for the transfer. The data transfer takes place only when the I/O module is ready. Most of the I/O devices have much slower data

rates than the processor and the memory. So, the processor may need to wait for a longer amount of time for the I/O to get

ready. This is the major disadvantage of programmed I/O as it reduces the throughput of the processor.

217 | P a g e Space for learners The processor issues some commands to the I/O module along with an address referring an I/O

module and an I/O device. There are four types of commands: control, test, read and write. The control command is used to

specify the operation to be performed by the external device. For example, it may send commands like READ SECTOR, WRITE

SECTOR,SCAN record ID to a magnetic disk. The commands are made according to the operations an I/O device performs. Test

commands are used to test various status signals of both the I/O module and the I/O devices. Before any I/O transfer, the

processor needs to test the current status of the I/O module or the device to check whether the module or the device is

powered on, ready or busy. It may also need to know if the last data transfer is successful or any error has occurred. The read

signals are sent to the I/O modules when the processor needs data from any I/O. The I/O module gets the data from the

particular I/O device and buffers it in its internal storage (data buffers/ data registers) temporarily before sending back to the

processor. The I/O module sends back the data to the processor by placing them onto the data bus on receiving request from

the processor. With write signal, the processor requests the I/O module to send the data available on the data bus to a specific

I/O device. The I/O module obtains the data from the bus and buffers it until the corresponding I/O device is ready to accept the

data. Fig. 5.1 demonstrates the process of transferring blocks of data from memory to I/O using programmed I/O. The processor

first fetches a memory word and tests the status of I/O. If the I/O module is ready it transfers the data immediately otherwise it

waits. During the

218 | P a g e Space for learners waiting period, the processor keeps on sensing the I/O status periodically. Fig. 5.1 Flowchart

showing transfer of data from the processor to I/O using programmed I/O STOP TO CONSIDER Programmed I/O is an I/O

transfer technique wherein the processor continuously senses the status of I/O until the later gets ready for data transfer. This

reduces the performance of the processor. Error Ready Processor asserts writecomma nd to I/O module Processor checksstatus

of I/O Processorsen dsdata to I/O module Status? Done? Processor reads data from Yes Not ready No Fetch Next Instruction

219 | P a g e Space for learners 5.4 INTERRUPT DRIVEN I/O The main problem with programmed I/O is that the processor has to

wait for long time for the I/O module to be ready. During the waiting time, the processor must check the status of the I/O

continuously. This adversely affects the performance of the overall system. Consequently an alternative solution is required to

enhance the performance of the entire system. One best solution is the use of interrupt signals. Instead the processor checking

repetitively the status of I/O, the I/O module can send interrupt to the processor when it is ready. Such type of I/O transfer is

called as interrupt driven I/O. Processor reads data from Processor asserts write command to I/O module Processor checks

status of I/O Processor sends data to I/O Status? Done? Error Ready Yes No Processor does something else I/O module

interrupts CPU Fetch Next Instruction

220 | P a g e Space for learners Fig. 5.2 Flowchart showing transfer of data from the processor to I/O using interrupt driven I/O

Fig. 5.2 presents the flowchart of transfer of memory words to I/O using interrupt driven I/O. The processor first reads the data

from memory and asserts the write signal to the I/O module to which the concerned I/O device is connected. It specifies the I/O

device by placing its address on the address bus. The processor does not wait for the I/O to get ready and continues its

execution. In interrupt driven I/O, the processor issues an command to an I/O module and then gets busy in doing other

processing. The I/O module will send an interrupt request to the processor when it is available to perform the data transfer. Every

interrupt has a specific program or routine called as interrupt service routine (ISR) to process the interrupt request. On receiving

the interrupt request, the processor finishes its current instruction and then goes on to give the service to the interrupt request by

executing the corresponding ISR. The processor stops the current execution temporarily while executing an ISR. It goes back to

its previous program immediately after finishing the ISR. The I/O module identifies the I/O device based on the address available

on the address bus. It checks the status of the corresponding I/O device if it is ready. The I/O device sets the status as ready to

inform the I/O module when it is ready to send any data. On receiving this information, the I/O module interrupts the processor.

The processor then transfers the data and checks if any data is remaining to transfer. If not the processor continues with the data

transfer as shown in the diagram.

221 | P a g e Space for learners Fig. 5.3 Block Diagram of Interrupt Processing Fig. 5.3 presents a block diagram of the sequence

of events occurred during the processing of a typical interrupt. The following sequence of events occurs during an I/O transfer. 1.

The I/O module sends an interrupt signal to the processor. 2. The processor completes current instruction before answering the

interrupt. 3. The processor tests for the interrupt at the end of every instruction cycle. When it sees any interrupt, it sends

acknowledgement to the I/O module. The I/O module then disables the interrupt signal. I/O module interrupts CPU CPU

completes current execution CPU acknowledges interrupt CPU saves PSW and PC onto stack CPU loads interrupt vector in PC

Save the processor registers Process interrupt Restore processor registers Restore old PSW and PC from stack

222 | P a g e Space for learners 4. The processor prepares to start the execution of the ISR. It saves the program return address

(current value of the program counter) and the ALU flags or program status word (PSW) onto the stack. 5. The processor loads

the routine address or the interrupt vector onto the program counter (PC). 6. The processor then saves the current status of the

executing program, particularly the contents of the ALU registers onto stack. This is very essential as the ISR may need to use

these registers. 7. The processor starts processing the interrupt by executing the ISR. At this stage the processor begins its next

instruction cycle. 8. After completion of the execution of the ISR, the processor restores ALU registers. 9. Finally it restores PSW

and the old value of PC stored from the stack. STOP TO CONSIDER Unlike in programmed I/O, in interrupt driven I/O the

processor does not continuously check the status of the I/O device. After initiating the I/O transfer the processor gets involved in

some important tasks without waiting for the I/O. The I/O module sends an interrupt signal whenever the I/O device is ready for

the data transfers. Design Issues When it comes to interrupt driven I/O, there are two design challenges to consider. First, how

will the processor identify the interrupting device if multiple devices are connected? Second, which interrupt to process if

multiple interrupts occur at some time? To address the first issues, i.e., device identification four techniques are used in common:

223 | P a g e Space for learners • Multiple interrupt lines • Software Poll • Hardware Poll (Daisy Chain) • Bus Arbitration The

simplestand straightforward solution to handle multiple interrupt is the use of multiple interrupt lines for multiple I/O

devices.However, it is not a practical solution to have too many lines for interrupts. Typically, interrupt lines not assignedtothe I/O

devices; instead they are assigned to the I/O modules. This method helps the processor to identify easily the interrupted module.

But an I/O module can connect more than one device, so to identify the specific device (the one which triggered the interrupt)

from many one of the remaining three methods can be used. Instead of using multiple interrupt lines Software polling can be

used alternatively to handle multiple interrupts. In this, a common ISR is executed when the processor sees an interrupt. The job

of this ISR is to detect the interrupted module by polling each module. The polling can be done by using a dedicated command

line (TESTI/O). The processor sets the TESTI/Oand places the I/O address in the address bus. An I/O module responds to this

signal positively if the interrupt is raised by it. Alternatively, each I/O module can possess a status register which will be set when it

raises the interrupt signal. The processor will check the status register of each I/O module and will determine the I/O module that

caused the interrupt based the status information. After identification of the interrupted module, the processor executes the ISR

of the interrupted device. The advantage of software polling is that a single interrupt line is sufficient for implementing interrupt

driven I/O. However it is very time consuming.

224 | P a g e Space for learners Hardware polling is a very efficient alternative to software polling for handling multiple interrupts.

A technique called Daisy Chain can be used to implement this. In this approach, a common interrupt request line is shared

among all I/O modules. The I/O modules are connected in a serial order. The interrupt acknowledgement line is shared with the

I/O modules through a daisy chain as shown in Fig. 5.4. The processor sets the interrupt acknowledgement signal when it sees

any interrupt request. This signal is received by the I/O module which is directly connected with the interrupt acknowledgement

line. If the interrupt request is raised by that particular I/O module then it will respond by placing a vector in the data lines;

otherwise the module will forward the acknowledgement signal to the next module in the sequence. The next module will react

to the signal exactly in the similar manner. Thus the interrupt acknowledgment signal will be propagated through the I/O

modules until any response is received from the interrupted module. The vector is usually an address that refers an I/O module.

The processor calls the device specific ISR based on the value of the vector. Another alternative is bus arbitration. In this

approach, only one module can send interrupt request. To do so, the I/O module has to obtain the control of the bus first. The

processor responds to the interrupt by sending an interrupt acknowledgement signal. The I/O module responds to this signal by

placing its interrupt vector onto the data bus. To solve the second issue, different levels of priorities can be assigned to different

modules. When more than one module interrupts, the modules are given services according to their priority levels. The module

with the highest priority is given the service first. The above mentioned techniques can also be used to handle this priority

interrupt. When there are multiple interrupt lines, the

225 | P a g e Space for learners processor simply chooses the one with the highest priority. In software polling, the module

polling order is designed according to their priority. In case of hardware polling, the modules in the daisy chain are arranged

according to their priority with the highest priority first. In case of bus arbitration, the bus arbiter determines which module

should get the control of the bus depending on their priority. Fig. 5.4 Hardware Polling using Daisy Chaining 5.5 DIRECT MEMORY

ACCESS Both programmed I/O and interrupt driven I/O require the active intervention of the processor to perform the data

transfer between memory and I/O. When there is a need to transfer a large amount of data, the processor is often tied up with

the I/O transfer. Also, the data transfer speed is affected by lot of testing and condition checking. To avoid these issues a more

efficient technique called Processor INTR INTACK In Out In Out In Out Next Device Device 1 Device 2 Device 3 Vector 1 Vector 2

Vector 3

226 | P a g e Space for learners direct memory access (DMA)can be used while transferring a large amount of data. It is a data

transfer technique in which transfer of data from memory to I/O takes place without the active involvement of the processor. To

accomplish this, an additional module called a DMA controller is required. A DMA controller shares the system bus along with

processor, memory and I/O. Its role is to control the entire data transfer. For this, it has to acquire the control of the system bus.

The structure of a typical DMA controller is shown in Fig. 5.5. When the processor needs to perform DMA transfer, it issues a DMA

request to the DMA controller and sends the following information to the DMA controller: • Depending on the operation type, the

processor asserts read or write signal to the DMA controller by raising the corresponding control line between the processor and

the DMA controller. • The address of the target I/O device. • The address in the memory from/to where data transfer to begin

through the data lines. The DMA controller saves this address in its address register. • The number of words to be transferred. This

value is then stored in the data count register. After initiating the transfer, the processor relinquishes the buses and continues with

other works while the DMA controller gains the control of the buses and takes over the remaining transfer. The DMA controller

transfers the entire blocks of data one by one. Once the DMA transfer is complete, the controller sends an interrupt to the

processor.

227 | P a g e Space for learners There are basically two types of DMA transfers: burst mode and cycle stealing. Burst mode

transfers a whole block of data in a single contiguous sequence. When the processor grants the DMA controller the access to the

system bus, it transfers entire bytes of data in the data block before returning control of the system buses to the processor;

however this leaves the processor inactive for a long time. In systems where the processor should not be disabled for the length

of time required for burst transfer modes, the cycle stealing mode is used. The DMA controller gains control the system bus in

cycle stealing mode in the same way as it does in burst mode, by using the BR (Bus Request) and BG (Bus Grant) signals, which

control the interface between the processor and the DMA controller. In cycle stealing mode, however the control of the system

bus is delegated to the processor via BG after one byte of data transfer. After a cycle, the DMA controller again obtains the buses

using BR and BG signal for the next transfer. This switching of the buses between the processor and the DMA controller

continues until entire blocks of data are transferred. CHECK YOUR PROGRESS: i. _________ is a way of accessing I/O devices by

continuously checking the status flags. a. Programmed I/O b. Interrupt driven I/O c. DMA d. None of the above ii. The address of

an ISR is termed as a. interrupt location b. interrupt vector c. interrupt address d. none of the above iii. ______ is used to store the

return address of ISR.

228 | P a g e Space for learners a. Registers b. Cache c. System heap d. Stack iv. In case of interrupt driven I/O, I/O module sends

_________ signal to the processor when an I/O device is ready for data transfer. a. interrupt request b. interrupt

acknowledgement c. read/write d. none of the above v. After receiving an interrupt, the signal delivered from the processor to the

device is a. interrupt request b. interrupt acknowledgement c. read/write d. none of the above vi. _________ is a technique to

handle multiple interrupt. a. Software polling b. Daisy Chaining c. Multiple interrupt line d. all of the above vii. DMA transfer is

initiated by the a. DMA controller b. processor c. I/O device d. none of the above viii. _______ is responsible for controlling the

transfer of data during DMA. a. DMA controller b. processor c. I/O device d. none of the above ix. During DMA transfer, ______

becomes the master of the system bus. a. DMA controller b. processor c. I/O device d. none of the above x. The method by

which the DMA controller steals the processor's access cycles is known as

229 | P a g e Space for learners a. bust mode b. cycle stealing c. memory stealing d. bus stealing 5.6 SUMMING UP • I/O devices

provide a way of interchanging data between the external environment and the computer. Different I/O devices have different

data transfer rates, different data formats and different word lengths. • Due to the differences present, the processor or the

memory does not interact with the I/O devices rather I/O modules are used to establish the interactions between I/O devices and

the processor (or memory) actsas a mediator. • The I/O operations are performed using three techniques: programmed I/O,

interrupt driven I/O and direct memory access. Fig. 5.5 Structure of a DMA controller Address lines Data Counter Data Register

Address Register Control logic Data lines DMA Request Acknowledg e Interrupt

230 | P a g e Space for learners • In programmed I/O, the processor exchanges data with the I/O module. The processor allows

the I/O module to control the I/O operations directly. The processor senses the status of I/O continuously until the device is

ready. It transfers the data only when the I/O is ready. • In interrupt driven I/O, instead the processor checking repetitively the

status of I/O, the I/O module sends interrupts to the processor when it is ready. The processor continues with meaningful tasks

after initiating the I/O transfer without waiting for the I/O to get ready. • DMA is a data transfer technique in which transfer of data

from memory to I/O takes place without the active involvement of the processor. To accomplish this, an additional module called

a DMA controller is required. A DMA controller shares the system bus along with processor, memory and I/O. STOP TO

CONSIDER DMA is a technique by virtue of which data transfers take place without involving the processor. To control the entire

transfer a special module is attached to the system bus called as DMA controller. During a DMA transfer, the processor remains

free to perform other processing. 5.7 ANSWERS TO CHECK YOUR PROGRESS i, a ii, b iii, c iv, a v, b vi, d vii, b viii, a ix, a x, b 5.8

POSSIBLE QUESTIONS Q1. What is meant by interrupt? Q2. What is the difference between Programmed I/O and Interrupt driven

I/O?

231 | P a g e Space for learners Q3. How does a computer handle multiple interrupt? Q4. What is meant by interrupt priority?

What are techniques available to handle priority interrupt? Q5. What is polling? Q6. What is the difference between Software and

Hardware Polling? Q7. What is the advantage of DMA transfer? Q8. What are the different techniques used for DMA transfer? Q9.

Differentiate between Cycle Stealing and Burst Mode. Q10. What are the major components of a DMA controller? 5.9

REFERENCES AND SUGGESTED READINGS • William Stallings, Computer Organization and Architecture Designing for

Performance, Pearson Education India. • Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization, McGraw Hill

Education. • M. Morris Mano, Computer System Architecture, Pearson Education India. ---×---

BLOCK III: ADVANCED CONCEPTS OF PARALLEL ARCHITECTURES

232 | P a g e Space for learners: UNIT 1: BASIC PARALLEL ARCHITECTURE AND INSTRUCTION PIPELINE Unit Structure: 1.1

Introduction 1.2 Unit Objectives 1.3 Flynn’s Classification of Computer Architecture 1.3.1 SISD 1.3.2 SIMD 1.3.3 MISD 1.3.4 MIMD

1.4 Type of Processors 1.4.1 Scalar Processor 1.4.2 Superscalar Processor 1.4.3 Pipelined Processor 1.4.4 Vector Processor 1.5

Pipelining 1.6 Instruction pipelining 1.7 Dependency in Pipelined Processors 1.7.1 Structural Dependency or Resource Conflict

1.7.2 Control Dependency or Branch Hazard 1.7.3 Data Dependency or Data Hazard 1.7.4 Pipeline Bubbles 1.8 Summing Up 1.9

Answers To Check Your Progress 1.10 Possible Questions 1.11 References and Suggested Readings 1.1 INTRODUCTION The

chapter reviews architectural evolution of computers starting from uniprocessor systems to multiprocessor system through

Flynn’s classification of computer architecture. The chapter also compares various processors types like scalar processor,

superscalar processor, pipelined processor and vector processor. The basic concept of pipelining and the working of instruction

pipeline is

233 | P a g e Space for learners: discussed in detail. Finally, the chapter ends with discussion on the types of dependencies that

exists in pipelined processors which if not taken care of will affect the overall performance of the system. The three

dependencies discussed are resource conflict, branch hazard and data hazard. 1.2 UNIT OBJECTIVES After going through this

unit, you will be able to: • Classify computer architecture based on the notion of instruction and data stream. • Compare different

types of processors and their characteristics. • Explain the basic concept of pipelining and the types of pipelining. • Explainhow

pipelining improvesthe performance of a system. • Explain how multiple instructions are executed in an overlapped fashion in

instruction pipelining. • Identify the types of dependencies in pipelined processors and ways to resolve the dependencies. 1.3

FLYNN’S CLASSIFICATION OF COMPUTER ARCHITECTURE With the increase in the number of processing units and

segmentation of a job/program into multiple segments wherein each of the segment is placed on a different processing unit for

concurrent execution has resulted in classification of systems. Flynn's classification or Flynn’s taxonomy of computer

architectures is proposed by Michael J. Flynn in the year 1972. The classification is based on the notion of instruction stream and

data stream. A stream refers to sequence of instruction or data operated by the computer system. The flow of instruction from

memory to

234 | P a g e Space for learners: processor is called instruction stream and the flow of data between processor and memory is

called data stream. Figure 1.1: Flynn’s classification of Computer Architecture The Figure 1.1 shows four categories in which Flynn

has classified computer architecture based on instruction and data stream. A conventional uniprocessor system is called SISD

(Single instruction stream Single data stream) computers. A vector /array of processors is called SIMD (Single instruction stream

Multiple data stream) computers. In MISD (Multiple instruction stream Single data stream) computers, different instructions work

on the same data. Finally, in MIMD (Multiple instruction stream Multiple data stream) computers, multiple processors each

working on different data increases the overall performance of the system. 1.3.1 SISD A Single instruction stream single data

stream (SISD) system as shown in Figure 1.2 is a uniprocessor system. Such systems work on Instruction Stream Data Stream

Single Multiple Single SISD Traditional Von Neumann Single Processor Architecture MISD Systolic Arrays Multiple SIMD Vector

processor/Array processor fine grained parallel computer MIMD Multiprocessor Systems, Multi Core systems

235 | P a g e Space for learners: a single instruction stream and single data stream at a time. Instructions in SISD systems are

processed in a sequential order and are therefore known as sequential computers. Conventional systems were of SISD

architecture. Processing in SISD systems involve storing both instructions and data in primary memory. Processing speed of such

systems depends on internal data transfer rate. However, performance of such systems can be improved with the help of multiple

functional units or pipelining. Example of SISD systems includes CDC 6600, IBM PC. Figure 1.2: SISD Architecture 1.3.2 SIMD A

single instruction stream multiple data stream (SIMD) system as shown in Figure 1.3 are multiprocessor systems capable of

working on different data streams through a single instruction stream. SIMD systems are used in scientific computation involving

vector operations. They are also known as vector processors or array processors. There are n number of processing units each

having its own memory and stream of data. All the n processing units receive the same instruction from the control unit. Example

of SISD systems includes CRAY vector computers. I/O IS Control Unit Processing Unit Memory Unit IS DS

236 | P a g e Space for learners: Figure 1.3: SIMD Architecture 1.3.3 MISD A multiple instruction stream single data stream (MISD)

system as shown in Figure 1.4 is a multiprocessor system which executes different instructions on different processing unit but

data set is same for all the instructions. MISD systems are not practical in the majority of the application and therefore are not

available commercially. One such example of MISD system is systolic array. Figure 1.4: MISD Architecture I/O IS DS IS IS DS IS IS

Control Unit 1 Processing Unit 1 Memory (Program & Data) Control Unit 2 Processing Unit 2 Control Unit n Processing Unit n IS

DS DS DS DS DS DS DS Control Unit Processing Unit 1 Memory Unit 1 Processing Unit 2 Memory Unit 2 Processing Unit n

Memory Unit n IS IS

237 | P a g e Space for learners: 1.3.4 MIMD A multiple instruction stream multiple data stream (MIMD) system is a multiprocessor

system capable of executing different sets of instructions each working on a different set of data simultaneously. Figure 1.5 shows

MIMD architecture. Multiple SIMD systems connected together can be viewed as a MIMD system. MIMD systems can be classified

into shared-memory MIMD and distributed-memory MIMD based on processing unit-main memory connections. The shared

memory MIMD system also known as tightly coupled multiprocessor system, are the one where all the processing units are

connected to a single shared memory. Any form of communication between processing unit takes place with the help of shared

memory. Changes done to data in shared memory by one processing unit is visible to all other processing units. In distributed

memory MIMD systems or loosely coupled multiprocessor systems, all processing units have their own local memory. The

communication between processing units takes place through the interconnection. Figure 1.5: MIMD Architecture IS DS IS I/O

I/O IS DS DS IS Control Unit 1 Processing Unit 1 Shared Memory Control Unit 2 Processing Unit 2 Control Unit n Processing Unit

n IS IS

238 | P a g e Space for learners: 1.4 TYPE OF PROCESSORS There are several types of processors. A brief description of each of

these are provided below. 1.4.1 Scalar processor A scalar processor also known as Single Instruction Stream Single Data Stream

(SISD) can process a single data item at a time. Scalar processor can process either integer or floating point operands. The

simplest scalar processor uses floating point unit to process integer operands. However scalar processor may have separate

integer and floating point units for handling integer and floating point operands. AMD 2900, Motorola 68040, Intel 386, Intel 486,

M88100 are some examples of scalar processor. 1.4.2 Superscalar Processor Superscalar processors are found in parallel

computing architecture to improve the performance of the system by executing multiple instructions in parallel. A superscalar

processor manages multiple instruction pipelines to execute multiple instructions concurrently in a clock cycle. The performance

of superscalar processor is highly dependent on the instruction dependency quotient. If the instructions to be executed are

independent, then high performance is achieved. Figure 1.6 shows a superscalar pipeline of degree 2 (i.e. Two instructions can be

executed in parallel). There are five stages in the pipeline namely fetch, decode, operand fetch, execute and write. It can be

observed from the Figure 1.6 that the superscalar pipeline has two units each of fetch, decode, operand fetch, execute and write,

therefore two instructions can be simultaneously executed. In the first clock cycle instruction (1, 2) are fetched, in the second

clock cycle next two instructions i.e. (3, 4) are fetched and the process

239 | P a g e Space for learners: continues. Pentium, DEC Alpha, PowerPC are some of the example of superscalar processor

computers. 1 2 3 4 5 6 7 8 Instruction 1 F D OF E W Instruction 2 F D OF E W Instruction 3 F D OF E W Instruction 4 F D OF E W

Instruction 5 F D OF E W Instruction 6 F D OF E W Instruction 7 F D OF E W Instruction 8 F D OF E W Figure 1.6: A superscalar

pipeline of degree two. 1.4.3 Pipelined Processor There are four types of pipelined processors namely Scalar Pipeline, Superscalar

Pipeline, Super pipeline, Super pipeline Superscalar as shown in Figure 1.7 depending upon the following criterions. It is assumed

that all the pipelined processors are of k stages. • Machine Pipeline Cycle (MPC): Time taken by each stage to process an

instruction. • Instruction Issue Rate (ISR): Number of instruction that can be issued simultaneously. • Instruction Issue Latency

(ISL): Time interval between issue of two instructions. • Instruction Level Parallelism (ILP): Number of instructions that can be

executed simultaneously in the pipeline.

240 | P a g e Space for learners: Machine Type Scalar Pipeline Superscalar Pipeline Superpipeline Superpipeline Superscalar MPC 1

1 1/n 1/n ISR 1 m 1 m ISL 1 1 1/n 1/n ILP 1 m n mn Figure 1.7: Parameters of Pipelined Processor. 1.4.4 Vector processor Vector

processors are found mainly in supercomputers combining pipelining and interleaved memory unit. It is used mainly in scientific

and multimedia applications involving processing of huge volume of data. It is capable of processing entire vector in single

instruction. The operands in the instructions are vectors instead of a single element. One of the advantages of vector processors

is less number of fetch and decode instructions. Vector processor uses many optimization schemes to improve performance of

the system such as use of memory banks to reduce load/store latency, use of strip mining technique to adjust the size mismatch

between vector operands and vector registers, vector chaining to resolve data dependency between vector instructions etc.

Advantages of Vector processing: • Programs are smaller in size as the number of instructions is quite less. • As each data in

registers is actually used by the vector processor therefore wastage in memory access is significantly less compared to cache

memory. • Requirement of power is limited to only functional unit and register buses during vector operation.

241 | P a g e Space for learners: Based on how operands are fetched in vector processors is categorized into two types: • Vector

register Processor • Memory-Memory Vector Processor Vector-Register Processor It requires that all the operations performed in

the vector processor use the source operands and destination operands as vector registers. However, there is a small

disadvantage initially that is vector data in memory must be divided into fixed length segments so that can be placed in vector

register. But once the pipelining starts this disadvantage is nullified. Memory-Memory Vector Processor Such processors allow

source operand and destination operand to be routed directly to the arithmetic logic unit (ALU). Once the processing is

completed in the ALU, the result is routed back to memory. However due to memory latency the time between initializing the

first instruction and the getting the first output from the pipeline is quite large. 1.5 PIPELINING A pipeline is similar to an assembly

line in a production factory. A product has to go through multiple stages in the assembly line before the final product is

manufactured. At a time, all the stages work simultaneously but on different phases of the product. This process is referred to as

pipelining. Pipelining is also referred to as execution of multiple jobs/instructions parallelly in an overlapped fashion.

242 | P a g e Space for learners: Let us look at a real life example that works on the concept of pipelining. Consider a packaged

drinking water plant having the following 3 stages and each stage takes 1 minute to complete its operation. • Filling (F)--- Stage 1

• Sealing (S) --- Stage 2 • Labeling (L) --- Stage 3 In a non-pipelined operation if we have to do the packaging of 4 bottles, it will

take 12 min to complete the operation as shown in Figure 1.8. Each bottle spending 1 min in each of the filling, sealing and

labeling stage respectively. The bottle reaches stage-1 where it is filled and after 1 minute it moves to the stage-2 where it is

sealed. At this point stage-1 is in idle state. Now after staying in stage-2 for 1 minute the bottle is moved to stage-3 where it is

labeled. At this point stage-1 and stage- 2 is in idle state as shown in the figure 1.8. This process of packaging does not utilize the

time as the stages remain in idle state during the operation. To overcome the issue and to utilize the stages to its maximum limit,

pipelining is used. Time in minute 1 2 3 4 5 6 7 8 9 10 11 12 Bottle 1 F S L Bottle 2 F S L Bottle 3 F S L Bottle 4 F S L Figure 1.8: Non

Pipelined Operation

243 | P a g e Space for learners: Now, in a pipelined operation if we have to do the packaging of 4 bottles, it will take 6 min to

complete the operation as shown in Figure 1.9. Compared to 12 minutes taken in non-pipelined operation. As it can be observed

in Figure 1.9, when the first bottle is in stage- 2 (Sealing), the second bottle is placed in stage-1(Filling). Similarly, when the first

bottle is in stage-3(Labeling), second bottle is placed in stage-2(Sealing) and third bottle is placed in stage-1(Filling). Thus, none of

the stages are idle at any moment. All the stages are working on a different bottle at a time. This process of working in an

overlapped fashion to utilize the stages of a pipeline to its fullest is called pipelining. Time in minute 1 2 3 4 5 6 7 8 9 10 11 12

Bottle 1 F S L Bottle 2 F S L Bottle 3 F S L Bottle 4 F S L Figure 1.9: Pipelined Operation 1.6 INSTRUCTION PIPELINING In a

computer system the technique of executing multiple instructions in an overlapped fashion is known pipelining. A pipeline

consists of many

63% MATCHING BLOCK 29/91

stages and these stages are connected to one another in a pipe like structure. An instruction enters one end

of the pipeline, goes through several stages before exiting from another end. Pipelining improves the overall throughput of the

system.

244 | P a g e Space for learners: In a pipeline system, each stage uses register to hold the output of that stage. Output of one

stage is applied as input to the next stage. Figure 1.10: Five stage Instruction Pipeline Figure 1.10 shows an example of five stage

instruction pipeline consisting of fetch, decode, operand fetch, execute and write stages. Here streams of instructions are

executed in overlapped fashion thereby increasing the throughput of the computer system. Figure 1.11 shows the timing diagram

of an instruction pipeline. While the instruction pipeline reads one instruction from the memory, previous instructions is executed

in other stage of the pipeline. Thus, multiple instructions are executed simultaneously. From the Figure 1.11, it can be observed

that while the first instruction started at time period one, the second instruction started at time period two and so on. Up to time

period four, not all stages were working simultaneously but from time period five onwards all the five stages are working

simultaneously. Therefore, from instruction number five onwards each stage is working on a different instruction as: Instruction 1:

Write Instruction 2: Execute Instruction 3: Operand Fetch Instruction 4: Decode Instruction 5: Fetch Time 1 2 3 4 5 6 7 8 9 10 11

Instruction 1 F D OF E W Instruction 2 F D OF E W EXECUT WRITE FETCH DECO OPERAND Inpu Outpu

245 | P a g e Space for learners: Instruction 3 F D OF E W Instruction 4 F D OF E W Instruction 5 F D OF E W Instruction 6 F D OF

E W Instruction 7 F D OF E W Figure 1.11: Timing diagram for Instruction Pipeline Operation If there are k number of stages and n

number of instructions, then total time T taken to execute n instructions can be given as T = k + (n -1). 1.7 DEPENDENCY IN

PIPELINED PROCESSOR A pipelined processor may be affected due to the following dependencies, which may also result in the

stalls in the pipeline. A stall is a pipeline cycle with no operation or no new input. • Structural Dependency or Resource Conflict •

Control Dependency or Branch Difficulty • Data Dependency or Data Hazard 1.7.1 Structural Dependency or Resource Conflict

Structural dependency is the result of resource conflict in the pipeline. When several instructions in the same cycle try to access

the same resource, a resource conflict arises.A resource can be a register, memory, or ALU. Time 1 2 3 4 5 6 7 8 9 10 11

Instruction 1 F D OF W Instruction 2 F D OF W Instruction 3 F D OF W Instruction 4 F D OF W Figure 1.12: Timing diagram of a 4-

Stage Instruction Pipeline

246 | P a g e Space for learners: In cycle 4 of the Figure 1.12, instruction1 is trying to do the write operation on memory and

instruction 4is trying to fetch from memory. As both the instructions are trying to access same resource i.e. memory at the same

time, it introduces a resource conflict between the two instructions. Such situation can be avoided by keeping the instruction 2 in

wait state until the required resource becomes available. 1.7.2 Control Dependency or Branch Hazard A pipeline achieves its

maximum utilization if all the stages of the pipeline take equal amount of time to process and there is no branch instruction in the

program. However, if the program contains branch instruction, the pipeline suffers from branch penalty. The timing diagram of a4

stage instruction pipeline containing branch instruction is shown in Figure 1.13 where instruction 1,2,3 and 4 are non-branch

instruction and instruction 5 is a branch instruction. Time |?Branch Penalty | 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 Instructio n 1 F D O

F E Instructio n 2 F D O F E Instructio n 3 F D O F E Instructio n 4 F D O F E Instructio n 5 (branch to instructio n 25) F D O F E

247 | P a g e Space for learners: Instructio n 6 F D O F Instructio n 7 F D Instructio n 25 F D O F E Instructio n 26 F D O F E Figure

1.13: Timing diagram for Instruction Pipeline Operation The pipeline executes instruction 1, 2, 3 and 4 sequentially, followed by

instruction 5 (branch instruction). By the time instruction 5 is decoded by the pipeline decode stage, instruction 6 and instruction

7 enters the pipeline. At this point, the pipeline realized that it should have placed instruction 25 after the branch instruction 5

instead of instruction 6. So the pipeline discards the instructions 6 and 7, that is the pipeline cycle at time period 6 and 7 are

wasted. This is known as branch penalty as the processor could not anticipate the branch. So instruction 25is assumed to be the

instruction to be executed on the branch and starts at time period eight. 1.7.3 Data Dependency or Data Hazard In a pipeline,

there can be a situation where output of first instruction acts as an input to the second instruction. Such situation exhibits data

dependency where the second instruction must wait in the pipeline for the first instruction to complete its execution. Otherwise

the second instruction may be working on an invalid data. This dependency between the instructions is known as data

dependency or data hazard. So the order of execution of the instructions does matter.

248 | P a g e Space for learners: There are mainly three types of data hazards: • Read after Write (RAW) Hazard or Flow

dependency • Write after Read(WAR)Hazard or Anti-Data dependency • Write after Write (WAW) Hazard or Output dependency

Read after Write (RAW) Hazard: Instruction 1: R3 ? R4 + R5 Instruction 2: R6 ? R3 + R4 Here, the instruction 2 is reading a value in

register R3 that is being produced by instruction 1. So instruction 2 should execute after instruction 1 completes its execution.

Write after Read(WAR) Hazard: Instruction 1: R3? R4 + R5 Instruction 2: R4? R6 + R7 Here the instruction 2 is writing a value in

register R4 that is being read before by instruction 1. So instruction 2 should execute after instruction 1 completes its execution.

Write after Write (WAW) Hazard: Instruction 1: R1? R2 + R3 Instruction 2: R1? R4 + R5 Here the instruction 2 is overwriting the

value in register R1 that is being produced by instruction 1. So instruction 2 should execute after instruction 1 completes its

execution. 1.7.4 Pipeline bubbles A bubble or a pipeline bubble represents a stage in the pipeline that cannot perform any useful

operation due to the lack of data from previous stage of the pipeline. It is a method to prevent structural, data and branch

hazards. Pipeline control logic analyzes if a hazard

249 | P a g e Space for learners: could arise while instructions are fetched. If this is the case, no operations (NOPs) are added to

the pipeline by the control logic. As a result, before the next instruction runs, the previous one will have had enough time to

complete and avert the hazard. CHECK YOUR PROGRESS: i. CRAY systems are an example of______________. a) SISD b) SIMD

c) MISD d) MIMD ii. Pentium, DEC Alpha, PowerPC are some of the example of _____________computers. a) superscalar

processor b) Super pipeline c) Scalar d) Superscalar Super pipeline iii. To _________data in between the pipeline stages, registers

are used. a) Write b) Process c) Read d) Hold iv. Motorola 68040 is an example of ____________ a) Scalar processor b)

Superscalar processor c) Super pipeline processor d) Pipelined processor v. A superscalar pipeline (5 stages) of degree 3 will need

__________ cycles to complete 9 instructions. a) 6 b) 7 c) 8 d) 9

250 | P a g e Space for learners: vi. Instruction Issue Latency (ISL) in a pipelined processor means___ a) Time interval between

issuing of first and last instruction. b) Time interval between completion of first and second instruction. c) Time taken to complete

execution of first instruction. d) Time interval between issuing of two instructions. vii. Instruction Level Parallelism in a pipelined

processor means____________ a) Number of instructions in the pipeline. b) Number of instructions that can be completed

simultaneously in the pipeline. c) Number of instructions that can be executed simultaneously in the pipeline. d) None of the

above viii. Vector processors or Array processors are also known as__________ systems a) SISD b) MISD c) SIMD d) MIMD ix. The

time period when the pipeline unit remains idle is called as _____ a) Hazards b) Bubbles c) Stalls d) Both b) and c) x. In pipelining,

memory access speedup is achieved through _______ a) Cache b) Buffers c) Memory Registers d) Special Registers xi. In a

pipeline branch instructions are handled by __________

251 | P a g e Space for learners: a) Pipeline flush operation b) Pipeline Freeze operation c) Pipeline Depth operation d) Both a) and

b) xii. If second instruction tries to do a write operation before the first instruction can write on the same data, it is called as

_____________ dependency. a) Data b) Anti c) Flow d) Output xiii. If second instruction tries to do a read operation after the first

instruction does a write on the same data, it is called as _____________ hazard. a) RAW b) WAR c) Data d) Control xiv. Time

taken by a 7 stage instruction pipeline to complete execution of 10 instructions is___________________. a) 70 b) 32 c) 16 d) 17

xv. Time taken by a 3 stage superscalar pipeline of degree 2 to execute 10 instructions is _______. a) 10 b) 9 c) 8 d) 7 1.8

SUMMING UP • Flynn has classified computer architecture based on instruction and data stream and are SISD, SIMD, MISD, and

MIMD.

252 | P a g e Space for learners: • SISD systems are processed in a sequential order and are therefore known as sequential

computers. • SIMD systems are multiprocessor systems capable of working on different data streams through a single instruction

stream. • MISD system is a multiprocessor system which executes different instructions on different processing unit but data set is

same for all the instructions. • MIMD system is a multiprocessor system capable of executing different sets of instructions each

working on a different set of data simultaneously. • Superscalar processors are found in parallel computing architecture to

improve the performance of the system by executing multiple instructions concurrently in a clock cycle. • Pipelined processors

namely Scalar Pipeline, Superscalar Pipeline, Super pipeline, Super pipeline Superscalar. • Vector processors are used mainly in

scientific and multimedia applications involving processing of huge volume of data. It is capable of processing entire vector in

single instruction. • Pipelining is also referred to as execution of multiple instructions parallelly in an overlapped fashion. •

Structural dependency is the result of resource conflict in the pipeline. When several instructions in the same cycle try to access

the same resource, a resource conflict arises. • If the program contains branch instruction, the pipeline suffers from branch

penalty. • Dependency between the instructions is known as data dependency or data hazard. Order of execution of the

instructions does matter.

253 | P a g e Space for learners: • There are mainly three types of data hazards Read after Write (RAW), Write after Read (WAR),

and Write after Write (WAW). • A bubble or a pipeline bubble represents a stage in the pipeline that cannot perform any useful

operation due to the lack of data from previous stage of the pipeline. 1.9 ANSWERS TO CHECK YOUR PROGRESS i. b ii. a iii. d iv. a

v. b vi. d vii. c viii. c ix. d x. a xi. d xii. d xiii. a xiv.c xv.d 1.10 POSSIBLE QUESTIONS Q1 Discuss Flynn’s classification of computer

architecture. Q2 According to Flynn's classification, the architecture which is of theoretical interest but no real-world system has

been developed on it? Q3 Differentiate between shared memory and distributed memory MIMD systems. Q4 Explain how

pipelining can increase the performance of a system compared to a single processor system. Q5 Differentiate between

superscalar processor and Super pipeline processor. Q6 Briefly describe the parameters on which different pipelined processors

are measured in terms of their performance. Q7 Discuss the types of processors that is helpful in parallel processing. Q8 Discuss

the factors that affect the performance of a pipeline.

254 | P a g e Space for learners: Q9 Define instruction pipeline with the help of an example. Q10 Discuss resource conflict in

pipelining. Q11 Discuss Data hazard in pipelining. Q12 What is a pipeline bubble? In what situation a pipeline bubble is used? 1.11

REFERENCES AND SUGGESTED READINGS • Advanced Computer Architecture, 3e, Kai Hwang, Naresh Jotwani; McGraw-Hill

Education, 2016 • Computer Organization and Architecture: Designing for Performance 10 Edition, by William Stallings, Pearson.

• Computer System Architecture Third Edition, M. Morris Mano, Rajib Mall, Pearson • Computer Organization Fifth Edition, Carl

Hamacher, McGraw Hill ---×---

255 | P a g e Space for learners: UNIT 2: VECTOR PROCESSING Unit Structure: 2.1 Introduction 2.2 Unit Objectives 2.3 Vector

Computing 2.4 Vector Processor 2.4.1 Some important facts on a vector processor 2.4.2 Advantages of Vector Processor 2.4.3

Applications of Vector Processors 2.4.4 Cost of Vector Processor 2.4.5 Classification of Vector Processor 2.4.5.1 Memory to

memory architecture 2.4.5.2 Register to Register Architecture 2.5 Superscalar processor 2.6 Vector Computer 2.6.1 Vector

registers 2.6.2 Scalar registers 2.7 Array Processors 2.7.1 Types of Array Processors 2.7.1.1 Attached Array Processors 2.7.1.2 SIMD

Array Processors 2.7.2 Advantages of Array Processor 2.8 Pipelining 2.8.1 Types of Pipeline 2.8.1.1 Arithmetic Pipeline 2.8.1.2

Instruction Pipeline 2.8.2 Pipeline Conflicts 2.8.3 Advantages of Pipelining 2.8.4 Disadvantages of Pipelining 2.9 Chaining

Technique 2.10 Gather-scatter Operation 2.10.1 The basic concepts of Gather-scatter 2.10.2 Different Gather-scatter applications

2.11 Summing up 2.12 Answer to check your progress 2.13 Possible Questions 2.14References and Suggested Readings

256 | P a g e Space for learners: 2.1 INTRODUCTION A normal processor sometimes called scalar

100% MATCHING BLOCK 30/91

processor, which works on simple instruction at a time, which operates on single data items.

Standard von Neumann machine is based on the instruction and data are stored in memory, that has one operation at a time,

maximum speed of the system is limited by the memory bandwidth(bits/sec or bytes/sec). It means normal processing having

limitation on memory bandwidth also memory is shared by CPU and I/O.

96% MATCHING BLOCK 31/91

But in today's world, this technique will prove to be highly inefficient, as the overall processing of instructions will be very slow.

There is a class of computational problems that are beyond the capabilities of a conventional computer. These problems

require vast number of computations on multiple data items that will take a conventional computer(with scalar processor) days

or even weeks to complete. Such complex

instruction,

100% MATCHING BLOCK 32/91

which operates on multiple data at the same time, requires a better way of instruction execution, which was achieved by vector

computing technique using

100% MATCHING BLOCK 33/91

vector processors. Scalar CPUs can manipulate one or two data items at a time, which is not very efficient. 2.2

UNIT OBJECTIVES After going through this unit you will be able to: • Understand the basic concepts of vector computing and

working principle of vector processor. • Know about the pipelining techniques applied in vector computing.

257 | P a g e Space for learners: • Understand how arithmetic pipelining works. • Give the basic concept of array processor and its

different categories. • Know about the vector and scalar registers used in vector processing. • Define what is a chaining and

scatter-gather operation. • Understand about register-register and memory-memory vector processors. 2.3 VECTOR

COMPUTING

100% MATCHING BLOCK 34/91

There is a class of computational problems that are beyond the capabilities of a conventional computer. These problems

require vast number of computations on multiple data items that will take a conventional computer (with scalar processor) days

or even weeks to complete. Such complex instructions, which operates on multiple data at the same time, requires a better

way of instruction execution, which

has been achieved by the vector computing technique that done by vector processors. Vector processor is basically a central

processing unit that has the ability to execute the complete vector input in a single instruction. So, we can say vector processing

allows operation on multiple data elements by the help of single instruction.

100% MATCHING BLOCK 35/91

Scalar CPUs can manipulate one or two data items at a time, which is not very efficient. Also, simple instructions like ADD A to

B, and store into C are not practically efficient. 258 |

P a g e Space for learners:

98% MATCHING BLOCK 36/91

Addresses are used to point to the memory location where the data to be operated will be found, which leads to added

overhead of data lookup. So until the data is found, the CPU would be sitting ideal, which is a big performance issue. Hence,

the concept of Instruction Pipeline comes into picture, in which the instruction passes through several sub-units in turn. These

sub-units perform various independent functions, for example: the first one decodes the instruction, the second sub-unit

fetches the data and the third sub-unit performs the math itself. Therefore, while the data is fetched for one instruction, CPU

does not sit idle; it rather works on decoding the next instruction set, ending up working like an assembly line. Vector

computing technique, not only use Instruction pipeline, but it also pipelines the data, working on multiple data at the same

time. A normal scalar processor instruction would be ADD A, B, which leads to addition of two operands, but what if we can

instruct the processor to ADD a group of numbers (from 0 to n memory location) to another group of numbers (

let’s say, n to k memory location) then a scalar processor cannot able to add of these set values.

100% MATCHING BLOCK 37/91

This can be achieved by vector processors. In vector processor a single instruction, can ask for multiple data operations, which

saves time, as instruction is decoded once, and then it keeps on operating on different data items. 2.4

VECTOR PROCESSOR Vector processor is basically a central processing unit that has the ability to execute the complete vector

input in a single instruction. More specifically we can say, it is a complete unit of hardware resources that executes a sequential

set of similar data items in the memory using a single instruction.

259 | P a g e Space for learners: Vector processors are co-processor to general-purpose microprocessor. Vector processors are

generally register-register or memory-memory. A vector instruction is fetched and decoded and then a certain operation is

performed for each element of the operand vectors, whereas in a normal processor a vector operation needs a loop structure in

the code. To make it more efficient, vector processors chain several vector operations together, i.e., the result from one vector

operation are forwarded to another as operand. We know elements of the vector are ordered properly so as to have successive

addressing format of the memory. This is the reason why we have mentioned that it implements the data sequentially. It holds a

single control unit but has multiple execution units that perform the same operation on different data elements of the vector.

Unlike scalar processors that operate on only a single pair of data, a vector processor operates on multiple pair of data. However,

one can convert a scalar code into vector code. This conversion process is known as vectorization. So, we can say vector

processing allows operation on multiple data elements by the help of single instruction. These instructions are said to be single

instruction multiple data (SIMD) or vector instructions. The CPU used in recent time makes use of vector processing as it is

advantageous than scalar processing. A vector processor is a processor that can operate on an entire vector in one instruction.

The operand to the instructions are complete vectors instead of one element. Vector processors reduce the fetch and decode

bandwidth as the number of instructions fetched are less. They also exploit data parallelism in large scientific and multimedia

applications. Based on how the operands are fetched, vector processors can be divided into two categories - in memory-

memory architecture operands are directly streamed to the

260 | P a g e Space for learners: functional units from the memory and results are written back to memory as the vector

operation proceeds. In vector-register architecture, operands are read into vector registers from which they are fed to the

functional units and results of operations are written to vector registers. Many performance optimization schemes are used in

vector processors. Memory banks are used to reduce load/store latency. Strip mining is used to generate code so that vector

operation is possible for vector operands whose size is less than or greater than the size of vector registers. Vector chaining - the

equivalent of forwarding in vector processors - is used in case of data dependency among vector instructions. Special scatter and

gather instructions are provided to efficiently operate on sparse matrices. Instruction set has been designed with the property

that all vector arithmetic instructions only allow element N of one vector register to take part in operations with element N from

other vector registers. This dramatically simplifies the construction of a highly parallel vector unit, which can be structured as

multiple parallel lanes. As with a traffic highway, we can increase the peak throughput of a vector unit by adding more lanes. 2.4.1

Some Important Facts on a Vector Processor • A vector processor is an ensemble of hardware resources, including vector

registers, functional pipelines, processing elements and register counters for performing register operations. • Vector processing

occurs when arithmetic or logical operations are applied to vectors. It is distinguished from scalar processing which operates on

one or one pair of data.

261 | P a g e Space for learners: The conversion from scalar code to vector code is called vectorization. • Both pipelined

processors and SIMD computers can perform vector operations. • Vector processing reduces software overhead incurred in the

maintenance of looping control, reduces memory access conflicts and above all matches nicely with pipelining and

segmentation concept to generate one result per each clock cycle continuously. 2.4.2 Advantages of Vector Processor Some

advantages of vector processors are given below: • Programs size is small as it requires less number of instructions. Vector

instructions also hide many branches by executing a loop in one instruction. • Vector memory access has no wastage like cache

access. Every data item requested by the processor is actually used. • Once a vector instruction starts operating, only the

functional unit (FU) and the register buses feeding it need to be powered. Fetch unit, decode unit, ROB etc can be powered off.

This reduces the power usage. 2.4.3

100% MATCHING BLOCK 38/91

Applications of Vector Processors Computer with vector processing capabilities are in demand in specialized applications. The

following are some areas where vector processing is used: 1. Petroleum exploration. 2. Medical diagnosis. 262 |

P a g e Space for learners: 3.

100% MATCHING BLOCK 39/91

Data analysis. 4. Weather forecasting. 5. Aerodynamics and space flight simulations. 6. Image processing. 7. Artificial

intelligence. 2.4.4

Cost of Vector Processor The reason behind the declining popularity of vector processors are their cost as compared to

multiprocessors and superscalar processors. The reasons behind high cost of vector processors are • Vector processors do not

use commodity parts. Since they sell very few copies, design cost dominates overall cost. • Vector processors need high speed

on-chip memory which are expensive. • It is difficult to package the processors with such high speed. In the past, vector

manufactures have employed expensive designs for this. • There have been few architectural innovations compared to

superscalar processors to improve performance keeping the cost low. 2.4.5 Classification of Vector Processor The classification

of vector processor relies on the ability of vector formation as well as the presence of vector instruction for processing. So,

depending on these criteria, vector processing is classified as follows:

263 | P a g e Space for learners: (i) Register to Register Architecture (Vector register processors)and (ii) Memory to Memory

Architecture(Memory-memory vector processors) According to from where the operands are retrieved in a vector processor,

pipe lined vector computers are classified into two architectural configurations: 2.4.5.1 Memory to memory architecture In

memory to memory architecture, source operands, intermediate and final results are retrieved (read) directly from the main

memory. For memory to memory vector instructions, the information of the base address, the offset, the increment, and the

vector length must be specified in order to enable streams of data transfers between the main memory and pipelines. The

processors like TI-ASC, CDC STAR-100, and Cyber-205 have vector instructions in memory to memory formats. The main points

about memory to memory architecture are: • There is no limitation of size • Speed is comparatively slow in this architecture

2.4.5.2 Register to Register Architecture This architecture is highly used in vector computers. As in this architecture, the fetching

of the operand or previous results indirectly takes place through the main memory by the use of registers. The several vector

pipelines present in the vector computer help in retrieving the data from the registers and also storing the results in the desired

register. These vector registers are user instruction programmable. In a vector-register processor, all vector operations—except

load and store—are among the vector

264 | P a g e Space for learners: registers. These architectures are the vector counterpart of a load- store architecture. All major

vector computers shipped since the late 1980s use a vector-register architecture, including the Cray Research processors (Cray-

1, Cray-2, X-MP,YMP, C90, T90, SV1, and X1), the Japanese supercomputers (NEC SX/2 through SX/8, Fujitsu VP200 through

VPP5000, and the Hitachi S820 and S-8300), and the mini- supercomputers (Convex C-1 through C-4). In register to register

architecture, operands and results are retrieved indirectly from the main memory through the use of large number of vector

registers or scalar registers. The processors like Cray-1 and the Fujitsu VP-200 use vector instructions in register to register

formats. The main points about register to register architecture are: (i) Register to register architecture has limited size. (ii) Speed

is very high as compared to the memory to memory architecture. (iii) The hardware cost is high in this architecture. 2.5

SUPERSCALAR PROCESSOR

100% MATCHING BLOCK 40/91

It was first invented in 1987. It is a machine which is designed to improve the performance of the scalar processor. In most

applications, most of the operations are on scalar quantities. Superscalar approach produces the high performance general

purpose processors.

A scalar processor works on one or two data items,

it

100% MATCHING BLOCK 41/91

is a normal processor, which works on simple instruction at a time, which operates on single data items,

100% MATCHING BLOCK 42/91

while the vector processor works with multiple data items. A superscalar processor is a combination of 265 |

P a g e Space for learners:

100% MATCHING BLOCK 43/91

both. Each instruction processes one data item, but there are multiple execution units within each CPU thus multiple

instructions can be processing separate data items concurrently.

100% MATCHING BLOCK 44/91

The main principle of superscalar approach is that it executes instructions independently in different pipelines. As we already

know, that Instruction pipelining leads to parallel processing thereby speeding up the processing of instructions. In Superscalar

processor, multiple such pipelines are introduced for different operations, which further improves parallel processing. There are

multiple functional units each of which is implemented as a pipeline. Each pipeline consists of multiple stages to handle

multiple instructions at a time which support parallel execution of instructions. It increases the throughput because the CPU

can execute multiple instructions per clock cycle. Thus, superscalar processors are much faster than scalar processors.

100% MATCHING BLOCK 45/91

While a superscalar CPU is also pipelined, there are two different performance enhancement techniques. It is possible to have a

non- pipelined superscalar CPU or pipelined non-superscalar CPU. The superscalar technique is associated with some

characteristics, these are

given below: •

100% MATCHING BLOCK 46/91

Instructions are issued from a sequential instruction stream. • CPU must dynamically check for data dependencies. • Should

accept multiple instructions per clock cycle. 266 |

P a g e Space for learners: 2.6 VECTOR COMPUTER The functional units of a vector computer are as follows: (i) IPU or instruction

processing unit (ii) Vector register (iii)Scalar register (iv) Scalar processor (v) Vector instruction controller (vi) Vector access

controller (vii) Vector processor Let us now understand the overall operation performed by the vector computer. As it has several

functional pipes thus it can execute the instructions over the operands. We know that both data and instructions are present in

the memory at the desired memory location. So, the instruction processing unit i.e., IPU fetches the instruction from the memory.

Once the instruction is fetched then IPU determines either the fetched instruction is scalar or vector in nature. If it is scalar in

nature, then the instruction is transferred to the scalar register and then further scalar processing is performed. While, when the

instruction is a vector in nature then it is fed to the vector instruction controller. This vector instruction controller first decodes

the vector instruction then accordingly determines the address of the vector operand present in the memory. Then it gives a

signal to the vector access controller about the demand of the respective operand. This vector access controller then fetches the

desired operand from the memory. Once the operand is

267 | P a g e Space for learners: fetched then it is provided to the instruction register so that it can be processed at the vector

processor. At times when multiple vector instructions are present, then the vector instruction controller provides the multiple

vector instructions to the task system. And in case the task system shows that the vector task is very long then the processor

divides the task into sub-vectors. These sub-vectors are fed to the vector processor that makes use of several pipelines in order

to execute the instruction over the operand fetched from the memory at the same time. The various vector instructions are

scheduled by the vector instruction controller. A block diagram of a modern multiple pipeline vector computer is shown below:

Fig.2.1 A block diagram of a modern multiple pipeline vector computer 2.6.1 Vector registers Vector registers are the storage

areas in a CPU core that contain the operands for vector computations, as well as the results. The size of

268 | P a g e Space for learners: the vector registers determines the level of SIMD instructions that can be supported by a given

processor's CPUs. Each vector register is a fixed-length bank holding a single vector. VMIPS has eight vector registers, and each

vector register holds 64elements. Each vector register must have at least two read ports and one write port in VMIPS. This will

allow a high degree of overlap among vector operations to different vector registers. The read and write ports, which total at least

16 read ports and 8write ports, are connected to the functional unit inputs or outputs by a pair of crossbars. Real machines make

use of the regular access pattern within a vector instruction to reduce the costs of the vector-register file circuitry. For example,

the Cray-1 manages to implement the register file with only a single port per register. 2.6.2 Scalar registers Scalar processors

represent a class of computer processors. A scalar processor processes only one data item at a time, with typical data items being

integers or floating point numbers. A scalar processor is classified as a single instruction, single data (SISD) processor in Flynn's

taxonomy. Scalar registers can also provide data as input to the vector functional units, as well as compute addresses to pass to

the vector load-store unit. These are the normal 32 general-purpose registers and 32 floating-point registers of MIPS. Scalar

values are read out of the scalar register file, then latched at one input of the vector functional units.

269 | P a g e Space for learners: 2.7 ARRAY PROCESSORS Array processors are also known as multiprocessors or vector

processors. An array processor is a processor that performs computations on large arrays of data. Thus, they are used to improve

the performance of the computer. In other words, an array processor is a CPU which implements an instruction set that are

designed to operate efficiently and effectively on large one-dimensional arrays of data called vectors. Vector and array

processing are essentially the same because, with slight and rare differences, a vector processor and an array processor are the

same type of processor. A vector processor is in contrast of the simpler scalar processor, which handles only one piece of

information at a time. 2.7.1Types of Array Processors There are basically two types of array processors: 1. Attached Array

Processors 2. SIMD Array Processors 2.7.1.1 Attached Array Processors An attached array processor is a processor which is

attached to a general purpose computer and its purpose is to enhance and improve the performance of that computer in

numerical computational tasks. It achieves high performance by means of parallel processing with multiple functional units. The

objective of the attached array processor is to provide vector manipulation capabilities to a conventional computer at a fraction

of the cost of supercomputer.

270 | P a g e Space for learners: Fig.2.2 Block diagram of Attached Array Processors 2.7.1.2 SIMD Array Processors Single-

instruction, multiple data (SIMD) is the organization of a single computer containing multiple processors operating in parallel. The

processing units are made to operate under the control of a common control unit, thus providing a single instruction stream and

multiple data streams. A general block diagram of an array processor is shown below. It contains a set of identical processing

elements (PE's), each of which is having a local memory M. Each processor element includes an ALU and registers. The master

control unit controls all the operations of the processor elements. It also decodes the instructions and determines how the

instruction is to be executed. The main memory is used for storing the program. The control unit is responsible for fetching the

instructions. Vector instructions are send to all PE's simultaneously and results are returned to the memory.

271 | P a g e Space for learners: The best known SIMD array processor is the ILLIAC IV computer developed by the Burroughs

corps. SIMD processors are highly specialized computers. They are only suitable for numerical problems that can be expressed in

vector or matrix form and they are not suitable for other types of computations. Fig.2.3A general block diagram of an array

processor 2.7.2 Advantages of Array Processor • An array processor increases the overall instruction processing speed. • As most

of the Array processors operate asynchronously from the host CPU, hence it improves the overall capacity of the system. • Array

Processors has its own local memory, hence providing extra memory for systems with low memory. 2.8

87% MATCHING BLOCK 47/91

PIPELINING Pipelining is the process of accumulating instruction from the processor through a pipeline. It allows storing and

executing instructions in an orderly process. It is also known as pipeline processing. 272 | P a g e Space for learners: Pipelining is

a technique where multiple instructions are overlapped during execution. Pipeline is divided into stages and these stages are

connected with one another to form a pipe like structure. Instructions enter from one end and exit from another end. Pipelining

increases the overall instruction throughput. In pipeline system, each segment consists of an input register followed by a

combinational circuit. The register is used to hold data and combinational circuit performs operations on it. The output of

combinational circuit is applied to the input register of the next segment. Fig.2.4 A general block diagram of a pipeline system

Pipeline system is like the modern day assembly line setup in factories. For example in a car manufacturing industry, huge

assembly lines are setup and at each point, there are robotic arms to perform a certain task, and then the car moves on ahead

to the next arm.

In summary, we can say Pipelining is a technique of • Decomposing a sequential process into sub-operations (segments).

273 | P a g e Space for learners: • Divide the processor into segment processors each one is dedicated to a particular segment. •

Each segment is executed in a dedicated segment processor operates concurrently with all other segments. • Information flows

through these multiple hardware segments. • The overlapping of computation is made possible by associating a register with

each segment in the pipeline. • The registers provide isolation between each segment so that each can operate on distinct data

simultaneously. 2.8.1 Types of Pipeline It is divided into two

96% MATCHING BLOCK 48/91

categories: 1. Arithmetic Pipeline 2. Instruction Pipeline 2.8.1.1 Arithmetic Pipeline Arithmetic pipelines are usually found in most

of the computers. They are used for floating point operations, multiplication of fixed point numbers etc. For example: The input

to the Floating Point Adder pipeline is: Suppose X=A*2^a and Y=B*2^b Here A and B are mantissas (significant digit of floating

point numbers), while a and b are exponents. The floating point addition and subtraction is done in 4 parts: 1. Compare the

exponents. 2. Align the mantissas. 3. Add or subtract mantissas 4. Produce the result. 274 |

P a g e Space for learners:

100% MATCHING BLOCK 49/91

Registers are used for storing the intermediate results between the above operations.

An arithmetic pipeline divides an arithmetic problem into various sub problems for execution in various pipeline segments. It is

used for floating point operations, multiplication and various other computations. The process or flowchart arithmetic pipeline

for floating point addition is shown in the below diagram. Fig 2.5 Pipelining for floating point addition and subtraction. Floating

point addition using arithmetic pipeline The following sub operations are performed in this case: 1. Compare the exponents. 2.

Align the mantissas. 3. Add or subtract the mantissas. 4. Normalise the result

275 | P a g e Space for learners: First of all the two exponents are compared and the larger of two exponents is chosen as the

result exponent. The difference in the exponents then decides how many times we must shift the smaller exponent to the right.

Then after shifting of exponent, both the mantissas get aligned. Finally the addition of both numbers take place followed by

normalisation of the result in the last segment. Example: Let us consider two numbers, X=0.3214*10^3 and Y=0.4500*10^2

Explanation: First of all the two exponents are subtracted to give 3-2=1. Thus 3 becomes the exponent of result and the smaller

exponent is shifted 1 times to the right to give Y=0.0450*10^3 Finally the two numbers are added to produce Z=0.3664*10^3 As

the result is already normalized the result remains the same. 2.8.1.2

100% MATCHING BLOCK 50/91

Instruction Pipeline In this a stream of instructions can be executed by overlapping fetch, decode and execute phases of an

instruction cycle. This type of technique is used to increase the throughput of the computer system. An instruction pipeline

reads instruction from the memory while previous instructions are being executed in other segments of the pipeline. Thus we

can execute multiple instructions simultaneously. The pipeline will be more efficient if the instruction cycle is divided into

segments of equal duration. 276 |

P a g e Space for learners:

100% MATCHING BLOCK 51/91

In this a stream of instructions can be executed by overlapping fetch, decode and execute phases of an instruction cycle. This

type of technique is used to increase the throughput of the computer system. An instruction pipeline reads instruction from the

memory while previous instructions are being executed in other segments of the pipeline. Thus we can execute multiple

instructions simultaneously. The pipeline will be more efficient if the instruction cycle is divided into segments of equal

duration.

In the most general case computer needs to process each instruction in following sequence of steps: 1. Fetch the instruction

from memory (FI) 2. Decode the instruction (DA) 3. Calculate the effective address 4. Fetch the operands from memory (FO) 5.

Execute the instruction (EX) 6. Store the result in the proper place The flowchart for instruction pipeline is shown below.

277 | P a g e Space for learners: Fig 2.6 Flowchart for instruction Pipelining. Let us see an example of instruction pipeline.

Example: Here the instruction is fetched on first clock cycle in segment 1. Now it is decoded in next clock cycle, then operands

are fetched and finally the instruction is executed. We can see that here the fetch and decode phase overlap due to pipelining. By

the time the first instruction is being decoded, next instruction is fetched by the pipeline.

278 | P a g e Space for learners: In case of third instruction we see that it is a branched instruction. Here when it is being decoded

4th instruction is fetched simultaneously. But as it is a branched instruction it may point to some other instruction when it is

decoded. Thus fourth instruction is kept on hold until the branched instruction is executed. When it gets executed then the

fourth instruction is copied back and the other phases continue as usual. 2.8.2

97% MATCHING BLOCK 52/91

Pipeline Conflicts There are some factors that cause the pipeline to deviate its normal performance. Some of these factors are

given below: (i) Timing Variations All stages cannot take same amount of time. This problem generally occurs in instruction

processing where different instructions have different operand requirements and thus different processing time. (ii) Data

Hazards When several instructions are in partial execution, and if they reference same data then the problem arises. We must

ensure that next instruction does not attempt to access data before the current instruction, because this will lead to incorrect

results. (iii) Branching In order to fetch and execute the next instruction, we must know what that instruction is. If the present

instruction is a conditional branch, and its result will lead us to the next instruction, then the next instruction may not be known

until the current one is processed. 279 |

P a g e Space for learners: (iv)

100% MATCHING BLOCK 53/91

Interrupts Interrupts set unwanted instruction into the instruction stream. Interrupts effect the execution of instruction. (

v)

100% MATCHING BLOCK 54/91

Data Dependency It arises when an instruction depends upon the result of a previous instruction but this result is not yet

available. 2.8.3 Advantages of Pipelining 1. The cycle time of the processor is reduced. 2. It increases the throughput of the

system 3. It makes the system reliable. 2.8.4 Disadvantages of Pipelining 1. The design of pipelined processor is complex and

costly to manufacture. 2. The instruction latency is more. 2.9

CHAINING TECHNIQUE In computing, chaining is a technique used in computer architecture in which scalar and vector registers

generate interim results which can be used immediately, without additional memory references which reduce computational

speed. Chaining allows the results of one vector operation to be directly used as input to another vector operation. A convoy is a

set of vector instructions that can potentially execute together. Only structural hazards cause separate convoys as true

dependences are handled via chaining in the same convoy.

280 | P a g e Space for learners: 2.10 GATHER-SCATTER OPERATION Gather and scatter are two fundamental data-parallel

operations, where a large number of data items are read (gathered) from or are written (scattered) to given locations. Gather-

scatter is also a type of memory addressing operation that often arises when addressing vectors in sparse linear algebra

operations. It is the vector-equivalent of register indirect addressing, with gather involving indexed reads and scatter indexed

writes. Vector processors (and some SIMD units in CPUs) have hardware support for gather-scatter operations, providing

instructions such as Load Vector Indexed for gather and Store Vector Indexed for scatter. 2.10.1 The basic concepts of Gather-

scatter We are generally used to organizing our memories by row. Caches are built from rows so if we want one piece of data, we

get the whole row. If we want to manage our performance tightly, then we try to have as many related variables as possible on

the same row so that we get more bangs for our caching buck and reduce our cache misses. The nice thing about a row of

memory is that, especially with vector structures like SIMD (single-instruction, multiple data), we can operate on multiple pieces

of data at the same time, in parallel. At the very least, if we can’t do it in parallel, then we can loop along the row for the operation

without further fetching hassles. But there are several contexts where the world doesn’t cooperate with this row-by-row

structure. What if we want to be able to do is exactly that same thing, but without the requirement that addresses be contiguous?

281 | P a g e Space for learners: This isn’t so easy to do, since we need lots of fetches to populate a vector; we can’t just copy

over a chunk of memory and get busy operating on it. The idea is to find a way to “gather” data from far- flung locations, work

with them as a single vector, and then, if we desired, take the results and “scatter” them back out into their original far-flung

locations. 2.10.2 Different gather-scatter applications Some application of gather-scatter operations are given below: • A single

block of in-memory data may represent data from a file that has been fractured into various sectors across the storage medium. •

A single in-memory buffer, if too large, may cause problems due to memory fragmentation. It can be more easily managed if it is

stored in smaller fragments, but this requires management to make them look contiguous. • Network traffic streams may be split

up as they arrive, with various buckets in memory. This is referred to as “Scatter/gather I/O.” In a way, this is the reverse of other

applications. In other applications, scattered data is brought together in the processor. With this streaming version, it’s a unified

stream that then gets scattered about as it arrives at the processor. • Embedded systems may require low-level access to data

that’s scattered throughout DRAM, treating it as contiguous. The illustrations above reflect this application. As we’ll see, vision is a

major driver of this usage.

282 | P a g e Space for learners: CHECK YOUR PROGRESS: Multiple Choice Questions: 1.

96% MATCHING BLOCK 55/91

A processor, which works on simple instruction at a time, which operates on single data items

is known as (A) Scalar (B) Vector (C) Array (D) Superscalar 2.A processor that has the ability to execute the complete vector input

in a single instruction is called (A) Scalar (B) Vector (C) Normal (D) Superscalar 3.In memory to memory architecture, source

operands, intermediate and final results are retrieved (read) directly from (A) Main memory (B) Register (C)Cache (D) Secondary

memory 4. SIMD means (A) Single Instruction Many Data (B) Simple Instruction Multiple Data (C) Single-Instruction, Multiple Data

(D) None of above 5.A technique where multiple instructions are overlapped during execution is known as (A)Gathering (B)

Scattering (C) Chaining (D) Pipelining 2.11 SUMMING UP • Vector processor is basically a central processing unit that has the

ability to execute the complete vector input in a single instruction. So, we can say vector processing allows operation on multiple

data elements by the help of single instruction. •

100% MATCHING BLOCK 56/91

Scalar CPUs can manipulate one or two data items at a time, which is not very efficient. Also, simple instructions 283 |

P a g e Space for learners:

100% MATCHING BLOCK 57/91

like ADD A to B, and store into C are not practically efficient. •

Vector computing technique,

100% MATCHING BLOCK 58/91

not only use instruction pipeline, but it also pipelines the data, working on multiple data at the same time. •

Vector processor is basically a central processing unit that has the ability to execute the complete vector input in a single

instruction. More specifically we can say, it is a complete unit of hardware resources that executes a sequential set of similar data

items in the memory using a single instruction. • Vector processing occurs when arithmetic or logical operations are applied to

vectors. It is distinguished from scalar processing which operates on one or one pair of data. The conversion from scalar code to

vector code is called vectorization. • Programs size is small as it requires less number of instructions. Vector instructions also hide

many branches by executing a loop in one instruction. • Vector processors need high speed on-chip memory which are

expensive. • It is difficult to package the processors with such high speed. In the past, vector manufactures have employed

expensive designs for this. • The classification of vector processor relies on the ability of vector formation as well as the presence

of vector instruction for processing. So, depending on these criteria, vector processing is classified as follows: (iii) Register to

Register Architecture (Vector register processors)and

284 | P a g e Space for learners: (iv) Memory to Memory Architecture(Memory-memory vector processors) • In memory to

memory architecture, source operands, intermediate and final results are retrieved (read) directly from the main memory. •

Register to register architecture is highly used in vector computers. As in this architecture, the fetching of the operand or previous

results indirectly takes place through the main memory by

85% MATCHING BLOCK 59/91

the use of registers. • In Superscalar processor, multiple such pipelines are introduced for different operations, which further

improves parallel processing. •

Vector registers are the storage areas in a CPU core that contain the operands for vector computations, as well as the results. The

size of the vector registers determines the level of SIMD instructions that can be supported by a given processor's CPUs. • Scalar

registers can also provide data as input to the vector functional units, as well as compute addresses to pass to the vector load-

store unit. • An array processor is a CPU which implements an instruction set that are designed to operate efficiently and

effectively on large one-dimensional arrays of data called vectors. • An attached array processor is a processor which is attached

to a general purpose computer and its purpose is to enhance and improve the performance of that computer in numerical

computational tasks. • The objective of the attached array processor is to provide vector manipulation capabilities to a

conventional computer at a fraction of the cost of supercomputer.

285 | P a g e Space for learners: • Single-instruction, multiple data (SIMD) is the organization of a single computer containing

multiple processors operating in parallel. •

100% MATCHING BLOCK 60/91

Pipelining is the process of accumulating instruction from the processor through a pipeline. It allows storing and executing

instructions in an orderly process. It is also known as pipeline processing. • Pipelining is a technique where multiple instructions

are overlapped during execution. •

100% MATCHING BLOCK 61/91

Arithmetic pipelines are usually found in most of the computers. They are used for floating point operations, multiplication of

fixed point numbers etc. •

100% MATCHING BLOCK 62/91

An instruction pipeline reads instruction from the memory while previous instructions are being executed in other segments of

the pipeline. •

In computing, chaining is a technique used in computer architecture in which scalar and vector registers generate interim results

which can be used immediately, without additional memory references which reduce computational speed. • Gather and scatter

are two fundamental data- parallel operations, where a large number of data items are read (gathered) from or are written

(scattered) to given locations. 2.12 ANSWER TO CHECK YOUR PROGRESS Answer: 1 (A), 2 (B), 3 (A), 4 (C), 5 (D).

286 | P a g e Space for learners: 2.13 POSSIBLE QUESTIONS Short Type Questions: 1. What is vector computing? How it differ

from scalar computing? 2. What do you mean vector processor? 3. What are the advantages of vector processor? 4. What is array

processor? What are its different categories? 5. What do you mean by pipelining in vector processing? Long Answer Type

Questions: 1. Explain about the arithmetic pipeline and instruction pipeline techniques. 2. Explain how vector-register processor

differs from memory vector processor. 3. Explain about the working principle of array processor. 4. What do you mean by

chaining? Explain about the scatter- gather techniques. 2.14 REFERENCES AND SUGGESTED READINGS • M. Morris Mano,

“Computer System Architecture”, 3nd Edition, Pearson,2006. • William Stalling, ”Computer Organization and Architecture”, 8th

Edition, Pearson, 2010. • John P. Hayes, “Computer Architecture and Organization”, 2nd Edition, McGraw-Hill International

Edition, 1988. ---×---

287 | P a g e Space for learners: UNIT 3: ADVANCE CONCEPT OF COMPUTER ARCHITECTURE PLICITPARALLELISM Unit

Structure: 3.1 Introduction 3.2 Unit Objectives 3.3 Introduction of pipeline 3.3.1 Register File 3.3.2 Datapath 3.4 Super Pipeline 3.5

Performance of a pipelined processor 3.6 Superscalar architecture 3.6.1 Structure superscalar architecture 3.6.2 Advantages of

superscalar architecture 3.6.3 Disadvantages of superscalar architecture 3.7 Branch prediction 3.7.1 Types of branch prediction 3.8

Static branch scheme 3.9 Dynamic branch scheme 3.9.1 1-bit branch prediction technique 3.9.2 2-bit branch prediction

technique and 3.9.3 Correlating branch prediction technique 3.10 Hazards in pipeliningand its types 3.11 Delay slot 3.12 Out-of-

order execution 3.13 Register renaming 3.13.1 Advantages of registerrenaming 3.14 Summing up 3.15 Key Terms 3.16 Answers to

Check Your Progress 3.17 Possible Questions 3.18 References and Suggested readings

288 | P a g e Space for learners: 3.1 INTRODUCTION Implicit parallelism allows programmers to write down their programs

without any worry about parallelism exploitation. The exploitation of parallelism is instead automatically performed by the

compiler and the runtime system. Thus, the parallelism is transparent to the programmer, maintaining the complication of

software development at the same level as standard sequential programming. Implicit parallelism generally facilitates the design

of parallel programs and therefore substantially improves programmer efficiency and productivity. Different applications utilize

different aspects of parallelism - e.g., data-intensive applications utilize high aggregate throughput, server applications utilize high

aggregate network bandwidth, and scientific applications typically utilize high processing and memory system performance. It is

important to realize each of these performance bottlenecks and their interacting effect. In this unit, you will learn about the

pipelining technique, and the comparison/ discussion of super pipeline and super scalar pipeline will describe in this unit. Various

classes of superscalar architecture will be discussed in this unit. You will learn the measurement of the performance of pipeline

architecture. Some of the benefits and drawbacks of the superscalar pipeline will be pointed out in this unit. You will learn the

need for Branch prediction in the pipeline. Different branch prediction techniques (static and dynamic prediction) will be

discussed with the proper example and diagram in this unit. You will learn various hazards (structural hazards, control hazards,

and data hazards)that occur in the pipelining. Some of the delay slots will be discussed in this unit. You also learn the out-of-

order execution and register renaming concept with an example at the last of the unit. 3.2 UNIT OBJECTIVES After going through

this unit, you will be able to: • understand the needs of implicit parallelism techniques. • describe the basic structure of the

pipeline

289 | P a g e Space for learners: • know different stages of instruction in the pipeline • understand the design concept of super

pipeline and superscalar pipeline • understand the branch prediction logic • understand the various Hazards in the pipeline •

know the idea of delay slots • Describe out-of-order execution and Register Renaming 3.3 INTRODUCTION OF

68% MATCHING BLOCK 63/91

PIPELINING Pipelining is the practice of accumulating instruction from the processor through a pipeline. In pipelining, storing

and executing of the instructions allows being in an orderly process. It is also known as pipeline processing. Multiple

instructions are overlapped during execution

in pipelining that's why process microprocessor begins executing a second instruction before the first instruction has been

completed. A

87% MATCHING BLOCK 64/91

pipeline is separated into stages, and these stages are attached to one another to form a pipe like structure. Instructions enter

from one end and exit from another end. Pipelining improved the overall instruction throughput. In the pipeline system, each

segment consists of an input register followed by a combinational circuit. The register is used to hold data and a combinational

circuit performs operations on it. The output of the combinational circuit is applied to the input register of the next segment.

A processing circuit of a given stage is connected to the input latch of the next stage (Figure 3.1). A clock signal is connected to

each input latch. Every stage transfers its intermediate result to the input latch of the next stage on every clock pulse. This way,

the final outcome is produced after the input data have passed through the whole Pipeline, finishing one stage for every clock

pulse. The clock pulse period should be large enough to grant sufficient time for a

290 | P a g e signal to go across throug extended amount of time to there should be sufficient tim If the clock's period, P, is ex

bigger than the utmost delay sufficient for storing data int Figure 3.1: Basic structure o The instruction in pipelining 1. Instruction

Fetch (IF): In t 2. Instruction Decode(ID): H 3. Operand Fetch (OF): In t instruction. 4. Instruction Execute (IE) operations are

performed on 5.Operand Store (OS): The r memory. through the slowest stage where the most me to need complete (bottleneck

stage). Also, ent time for a latch to store its input signals. , is expressed as P = t b + t l , then t b should be delay of the bottleneck

stage, and t l should be ata into a latch. cture of a pipeline. adapted from [1] lining is divided into five subtasks likely): In this

subtask, the instruction is fetched. ID): Here, the fetched instruction is decoded.): In this stage, the operand is fetched of the e

(IE): In this stage,arithmetic and logical ed on the operands to execute the instruction. : The result of the earlier stage is stored in

the Space for learners:

291 | P a g e Space for learners: Let us visualize how pipelining is done for N numbers of instructions. In the Figure 3.2given below

four instructions are pipelined. The instruction-1 gets completed in 5 clock cycles. After the first instruction is completed in every

new clock, the proceeding instruction(i.e., Instruction 2, 3 & 4) completes its execution.

69% MATCHING BLOCK 65/91

Pipeline system is like some assembly line set up in different factories. For example, in an automobile manufacturing industry,

huge assembly lines are arranged and at each point, there are robotic arms to perform a particular task, and then the product

moves on ahead to the next arm.

Pipeline techniques are categories into 2 types. One is arithmetic pipeline, and the other is instruction pipeline. Arithmetic

pipelinedesigned to act upon high-speed floating- point addition, multiplication and division. Multiple arithmetic logic units

(ALUs) are built to perform the parallel arithmetic computation in various data formats in this Pipeline. Examples of arithmetic

pipelined processors are Cray-1, Cyber-205, Star-100, TI-ASC.

100% MATCHING BLOCK 66/91

The floating point addition and subtraction is done in 4 parts: Compare the exponents, align the mantissas, add or subtract

mantissas

and produce the result. In instruction Pipeline, the number of instructions are pipelined, and the subsequent instruction execution

overlaps the execution of current instruction. It is also known as instruction lookahead.

292 | P a g e Space for learners: Figure 3.2: Pipelining of four Instructions 3.3.1 Register File The register file is a hardware device

with two read ports and one write port (corresponding to the two inputs and one output of the ALU). The register file and the ALU

together comprise the two elements required to compute MIPS R-format ALU instructions. The register file is included of a set of

registers that can be read or written by supplying a register number to be accessed, as well (in the case of write operations) as a

write authorization bit. A block diagram of the register file is shown in Figure 3.3 Since reading of a register-stored value does not

change the register state, no "safety mechanism" is needed to prevent inadvertent overwriting of stored data, and we need only

supply the register number to obtain the data stored in that register. However, when writing to a register, we need: 1. A register

number. 2. An authorization bit for safety (because the write operation overwrites the previous contents of the register selected

for writing). 3. A clock pulse that controls the writing of data into the register.

293 | P a g e Space for learners: Figure 3.3. Register with two read ports and one write port,adapted from [2]. 3.3.2 Datapath

Design The datapath is the "brawn" of a processor, since it implements the fetch-decode-execute cycle. The general discipline

for datapath design is to a. Determine the instruction classes and formats in the ISA, b. Design datapath components and

interconnections for each instruction class or format, and c. Compose the datapath segments designed in Step 2) to yield a

composite datapath. Simple datapath components include memory (stores the current instruction), PC or program counter

(stores the address of current instruction), and ALU (executes current instruction). The interconnection of these simple

components to form a basic datapath is illustrated in Figure 3.4.

294 | P a g e Space for learners: Figure 3.4: Schematic high-level diagram of MIPS datapath from an implementation perspective,

adapted from [2]. 3.4. SUPER PIPELINING Super pipelining is another approach to reach better (faster) performance. Super-

pipelining is the breaking of stages of a given pipeline into more miniature stages(thus making the pipeline deeper) to shorten the

clock period and thus to enhance the instruction throughput by keeping more and more instruction in flight at a time. For

example, if we divide each stage into two, the clock cycle period t will be reduced to half, t/2; hence, at the maximum capacity,

the pipeline produces a result every t/2 s. For a given architecture and the subsequent instruction set, there is an optimal number

of pipeline stages; increasing the number of stages over this boundary decrease the overall performance. Superscalar

architecture is a solution to further improve speed. Given a pipeline stage time T, it may be possible to execute at a higher rate by

starting operations at intervals of T/n. This can be accomplished in two ways:

295 | P a g e Space for learners: 1. Further divide each of the pipeline stages into n sub stages. This approach requires faster logic

and the capability to subdivide the stages into segments with consistent latency. Here also Complex inter-stage interlocking and

stall-restart logic required. 2. Make available n pipelines that are overlapped. In this approach could be viewed in a sense as

staggered superscalar operation, and has associated with it all of the same requirements except that instructions and data can be

fetched with a slight offset in time. Unavoidably, super pipelining is controlled by the speed of logic, and the frequency of

unpredictable branches. The Stage time cannot effectively grow shorter than the interstage latch time, and accordingly this is a

limit for the number of stages. The MIPS R4000 is sometimes called a super pipelined machine, although its 8 stages really only

split the I-fetch and D-fetch stages of the pipe and add a tag check stage. Nevertheless, the further stages enable it to operate

with higher throughput. The UltraSPARC's 9-stage pipe definitely qualifies it as a super pipelined machine, and in fact it is a Super-

Super design because of its superscalar issue. The Pentium 4 splits the pipeline into 20 stages to enable increased clock rate. The

benefit of such extensive pipelining is really only gained for very regular applications such as graphics. On more irregular

applications, there is little performance advantage.

296 | P a g e Space for learners: Figure 3.5: Comparison of normal pipeline and Super pipeline. 3.5 PERFORMANCE OF A

PIPELINED PROCESSOR Consider a K segment pipeline with clock cycle time as T p and N tasks to be completed in the pipelined

processor. Here, the first instruction is about to take K cycles to come out of the Pipeline but the other N–1 instructions will take

only one cycle each, i.e., a total of N-1 cycles. So, time is taken to N instructions in a pipelined processor: ET P = K + N – 1 cycles

= (K + N – 1) T P In the same case, the Execution time of N instructions in a non- pipelined processor, will be: ET NP = N * K * T

P. Here ET P stand for estimate time taken in pipeline processor and ET NP stand for estimate time taken in non- pipeline

processor. therefore, speedup(S) of the pipelined processor over the non- pipelined processor, when N tasks are executed on the

same processor is:

297 | P a g e Space for learners: S= Since the performance of a processor is inversely proportional to the execution time, we have,

S = ET NP / ET P =< S = ∗ ∗ (–) S = ∗ (–) We can ignore (K-1) When the number of tasks N are considerably larger than K, that

is, N << K S = ∗ S = K, where K is the number of stages in the Pipeline. Theoretically, maximum speedup ratio will be k where

k are the total number of segments in which process is divided. Again, Efficiency = Given speed up Max speed up ⁄ = S / S Max We

already know that S Max = K as a result, Efficiency = (Throughput =) * +) + + + + + +, +) + hence, Throughput = N / (K + N – 1)

* T P =N/T P In ideal case as N -< 1 the throughout is equal to 1/ T P that is equal to frequency. Thus maximum throughput is

obtained is there is one output per clock pulse. Problem 1: A non-pipeline system takes 60 ns to process a task. The

82% MATCHING BLOCK 67/91

same task can be processed in six segment pipeline with a clock cycle of 10 ns. Determine the speedup ratio of

the pipeline for 100 tasks. What is the maximum speed up that can be achieved?

298 | P a g e Space for learners: Solution: Total time taken by for non pipeline to complete 100 task is = 100 * 60 = 6000 ns Total

time taken by pipeline configuration to complete 100 task is = (100 + 6 –1) *10 = 1050 ns Thus speed up ratio will be = 6000 /

1050 = 4.76 The maximum speedup that can be achieved for this process is = 60 / 10 = 6 Thus, if total speed of non pipeline

process is same as that of total time taken to complete a process with pipeline than maximum speed up ratio is equal to number

of segments. 3.6 SUPERSCALAR ARCHITECTURE Superscalar architecture is a system of parallel computing used in many

processors together. In a superscalar computer, the central processing unit manages multiple instruction pipelines to execute

several instructions concurrently during a clock cycle. It is achieved by feeding the different pipelines through several execution

units within the processor. To successfully implement a superscalar architecture, the CPU's instruction fetching mechanism must

intelligently retrieve and allot instructions. Otherwise, pipeline stalls may occur, resulting in execution units that are often inactive.

With each instruction that a superscalar processor issues, it must check the instruction's operands get in the way with the

operands of any other instruction in flight. Once an instruction is independent of all other ones in flight, the hardware must also

decide precisely when and on which available functional unit to execute the instruction. To fully utilize a superscalar processor of

degree N must issue N instructions per cycle to execute in parallel at all times. This situation may not be accurate in every clock

cycle. In that case, some of the pipelines may be stalling in a wait state. The simple operation latency should require only one

cycle in a superscalar

299 | P a g e Space for learners: processor, as in the base scalar processor. The superscalar processor depends more on an

optimizing compiler to exploit parallelism to achieve a higher degree of instruction-level parallelism in program. Figure 3.6:

Pipeline structure of superscalar processor of degree-3 3.6.1 Structure Superscalar Architecture Consider a machine organization

capable of issuing more than one instruction per cycle depicted in Figure 3.7. Assume that the instruction set executed by the

processor is I = (I 1 , I 2 ,.....I N) and that at most k instructions can be issued per cycle described by the k-tuple P = (i 1 , i 2 i k),

with i j є I, j = 1,2,....k. Furthermore, assume that at least k instructions are fetched into an instruction buffer and that a decision is

reached on whether or not a k- instruction tuple can be issued and executed in parallel. This decision-making process is

performed by the “Decode & Issue” logic. It is usually based on: the opcodes of the instructions, on availability of resources, and

the structural and data dependencies.

300 | P a g e Figure 3.7: Ba We can classify superscalar complexity. 1. Static Superscala instructions in program ord machine, it is

possible to simultaneously: given instru issue all, or only i1 (depend may not just issue i2 or i3 because the hardware has However,

as the actual execu that scheduling is static. 2. Dynamic Supersc out-of-order program still issue instructions in prog order the

execution, so we no 3. Dynamic with Sp capability to speculate beyon Basic Superscalar Architecture scalar processors into some

classes of varying rscalar — In this processor issue and execute m order. So, for example, in a degree 3 le to issue and execute

three instructions instructions i1,i2 and i3, we may choose to depending on the presence of hazards). We or i3. The instruction

issues look dynamic e has a choice about issuing instructions. l execution of instructions is in order, we state perscalar — These

types of machines permit am execution, but they usually in program order. Since we can potentially re- we now state scheduling

is dynamic. ith Speculation — These machines add the beyond branches, using different techniques. Space for learners:

301 | P a g e Space for learners: 3.6.2 Advantages of Superscalar Architecture • The compiler can keep away from many hazards

through well-judged choice and order of instructions. • The compiler should make every effort to interleave floating- point

instructions and integer instructions. This would facilitate the dispatch unit to maintain both the integer units and floating-point

units active most of the time. • On the whole, high performance is achieved if the compiler can arrange program instructions to

take maximum assistance of the available hardware units. 3.6.3 Disadvantages of Superscalar Architecture • In a Superscalar

processor, the unfavorable effect on the performance of various hazards becomes even more pronounced. • The problem in

scheduling can occur because of this complex architecture. 3.7 BRANCH PREDICTION The existence of program transfer

instructions, e.g., JMP, RET, CALL, etc., can reduce the gain produced by Pipelining. These instructions change the sequence

causing all the other instructions that entered the Pipeline after program transfer instructions are CHECK YOUR PROGRESS-I 1.

What is pipelining? 2. What are the 5 pipeline stages? 3. What is meant by ILP? 4. Define Superscalar processor.

302 | P a g e Space for learners: worthless. Thus no effort is done as the pipeline stages are reloaded. keep away from this

trouble, Pentium uses a scheme called Dynamic Branch Prediction. In this process, a prediction is prepared for the branch

instruction currently within the Pipeline. The prediction will either be taken or not taken. If the prediction became true, then the

Pipeline will not be flushed, and no clock cycles will be gone astray. If the prediction is false, then the Pipeline is flushed and starts

over with the present instruction. Mainly Branch Prediction predicts two problems one is Direction predicting and other one is

calculating the target address. 3.7.1 Types of Branch Prediction Basically there are two types of Branch prediction schemes : 1.

Static branch schemes and 2. Dynamic branch schemes. 3.8. STATIC BRANCH SCHEME A static branch scheme is a software-

based technique which very simple and easy. This scheme assembles the more significant part of the data/information earlier to

the program's execution or during the compile time and it does not need any hardware. In the Static branch prediction

technique, underlying hardware assumes that either the branch is not always taken or the branch is always taken. Let us

understand branch prediction with an example code:

303 | P a g e Space for learners: Output: Let us consider that underlying hardware has assumed that branch is taken constantly.

The output predicted through underlying hardware, and actual output is shown in figure3.8. Figure 3.8: Prediction result of static

branch prediction 3.9 DYNAMIC BRANCH SCHEME A dynamic branch scheme is hardware-based technique based on the

hardware and assembles the information during the program's run- time. Dynamic schemes are more assorted as they keep track

during run-time of the program execution. In Dynamic branch prediction technique, prediction by underlying hardware is not

rigid, rather it

304 | P a g e Space for learners: changes dynamically. The accuracy of this technique has high than the static technique. Some of

the dynamic branch prediction techniques are listed below: a. 1-bit branch prediction technique b. 2-bit branch prediction

technique and c. Correlating branch prediction technique 3.9.1 1-Bitbranch prediction technique In this technique hardware

changes its assumption immediately after one false assumption. For instance if hardware assumes branch to be taken but in

reality, branch is not taken, then after that step, hardware assumes branch to be not taken. Similarly, if hardware assumes branch

not to be taken but in reality, branch is taken, then after that step, hardware assumes branch to be taken. 1-bit branch prediction

Technique is shown in the Fig 3.8 below: Figure3.9: Transition diagram of 1-bit prediction technique Explanation – In the

beginning, let us declare hardware assume branch to be taken and so at number=0, branch is taken. At number=1, hardware

assumes branch to be taken but branch is not taken.

305 | P a g e Space for learners: So now at number=2 hardware assumes branch not to be taken and also branch is not taken. At

number =3 hardware assumes branch not to be taken but branch is taken. At number=4 hardware assumes branch to be taken

but branch is not taken. At number=5 hardware assumes branch not to be taken and branch is not taken. In this way, the

prediction is made till number=9. The output predicted through underlying hardware, and actual output is shown in Figure 3.9:

3.9.2 2-bit branch prediction technique This predictor changes its earlier prediction only on two successive mispredictions occur

and vice-versa. Two bits called as history Bit are maintained in the prediction buffer and there are 4-different states where Two

states related to a taken state and two related to not taken state. 2-bit branch prediction technique is shown in the figure: Figure

3.10: Transition diagram of 1-bit prediction technique

306 | P a g e Space for learners: Explanation – 1. Let's assume that when number=0, everything is reset(00), so hardware assumes

branch strongly not to be taken and the real branch is taken. As a result, the current state is (01). 2. When number =1, hardware

assumes branch weakly not taken and in the real branch is not taken. Therefore the current state is (00). 3. When number =2,

hardware assumes branch strongly not to be taken and branch is not taken in real. As a result, the current state remains (00). 4.

When number =3, hardware assumes branch strongly not to be taken and in the real, branch is taken. As a result, the current state

is (01). 5. When number =4, hardware assumes branch weakly not taken and in the real branch is not taken. So the current state is

(00) 6. When number =5, hardware assumes branch strongly not to be taken and in the real branch is not taken. So the current

state is (00). In this way, the prediction is done till number=9. The comparison of the performance of Branch prediction schemes

are given in the fig below: Figure 3.11: Comparison of performance of static,1-bit and 2-bit prediction scheme.

307 | P a g e Space for learners: 3.9.3 Correlating Branch Prediction Technique Due to interference with other branches, it is

impossible to get significant accuracy from the 2-bit branch predictor. So correlating branch prediction comes into the picture

which prediction accuracy is enhanced as it considers the recent activities of other branches. It uses k least significant bits of

branch target addresswhich is fetched before. Also, it uses local history table (LHT), a table of shift registers where shift register

refers to the last effect of m branches having similar k least significant bits. It also uses local prediction table(LPT) to predict the

result depending on its present state. 3.10 HAZARDS IN PIPELINING AND ITS TYPES The situation that prevents the next

instruction in the instruction stream from executing during its selected clock cycle is Hazard. Hazards decrease the performance

from the ideal speedup gained by pipelining. • Structural Hazards: Structural Hazards arises from resource conflicts when the

hardware cannot support all possible combinations of instructions in the Pipeline requiring the same resource Due to some

functional unit not being fully pipelined. Then the sequence of instructions using that un-pipelined unit cannot proceed at one

per clock cycle rate. This generally isn't a problem with simple pipelines, but if some instructions take longer than CHECK YOUR

PROGRESS-II 5. Define Branch prediction. 6. Define register file. 7. Define static branch prediction. 8. Define Dynamic branch

prediction.

308 | P a g e Space for learners: others, this can become a problem. Another common way that it may appear is when some

resources are not duplicated enough to allow all combinations of instructions in the Pipeline to execute. So by fully pipelining the

stages and duplicating resources will avoid a structural Pipeline. • Data hazards: Data hazards occur when instructions that show

signs of data dependence modify data in different stages of a pipeline. This Hazard cause delays in the Pipeline., Data hazards

occur when the Pipeline changes the order of read/write accesses to operands so that the order differs from the order seen by

sequentially executing instructions on an un-pipelined processor. It can be minimized by a simple hardware technique called

forwarding or by adding stalls. There are generally three types of

75% MATCHING BLOCK 68/91

data hazards: 1) Read after Write (RAW) 2) Write after Read (WAR) 3) Write after Write (WAW)

Let , there be two instructions I 1 and I 2 , such that I 2 follow I 1 . Then, • RAW Hazard occurs when instruction I 2 tries to read

data before instruction I 1 writes it. E.g.,: I 1 : R2 ← R1 + R3 I 2 : R4 ← R2 + R3 • WAR hazard occurs when instruction I 2 tries to

write data before instruction I 1 reads it. E.g.: I 1 : R2 ← R1 + R3 I 2 : R3 ← R4 + R5 • WAW hazard occurs when instruction I 2 tries

to write output before instruction I 1 writes it. E.g.:

309 | P a g e Space for learners: I 1 : R2 ← R1 + R3 I 2 : R2 ← R4 + R5 WAR and WAW hazards occur during the out-of-order

execution of the instructions. Control hazards: It is caused by a delay between the fetching of instructions and decisions about

changes in control flow (branches and jumps). Here instruction depends on the results of previous instruction in a way exposed

by the overlapping of instructions in the Pipeline. Control Hazards are also known as Branch Hazards. The simplest method to

handle branches hazard is to freeze or flush the Pipeline, holding or deleting any instructions after the branch until the branch

destination is identified. In this case branch penalty is fixed and cannot be reduced by software. The other scheme is the

predicted-not-taken or predicted-untaken and delayed branch. The number of stalls introduced during the branch operations in

the pipelined processor is known as branch penalty. 3.11

76% MATCHING BLOCK 69/91

DELAY SLOT An instruction slot being executed devoid of the effects of a preceding instruction

is known as a delay slot.

66% MATCHING BLOCK 70/91

The most familiar form is a particular arbitrary instruction located without delay after a branch instruction on a DSP or RISC

architecture; this instruction will execute even if the prior branch is taken. In that way, by design, the instructions appear to

execute in an incorrect or illogical order. It is usual for assemblers to automatically rearrange instructions by default, hiding the

unease from assembly developers and compilers.[3] 310 |

P a g e Space for learners: Load Delay Slot In pipelined architecture, the load word instruction loads a word from memory to the

specified register. The next instruction executes concurrently with the current instruction; if the following instruction uses the LW

destination register as one of its source registers, it cannot continue before the LW data is fetched from memory and written back

to the destination register; otherwise, it will read invalid data. Branch Delay Slot The branch delay slot is also a consequence of

the branch hazard.

96% MATCHING BLOCK 71/91

A simple design would insert stalls into the Pipeline after a branch instruction until the new branch target address is computed

and loaded into the program counter. Each cycle where a stall is inserted is considered one branch delay slot. A more

sophisticated design would execute program instructions that are not dependent on the branch instruction. This optimization

can be performed in software at compile time by moving instructions into branch delay slots in the in-memory instruction

stream if the hardware supports this. Another side effect is that special handling is needed when managing breakpoints on

instructions and stepping while debugging within branch delay slot[3]. 3.12

OUT-OF-ORDER EXECUTION A processor that executes the instructions one after the other may use the resources inefficiently,

leading to poor performance of the processor. To improve the performance of the processor, this can be done in two ways. One

is by executing different sub-steps of sequential instructions simultaneously, and others execute the instructions entirely

simultaneously. Additionally, improvement in the processor can be achieved through out-of-order execution by

311 | P a g e Space for learners: executing the instruction in a diverse from the original order they appear out-of-order execution

can be achieved. The approach of an out-of-orderexecution,used in high-performance microprocessors. Here in this approach

efficiently uses instruction cycles and minimized costly delay. As an alternative of the original order of the instructions, a

processor will execute the instructions in an order of accessibility of data or operands. The processor will avoid being idle while

data is retrieved for the next instruction in a program. In other words, a processor that uses multiple execution units completes

the processing of instructions in the wrong order. For example, I 1 and I 2 are the two instructions where I 1 comes first, then I 2 .

In the out-of- order execution, a processor can execute I 2 instruction before I 1 instruction has been executed. This flexibility of

allowing execution with less waiting time will improve the performance of the processor. The main benefit of the out-of-order

processor is it avoids instruction waits when the data needs to perform an operation is unavailable. STOP TO CONSIDER

Differentiate in-Order Execution from Out-of-Order execution. Out-of-order execution is a situation in pipelined execution

when an instruction is blocked from executing does not cause the following instructions to wait. It preserves the data flow order

of the program. In-order execution requires the instruction fetch and decode unit to issue instructions in order, which allows

dependences to be tracked, and requires the commit unit to write results to registers and memory in program fetch order. This

conservative mode is called in-order commit.

312 | P a g e Space for learners: 3.13 REGISTER RENAMING To

76% MATCHING BLOCK 72/91

deals with data dependences in pipelining between instructions by renaming their register operands

is known as register renaming.

84% MATCHING BLOCK 73/91

Renaming replaces architectural register names by, in effect, value names with a new value name for each instruction

destination operand. This process eliminates the name dependences (anti- dependences and output dependences) between

instructions and automatically recognizes true dependences.

97% MATCHING BLOCK 74/91

An assembly language programmer or a compiler specifies these operands using architectural registers - the registers are

explicit in the instruction set architecture.

92% MATCHING BLOCK 75/91

The identification of true data dependences between instructions allows a more flexible life cycle for instructions. Maintaining a

status bit for each value indicating whether or not it has been computed yet allows the execution phase of two instruction

operations to be performed out of order when there are no true data dependences between them.

Being more explicit about the action precise by an instruction data dependences can be realized. The action specified by an

instruction is more apparent if we illustrate instructions in terms of values rather than registers. We have to name the values in a

manner that captures changes in register contents over time. CHECK YOUR PROGRESS-III 9. Define hazard and its types. 10.

Define data hazard. 11. What is meant by delayed branch? 12. What is pipeline stall?

313 | P a g e Space for learners: By replacing register names in all operands with value names, we can confine the intent of a

sequence of instructions. For this, we use a table that records the value names assigned to each register name. Then we apply the

following algorithm. i. Replace each source operand with the most recent value name in the designated register column. ii.

Replace the destination operand with a new name and place the new name in the designated register column. It is essential that

step i is done first. Otherwise, when the same register is used both as a source operand and a destination operand, we indicate

that the instruction execution phase cannot begin until its result is ready. This makes it impossible for the execution phase to

begin.[4] For an Example: We will start with the following instructions. MUL

71% MATCHING BLOCK 76/91

R6, R0, R2 DIV R4, R2, R0 ADD R0, R6, R2 Instruction R0 R2 R4 R6

Renamed Instruction Initial values P0 P1 P2 P3 ----- MUL R6, R0, R2 P4 MUL P4, P0, P1 DIV R4, R2, R0 P5 DIV P5, P1, P0 ADD R0,

R6, R2 P6 ADD P6,P4,P1

314 | P a g e Space for learners: 3.13.1 Advantages of register renaming The instructions with value names capture the intent of a

sequence of instructions by specifying relationships between register values rather than just registers. This simplifies determining

when the execution of an instruction can begin. We only need to check if its source operand values have been computed. The

name dependencies no longer complicate the picture. To determine when source operands have been computed, the value

registers contain a status bit in addition to a data value. The status bit is initialized to 0 (not ready) when the value register is

allocated for an instruction. It is set to 1 when a functional unit writes a result.[4] 3.14 SUMMING UP In this unit, efforts have been

made to acquaint you with the advanced concept of computer architecture implicit parallelism. Here in this unit, you learn the

basic pipeline structure. Pipeline techniques are categories into two types. One is arithmetic pipeline, and the other is instruction

pipeline. Super-pipelining is the breaking of stages of a given pipeline into more miniature stages to shorten the clock period and

thus to enhance the instruction throughput by keeping more and more instruction in flight at a time. Superscalar architecture is a

system of parallel computing used in many processors together. Here the central processing unit manages multiple instruction

pipelines to execute several instructions concurrently during a clock cycle. Here in this unit you learned the different branch

prediction techniques. In the static branch prediction technique, underlying hardware assumes that either the branch is not

always taken or the branch is always taken. A dynamic

315 | P a g e Space for learners: branch scheme is hardware-based technique based on the hardware and assembles the

information during the program's run-time. The comparison of static prediction,1- bit branch prediction and 2-bit

branchprediction also elaborate with an example. Hazard is the situation that prevents the next instruction in the instruction

stream from executing during its selected clock cycle.

76% MATCHING BLOCK 77/91

An instruction slot being executed devoid of the effects of a preceding instruction

is known as a delay slot. Here we discuss the out-of-order execution that avoids instruction waits when the data needs to

perform an unavailable operation. At the last of the unit you learned the register renamingprocess, which deals with data

dependences. 3.15 KEY TERM

62% MATCHING BLOCK 78/91

PIPELINING: Pipelining is the practice of accumulating instruction from the processor through a pipeline. In Pipelining, Storing

and executing of the instructions allows being in an orderly process.

SUPER PIPELINING :Super pipelining is another approach to reach better performance. Super-pipelining is the breaking of stages

of a given pipeline into more miniature stages to shorten the clock period and thus to enhance the instruction throughput by

keeping more and more instruction in flight at a time. SUPERSCALAR ARCHITECTURE : Superscalar architecture is a system of

parallel computing used in many processors together. In a superscalar computer, the central processing unit manages multiple

instruction pipelines to execute several instructions concurrently during a clock cycle.

316 | P a g e Space for learners: STATIC BRANCH PREDICTION : This is the simplest branch prediction technique because it

predicts the outcome of a branch based solely on the branch instruction. It does not rely on information about the dynamic

history of code executing. DYNAMIC BRANCH PREDICTION : This is hardware-based technique based on the hardware and

assembles the information during the program's run-time. HAZARD :The situation that prevents the next instruction in the

instruction stream from executing during its selected clock cycle is Hazard.

90% MATCHING BLOCK 79/91

STALL: It is a delay in execution of an instruction in order to resolve a hazard.

BRANCH PENALTY: The number of stalls introduced during the branch operations in the pipelined processor is known as branch

penalty.

76% MATCHING BLOCK 80/91

DELAY SLOT: An instruction slot being executed devoid of the effects of a preceding instruction.

66% MATCHING BLOCK 81/91

REGISTER RENAMING:Register Renaming is a process to deals with data dependences in pipelining between instructions by

renaming their register operands. 3.16

ANSWERS TO CHECK YOUR PROGRESS 1. "Pipelining, also known as "pipeline processing",

76% MATCHING BLOCK 82/91

is the process of collecting instruction from the processor through a pipeline. It stores and executes instructions in an orderly

process." 2.

The 5 stages of instruction execution in a pipelined processor are: a. Instruction Fetch (IF) b. Instruction Decode(ID) c. Operand

Fetch (OF)

317 | P a g e Space for learners: d. Instruction Execute (IE) e. Operand Store (OS) 3. Pipelining exploits the potential parallelism

among instructions. This parallelism is called instruction-level parallelism (ILP). There are two primary methods for increasing the

potential amount of instruction-level parallelism. a. Increasing the depth of the pipeline to overlap more instructions. b. Multiple

issue. 4. There are processors which are capable of achieving an instruction executing throughput of more than one instruction

per cycle. They are known superscalar processor. 5. It is a technique for reducing the branch penalty associated with conditional

branches is to attempt to predict whether or not a particular branch will be taken. 6. The processor‘s 32 general-purpose

registers are stored in a structure called a register file. A register file is a collection of registers in which any register can be read or

written by specifying the number of the register in the file. The register file contains the register state of the computer. 7. The

branch prediction decision is always the same every time a given instruction is executed. Any approach that has this characteristic

is called static branch prediction. 8. The branch prediction where decision may change depending on execution history is called

Dynamic branch prediction. 9. Any condition that causes the pipeline to stall is called a hazard. Its types are: a. Data hazard b.

Instruction hazard c. Structural hazard

318 | P a g e Space for learners: 10. A data hazard is any condition in which either the source or the destination operands of an

instruction are not available at the time expected in the pipeline. A data hazard is a situation in which the pipeline is stalled

because the data to be operated on are delayed for some reason. 11. Delayed branch is a type of branch where the instruction

immediately following the branch is always executed, independent of whether the branch condition is true or false. 12. Pipeline

stall, also called bubble, is a stall initiated in order to resolve a hazard. They can be seen elsewhere in the pipeline. 3.17 POSSIBLE

QUESTIONS Multiple Choice Questions: 1. Arithmetic Pipeline is used for a. floating point operations b. integer operations c.

character operations d. None of the above 2. Which of the following is not a Pipeline Conflicts a. Timing Variations b. Branching

c. Load Balancing d. Data Dependency 3. How many types of Pipelining exist a. 2 b. 3 c. 4 d. 5 4. Which of the following is

disadvantage of Pipelining a. cycle time of the processor is reduced. b.

100% MATCHING BLOCK 83/91

The design of pipelined processor is complex and costly to manufacture. 319 |

P a g e Space for learners: c. The instruction latency is more. d. Both b and c 5. Which of the following is an advantage of

pipelining a. Instruction throughput increases. b. Faster ALU can be designed when pipelining is used. c. Pipelining increases the

overall performance of the CPU. d. All of the above 6. In arithmetic pipeline,

100% MATCHING BLOCK 84/91

the floating point addition and subtraction is done in ____________ parts.

a. 2 b. 3 c. 4 d. 5 7. ______ have been developed specifically for pipelined systems. a. Utility software b. Speed up utilities c.

Optimizing compilers d. None of the above 8. The pipelining process is also called as ______ a. Assembly line operation b. Von

Neumann cycle c. Superscalar operation d. None of the above 9. Each stage in pipelining should be completed within

___________ cycle. a. 1 b. 2 c. 3 d. 4 10. The periods of time when the unit is idle is called as _____ a) Stalls b) Bubbles c)

Hazards d) Both Stalls and Bubbles Answers (1. a, 2. c, 3. a, 4. d, 5.d, 6. c, 7.c, 8.a, 9.a, 10.d)

320 | P a g e Space for learners: Fill in the blanks: 1. The situation wherein the data of operands are not available is called ______.

2. The contention for the usage of a hardware device is called ______ 3. Each stage in pipelining should be completed within

___________ . 4. The fetch and execution cycles are interleaved with the help of ________. 5. The pipelining process is also

called as ______ . 6.

96% MATCHING BLOCK 85/91

A pipeline ______ is a delay in execution of an instruction in order to resolve a hazard. 7.

The number of stalls introduced during the branch operations in the pipelined processor is known as ______ . Answers: 1. Data

hazard 2. Structural hazard 3. 1 cycle 4. clock 5. Assembly line operation 6. Stall 7. branch penalty Short answer type questions: 1.

What do you mean by implicit parallelism? 2. Write a brief note on pipelining. 3. Explain Basic structure of pipelining technique. 4.

Write short notes on arithmetic pipeline and instruction pipeline. 5. How do you calculate performance of a pipeline. 6. Short

note on super pipelining techniques. 7. Differentiate between normal pipeline and super pipeline. 8. Compare super pipeline with

superscalar architecture. 9. What are the advantages and disadvantages of superscalar architecture? 10. write down different type

of superscalar processor. 11. Why do we require branch prediction?

321 | P a g e Space for learners: 12. What are the types of branch prediction scheme? 13. What is static branch prediction? 14.

What is dynamic branch prediction? 15. What are the different types of dynamic branch prediction? 16. Write a short note on

correlating branch prediction. 17. What do you mean by hazards in pipeline ? 18. What are the different types of hazard in the

pipeline? 19. What do you mean by delay slot. 20. What is the need of register renaming? Long answer type questions: 1. Explain

pipeline structure with diagram. 2. How many sub-tasks of instruction are there in pipeline. Explain. 3. Explain super pipeline

technique. What are the benefit over normal pipeline. 4. Explain basic structure of superscalar architecture. 5. Explain 1-bit branch

and 2-bit branch prediction technique with example. 6. Explain different type of hazards occurs in pipeline. 7. Explain data hazard

with their types. 8. Explain different delay slots in pipeline. 9. Describe out-of-order execution. 10. What is register renaming?

Explain how register renaming is done. 3.18 REFERENCES AND SUHHESTED READINGS [1]Pipelining.

cs.siu.edu/~cs401/Textbook/ch3.pdf [2]Course Notes, Mafla, E. CDA3101, at cise.ufl.edu/~emafla/ [3] Delay slot - WikiMili, The

Best Wikipedia Reader. wikimili.com/en/Delay_slot

322 | P a g e Space for learners: [4] Register Renaming ,University of Minnesota, d.umn.edu/~gshute/arch/register-renaming.html

[5] "Advanced Computer Architecture" Hwang ,Publisher Tata McGraw-Hill Education, 2003 ISBN:007053070X, 9780070530706

[6] "

93% MATCHING BLOCK 86/91

Computer Organization and Design – The Hardware / Software Interface", David A. Patterson and John L. Hennessy,

4th.Edition, Morgan Kaufmann, Elsevier, 2009. [7] "Computer system Architecture",

Mano, M. Morish, 3rd Edition, Pearson Education,1993 ---×---

323 | P a g e Space for learners: UNIT 4: ADVANCED CONCEPTS OF PIPELINING SCHEDULE Unit Structure: 4.1 Introduction 4.2

Unit Objectives 4.3 Pipelining 4.3.1 Types of Pipeline 4.3.1.1 Arithmetic Pipelining 4.3.1.2 Instruction Pipelining 4.4 Pipelining

Processor 4.4.1 Scalar Processor 4.4.2 Vector (Array) Processor 4.5 Advantages of Pipelining 4.6 Disadvantages of Pipelining 4.7

Pipelining Scheduling 4.7.1 Data Dependency 4.8 Dynamic Scheduling 4.8.1 Out-Of-Order Completion 4.8.2 Dynamic Scheduling

Algorithms 4.8.2.1 Earliest Deadline First 4.8.2.2 Least Slack Time First 4.8.3 Advantages of Dynamic Scheduling 4.8.4

Disadvantages of Dynamic Scheduling 4.9 Static Scheduling 4.9.1 Static Scheduling Algorithms 4.9.1.1 The Rate Monotonic 4.9.1.2

The Shortest Job First 4.10 Tomasulo’s Algorithm 4.10.1 Out-Of-Order Execution Implementation 4.10.1.1 Reservation Stations

4.10.1.2 Register Renaming 4.10.1.3 Common Data Bus 4.10.1.4 Score boarding 4.11 Reorder Buffer

324 | P a g e Space for learners: 4.12 Summing Up 4.13 Key Terms 4.14 Answers to Check Your Progress 4.15 Possible Questions

4.16 References and Suggested Readings 4.1. INTRODUCTION In this unit, you will get to learn in detail about pipelining

scheduling which is a very important concept of parallelism in computer organization and architecture (COA). As you already

know that in pipelining, the instructions are accumulated through a pipeline from the processor. Many instructions are

overlapped with each other. Performances of the CPU are improved due to the use of pilelines. So we will discuss the main

concepts of pipelining through the dynamic scheduling approaches. After going through the chapter, you will get to learn some

of the important concepts of pipelining scheduling such as • DATA DEPENDENCY – Data dependency is a concept that is applied

to check whether a block works properly even if the instructions present in that block are rearranged. • SCOREBOARD – When

the data dependencies are not present and when sufficient resources are present in the system, the score-boarding technique

allows the execution of out-of-order performances. • SLACK TIME – When the time of a process gets delayed without other

processes getting delayed, is termed slack time.

325 | P a g e Space for learners: • RATE MONOTONIC – Rate monotonic (RM)is a type of static scheduling algorithm in which the

instructions that have the smallest job or rate are given more priority than the bigger jobs. 4.2. UNIT OBJECTIVES Studying this

unit, you will be able to: • Understand the concept of pipelining and pipelining scheduling. • Discuss the different data structures

related to pipelining processes. • Know the different dynamic and static scheduling algorithms. 4.3. PIPELINING Pipelining is a

technique where instruction overlapping occurs at the time of execution. Instructions are accumulated from a processor into the

input registers through a pipeline, and therefore this process is known as pipelining. The order in which the instructions are stored

and executed is defined as the pipelining processing [1]. Different stages are linked together to form a single-stage pipeline and

the instructions enter through one end of the pipeline and come out through the other end. Each stage of the pipeline consists

of some input registers which hold the instructions at every stage and are then operated by some combinational circuit. When a

combinational circuit works on a register, the output of it is shifted to the next registers present in the lined-up segments. All the

instruction inside the pipeline works concerning some clock time[1].

326 | P a g e Space for learners: 4.3.1. Types of Pipeline Since instructions encountered in the pipeline are of different types, so to

cope up with this situation, the pipeline is split into two types. They are Arithmetic Pipelining and Instruction Pipelining, which are

explained as follows [1]: 4.3.1.1. Arithmetic Pipelining When arithmetic operations come as instruction into the pipeline they are

then stored in the Arithmetic Pipeline. Arithmetic operations may include addition, subtraction, operations on floating-point

numbers, etc. [1]. 4.3.1.2. Instruction Pipelining Instruction pipelining helps in increasing the throughput of the system. Fetch,

execute and decode instructions are overlapped in the instruction cycle. When a new instruction is present in the memory then it

is read by an instruction pipeline, and the instructions that were already existing are executed in the segments present in the

pipeline. The efficiency of the pipeline will increase if the instruction cycle is split into the equal time clock. By doing this we

execute multiple instructions simultaneously. That is, we can say that parallel processing occurs in the pipeline thus increasing

the efficiency of the system along with an increasing throughput [1]. CHECK YOUR PROGRESS 1) What do you understand by

pipelining? 2) What do you mean by pipelining schedule? 3) What is arithmetic pipelining? 4) What is instruction pipelining? 5) Fill

in the blanks: a) When the time of a process gets delayed without other processes actually getting delayed, is termed as the

________________. b) Each stage of the pipeline consists of some _________ which holds the instructions at every stage and

then operated by some ____________ circuit.

327 | P a g e Space for learners: 4.4. PIPELINING PROCESSOR Depending upon the work it follows, the pipelining processors are

divided into two categories, one is the scalar processor and the other is the vector(array) processor[1]. 4.4.1. Scalar Processor The

simple processor which executes one instruction at a time and that too simple instructions are known as the scalar processor.

But as it works on single instruction at a time therefore it proves to be an inefficient processor. The speed of the processor is also

very slow. For example, we need to add two numbers and store the answer in the third location which requires only simple

calculation[1]. ADD B, D and store it in E. 4.4.2. Vector (Array) Processor When complex instructions are executed on numerous

data synchronously, then a vector processor is used. This processor executes the instructions very fast as compared to the scalar

processor and has much efficiency. In the Instruction pipelining, at a particular time, different works are performed by the

processor on the different data. Vector processor uses the instruction pipeline for data processing. Here the CPU remains busy all

the time[1]. 4.5. ADVANTAGES OF PIPELINING [1] • Using pipelining, the total time of the processor's instruction cycle gets

reduced thereby increasing the throughput of the instruction. In an actual case, multiple instructions are executed simultaneously

and it looks like that the total time gets reduced.

328 | P a g e Space for learners: • The time delay in between two instructions is greatly reduced hence increasing the throughput.

• Nowadays for a faster and more complex design Arithmetic and Logic Unit, the pipeline is developed into several stages. •

Performance of the pipeline increases, meaning the clock cycle also increases. • The speed at which the clock cycle of the RAM

works is much lower than the clock cycle of the pipelining processor hence increasing the performance. 4.6. DISADVANTAGES

OF PIPELINING [1] • Branching delay can occur in a pipelined processor. For reducing this branching delay address of the target

branch need to be pre-fetched at the stage of decoding. Doing this the delay occurred may be reduced until 1 clock cycle. • The

flip-flops that are inserted between the data modules increase the latency in the instructions. • In pipelined processing, you may

get some unexpected performances. • When there are many branches in the stages of the pipeline, then the throughput gets

reduced. • Memory delay can occur in the pipelined processor. Cache miss occurs when searched data or instructions are not

present in the cache memory and therefore searched in the main memory which then consumes more number of the instruction

cycle. This is known as the Memory delay which becomes the reason for the delay for the other data or instructions that are lined

up. • When the pipeline does not validate the assumptions of the instructions, then incorrect behavior of the program might

occur, which leads to hazards.

329 | P a g e Space for learners: 4.7. PIPELINING SCHEDULING Pipelining scheduling is a type of mechanism where executions

are overlapped for different inputs and the computations are performed at different stages. It improves the performances of the

machine that have parallel instructions usually termed as instruction pipelines. Let us explain this pipelining scheduling with the

help of the following example. Suppose you have to manufacture a washing machine by developing two models[2]. a) For model

1, suppose you have designed the washing machine in such a way it washes (W), dries (D), and iron (I) one cloth at a time (T). That

is, for performing the mentioned operations on(n) number of clothes, the time required would be (n.T). Figure 1: Model 1 for

pipelining example b) For model 2, suppose you have split the work of one washing machine into different machines that can

wash (W), dry (D), and iron (I) the clothes separately. For each separate machine, the mentioned work is performed on more than

one number of clothes in time (T). Now the time, that is required by each machine to perform the above task (for 1 cloth at a

time) will be (T/3)[2]. And the time required for performing the operations on (n) number of clothes will be {T 3 = (2 + n). T/3}. For

a larger number of clothes, (2 + n) will become ‘n’. Then the time required will be {T 3 = n. T/3} WASH + DRY + IRON T

330 | P a g e Space for learners: Figure 2: Model 2 for pipelining example Here, model 2 explains the pipelining process. Let us

explain this as follows[2]. • For time T/3, the cloth is washed in the machine. • After it finishes the process of washing, it enters the

second stage that is the dry stage, and works there for time T/3. When the second cloth was in the dry stage another cloth has

entered the washing stage and took the same time T/3. It is being pipelined. • When the first cloth entered the iron stage for time

T/3, the second cloth is in the dry stage for time T/3 (it is being pipelined) and the third cloth is in the washing stage for time T/3

(it is being pipelined). • Then cloth one finishes its task, cloth two is pipelined and enters into the iron stage. Meanwhile, cloth 3

enters into the dry stage and new cloth 4 enters into the washing stage. • Simultaneously all the machines are working having

each time T/3. • In this way, all the machines are working keeping themselves busy without remaining idle. • By keeping in mind

the formula (T 3 = (2 + n). T/3), where n is several clothes. • We can say that Cloth one took (for all the three stages) time T = (2 +

1) T/3 = 3T/3 • Cloth two took time; T = (2 + 2) T/3 = 4T/3 • Cloth three took time; T = (2 + 3) T/3 = 5T/3and so on. This explains

the pipelining process. WASH DRY IRON T/3 T/3 T/3

331 | P a g e Space for learners: 4.7.1. Data Dependency Data dependency is a concept that is applied to check whether a block

works properly even if the instructions present in that block are rearranged. As said, there are three types of data dependencies[4].

• Read After Write (RAW) – At first, suppose Instruction 1 writes an instruction. That same instruction is read by Instruction 2 later.

After Instruction 1 writes the value, then only Instruction 2 will read, therefore Instruction 1 must be written first otherwise instead

of reading the new value, Instruction 2 will read the old value. • Write After Read (WAR) – At first, the location of a value is read by

Instruction 1. After that Instruction 2 again rewrites the value. Instruction 1 must be written first, otherwise, instead of reading the

new value, Instruction 2 will read the old value. • Write After Write (WAW) – Both Instruction 1 and 2 when write a value in the

same location, then this dependency is termed as write after write and it must be in the same order as the original order. 4.8.

DYNAMIC SCHEDULING At the time of compilation, sometimes some dependencies occur in the system and we are unable to

recognize these dependencies. In this case, handling of the dependencies is performed by the dynamic scheduler and hence the

process is termed dynamic scheduling. For instructions having simple pipelining techniques, the major drawback is that all

instructions are scheduled in some order, and once the instructions are CHECK YOUR PROGRESS 1) What is a scalar processor?

2) What is a vector processor? 3) State the advantages of pipelining. 4) State the disadvantages of pipelining. 5) What are the

different data dependencies?

332 | P a g e Space for learners: pipelined then no new instructions or instructions after the scheduled instructions can be

executed earlier than the pipelined instructions. If two or more instructions are spaced closely and have the same dependencies,

then it might so happen that the instructions might come to a halt or become idle[3]. When hardware is taken into account,

dynamic scheduling comes into force. 4.8.1. Out of Order Completion The WAR and WAW hazards create the possibility of out-

of-order execution. For handling the exceptions, major complications are created by the out-of-order completion. There are two

possible cases where non-precise exceptions might occur[3]. • Suppose there are many instructions in a pipeline and it may so

happen that one instruction present in the pipeline can cause exceptions. The possibility of a non-precise exception might occur

when instructions that are present after the ‘exception instruction’ have been executed first[3]. • Another possibility might occur

where there are many instructions present in a pipeline and it may so happen that one instruction present in the pipeline can

cause exceptions. The possibility of a non-precise exception might occur when some instructions present in the pipeline before

the ‘exception instruction’ are not executed at all[3]. Execution of out-of-order is allowed if the five stages pipeline is transformed

into two stages in the following ways[3]. • Issue – Instruction decoding and to check whether any structural hazards are present

in the pipeline or not. • Read operands – The pipeline will wait till no data hazards are encountered and then the operands will be

read. For the dynamic scheduling, the instruction in the pipeline should pass in an ordered way through the Issue stage and then

into the read operands, which is the second stage.

333 | P a g e Space for learners: 4.8.2. Dynamic Scheduling Algorithms As the name suggests, a dynamic scheduler helps in

making efficient decisions during the runtime of the system. Therefore, the system that works on dynamic scheduling is more

flexible but at the same time calculation overhead also occurs. It checks which instruction has the most priority than the other

and simultaneously works on that instruction at first. As it takes instruction during the runtime therefore the priority of executing

the instruction might also change accordingly[5]. There are many dynamic scheduling algorithms based on different approaches,

some of them are discussed below. 4.8.2.1. Earliest Deadline First (EDF) EDF is a type of dynamic scheduling algorithm in which

the instructions that have the nearest deadline to complete are given the task of highest priority and are executed first. When the

current process gets completed and new processes are scheduled then this algorithm is worked upon. It is applicable for real-

time systems. The CPU is utilized fully making sure that all the tasks are completed. An optimal feasible schedule is processed

where all the tasks are executed within the stipulated deadline. The task must mention its deadline once it is made ready for

execution and given a fixed CPU burst timing. Preemption can occur in EDF, and any instances that are scheduled for later but are

engaged with an earlier deadline get ready for execution and becomes active[5]. But there are some limitations of the Earliest

Deadline First Algorithm such as • Overloading problems for the transient might occur. • There might be some problems when

resources are shared. • Sometimes implementations are not done efficiently. Let us explain the EDF algorithm with the help of an

example by taking a flowchart[5].

334 | P a g e Space for learners: Figure 3: Flowchart of the Earliest Deadline First Algorithm 4.8.2.2. Least Slack Time First (LST) LST

is a type of dynamic scheduling algorithm in which the instructions that have the smallest slack time are given the task of highest

priority and are executed first. When the time of a process gets delayed without other processes getting delayed, is termed as the

slack time. Like that of the EDF, when the current process that has the lowest slack time gets completed and new processes are

scheduled then this algorithm is worked upon. For the slack time to be given as l, starting time is given as t, deadline interval is

given to be d, and the remaining execution time is given to be c, the formula is given as (l = d – c – t) [5]. The algorithm is

somewhat complex therefore requires extra information like the deadline and the execution timing. In real-time systems, it is

sometimes difficult to predict the burst time. If the processes have the same slack time, then first cum first serve (FCFS) algorithm

is applied together with LST. IS THE READY QUEUE FILLED? NEW PROCESS YES WAI THE LISTS OF THE PROCESSES ARE BEING

PREPARED AND PRIORITY HAS BEEN ASSIGNED GIVING THEM SOME DEADLINE THE PROCESSES HAVING THE SMALLEST

DEADLINE ARE EXECUTED FIRST WITH THE HIGHEST PRIORITY NO

335 | P a g e Space for learners: Let us explain the LST algorithm with the help of an example by taking a flowchart [5] Figure 4:

Flowchart of the Least Slack Time Algorithm. 4.8.3. Advantages of Dynamic Scheduling[6] • Unknown dependencies during

compile time are handled by dynamic scheduling because memory references are included. • It simplifies the performance of the

compiler. • Codes on a pipeline are compiled so efficiently that they can run on different pipelines. • Hardware speculations are

often built on dynamic scheduling. IS THE READY QUEUE FILLED? NEW YES WAI THE LISTS OF THE PROCESSES ARE BEING

PREPARED AND PRIORITY HAS BEEN ASSIGNED by USING (l = d – c – t) THE PROCESSES HAVING THE SMALLEST SLACK TIME

ARE EXECUTED FIRST UNTIL NEW NO

336 | P a g e Space for learners: 4.8.4. Disadvantages of Dynamic Scheduling[7] • The complexities of the hardware increase

substantially. • Dynamic scheduling surely complicates exception handling. • WAW and the WAR dependencies are created for

out-of-order execution as well as out-of-order completion. 4.9. STATIC SCHEDULING In static scheduling, all the processes are

fixed for a particular stage in the pipeline. Before the execution takes place, the processes are given the tasks. They are usually

processor non-preemptive. The overall time of the execution is minimized by the static algorithm. It tries to indicate the behavior

of the execution of the program such as the execution time, process, and communication delays during the compile time. The

smaller tasks are partitioned for reducing the communication costs. Processes are allocated to the processors. Static scheduling

has a more efficient execution time environment as compared to the dynamic scheduling algorithm [5]. 4.9.1. Static Scheduling

Algorithms Just like the dynamic scheduler, the priority scheduler works on the tasks that have more priority than the other but

the value of the priority does not change. The static scheduler can make an efficient decision before runtime as well. There are

many static scheduling algorithms, some of them are discussed below[5]. 4.9.1.1. The Rate Monotonic (RM) RM is a type of static

scheduling algorithm in which the instructions that have the smallest job or rate are given more priority than the bigger jobs. The

size or rate of the job is already scheduled in the RTOS. When the current process that has the smallest job gets completed and

new processes are scheduled then this algorithm is worked upon[5]. The priorities are assigned just before the execution and

remain the same throughout its execution period. Rate monotonic works based on the preemption, that is, during the execution

time, if a shorter job is

337 | P a g e Space for learners: encountered by the system, then that job is given more priority for the execution. A job that has

more time period has less priority and a job that has a lesser time period have more priority. The implementation of it is very

much easy. Let us explain the rate monotonic algorithm with the help of an example by taking a flowchart [5] Figure 5: Flowchart

of the Rate Monotonic algorithm 4.9.1.2. The Shortest Job First (SJF) SJF is a type of static algorithm in which the instructions that

have the smallest execution time are executed first. The time of the job is already scheduled in the RTOS. It is kept as the CPU

time. When the current process that has the smallest job time gets completed and new processes IS THE READY QUEUE FILLED?

NEW YES WAI THE LISTS OF THE PROCESSES ARE BEING PREPARED AND THE PROCESS WITH THE LOWEST TIME PERIOD IS

THE PROCESSES HAVING THE SMALLEST PERIOD TIME ARE EXECUTED FIRST UNTIL NEW PROCESSES ARRIVE NO

338 | P a g e Space for learners: are scheduled then this algorithm is worked upon[5]. This algorithm is suitable for a processor

having batch-type processing and the waiting time for the jobs is not critical. SJF can be applied in both preemptive and non-

preemptive scheduling algorithms. Starvation of the processes might occur if the processes have a larger burst time. Let us

explain the SJF algorithm with the help of an example by taking a flowchart [5]. Figure 6: Flowchart of the Shortest Job First

algorithm IS THE READY QUEUE NEW YE WAI THE LISTS OF THE PROCESSES ARE BEING PREPARED AND THE PROCESS WITH

THE LOWEST EXECUTION TIME THE PROCESSES HAVING THE LOWEST EXECUTION TIME ARE EXECUTED FIRST UNTIL NEW

NO CHECK YOUR PROGRESS 1) What is out of order completion? 2) Describe the different dynamic scheduling algorithms. 3)

Describe the different static scheduling algorithms. 4) What are the advantages of dynamic scheduling? 5) What are the

disadvantages of dynamic scheduling?

339 | P a g e Space for learners: 4.10. TOMASULO’S ALGORITHM A scientist named Robert Tomasulo invented the Tomasulo

Algorithm to be used in IBM 360/91.Tomasulo’s algorithm is a type of hardware algorithm in computer architecture that isused for

implementing dynamic scheduling allowing out-of-order execution and enabling multiple execution units. The hardware

includes the reservation stations, the register renaming, and a common data bus (CDB) for carrying the values towards the

reservation stations. Because of the presence of this hardware architecture, parallel processing is possible. WAR and WAW

hazards are removed using register renaming. And this register renaming is done through reservation stations. Register Renaming

is implemented through reservation stations. Tomasulo’s algorithm work in some stages which are discussed below [8]. Here

reservation station provides the register renaming. 1) The Issue stage – Instructions are present in a queue (FIFO queue) in which

all the instructions are given some space with some deadline. When one instruction completes its job, the next instruction

remains at the head of the queue. The work of the Issue stage is to call the instruction from the queue that is present at the head

of the queue. If the reservation station matches the called instruction, then the instruction is issued some operand values in the

renaming register [3]. One condition is that; the reservation station must remain free when the instruction is called. If the

reservation station is not free, then the instruction stalls, and subsequently structural hazards occur. If there is a problem in

issuing one instruction, then the instructions that are lined up in the queue will not get executed. Another case may occur; the

instruction waits in the reservation stations if the values of the operands are not found from the common data bus [9]. 2) The

Execution stage – If all the values of the operands are available by the CDB into the reservation stations, then execution of the

processes takes place. Until and unless operand values are not available, execution does not occur [3].With the help of effective

addressing, load and store are

340 | P a g e Space for learners: maintained.Executions are not initiated by the instructions until and unless the previous

instructions are completed that were in order [9]. 3) The Write Result stage– Once the results are obtained through execution,

the result is written on the CDB and then transferred into the registers and then into the reservation stations that contain the

store buffers. At this write result step, the data is written into the memory. As soon as the data values and addresses are present

the data is transferred to the memory and in this stage, the storage gets completed[3]. 4.10.1. Out-of-Order Execution

Implementation For the complexities of the pipeline to be enhanced, the out-of-order processor needs to be implemented. Now

the WAR and WAW hazards can be tackled because the system can reorder the instructions. The following are some of the issues

that have been tackled in the pipelining structure and which are very important for Tomasulo’s algorithm. 4.10.1.1. Reservation

Stations Reservation stations are one of the features of the CPU which permits the register renaming and Tomasulo's algorithm

uses these reservation stations for use in dynamic scheduling. Reservation stations work as the data buffer that fetches and stores

the instruction operand values as soon as they are made available and it does not allow the data to get stored in the register. One

instruction specifies a single reservation station and the operands once available are sent for its execution and the completed

instructions are stored in the buffer of the reservation stations. When there are many instructions and when all of their needs to

write in the same register than by the terms, logically only the last instruction can be written in that same register[10]. Sequential

instructions are issued to the reservation stations in Tomasulo's algorithm that helps in buffering the instructions. Reservation

stations checks the common data bus for the availability of

341 | P a g e Space for learners: the data operand and if it is available in the buffer then only the instructions get activated. There

are some fields of register present in the reservation stations which are explained as follows[3] • Op – Op is the operations that

need to be performed on the operand data. It is the functional unit of the associated reservation station. The functional unit can

be the arithmetic as well as the logical interpretations such as {AND, OR, NOT, ADD, SUBTRACT, etc.). • Qj, Qk–In these fields of

the reservation station, the source operands are produced and the value of zero indicates that the reservation station has

delivered the value to its corresponding source. It produces the source registers. • Vj, Vk – The source operands have some

actual values depicted as Vj and Vk. The actual values will be only valid if the Qj and Qk have the value zero which indicates that

the value of the source has arrived in the reservation station. • A – The ‘A’ field holds the address of the memory information for a

load or a store. Until and unless effective address computation occurs, instructions containing in the immediate field only hold. •

Busy – It works in two Boolean conditions that are True or False. If the condition is True that means the reservation station is

occupied or busy. And if the condition is False that means the reservation station is not occupied. The value 1 indicates that the

station is busy and o indicates that the station is not busy. • Qi –all the results of the reservation station are stored in this register.

If the value is 0 that means the value present in the register is the actual value of that register. At this point, the register is not

renamed. 4.10.1.2. Register Renaming Instruction results that are stored in the registers are particularly renamed. There may be

more than one type of name in the registers that might be used in the system hardware. The reservation stations and the registers

are mapped after which the renaming is performed. For

342 | P a g e Space for learners: correctly performing the out-of-order executions, the register renaming is usually applied by

Tomasulo's algorithm[11]. It is a pipelining technique that renames the register operands by dealing with the dependences of the

data. The operands are specified with the help of a compiler using the architectural registers that are explicit instructions. The

renaming register restores the name of these architectural registers by a new value name for the operands of each instruction. It

recognizes the true dependencies automatically. It removes the WAR and WAW hazards by dynamically assigning values to the

registers [11]. 4.10.1.3. Common Data Bus The functional units and the reservation stations are connected directly with the help of

the common data bus (CDB). Tomasulo's algorithm depicts that the CDB "preserves precedence while encouraging

concurrency". It can be in two different structures [11]. • Operation results can be accessed by the functional unit without

demanding any register with a floating-point and allow multiple functional units to access the register file [11]. • In CDB, control

execution and hazard detection are distributed while controlling of the execution of the instruction are done by the reservation

stations rather than by a hazard unit [11]. 4.10.1.4. Scoreboarding The scoreboard also follows the dynamic scheduling technique

or we can say helps in implementing it so that the execution of the out-of- order can be performed with the condition that no

conflicts occur and there is the availability of the hardware. During scoreboard, if data dependencies occur then it is tracked,

logged, and observed very often. The scoreboard monitors the system every time to check whether any instruction got stalled or

not and tries to resolve the dependencies before any instruction gets stalled[12]. It monitors every instruction that waits for it to

get dispatched. The scoreboard keeps all the latest information into its registers and also determines the time period when the

instruction will begin and end.

343 | P a g e Space for learners: The scoreboard contains some stages in which the instruction must pass through it. The stages

are given as follows[13]. a) Issue – In the issue stage, the scoreboard checks whether any hazards such as the WAW hazards are

available or not. If it ispresent, then the instruction gets stalled[13]. b) Read operands – The scoreboard reads or finds whether any

source operands are available or not. If it is present, the functional units are instructed by the scoreboard to check the register file

and read the operands so that it can start its execution. The RAW hazards are corrected in this stage. If instructions do not write

or use any operand, then that operand is said to be free or available and is present in the register file. If multiple instructions come

to the register file, then ambiguity might occur as to which instruction will get the preference to write the operand[13]. c)

Execution – The scoreboard gets notified here by the functional unit as to when the execution gets over[13]. d) Write result – As

soon as the scoreboard gets notified from the execution stage that the execution has finished, the scoreboard investigates

whether any WAR hazards are present or not. If WAR hazards are present, then the functional unit is instructed to get stall by the

scoreboard until the hazards are being cleared[13]. The main difference between Tomasulo's algorithm and scoreboarding is that

there is no distribution system in scoreboarding. Scoreboarding keeps the track of all instructions and information within itself

and is the sole control unit. Whereas Tomasulo's algorithm is a distributed system. All the functional control is distributed among

different registers. 4.11. REORDER BUFFER (ROB) The reorder buffer creates an apparition to the Users that their instructions are

working in order. When a system encounters an

344 | P a g e Space for learners: instruction, the instruction gets renamed and decoded and then gets transferred to the ROB as

well as the issue queue and simultaneously marked as busy. ROB receives the information once the instruction gets executed and

the ROB is marked as not busy. Not busy means that it is now 'committed' and the architectural state gets visible. But if an

exceptional instruction remains at the head of the ROB then the architectural changes are not visible[14]. The structure of the

ROB is normally a circular buffer that keeps the track of all instructions in order, while the commit head points to the oldest

instruction and simultaneously new instructions will be managed within the ROB. Like the other forms, reorder buffer has also

some stages that help in the smooth working of it. They are explained as follows[14]: a) Exception State –The oldest instruction in

the pipeline when gets encountered by the ROB and is pointed to the head pointer then an exception is thrown by the system. A

single bit is used to depict the instruction that has entered the ROB or not but the oldest exception instruction is only tracked by

the additional exception state. By doing this saves space[14]. b) PC Storage – Branch and Jump instruction are used to access the

information into the ROB’s PC file at the time of register read[14]. c) Commit Stage – When the head of the ROB does not contain

any instruction then it can be committed which means that any changes that occur in the system are made available. ROB

releases single instruction in the pipeline but does not check for multiple instructions to get committed. The instruction gets

stored into the memory only when the commit is performed. After commit, the instruction physically releases the register[14]. d)

Exception and flushes – When ROB contains the instruction at the commit head then only exceptions are handled. The ROB gets

emptied by flushing the pipeline. Reset of the rename map table must be done. Control status register (CSR) receives the

accepting instruction if the instruction is an architectural exception and if it is a micro-

345 | P a g e Space for learners: architectural exception re-fetching is done of the failing instructions and execution can begin

afresh[14]. e) Point of no return – For marking the instruction for which exception might be generated, another pointer head runs

just in front of the ROB commit head which is known as the point-of-no-return. It includes memory operations that are

untranslated and branches that are unresolved. RoCC instructions that do not tolerate miss peculationare nowadays used by the

PNR which means that instruction that has passed the PNR head only gets issued by the ROB[14]. f) CHECK YOUR PROGRESS Fill

in the following blanks.: 1. Pipelining is a technique where instruction overlapping occurs at the time of its ____________. 2. The

efficiency of the pipeline will ________ if the instruction cycle is split into the equal time clock. 3. ____________ delay can

occur in pipelined processor. 4. The flip-flops that are inserted between the data modules increases the __________ in the

instructions. 5. ______________ algorithm is a type of hardware algorithm in computer architecture that is used for

implementing dynamic scheduling allowing out-of-order execution and enabling multiple execution units. 6. If the reservation

station matches the called instruction, then the instruction is issued some operand values in the ____________________. 7.

Reservation Stations checks the _________________ for the availability of the data operand.

346 | P a g e Space for learners: 8. The reservation stations and the registers are mapped after which the ___________________

is performed. 9. The structure of the _____________ is normally a circular buffer that keeps the track of all instructions in order.

10. _________________ receives the excepting instruction if the instruction is architectural exception. 4.12. SUMMING UP • The

order in which the instructions are stored and executed is defined as pipelining processing. • All the instruction inside the pipeline

works concerning some clock time. • When arithmetic operations come as instruction into the pipeline they are then stored in

the arithmetic pipeline. • When complex instructions are executed on numerous data synchronously, then a vector processor is

used. This processor executes the instructions very fast as compared to the scalar processor and has much efficiency. • The time

delay in between two instructions in a pipeline is greatly reduced hence increasing the throughput. • Branching delay can occur

in a pipelined processor. • Data dependency is a concept that is applied to check whether a block works properly even if the

instructions present in that block are rearranged. • If two or more instructions are spaced closely and have the same

dependencies, then it might so happen that the instructions might come to a halt or become idle. • The WAR and WAW hazards

create the possibility of out-of- order execution.

347 | P a g e Space for learners: • If the processes have the same slack time, then first cum first serve (FCFS) algorithm is applied

together with LST. 4.13. KEY TERMS • PIPELINING - It is a technique where instruction overlapping occurs at the time of

execution. Instructions are accumulated from a processor into the input registers through a pipeline, and therefore this process is

known as pipelining. • PIPELINING SCHEDULE – Pipeliningscheduling is a type of mechanism where executions are overlapped

for different inputs and the computations are performed at different stages. It improves the performances of the machine that

have parallel instructions usually termed as instruction pipelines. • DATA DEPENDENCY – Data dependency is a concept that is

applied to check whether a block works properly even if the instructions present in that block are rearranged. • SCOREBOARD –

When the data dependencies are not present and when sufficient resources are present in the system, the score-boarding

technique allows the execution of out-of-order performances. • EARLIEST DEADLINE FIRST – EDF is a type of dynamic

scheduling algorithm in which the instructions that have the nearest deadline to complete are given the task of highest priority

and are executed first. • LEAST SLACK TIME FIRST – LST is a type of dynamic scheduling algorithm in which the instructions that

have the smallest slack time are given the task of highest priority and are executed first. • SLACK TIME – When the time of a

process gets delayed without other processes getting delayed, is termed Slack time. • RATE MONOTONIC – RM is a type of static

scheduling algorithm in which the instructions that have the smallest job or rate are given more priority than the bigger jobs.

348 | P a g e Space for learners: • SHORTEST JOB FIRST – SJFis a type of static algorithm in which the instructions that have the

smallest execution time are executed first. 4.14. ANSWERS TO CHECK YOUR PROGRESS 1. Execution, 2. Increase, 3. Branching, 4.

Latency, 5. Tomasulo, 6. Renaming Register, 7. Common Data Bus, 8. Renaming, 9. Reorder Buffer, 10. Control Status Register.

4.15. POSSIBLE QUESTIONS Short Type Questions: 1) What do you mean by pipelining? 2) What is pipelining processing? 3) What

are the two types of a pipeline? 4) Explain in brief the data dependency. 5) Explain in brief the dynamic scheduling. 6) What are

the different types of dynamic scheduling and static scheduling algorithms? 7) Write the function of the Issue stage in

Tomasulo'salgorithm. 8) What is a reservation station? 9) How does the register renaming work in the pipelining schedule? 10)

What do you mean by reorder buffer? 11) What is the function of a common data bus? 12) What do you mean by scoreboarding?

Explain in brief. 13) What are the different dependency hazards? 14) What do you understand by point of no return? Explain in

brief. Long Type Questions: 1) What do you mean by pipelining? Explain the different types of pipelines.

349 | P a g e Space for learners: 2) Discuss the advantages and disadvantages of pipelining. 3) Explain the pipelining scheduling

with a relevant example. 4) What are the different types of data dependencies? 5) What are the advantages and disadvantages of

dynamic scheduling? 6) Explain the earliest deadline first algorithm. 7) Explain the least slack time first algorithm. 8) Explain the

rate monotonic algorithm. 9) Explain the shortest job first algorithm. 10) Explain Tomasulo'salgorithm. 11) What do you mean by

reservation station? Explain all its stages. 12) What do you mean by register renaming? 13) What do you understand by reorder

buffer? 4.16. REFERENCES AND SUGGESTED READING [1] https://www.lkouniv.ac.in/site/writereaddata/siteContent/20200

4221613338445rohit_engg_pipelining_and_hazzard.pdf [2] https://www.quora.com/What-is-pipelining-scheduling-in-

computer-architecture [3] https://www.brainkart.com/article/Dynamic-Scheduling_8832/ [4]

https://en.wikipedia.org/wiki/Instruction_scheduling [5] Teraiya, J., & Shah, A. (2020). Analysis of dynamic and static scheduling

algorithms in soft real-time system with its implementation. In Soft Computing: Theories and Applications (pp. 757-768). Springer,

Singapore.

350 | P a g e Space for learners: [6] https://www.cs.umd.edu/~meesh/411/CA- online/chapter/advanced-concepts-of-ilp-

dynamic- scheduling/index.html [7] COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE

EIGHTH EDITION, BY WILLIAM STALLINGS, published by Prentice Hall (an imprint of Pearson) [8]

https://www.cse.iitk.ac.in/users/biswap/CS422/L12- Tomasulo.pdf [9] http://www.cs.umd.edu/~meesh/411/CA-

online/chapter/dynamic-scheduling example/index.html [10] https://www.cs.umd.edu/~meesh/cmsc411/website/projects/dyn

amic/tomasulo.html [11] https://en.wikipedia.org/wiki/Tomasulo_algorithm [12] https://en.wikipedia.org/wiki/Scoreboarding [13]

https://www.cs.umd.edu/~meesh/cmsc411/website/projects/dyn amic/scoreboard.html [14] https://docs.boom-

core.org/en/latest/sections/reorder-buffer.html ---×---

351 | P a g e Space for learners: UNIT 5 – ADVANCED CPU ARCHITECTURES Unit Structure: 5.1 Introduction 5.2 Unit Objectives

5.3 Introduction to Advanced CPU architectures 5.3.1 Classification of Instruction Set Architectures: 5.4 VLIW Architecture 5.4.1

Example of VLIW code: 5.4.2 Examples of VLIW Processors: 5.4.3 Advantages of VLIW 5.4.4 Disadvantages of VLIW 5.4.5

Applications of VLIW Processors 5.5 EPIC Architecture: 5.5.1 EPIC vs VLIW 5.5.2 EPIC architectural details 5.6 Part 2: Introduction

to Multiprocessor Systems: 5.6.1 Classification of Multiprocessors: 5.7 Interconnection Types: 5.8 Cache Memory: Uniprocessor

vs Multiprocessor: 5.8.1 Cache Coherence Problem: 5.8.2. The “All-is-well” Solution: 5.8.3. Software-based solutions: 5.8.4.

Hardware Solutions: 5.9 Summing Up 5.10 Answer to Check Your Progress 5.11 Possible Questions 5.12 References and

Suggested Readings 5.1 INTRODUCTION In last three decades, the architectures of CPU design have been implemented on an

unprecedented scale on a single chip due to the advancement of Integrated Circuit fabrication technology. So, this becomes very

much relevant for you to learn about different instruction set architectures. Moreover, it is also very important to know about the

interconnection between multiple processors & cache memory and the cache coherence problem which may arise with such

interconnections.

352 | P a g e Space for learners: This unit is divided into two parts. In the first part, we will take a close took CPU architectures.

Our primary focus is Very Large Instruction Word (VLIW) architecture. You will get a brief introduction to different instruction set

architectures like CISC and RISC, which are implemented in superscalar processors. The detailed architecture of VLIW processors

will be discussed in this unit along with basic working, instruction format, advantages and disadvantages. Additionally, the

implementation details of Explicitly Parallel Instruction Computing (EPIC) architecture will also be discussed, which is a VLIW

inspired architecture, developed by HP and Intel. You will learn how EPIC differs from VLIW and how EPIC overcomes certain

limitations of VLIW. The second part of the unit focusses on the concept of Multiprocessor Systems, which is based on Multiple

Instruction stream, Multiple Data stream (MIMD)design scheme. We will discuss about the different classification of

multiprocessors – namely tightly coupled and loosely coupled. You will also learn about different interconnection structures

between multiprocessors along with pros and cons of each of the structure. We will also discuss how cache memory is used in

uniprocessor and multiprocessor systems to increase the performance along with the cache coherence problem. We will also

look into different hardware and software-based solutions to the cache coherence problem. 5.2 UNIT OBJECTIVES The objective

of this unit is to give an introduction to advanced CPU architectures and multiprocessor systems. After completing this unit, you

will be able to • Learnabout the VLIW architecture and how it differs from the superscalars • Know the EPIC architectures and

how it differs from VLIW • Learn the concept of multiprocessor systems and its types • Understand the different interconnection

structures in multiprocessor systems with pros and cons. • Define cache coherence problem and its solutions.

353 | P a g e Space for learners: 5.3 INTRODUCTION TO ADVANCED CPU ARCHITECTURES In the field of Computer Science, an

abstract model of a computer system is defined by Instruction Set Architecture (ISA), also known as Computer Architecture.

Implementation of ISA corresponds to the realization of ISA, such as CPU, registers, main memory, data types to be supported,

etc. An ISA is like a contract between the set of microprocessor implementation of an architecture and the class of programs that

are written for that architecture. ISA defines a basic set of operations that must be performed by the system and serves as

boundary between hardware and software. The set of operation may include arithmetic, logical, branching and memory

operations. The ISA provides details about how a machine code over the implementation of a particular instruction set

architecture doesn’t depend on the prime characteristics of that implementation. Thus, it allows multiple implementations of ISA,

which may differ in physical size, overall performance and prices, but can run the same machine code or software. 5.3.1

Classification of Instruction Set Architectures: 1. Complex Instruction Set Computer (CISC): In CISC architecture, there are

hundreds of instructions or commands of variable lengths, that instructs the system to perform addition of numbers, storing and

displaying results. This approach is carried out in order to save the memory since all instructions of same length will contribute to

wastage of memory. Here, simple commands may require 8-bits and complex commands may require 120 bits. An

implementation of CISC architecture is Intel x86, which was introduced in 1978. CISC provides convenient addressing modes and

enables copying the block of instructions through support for functions using CALL instructions. Thus, in CISC, it is easy to

expand the ISA. 2. Reduced Instruction Set Computer (RISC): In RISC architecture, the computer system uses sets of instructions

which are highly optimized and CPU design focuses on raw performance. In contrast to CISC, RISC uses relatively simple, fixed

length instructions of 32-bits. Although fixed

354 | P a g e Space for learners: length instructions may mean more space wastage, however the instructions are faster & easier

to execute. Moreover, in terms of CPU design perspective, RISC integrated chips requires a smaller number of transistors as

compared to CISC, since RISC implementation deals with only handful types of instructions and delivers high performance.

However, due to short instruction size, a greater number of instructions are executed compared to CISC, in order to accomplish

a given function. Example of RISC architectures includes Sun Microsystem’s SPARC, IBM/Motorola’s PowerPC, Hewlett-Packard’s

PA-RISC,SGI’s MIPS, ARM architecture, etc. In recent times, almost all low-end portable devices are based on ARM architecture,

which includes most Android-based systems, Apple’s iPhone and iPads, Nintendo’s video gaming console Switch, Raspberry Pi

and many more. Please note that the simplicity of RISC allows to easily design superscalar processor tha tcan execute more than

one command or instruction at a time. This concept is known as Instruction-level parallelism (ILP). In modern times, almost all

CISC & RISC processors are superscalar in nature, however, this has introduced new levels of design complexity for CPU

architects. Fig. 1. Classification of ILP Processor Architecture Now, there are two most significant types of ILP processors, namely

Superscalar processors and Very Long Instruction Word (VLIW) processors. We have already come across superscalar processors,

an implementation for ILP processor architectures in which programs CISC ILP Processor Architectures Super Scaler Very Long

Instruction Word RISC EPIC VLIW

355 | P a g e Space for learners: doesn’t have any explicit information about parallel execution of instruction and it is the

responsibility of the system hardware to detect and construct action plans for any ILPs to be exploited for parallelism. On the

other hand, VLIW processors are built on an architecture in which programs contain explicit information about parallelism and it

is the responsibility of the software, called compiler to identify and communicate it to the hardware by specifying all the

independent operations. Thus, the hardware doesn’t have to check further on the operations which can execute in the same

cycle, since the information is already provided by the compiler. Let’s explore VLIW architecture in details in next section. 5.4

VLIW ARCHITECTURE In the early 1980s, John Fisher, a faculty from Yale University, invented the architectural concept and

coined the term VLIW among his research group. He later joined HP Labs. VLIW refers to a processor architecture designed to

take advantage of instruction- level parallelism (ILP). It is less complex approach to allow higher Check Your Progress 1. An

abstract model of a computer system is defined by ___________________________ 2. What type of operations are defined by

an instruction set architecture? 3. What are the different class of Superscalars based on Instruction Set Architecture? 4. RISC

stands for _______________________________ 5. Give one example each for implementation of CISC and RISC architecture.

State TRUE or FALSE: 6. CISC uses simple, fixed length instructions. 7. In RISC, CPU design focuses on raw performance and the

instructions are highly optimized. 8. Instruction-level parallelism is the ability of a processor to execute more than one instruction

at a time.

356 | P a g e Space for learners: performance i.e., multiple operations are performed simultaneously or level of parallelism

increases. In VLIW Processor, • Instruction consists of multiple independent operations grouped together. • There are multiple

independent functional units. • Each operation in the instruction is assigned to different functional units. • All functional units

share the use of a common large register file. For example – ADD R1, R2; SUB R5, R6; LD R7, data; STR R8, data; In this example,

there are four operations. ADD (Addition) and SUB (Subtraction) are arithmetic operations, which corresponds to Arithmetic &

Logic Unit (ALU). Similarly, LD (Load) and STR (Store) are memory operations, which corresponds to Memory Unit (MU). Here, we

can see that independent operations are grouped together in a single instruction word. Now, the CPU will assign each of these

operations to different independent functional units to execute the operations parallelly, thus to achieve instruction level

parallelism (ILP) and higher performance. Fig. 2(a). A typical VLIW Processor Operation #1 Operation #2 Operation #n-1

Operation #n Single multi-operation instruction Register File Load/ Store Unit (FU) Floating Point Add Unit (FU) Integer ALU (FU)

Branch Unit (FU) Instruction Fetch Unit Multi-operation instruction (FU) Functional Unit Data Instruction/control Memory

(Main/Cache)

357 | P a g e Space for learners: Fig. 2(b). A VLIW Instruction Format In VLIW Processor, compiler is responsible for static

scheduling of instructions i.e., compiler finds out which operations can be executed in parallel in the program. Compiler groups

together these independent operations in a single instruction (VLIW) which is the VLIW. It also makes sure that before the

operands are ready, an operation is not issued. VLIW instruction contains operands & operations to be performed by the various

functional units. One VLIW instruction encodes at least one operation for each functional (or execution) unit on each cycle. So,

length of the instruction increases with the number of functional (or execution) units. For example, as we have seen earlier if we

have two ALU and two Load/Store functional units in our VLIW architecture, then VLIW instructions length will be four. These

operations are assigned to functional units by the position in the given fields within the long instruction word. This is known as

slotting. Load / Store Floating-Point Floating-Point Branch Integer Addition Multiplication ALU Stop to Consider The instructions

within a VLIW instruction are issued and executed in parallel. Since in VLIW processor, one VLIW instruction word encodes

multiple operations, which allows them to be initiated in a single clock cycle. The start of execution of the operations is bound by

the VLIW instruction in which it appears, and all the operations in a VLIW start executing together in parallel VLIW instructions are

at least around 64 bits wide and 1024 wide in some architecture.

358 | P a g e Space for learners: 5.4.1 Example of VLIW code: RISC Code VLIW Code MUL

48% MATCHING BLOCK 87/91

R1, R3, 3 LD R4, 0(R1) ADD R2, R2, R4 SUB R3, R3, 1 BNEZ R3, -4 MUL R1, R3, 3 LD R4, 0(R1) NOP ADD R2, R2, R4 SUB R3, R3, 1

NOP NOP BNEZ R3, -4 In

the above example for RISC Code, content of Register R3 is multiplied by 3 and is stored in R1. The R4 is loaded with the data

stored in the address that R1 contains. Then the content of registers R2 and R4 are added and stored in R2. The content is R3 acts

as counter and is decremented by 1. BNEZ instruction is a conditional branch which checks if content of R3 is not equal zero and

if the condition satisfies, the control is passed back to -4 instructions from the top i.e., to the MUL instruction at the beginning. In

VLIW code, this sequence is divided by the compiler in such a way that similar task can be carried out parallelly on different

execution or functional units to achieve high performance. 5.4.2 Examples of VLIW Processors: • VLIW Mini Supercomputers –

Multiflow TRACE 7/300, 14/300 and 28/300 • Single Chip VLIW Processors – Philip’s LIFE Chips • DSP Processors - Analog

Devices’ SHARC DSP, Texas Instruments’ C6000 DSP family • Intel’s Itanium IA-64 EPIC (embedded & nonembedded) • Tilera TILE

Pro 5.4.3 Advantages of VLIW 1. Compiler determines data dependency checks and other instruction issues; it becomes a lot

simpler. 2. Reduces hardware complexity 3. Compiler is used to schedule according to functional units. 4. Compiler issues

instructions corresponding to the position of functional units.

359 | P a g e Space for learners: 5. Ensures low power consumption due to reduction of hardware complexity. 6. Increases

potential clock rate. 5.4.4 Disadvantages of VLIW 1. Higher complexity of the compiler, which are hard to design.’ 2. VLIW

processors cannot react on dynamic or unscheduled events. It can work only on static instructions. Unscheduled events, for

example a cache miss could lead to a stall which will stall the entire processor. 3. Large memory bandwidth & more registers for

software pipelining, etc. 4. Increased program code size. 5. The number of instructions in a VLIW instruction word is usually fixed.

6. If issued bandwidth is not met, padding of VLIW instruction word is needed, which results in increase in code size. 7. In case of

un-filled opcodes in a VLIW, padding of VLIW instructions with No-Ops (No Operations) is required, for which there is waste of

memory space and instruction bandwidth. 5.4.5 Applications of VLIW Processors • It is suitable for Digital Signal Processing

Applications. • It is used for tasks, which involves processing of media data, like compression /decompression of image and

speech data. SAQ 1. Draw a typical VLIW processor and explain in brief about the architecture 2. What is the role of a compiler in

a VLIW processor architecture? 3. State the advantages and disadvantages of VLIW architecture. 4. Explain in brief about the VLIW

instructions format and slotting. 5. State the applications of VLIW Processors.

360 | P a g e Space for learners: 5.5 EPIC Architecture: Explicitly Parallel Instruction Computing (EPIC)is a term proposed by

Hewlett Packard & Intel, which formed an alliance in early 90s for the research and implementation of Intel Itanium architecture

(IA-64). In 2001, IA-64 was launched as a collection of 64-bit Intel Itanium microprocessors. Though the original ISA

specifications were by HP, but it was later evolved and implement as a new processor micro architecture by Intel. 5.5.1 EPIC vs

VLIW EPIC is inspired by VLIW architecture at roots, so it permits execution of instructions in parallel using a compiler instead of

complex circuits, which were earlier used to control instruction level parallelism (ILP). In contrast to VLIW, apart from identifying

and grouping the independent operation in a single instruction, the compiler communicates this via explicit information in the

instruction set. That’s why EPIC is also known as “independence architecture” (Fisher & Rau). Unlike VLIW, EPIC retains backward

compatibility across different implementations like superscalars, but doesn’t need any hardware for dependency checks like

superscalars. EPIC is a mix of software & hardware, incorporating the advantages of both superscalars and VLIW architectures,

while fixing several shortcomings of VLIW. 1. VLIW instructions had a backward compatibility issue between wider and narrower

implementations. Wider implementation uses greater number of execution units (EU), which also increases the size of an

instruction since the number of operations to run in parallel also increases. Such a wider instruction set doesn’t work well with

narrower implementations with lesser number of execution units. 2. The static scheduling by the compiler for load instructions

became quite difficult since memory operations need to work with several devices from memory hierarchy, like CPU cache

memory and DRAM, which doesn’t have any deterministic delay for load responses. In other words, the compiler couldn’t predict

the delay in response time efficiently for the load instructions using different memory technologies.

361 | P a g e Space for learners: So, although EPIC evolved from VLIW architecture, it tries to retain some properties from

superscalar architecture. There are several additions to features of EPIC architecture in contrast of VLIW as discussed in next

section. 5.5.2 EPIC architectural details In EPIC architecture, we have a “bundle” of multiple software instructions. Each of these

bundles includes a stop bit to indicate if there is some interdependencies between two subsequent bundles. The dependency

information is calculated by the compiler. This information could help in issuance of multiple bundles in future implementations.

Typically, a bundle is of 128 bits, with thee 41-bit instructions per bundle and only two bundles can be issued at once. For data

prefetch, software prefetch instruction is used, which not only increases cache hit for load operation, but also indicates the

requirements of temporal locality in different cache levels. For these purpose, two types of load instructions, namely speculative

load instruction and check load instructions are used in EPIC to bypass control and data dependencies. Moreover, EPIC follows a

fully predicated instruction set architecture, that enables predicated execution, which decreases the occurrence of branching and

increase speculative execution of instructions. Stop to Consider Predication: “In computer science, Predication is an architectural

84% MATCHING BLOCK 88/91

feature that provides alternative to conditional transfer of control, implemented by machine instructions

such as conditional jump, conditional call, conditional return and branch tables. It means if a register condition bit is set, the

instruction is executed; if the bit is clear, it is not.” – Predication (on Wikipedia)

362 | P a g e Space for learners: Speculation: “Speculative execution is an optimization technique where a computer system

performs some tasks that may not be needed. Work is done before it is known whether it is actually needed, so as to prevent a

delay that would have to be incurred by doing the work after it is known that it is needed. If it turns out the work was not needed

after all, most changes made by the work are reverted and the results are ignored. The objective is to provide more concurrency

if extra resources are available. This approach is employed in a variety of areas, including branch prediction in pipelined

processors, value prediction for exploiting value locality, prefetching memory and files, etc.” – Speculation (on Wikipedia) Register

renaming: Register renaming is a technique of managing data dependencies between the instructions in the pipeline by renaming

the register operands. In this architecture, the register files are very large and there are wide range of registers at disposal to avoid

register renaming.Registers include 128 integer and floating-point registers, 128 additional registers for loop unrolling &

optimization, 8 indirect branch registers and other miscellaneous registers. Moreover, predication (or multi-way branch

instruction) improves the prediction of branch instruction by combining branches as alternate instruction in one bundle. Lastly,

let us revise the difference between Superscalars, EPIC & VLIW. Grouping of instructions (Checking dependencies between

instructions to find group able instructions for Assigning of functional unit (Assigning instructions to the functional or execution

units of the Initiation of execution (Determining when the execution starts or instructions are initiated)

363 | P a g e Space for learners: parallel execution) hardware) Superscalar Hardware Hardware Hardware EPIC Compiler

Hardware Hardware VLIW Compiler Compiler Compiler 5.6 INTRODUCTION TO MULTIPROCESSOR SYSTEMS A multiprocessor

system is a computer system with more than one processor (typically two or more), where each processor is linked with one

another. The connection between these processors is known interconnection network. The primary focus of a multiprocessor

system is to achieve parallel processing, which enhances the overall performance. Apart from high performance, the

multiprocessor system focusses on – 1. Fault Tolerance and graceful degradation: These systems have high fault tolerance since

multiple processors are at play. In case of system failure, the system can continue to run in low power, until it stops completely.

Check Your Progress 9. EPIC stands for___________________________ 10. The first implementation of EPIC architecture is

___________ family of processors. 11. In VLIW, _________issues instructions corresponding to the position of functional units.

12. EPIC is developed as a joint collaboration between ____________________________ 13.EPIC follows a fully

_____________ instruction set architecture State TRUE or FALSE: 14. VLIW is inspired by EPIC architecture 15. In EPIC, the

functional units are assigned by compiler.

364 | P a g e Space for learners: 2. Scalability and modular growth: The number of processors, memory units, etc. can be added

or removed at any point of time. This modularity allows for scalable enhancements in future. Multiprocessor system falls under

MIMD architecture. It is one of the types of parallelism as per Flynn’s classification of computer organization. The MIMD refers to

multiple control units and multiple execution units or processors. There are multiple instruction and data steams as shown in

figure below. Fig. 3. MIMD with shared memory The MIMD refers to multiple control units and multiple execution units or

processors. There are multiple instruction and data steams as shown in figure 3. Shared Memory CU CU PR PR Instruction

Streams Data Streams Stop to Consider Please note that multiprocessor and multicomputer systems may sound similar, but there

exists an important difference. Both of them support concurrent operations, but a multicomputer system is a system with

multiple computers and a multiprocessor system is a system with multiple processors.

365 | P a g e Space for learners: In multiprocessor systems, there is a single operating system, which provides interaction between

processors and all the components of the system cooperate in the solution of a problem. In multicomputer system, each

computer has a separate operating system, however these computers work together as a single entity. 5.6.1 Classification of

Multiprocessors The following figure shows different types of multiprocessors. They are primarily divided into two-types: tightly

coupled system and loosely coupled system. Fig. 4. Classification of Multiprocessors A tightly coupled multiprocessor, also

known as shared memory multiprocessor system, share information between multiple processors via a shared or global memory.

Here, all processors share a single memory address space and communicate among themselves through shared variable in

memory. Each of the processors can access any location in the shared memory. Apart from shared Multiprocessor Architecture

Tightly coupled Lightly coupled Shared Memory Distributed Memory UMA NUMA CLUSTER

366 | P a g e Space for learners: memory, each processor can also have a dedicated local memory which other processors

cannot access. Please note that all the processors in the multiprocessors system communicate to perform tasks in a highly

synchronized fashion. Fig. 5. Tightly coupled multiprocessor system In tightly-coupled multiprocessors, we have Uniform

Memory Access (UMA). In a UMA multi-processor system, the access time of memory is equal for all the processors irrespective

of which processor accesses which portion of the common memory. Although the access time of memory is almost equal, the

memory access in UMA is bit slow due to the use of a single memory controller. We also have Symmetric Multiprocessor (SMP)

system, which is an UMA multi-processor system with identical, homogenous processors, which are capable of performing

similar functions and utilizes a centralised shared main memory. There is also another type of tightly-coupled multi-processor

system known as Non-Uniform Memory Access (NUMA) system. In NUMA multi-processor systems, the memory area is virtually

divided into faster access area and slower access area. The faster access areas are assigned to the processors and the slower

common area is used for the exchange of data. Several memory controllers are used for this purpose for allowing local faster

memories to be used as actual main memories. This enables NUMA to manage workloads to achieve higher performance than

UMA multi- Interconnection Network PR 1 PR 2 PR n MM MM Global Main Memory

367 | P a g e Space for learners: processor systems. These systems are also known as Distributed Shared Memory (DSM). In DSM

multiprocessor system, the processors have a shared address space for all the memories. A loosely coupled multiprocessor

system, also known as the distributed memory multi-processor system, doesn’t share information between multiple processors

via a shared memory, since each processor has its local dedicated memory, which together forms a distributed memory. Please

note that all the processors in the multiprocessors system do not communicate to perform tasks in a highly synchronized

fashion. Processors communicate and share explicit information among each other using a common message passing protocol

via interconnection network, for which the overhead of data exchange is high. Fig. 6. Loosely coupled multiprocessor system The

loosely coupled multiprocessor system has physically distributed memories like in the case of cluster. A cluster consists of a set of

computers connected over a local area network (LAN) which function as a single large multiprocessor. In the cluster system,

there is no sharing of address space and each cluster node works together, although it can also work independently. Since a

cluster act like a multiprocessor, it can provide the benefits of multiprocessor system along with additional benefits like load

sharing and better fault tolerance. Interconnection Network PR 1 PR 2 PR n MM 1 MM n Local Private Memory MM 2

368 | P a g e Space for learners: 5.7 INTERCONNECTION TYPES In multiprocessor systems, the components like CPU and I/O

Ports are connected to I/O devices and a memory unit, which can be shared or distributed in nature. The interconnection

between the components be of different physical configurations, described as follows: a) Time-Shared Common Bus Structure:

Fig. 7. Time-shared common bus structure In this structure, all the processors in the microprocessor system are connected to

shared memory and other common resources using a System bus controller CPU Local Memory IOP Local Bus System bus

controller CPU Local Memory IOP Local Bus System bus controller CPU Local Memory IOP Local Bus Common Shared Memory

System Bus System Bus Stop to Consider Tightly-coupled multiprocessor systems use a shared memory (can be a virtually

distributed shared memory) and Loosely- coupled multiprocessor systems use physically dedicated distributed memory. In

literature, the terms UMA and SMP are used interchangeably, since access to shared memory is balanced in both the cases.

NUMA can be considered as a tightly coupled form of cluster. Cluster is not same as a Computer Network. The primary objective

of a computer network is resource sharing but for Cluster, it is parallel computing.

369 | P a g e Space for learners: common interconnecting path, called as common system bus. In this structure, only one

processor out of others can communicate with the shared memory or any other processor over the system bus at a given time,

thus time-shared. Each processor can also have a local bus to communicate with its local memory and local I/O. The benefit of

this is while one processor is working on system bus, other processors can communicate with local memory and local I/O

through local bus. Please note that a part of local memory can be designed as cache and can be attached to CPU to reduce the

average access time of the local memory. Pros 1. The design is simple due to the use of single common system bus. 2. It is a

cheap and affordable structure. Cons 1. Since only one processor at a time can transfer or communicate over the system bus, the

communication is quite slow. It means when one processor is accessing the shared memory using the bus, others can’t perform

any other operation using the bus. b) Multiport Memory Structure: In this structure, the system has separate buses between each

memory module and the processors. For example, if we have 4 processors and 4 memory modules, then each memory module

will have 4 ports each connecting to each of the processor bus. The processor bus consists of data, address and control lines.

Each of the memory module has an internal control or priority logic to determine which processor request will be granted i.e.,

which port will have access to memory module at a given time, when there is a conflict of simultaneous requests from multiple

processors in the system. Generally, a fixed priority is assigned to each memory ports to avoid memory access conflicts.

Moreover, each processor is associated with a priority of the memory access, which is determined by the physical position of the

port that the processor bus occupies in each module. So, processor P1 will have the highest priority and priority of the processor

P4 will be the lowest.

370 | P a g e Space for learners: Fig. 8. Multiport memory structure Pros 1. Due to multiple paths between the processors and

memory modules, multiple processors can simultaneously access the memory, thus, high transfer rate can be achieved through

this organization. Cons 1. It requires a huge number of interconnecting cables to connect all the processors with memory

modules. Thus, it is suitable for systems with small number of processors. 2. It also requires large hardware in memory modules in

the form of memory control logic, which is very expensive in cost. c) Crossbar Switch Structure: In this structure, a number of

crosspoints are placed at the intersection of memory paths and processor buses. At each crosspoint, there is a control logic to

set the desired path between a memory module and a processor. This control logic is basically a switch, which is an electronic

circuit. A switch can also resolve the conflict of simultaneous requests from multiple processors to access same memory module

in the system based on a fixed priority basis. The following figure shows a crossbar switch interconnection for a system with 4

processors and 4 memory modules with 16 switches represented by small-squares marked by S 1 to S 16 . MM2 MM3 MM4

Memory Modules MM1 P1 P1 P3 P4 Multi ple Proces sors

371 | P a g e Space for learners: Fig. 9. Crossbar switch structure Pros 1. Since there exists a separate path associated with each

memory module, simultaneous transfer from all memory module is possible. Cons 1. The entire connection here relies on

switches. So, if large number of processors are present, then the design & implementation of switch requires large hardware and

becomes complex. d) Multistage Switching Network Structure In this structure, we use a switch which can interchange two-

inputs, two-outputs, in contrast to that of crossbar switches, which allows one stage of electronic switches – either input or

output - to determine the path between multiple processors and multiple memory modules. Hence the name, multistage

switching network since it allows to build different possible stages for different combination of inputs & outputs. Let us take the

example of 2 x 2 interchange switch, which has 2 inputs – X & Y and 2 outputs – 0 and 1. X is connected to 0 X is connected to 1

MM2 MM3 MM4 Memory Modules MM1 P1 P1 P3 P4 Mul tipl e Proc esso rs

96% MATCHING BLOCK 89/91

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S 15 S 16

X 0 Y 1 X 0 Y 1 X 0 Y 1

372 | P a g e Space for learners: Y is connected to 0 Y is connected to 1 Fig. 10. Interchange switch states You can see that how

four different states are possible in a single switch. Now, in place of X & Y, if we have two processors connected say P1 and P2,

then we can have definite control to reach a particular memory module from a processor. These interchange switches allow to

connect a source to a destination through multiple stages using a control logic. A very popular topology is called omega

switching network which allows exactly one path from each source to any particular destination. Simultaneous connections by

two sources to two destinations connected to same switch is prohibited. Fig. 11. An 8 x 8 Omega Multistage Switching Network

Pros: 1. The structure is cost effective since we can connect multiple sources to multiple destinations with less amount of wiring

compared to crossbar switch structure. X 0 Y 1 P1 P2 P3 P4 P5 P6 P7 P8 MM1 MM2 MM3 MM4 MM5 MM6 MM7 MM8 Stage 1

Stage 2 Stage 3

373 | P a g e Space for learners: Cons: 1. There is a restriction on the number of simultaneous connections, since simultaneous

connections by two sources to two destinations connected to same switch is prohibited. e) Hypercube Network Structure In this

structure, a loosely coupled system is realized with the help of a concept called hypercube. A hypercube structure is comprised

of N = 2 n numbers of processors interconnected to each other in a N-dimensional cube. This structure is also known as a binary

N-node multiprocessor structure. A node of the cube is represented by a processor and an edge of the cube is a communication

path connection two nodes. Moreover, there exists dedicated paths or edges for a processor to communicate with the

neighbouring nodes. Fig. 12. Hypercube structures Pros: 1. It is easy to scale the current network to higher configurations simply

by increasing the value of n which is the dimension of the cube. 2. Since it is a loosely coupled system, intelligent communication

protocols could be easily implemented. Cons: 1. The multiple paths between processors increases the routing complexity.

91% MATCHING BLOCK 90/91

P2 P1 P2 P4 P1 P3 P3 P6 P1 P5 P4 P8

P2

P7

n=1, N=2 Binary two-node cube (One Dimensional) n=2, N=4 Binary four-node cube (Two Dimensional) n=3, N=3 Binary 8-

node cube (Three Dimensional)

374 | P a g e Space for learners: 5.8 CACHE MEMORY: UNIPROCESSOR VS MULTIPROCESSOR A cache memory is a faster

memory which sits in between a processor and main memory. Its primary role is to reduce the average access time for a

particular data. In a system without a cache memory, the processor might have to higher access time given that the access to a

particular data is needed on consecutive execution of instructions. The cache tends to hold those data in itself which has high

probability of being asked by processor in next cycle. Also note that cache is also realised as a random-access memory, so the

time taken to access any part of cache is almost same. Both this factor makes cache memory quite efficient solution to reduce

the average access time. In a system with single processor, the read and write operation on cache works as follows. During a read

operation, a word from cache line is sent to the processor, the main memory is not involved in the transfer. During the write

operation, two widely-used policies – write back and write through – are used. In write back, the cache memory is regularly

updated after every write operation and all the changes made in cache are marked and is updated on main memory later. On the

other hand, in write through, the cache and the main memory are updated simultaneously. Check Your Progress 16. MIMD stands

for_____________________________ 17. Uniform Memory Access corresponds to ______________ multiprocessors and

Clusters corresponds to ______________ multiprocessors. 18. A hypercube contains ________ numbers of processors. State

TRUE or FALSE: 19. In multistage switching network, an interchange switch has two-inputs, two-outputs. 20. In multiport

memory structure with 3 processors, one memory module will have 3 ports connecting to each processor.

375 | P a g e Space for learners: However, in a multiprocessor system, we can have a common shared main memory among all

the processors. Each processor can also have local cache memory in order to reduce the average access time on an instruction

cycle time. We already know for a processor writes its cache memory during a write operation. During the execution of an

instruction, if any processor locally writes its cache, the new values must be made available to the all the other processors to

maintain the consistency of the system. In case if the new value is not updated in common shared memory, then the other

processors will receive and use the old values in their cache, which should not be allowed. Thus, when any of the processor

makes modification in its cache, a. All the other processors should either update their cache with the new modified value, or b.

Mark the old data in their cache as invalid. 5.8.1 Cache Coherence Problem: Cache coherence is a condition which states that all

the cache lines with a particular shared main memory block must contain same information at any given point of time. This

ensures that a multiprocessor system can perform memory operation correctly, by keeping identical multiple copies of

information in the caches of the processors involved in execution of a particular instruction. Cache coherence problem occurs

when cache coherence is not maintained, i.e., a processor updates its cache and other processors doesn’t get an updated copy

of newly modified data in their cache. This hampers the uniformity of data in all the caches of processors. Cache coherence

problem happens in a multiprocessor system, since multiple processor access and works on non-identical multiple Stop to

Consider In a uniprocessor system, the main memory is for use by a single processor. In multiprocessor, the main memory is

shared among all the processors. Each processor has its own cache memory and can incorporate either write through or write

back policy to update its own cache.

376 | P a g e Space for learners: copies of data. Now as the cache coherence problem has been discussed, let’s see the solutions

for this problem. Fig. 13. Cache configuration after variable X = 10 is loaded from Main Memory Fig. 14. Write-through policy.

Modified value X=50 in Cache & Main Memory Fig. 15. Write-back policy. Modified value X=50 only in Cache, MM to be updated

later.

37% MATCHING BLOCK 91/91

X = 10 P1 X = 10 P2 X = 10 P3 X = 10 Main Memory Caches Processors Bus X = 50 P1 X = 10 P2 X = 10 P3 X = 50 Main Memory

Caches Processors Bus X = 50 P1 X = 10 P2 X = 10 P3 X = 50

Main Memory Caches Processors Bus Caches are incoherent Caches are incoherent Caches are coherent

377 | P a g e Space for learners: Stop to Consider The all-is-well approach is not a viable solution for cache coherence solution,

since a common cache memory in multiprocessor system decreases performance. The software-based solutions for cache

coherence problem are cheap but slow. The hardware-based solutions for cache coherence problems are costly but fast. 5.8.2.

The “All-is-well” Solution: One of simple scheme can be to restrict the association of local caches for each processor and force

them to use a shared cache memory instead. However, this simply overshadows the idea of having cache memory close to the

processor, since a common cache will increase the average access time as compared to local cache. Thus, this scheme simply

ignores cache coherence problem. Considering the significance of performance, it is better to allow local caches in each

processor and move towards more practical software & hardware solutions. 5.8.3. Software-based solutions: The compiler is

used to analyse the source code as the object code is generated in order to identify the parts of the program which uses shared

items. These writable shared items are marked with a tag as non-cacheable, i.e., processors cannot write non-cacheable data

into their local caches and have to access it directly from main memory for both read and write operations. A shared item can be

identified by the processors using the tags associated with it. This is cheap to implement and can be achieved during the

compilation process. However, it increases the average access time since during execution of an instruction, the processors have

to access the main memory instead of their local caches. It is also an extra overhead on the software which also affects the

system’s performance. Please note that the program also uses non-sharable and read-only items, which are marked as cacheable

i.e., these data are allowed to be stored in the local cache of the processor. Only non-cacheable items remain in main memory.

378 | P a g e Space for learners: 5.8.4. Hardware Solutions: 1. Cache Snooping Protocol: Here, a bus controller is assigned to each

processor, which monitors the write operations on the bus by other processors. This bus controller is known as snoopy cache

controller. The snoopy cache controller is responsible to identify if a shared item is being modified by any processor and ensures

that all other cache controllers have the most recent updated copy of the shared item to avoid the usage of outdated information

from their caches. There are two methods as discussed below, which can either be followed as a snooping cache protocol. a)

Write-update protocol (or Write-broadcast protocol): In this protocol, whenever a processor writes to a shared item in its cache,

it broadcasts to all the other cache controllers about the updated value of the shared item through the system bus. All the cache

controllers update their local cache accordingly. This scheme makes the update value readily available in caches of other

processors, thus consumes more bandwidth in terms of memory. A solution to this over consumption of memory bandwidth is

to keep tracks of the shared items to avoid unnecessary re- broadcasts. An example of write-update protocol is Firefly Protocol,

which is used by SPARC center 2000. b) Write-invalidate protocol: In this protocol, whenever a processor (let’s say P1) writes into

a shared item (word) in its cache, it informs all the other cache controller about the location (let’s say 3000) of the updated word

in its cache. All the cache controllers’ snoops on the bus for write operation. They will check if they have a copy of the word

which has been overwritten by P1. If yes, then they mark the location of that word in their cache as invalid for future reference

and removes the word from their caches. Afterwards, whenever another processor (let’s say P2) tries to access the invalid word

(which was a copy of the word from location 3000), it will result in a cache miss and any one of the following operations will i. If

the cache follows write-through policy, then the updated item will be transferred to processor P2 from

379 | P a g e Space for learners: the main memory. Here, the updated item will be available in both - cache memory of processor

P1 and main memory, but main memory is the preferred choice in an event of cache miss. ii. If the cache follows write-back

policy, then the updated item will be transferred from the cache memory of Processor P1 to Processor P2 via main memory,

since at any time, the latest value of the word will only be available in cache of P1 and will be updated in main memory later. An

example of write-invalidate protocol is MESIprotocol (Modified Exclusive Shared Invalid), which is used byIntel Pentium 4 and

PowerPC. Fig.16 Cache Snooping Protocol 2. Directory Protocol: Here, a centralized approach is considered by maintaining

adirectory in the main memory. We define one directory per cache to keep track of state (or information) of every block of main

memory present in that cache. In other words, the information in a directory is about the cache memories of processors

containing same block from main memory and the state of the block - either valid or Cache Ta gs Processor Sn oo p H/ Cache Ta

gs Processor Sn oo p H/ Cache Ta gs Processor Sn oo p H/ Memory Dirty Address/Data

380 | P a g e Space for learners: invalid.In order to prevent bottleneck in a directory, the entries in the directory can be distributed.

Whenever an information in the cache is modified by a processor, it the responsibility of the directory controller to check the

directory and identify the affected processors. Then the affected processor receives an explicit information from the directory

controller about the appropriate action to be taken in order to avoid any incoherency in cache. Fig 17. Distributed Directory

Protocol 5.9 SUMMING UP • Instruction Set Architecture (ISA) defines a basic set of operations - like arithmetic, logical, branching

and memory operations, that must be performed by the system and also SAQ 1. What is Cache Coherence? How does it differ

from Cache Coherence Problem? 2. State the working of Cache Snooping Protocol. 3. State the working of Directory Protocol.

Processors Processors Interconnection Network Cache P1 Directory Main Memory Cache P2 Directory Main Memory Main

Memory Cache P4 Directory Main Memory Cache P3 Directory

381 | P a g e Space for learners: provides details about how a machine code doesn’t depend on the prime characteristics of the

implementation of a particular ISA. Based on architectural complexity, ISA can be classified into CISC and RISC. • CISC stands for

Complex Instruction Set Computer. This approach attempts to reduce the number of instructions per program. In order to do so,

the number of cycles per instruction increases. CISC takes several clock cycles to execute instruction. In CISC architecture, the

instructions are of variable lengths (from 8-bits to 120-bits) • RISC stands for Reduced Instruction Set Computer. This approach is

needed to minimize the cycles per instruction. In order to do so, the number of instructions per program increases. RISC takes

single clock cycle to execute an instruction In RISC architecture, the instructions are of fixed lengths (32-bits) • In modern times,

almost all CISC & RISC processors are superscalar in nature. Superscalar is an implementation for ILP processor architectures in

which programs doesn’t have any explicit information about parallel execution of instruction and it is the responsibility of the

system hardware to detect and construct action plans for any ILPs to be exploited for parallelism. • VLIW processors are built on

an architecture in which programs contain explicit information about parallelism and it is the responsibility of the software, called

compiler to identify and communicate it to the hardware by specifying all the independent operations. • In VLIW Processor,

Instruction consists of multiple independent operations grouped together. There are multiple independent functional units. Each

operation in the instruction is assigned to different functional units. All functional units share the use of a common large register

file. • One VLIW instruction encodes at least one operation for each functional unit on each cycle. So, length of the instruction

increases with the number of functional units. These operations are assigned to functional units by the position in the given fields

within the long instruction word. This is known as slotting. • EPIC stands for Explicitly Parallel Instruction Computing and is

implemented by Hewlett Packard & Intel as Intel

382 | P a g e Space for learners: Itanium architecture (IA-64). EPIC is a mix of software & hardware, incorporating the advantages

of both superscalars and VLIW architectures. • Like VLIW, EPIC it permits execution of instructions in parallel using a compiler.

However, in EPIC apart from identifying and grouping the independent operation in a single instruction, the compiler

communicates this via explicit information in the instruction set. That’s why EPIC is also known as “independence architecture”. •

Unlike VLIW, EPIC retains backward compatibility across different implementations like superscalars, but doesn’t need any

hardware for dependency checks like superscalars. • A multiprocessor system is a computer system with more than one

processor (typically two or more), where each processor is linked with one another via interconnection network. The focus of a

multiprocessor system is to achieve parallel processing, Fault Tolerance, graceful degradation, scalability and modular growth.

Multiprocessor system falls under MIMD architecture (Multiple Instruction stream, Multiple Data stream). They are primarily

divided into two- types: tightly coupled system and loosely coupled system. • A tightly coupled multiprocessor, also known as

shared memory multiprocessor system, share information between multiple processors via a shared or global memory. Example

of tightly-coupled multiprocessor system - Unform Memory Access (UMA) and Non-Uniform Memory Access (NUMA).

Symmetric Multiprocessor (SMP) system is an UMA multi- processor system with identical, homogenous processors, which are

capable of performing similar functions and utilizes a centralised shared main memory. • A loosely coupled multiprocessor

system, also known as the distributed memory multi-processor system, doesn’t share information between multiple processors

via a shared memory, since each processor has its local dedicated memory, which together forms a distributed memory. Example

of loosely-coupled multiprocessor system - Clusters. A cluster consists of a set of computers connected over a local area

network (LAN) which function as a single large multiprocessor. • In multiprocessor systems, the components like CPU and I/O

Ports are connected to I/O devices and a memory unit, which

383 | P a g e Space for learners: can be shared or distributed in nature. The interconnection between the components be of

different physical configurations - Time-Shared Common Bus, Multiport Memory, Crossbar Switch, Multistage Switching

Network, Hypercube Network • In time-shared common bus structure, all the processors in the microprocessor system are

connected to shared memory and other common resources using a common interconnecting path, called as common system

bus. Only one processor at a time can communicate over the bus. The design is simple due to the use of single common system

bus. It is a cheap and affordable structure. Since only one processor at a time can transfer or communicate over the system bus,

the communication is quite slow. • In multiport memory structure, the system has separate buses between each memory module

and the processors. Each of the memory module has an priority logic to resolve conflict of simultaneous requests from multiple

processors. A fixed priority is assigned to each memory ports to avoid memory access conflicts. Due to multiple paths between

the processors and memory modules, multiple processors can simultaneously access the memory with high transfer rate. But it is

expensive in cost due to huge interconnecting cables requirements. • In crossbar switch structure, a number of crosspoints are

placed at the intersection of memory paths and processor buses. At each crosspoint, there is a control logic to set the desired

path between a memory module and a processor. This control logic is basically a switch, which is an electronic circuit. A switch

can also resolve the conflict of simultaneous requests from multiple processors to access same memory module in the system

based on a fixed priority basis. • In multistage switching network structure, we use a switch which can interchange two-inputs,

two-outputs to determine the path between multiple processors and multiple memory modules. Hence the name, multistage

switching network since it allows to build different possible stages for different combination of inputs & outputs. A very popular

topology is called omega switching network which allows exactly one path from each source to any particular destination. The

384 | P a g e Space for learners: structure is cost effective since we can connect multiple sources to multiple destinations with

less amount of wiring. But there is a restriction on the number of simultaneous connections to two destinations connected to

same switch is prohibited. • In hypercube structure, a loosely coupled system comprised of N = 2n numbers of processors are

interconnected to each other in a N-dimensional cube. A node of the cube is represented by a processor and an edge of the

cube is a communication path connection two nodes. The advantage of hypercube is that is easy to scale the current network to

higher configurations and intelligent communication protocols could be easily implemented. However, the multiple paths

between processors increases the routing complexity. • Cache coherence is a condition which states that all the cache lines with

a particular shared main memory block must contain same information at any given point of time. This ensures that a

multiprocessor system can perform memory operation correctly, by keeping identical multiple copies of information in the

caches of the processors involved in execution of a particular instruction. • Cache coherence problem occurs when cache

coherence is not maintained, i.e., a processor updates its cache and other processors doesn’t get an updated copy of newly

modified data in their cache. This hampers the uniformity of data in all the caches of processors. Cache coherence problem

happens in a multiprocessor system, since multiple processor access and works on non-identical multiple copies of data. • All-is-

well approach One of simple scheme can be to restrict the association of local caches for each processor and force them to use

a shared cache memory. This scheme simply ignores cache coherence problem and moreover increases average access time. •

In software-based solution, the compiler is used to mark data as cacheable and non-cacheable. The cacheable items are allowed

to be stored in the local cache of the processor but the non-cacheable items can't be stored in cache and remain in main

memory. All the non-sharable & read-only items are

385 | P a g e Space for learners: tagged as cacheable and the writable shared items are tagged as non-cacheable. • The cache

snooping protocol is a hardware-based solution. Here a bus controller is assigned to each processor, which monitors the write

operations on the bus by other processors. This bus controller is known as snoopy cache controller. The snoopy cache controller

is responsible to identify if a shared item is being modified by any processor and ensures that all other cache controllers have the

most recent updated copy of the shared item to avoid the usage of outdated information from their caches. There is two ways to

implement this protocol - write-update protocol (or Write-broadcast protocol) and write-invalidate protocol. • In write-

update/write-broadcast protocol, whenever a processor writes to a shared item in its cache, it broadcasts all the other cache

controllers about the updated value of the shared item through the system bus. All the cache controllers update their local cache

accordingly. • In write-invalidate protocol, whenever a processor writes into a shared word in its cache, it informs all the other

cache controller about the location of the updated word in its cache. All the cache controllers’ checks if they have a copy of that

old word. If yes, then they mark the location of that word in their cache as invalid for future reference and removes the word

from their caches. Afterwards, whenever another processor tries to access the invalid word, there will be cache miss and actions

will be taken depending on whether write-back or write-through policy is followed. • Directory Protocol is also a hardware

solution for cache coherence problem. Here, a centralized approach is considered by maintaining a directory in the main

memory. We define one directory per cache to keep track of state (either valid or invalid) of every block of main memory present

in that cache. The entries in the directory can be distributed. A central memory controller checks the directory to find affected

processors in case of any modification of shared data in its cache by a processor and sends explicit instruction to the affected

processors to avoid cache incoherence.

386 | P a g e Space for learners: 5.10 ANSWER TO CHECK YOUR PROGRESS 1. Instruction Set Architecture 2. The set of operation

defined by instruction set architecture may include arithmetic, logical, branching and memory operations. 3. RISC & CISC 4.

Reduced Instruction Set Computer 5. Example of CISC: Intel x86, Example of RISC: ARM 6. False 7. True 8. True 9. Explicitly

Parallel Instruction Computing 10. Intel Itanium 11. Compiler 12. Hewlett Packard (HP) & Intel 13. Predicated 14. False 15. False 16.

Multiple Instruction stream, Multiple Data stream 17. Tightly-coupled, Loosely-coupled 18. 2 n 19. True 20. True 5.11 POSSIBLE

QUESTIONS 1. What is instruction-set architecture? Why is it important? 2. Explain the different types of ISAs. 3. Define

Instruction-level parallelism (ILP). How VLIW takes advantage of ILP? 4. Explain the VLIW architecture and the instruction format.

5. State the advantages, disadvantages and applications of VLIW architecture. 6. What is EPIC? How does it differ from VLIW? 7.

Write a short note of EPIC architecture. 8. Explain in brief about multiprocessor system. How does it differ from multicomputer

system? 9. Differentiate between tightly-coupled and loosely-coupled microprocessor

387 | P a g e Space for learners: 10. How does uniform memory access differ from non-uniform memory access? 11. Explain in

brief about different interconnection structures in multiprocessor systems. 12. What is the difference between the cross-switch

and multistage-switch? 13. What are the two widely-used policies of cache write operation? 14. What is the software-based

approach to solve the cache coherence problem? 15. Write a short note of hardware-based solutions for cache coherence

problem. 5.12 REFERENCES AND SUGGESTED READINGS 1. Mano, M. Morris. Computer System Architecture, 3E. Pearson

Education India, 2007. 2. Govindarajalu, B. Comp Arch and Org, 2E. Tata McGraw- Hill Education, 2010. 3. Hamacher, V. Carl,

Zvonko G. Vranesic, and Safwat G. Zaky. Computer organization and Embedded Systems, 6E. McGraw-Hill, Inc., 2012. 4. Al-

Hothali, Samaher. "Snoopy and directory-based cache coherence protocols: A critical analysis." Journal of Information &

Communication Technology (JICT) 4.1 (2010): 11. 5. Semiconductors, Philips. "An introduction to very-long instruction word

(VLIW) computer architecture." Philips Semiconductors (1997). 6. Smotherman, Mark. "Understanding EPIC architectures and

implementations." 40th Annual Southeast ACM Conference. 2002. 7. Halfhill, Tom R. “VLIW Microprocessors” Computerworld

India, 14 Feb. 2000, https://www.computerworld.com/article/2593626/vliw- microprocessors.html. 8. “Instruction set

architecture” Wikipedia, https://en.wikipedia.org/wiki/Instruction_set_architecture. Accessed 01 Aug. 2021.

388 | P a g e Space for learners: 9. “Very long instruction word” Wikipedia,

https://en.wikipedia.org/wiki/Very_long_instruction_word. Accessed 01 Aug. 2021. 10. “Explicitly Parallel Instruction Computing"

Wikipedia, https://en.wikipedia.org/wiki/Explicitly_parallel_instruction _computing. Accessed 01 Aug. 2021. 11. Zaccone,

Giancarlo. Python parallel programming cookbook. Packt Publishing Ltd, 2015. 12. Beckmann, Nathan. “Static Scheduling &

VLIW.” Carnegie Mellon University, https://www.cs.cmu.edu/afs/cs/academic/class/15740- s17/www/lectures/13-static-

scheduling.pdf. Accessed 02 Aug. 2021 13. Shanthi, A. P. “Multiple Issue Processors II” Univeristy of

Maryland,https://www.cs.umd.edu/~meesh/411/CA- online/chapter/multiple-issue-processors-ii/index.html. Accessed 01 Aug.

2021. 14. "VLIW Processors" Slideshare, https://www.slideshare.net/shudhanshu29/vliw-processors. Accessed 01 Aug. 2021. 15.

Schlansker, Michael S., and B. Ramakrishna Rau. EPIC: An architecture for instruction-level parallel processors. Hewlett-Packard

Laboratories, 2000. ---×---

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/91 SUBMITTED TEXT 25 WORDS

No part of this work may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, or otherwise.

90% MATCHING TEXT 25 WORDS

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning,

or otherwise,

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

2/91 SUBMITTED TEXT 17 WORDS

Program counter (PC): It holds the address of the next

instruction to be executed. •

71% MATCHING TEXT 17 WORDS

program counter (PC) is a special register that holds the

memory address of the next instruction to be executed.

https://handwiki.org/wiki/Instruction_cycle

3/91 SUBMITTED TEXT 16 WORDS

PC holds the address of the next instruction to be executed. •

IR holds the

75% MATCHING TEXT 16 WORDS

PC contains the address of the next instruction to be

executed. The IR contains the

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

4/91 SUBMITTED TEXT 5 WORDS

C+(A′)′+(B′)′+(C′)′+D C+A+B+C+D A+B+C+D

85% MATCHING TEXT 5 WORDS

C D A B = C D A B < C D A B C D

https://www.docsity.com/en/combinational-logic-components-and-techniques-for-digital-systems-lect ...

5/91 SUBMITTED TEXT 18 WORDS

A′+B′)(C′+D′))′ = (A′+B′)′+(C′+D′) = (A′)′(B′)′ + (C′)′(D =

100% MATCHING TEXT 18 WORDS

A B > C D A B = C D A B < C D

https://www.docsity.com/en/combinational-logic-components-and-techniques-for-digital-systems-lect ...

6/91 SUBMITTED TEXT 16 WORDS

A=1, B=0, C=1, D=0 b. A=1, B=1, C=0, D=1 c. A=0, B=1, C=1,

D=1 2.

78% MATCHING TEXT 16 WORDS

A B > C D A B = C D A B < C D

https://www.docsity.com/en/combinational-logic-components-and-techniques-for-digital-systems-lect ...

7/91 SUBMITTED TEXT 28 WORDS

floating point number . 42375 x 10 3 3.5.1

Addition/Subtraction of two Floating point numbers: Steps to

add/subtract two floating point numbers

52% MATCHING TEXT 28 WORDS

floating-point number +0.111*2 1 +0.0111*2 2

+0.00000000000000000000111*2 21 0 10000001

11100000000000000000000 0 10000010

01110000000000000000000 0 10010101

00000000000000000000111 Figure 4.12 Different

representation of an FP number 4.3. FLOATING-POINT

ARITHMETIC 75 Steps Required to Add/Subtract Two

Floating-Point Numbers 1.

https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewin ...

8/91 SUBMITTED TEXT 63 WORDS

A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 A 7 A 0 R 1 A 15 A 0 (a) (b) 90 |

86% MATCHING TEXT 63 WORDS

a 2 − 2a 3 a 0 + a 1 − a 2 + a 3 ? ? ? ? ? = ? ? ? ? ? 0 1 0 0 −1 0

1 0 −1 0 0 1 1 0 0 0 ? ? ? ? ? ? ? ? ? ? a 0 + a 1 − a 2 + a 3 − a 1

a 2 −a 3 ? ? ? ? ? = [B 2 .

https://home.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf

9/91 SUBMITTED TEXT 17 WORDS

can be divided into a data section and a control section. The

data section, also called

93% MATCHING TEXT 17 WORDS

can be divided into a data section and a control section. The

data section, which is also called

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

10/91 SUBMITTED TEXT 12 WORDS

the CPU registers and the ALU use a single bus to

100% MATCHING TEXT 12 WORDS

the CPU registers and the ALU use a single bus to

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

11/91 SUBMITTED TEXT 19 WORDS

but it restricts the amount of data transfer that can be done in

the same clock cycle, which

91% MATCHING TEXT 19 WORDS

but it limits the amount of data transfer that can be done in

the same clock cycle, which

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

12/91 SUBMITTED TEXT 28 WORDS

of a set of general-purpose registers, a memory address

register (MAR), a memory data register (MDR), an instruction

register (IR), a program counter (PC), and an ALU,

100% MATCHING TEXT 28 WORDS

of a set of general-purpose registers, a memory address

register (MAR), a memory data register (MDR), an instruction

register (IR), a program counter (PC), and an ALU.

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

13/91 SUBMITTED TEXT 36 WORDS

buses. Data can be transferred from two different registers to

the input point of the ALU at the same time. Therefore, an

operation having two operands can fetch both operands in

the same clock cycle.

81% MATCHING TEXT 36 WORDS

buses. Data can be transferred from two different registers to

the input point of the ALU at the same time. Therefore, a

operand operation can fetch both operands in the same

clock cycle.

https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewin ...

14/91 SUBMITTED TEXT 17 WORDS

an additional buffer to hold the output of the ALU when the

two buses remain busy

78% MATCHING TEXT 17 WORDS

An additional buffer register may be needed to hold the

output of the ALU when the two buses are busy

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

15/91 SUBMITTED TEXT 11 WORDS

carrying the two operands. Figure (4.4-a) shows a two-bus

organization.

100% MATCHING TEXT 11 WORDS

carrying the two operands. Figure 5.4a shows a two-bus

organization.

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

16/91 SUBMITTED TEXT 21 WORDS

two bus organization where one of the buses is dedicatedly

used for moving data into registers (in-bus), while the other

66% MATCHING TEXT 21 WORDS

two-bus organization. In some cases, one of the buses may

be dedicated for moving data into registers (in-bus), while the

other

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

17/91 SUBMITTED TEXT 57 WORDS

for transferring data out of the registers (out-bus). For this

purpose, the buffer register may be used additionally, as one

of the ALU inputs, to hold one of the operands. The ALU

output can be connected directly to the in-bus, which

transfers the result to one of the registers. A two-bus

organization with in-bus and out-bus

83% MATCHING TEXT 57 WORDS

for transferring data out of the registers (out-bus). In this case,

the additional buffer register may be used, as one of the ALU

inputs, to hold one of the operands. The ALU output can be

connected directly to the in-bus, which will transfer the result

into one of the registers. Figure 5.4b shows a two-bus

organization with in-bus and out-bus. 5.3.3.

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

18/91 SUBMITTED TEXT 14 WORDS

three-bus organization, two buses may be used as source

buses whereas the third

89% MATCHING TEXT 14 WORDS

three-bus organization, two buses may be used as source

buses while the third

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

19/91 SUBMITTED TEXT 18 WORDS

data into a register (in-bus). Each of the two out-buses is

connected to an ALU input point

100% MATCHING TEXT 18 WORDS

data into a register (in-bus). Each of the two out-buses is

connected to an ALU input point.

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

20/91 SUBMITTED TEXT 13 WORDS

the output of the ALU is connected directly to the in-bus. As

100% MATCHING TEXT 13 WORDS

The output of the ALU is connected directly to the in-bus. As

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

21/91 SUBMITTED TEXT 21 WORDS

more data can be transferred within a single clock cycle.

However, increasing the number of buses also increases the

complexity

72% MATCHING TEXT 21 WORDS

more data we can within a single clock cycle. However,

increasing the number of buses will also increase the

complexity

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

22/91 SUBMITTED TEXT 94 WORDS

in 0 0 0 B A + B Add 0 0 1 B A + B + 1 Add with Carry 0 1 0 B

A + B orA – B - 1 Subtract with Borrow 0 1 1 B A + B + 1 or A -

B Subtract 1 0 0 0 A Transfer A 1 0 1 0 A + 1 Increment A 1 1 0

1 A – 1 Decrement A 1 1 1 1 A Transfer A 4.5.2

34% MATCHING TEXT 94 WORDS

in B a • b is in B 3. commutativity: a + b = b + a a • b = b • a 4.

associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c 5.

identity: a + 0 = a a • 1 = a 6. distributivity: a + (b • c) = (a + b)

• (a +

https://www.docsity.com/en/combinational-logic-components-and-techniques-for-digital-systems-lect ...

23/91 SUBMITTED TEXT 30 WORDS

the contents of two registers R 1 and R 2 and store the result

in a third register R 3 , the

75% MATCHING TEXT 30 WORDS

the contents of two registers R1 and R2 and stores the result

in register R3. The

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

24/91 SUBMITTED TEXT 38 WORDS

b n-1 =b n-2 b)b 0 =b n-1 c)b n-1 ≠b n-2 d)b 0 ≠b n 13. A

55% MATCHING TEXT 38 WORDS

B 2n ··· B 2n B m1 B m2 ··· B mn ? ? ? ? ? = ? ? ? ?

? A 11 + B 11 A 12 + B 12 ··· A 1n + B 1n A 21 + B 21 A 2n + B

2n ··· A 2

https://www.math.tamu.edu/~dallen/m640_03c/lectures/chapter2.pdf

25/91 SUBMITTED TEXT 20 WORDS

Two transistors T1 and T2 are used to connect the latch with

the two-bit lines. Using the word

55% MATCHING TEXT 20 WORDS

two transistors N3 and N4 are used to connect the cell to the

two data (bit) lines. Normally (if the word

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

26/91 SUBMITTED TEXT 22 WORDS

the memory access time, t c is the cache access time ̅ is the

average access time.

62% MATCHING TEXT 22 WORDS

the memory access time is ten times the cache memory

access time. Compute the average access time

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

27/91 SUBMITTED TEXT 23 WORDS

the page that (A) Has not been used for the longest time in

the

71% MATCHING TEXT 23 WORDS

The page that has not been referenced for the longest time

while residing in the

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

28/91 SUBMITTED TEXT 30 WORDS

due to the size of the main memory, which may not be large

enough to hold all the processes. So the concept of virtual

memory was introduced.

38% MATCHING TEXT 30 WORDS

due to the size limitation of main memory, it is sometimes not

possible to load all the programs in it. So, the concept of

Virtual memory was introduced

https://odl.ptu.ac.in/slm/mca/6th/MCA603%20Advanced%20Comp%20Architecture.pdf

29/91 SUBMITTED TEXT 20 WORDS

stages and these stages are connected to one another in a

pipe like structure. An instruction enters one end

63% MATCHING TEXT 20 WORDS

stages and these stages are connected with one another to

form a pipe like structure. Instructions enter from one end

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

30/91 SUBMITTED TEXT 16 WORDS

processor, which works on simple instruction at a time, which

operates on single data items.

100% MATCHING TEXT 16 WORDS

processor, which works on simple instruction at a time, which

operates on single data items.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

31/91 SUBMITTED TEXT 67 WORDS

But in today's world, this technique will prove to be highly

inefficient, as the overall processing of instructions will be

very slow. There is a class of computational problems that are

beyond the capabilities of a conventional computer. These

problems require vast number of computations on multiple

data items that will take a conventional computer(with scalar

processor) days or even weeks to complete. Such complex

96% MATCHING TEXT 67 WORDS

But in today's world, this technique will prove to be highly

inefficient, as the overall processing of instructions will be

very slow. What is Vector(Array) Processing? There is a class

of computational problems that are beyond the capabilities of

a conventional computer. These problems require vast

number of computations on multiple data items, that will take

a conventional computer(with scalar processor) days or even

weeks to complete. Such complex

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

32/91 SUBMITTED TEXT 22 WORDS

which operates on multiple data at the same time, requires a

better way of instruction execution, which was achieved by

vector

100% MATCHING TEXT 22 WORDS

which operates on multiple data at the same time, requires a

better way of instruction execution, which was achieved by

Vector

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

33/91 SUBMITTED TEXT 22 WORDS

vector processors. Scalar CPUs can manipulate one or two

data items at a time, which is not very efficient. 2.2

100% MATCHING TEXT 22 WORDS

Vector processors. Scalar CPUs can manipulate one or two

data items at a time, which is not very efficient.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

34/91 SUBMITTED TEXT 63 WORDS

There is a class of computational problems that are beyond

the capabilities of a conventional computer. These problems

require vast number of computations on multiple data items

that will take a conventional computer (with scalar processor)

days or even weeks to complete. Such complex instructions,

which operates on multiple data at the same time, requires a

better way of instruction execution, which

100% MATCHING TEXT 63 WORDS

There is a class of computational problems that are beyond

the capabilities of a conventional computer. These problems

require vast number of computations on multiple data items,

that will take a conventional computer(with scalar processor)

days or even weeks to complete. Such complex instructions,

which operates on multiple data at the same time, requires a

better way of instruction execution, which

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

35/91 SUBMITTED TEXT 38 WORDS

Scalar CPUs can manipulate one or two data items at a time,

which is not very efficient. Also, simple instructions like ADD A

to B, and store into C are not practically efficient. 258 |

100% MATCHING TEXT 38 WORDS

Scalar CPUs can manipulate one or two data items at a time,

which is not very efficient. Also, simple instructions like ADD A

to B, and store into C are not practically efficient.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

36/91 SUBMITTED TEXT 186 WORDS

Addresses are used to point to the memory location where

the data to be operated will be found, which leads to added

overhead of data lookup. So until the data is found, the CPU

would be sitting ideal, which is a big performance issue.

Hence, the concept of Instruction Pipeline comes into

picture, in which the instruction passes through several sub-

units in turn. These sub-units perform various independent

functions, for example: the first one decodes the instruction,

the second sub-unit fetches the data and the third sub-unit

performs the math itself. Therefore, while the data is fetched

for one instruction, CPU does not sit idle; it rather works on

decoding the next instruction set, ending up working like an

assembly line. Vector computing technique, not only use

Instruction pipeline, but it also pipelines the data, working on

multiple data at the same time. A normal scalar processor

instruction would be ADD A, B, which leads to addition of two

operands, but what if we can instruct the processor to ADD a

group of numbers (from 0 to n memory location) to another

group of numbers (

98% MATCHING TEXT 186 WORDS

Addresses are used to point to the memory location where

the data to be operated will be found, which leads to added

overhead of data lookup. So until the data is found, the CPU

would be sitting ideal, which is a big performance issue.

Hence, the concept of Instruction Pipeline comes into

picture, in which the instruction passes through several sub-

units in turn. These sub-units perform various independent

functions, for example: the first one decodes the instruction,

the second sub-unit fetches the data and the third sub-unit

performs the math itself. Therefore, while the data is fetched

for one instruction, CPU does not sit idle, it rather works on

decoding the next instruction set, ending up working like an

assembly line. Vector processor, not only use Instruction

pipeline, but it also pipelines the data, working on multiple

data at the same time. A normal scalar processor instruction

would be ADD A, B, which leads to addition of two operands,

but what if we can instruct the processor to ADD a group of

numbers(from 0 to n memory location) to another group of

numbers(

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

37/91 SUBMITTED TEXT 41 WORDS

This can be achieved by vector processors. In vector

processor a single instruction, can ask for multiple data

operations, which saves time, as instruction is decoded once,

and then it keeps on operating on different data items. 2.4

100% MATCHING TEXT 41 WORDS

This can be achieved by vector processors. In vector

processor a single instruction, can ask for multiple data

operations, which saves time, as instruction is decoded once,

and then it keeps on operating on different data items.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

38/91 SUBMITTED TEXT 36 WORDS

Applications of Vector Processors Computer with vector

processing capabilities are in demand in specialized

applications. The following are some areas where vector

processing is used: 1. Petroleum exploration. 2. Medical

diagnosis. 262 |

100% MATCHING TEXT 36 WORDS

Applications of Vector Processors Computer with vector

processing capabilities are in demand in specialized

applications. The following are some areas where vector

processing is used: 1. Petroleum exploration. 2. Medical

diagnosis. 3.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

39/91 SUBMITTED TEXT 21 WORDS

Data analysis. 4. Weather forecasting. 5. Aerodynamics and

space flight simulations. 6. Image processing. 7. Artificial

intelligence. 2.4.4

100% MATCHING TEXT 21 WORDS

Data analysis. 4. Weather forecasting. 5. Aerodynamics and

space flight simulations. 6. Image processing. 7. Artificial

intelligence.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

40/91 SUBMITTED TEXT 42 WORDS

It was first invented in 1987. It is a machine which is designed

to improve the performance of the scalar processor. In most

applications, most of the operations are on scalar quantities.

Superscalar approach produces the high performance

general purpose processors.

100% MATCHING TEXT 42 WORDS

It was first invented in 1987. It is a machine which is designed

to improve the performance of the scalar processor. In most

applications, most of the operations are on scalar quantities.

Superscalar approach produces the high performance

general purpose processors.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

41/91 SUBMITTED TEXT 19 WORDS

is a normal processor, which works on simple instruction at a

time, which operates on single data items,

100% MATCHING TEXT 19 WORDS

is a normal processor, which works on simple instruction at a

time, which operates on single data items.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

42/91 SUBMITTED TEXT 21 WORDS

while the vector processor works with multiple data items. A

superscalar processor is a combination of 265 |

100% MATCHING TEXT 21 WORDS

while the vector processor works with multiple data items. A

superscalar processor is a combination of

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

43/91 SUBMITTED TEXT 27 WORDS

both. Each instruction processes one data item, but there are

multiple execution units within each CPU thus multiple

instructions can be processing separate data items

concurrently.

100% MATCHING TEXT 27 WORDS

both. Each instruction processes one data item, but there are

multiple execution units within each CPU thus multiple

instructions can be processing separate data items

concurrently.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

44/91 SUBMITTED TEXT 105 WORDS

The main principle of superscalar approach is that it executes

instructions independently in different pipelines. As we

already know, that Instruction pipelining leads to parallel

processing thereby speeding up the processing of

instructions. In Superscalar processor, multiple such pipelines

are introduced for different operations, which further

improves parallel processing. There are multiple functional

units each of which is implemented as a pipeline. Each

pipeline consists of multiple stages to handle multiple

instructions at a time which support parallel execution of

instructions. It increases the throughput because the CPU can

execute multiple instructions per clock cycle. Thus,

superscalar processors are much faster than scalar

processors.

100% MATCHING TEXT 105 WORDS

The main principle of superscalar approach is that it executes

instructions independently in different pipelines. As we

already know, that Instruction pipelining leads to parallel

processing thereby speeding up the processing of

instructions. In Superscalar processor, multiple such pipelines

are introduced for different operations, which further

improves parallel processing. There are multiple functional

units each of which is implemented as a pipeline. Each

pipeline consists of multiple stages to handle multiple

instructions at a time which support parallel execution of

instructions. It increases the throughput because the CPU can

execute multiple instructions per clock cycle. Thus,

superscalar processors are much faster than scalar

processors.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

45/91 SUBMITTED TEXT 38 WORDS

While a superscalar CPU is also pipelined, there are two

different performance enhancement techniques. It is possible

to have a non- pipelined superscalar CPU or pipelined non-

superscalar CPU. The superscalar technique is associated with

some characteristics, these are

100% MATCHING TEXT 38 WORDS

While a superscalar CPU is also pipelined, there are two

different performance enhancement techniques. It is possible

to have a non-pipelined superscalar CPU or pipelined non-

superscalar CPU. The superscalar technique is associated with

some characteristics, these are: 1.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

46/91 SUBMITTED TEXT 32 WORDS

Instructions are issued from a sequential instruction stream. •

CPU must dynamically check for data dependencies. • Should

accept multiple instructions per clock cycle. 266 |

100% MATCHING TEXT 32 WORDS

Instructions are issued from a sequential instruction stream. 2.

CPU must dynamically check for data dependencies. 3.

Should accept multiple instructions per clock cycle.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

47/91 SUBMITTED TEXT 192 WORDS

PIPELINING Pipelining is the process of accumulating

instruction from the processor through a pipeline. It allows

storing and executing instructions in an orderly process. It is

also known as pipeline processing. 272 | P a g e Space for

learners: Pipelining is a technique where multiple instructions

are overlapped during execution. Pipeline is divided into

stages and these stages are connected with one another to

form a pipe like structure. Instructions enter from one end

and exit from another end. Pipelining increases the overall

instruction throughput. In pipeline system, each segment

consists of an input register followed by a combinational

circuit. The register is used to hold data and combinational

circuit performs operations on it. The output of

combinational circuit is applied to the input register of the

next segment. Fig.2.4 A general block diagram of a pipeline

system Pipeline system is like the modern day assembly line

setup in factories. For example in a car manufacturing

industry, huge assembly lines are setup and at each point,

there are robotic arms to perform a certain task, and then the

car moves on ahead to the next arm.

87% MATCHING TEXT 192 WORDS

Pipelining? Pipelining is the process of accumulating

instruction from the processor through a pipeline. It allows

storing and executing instructions in an orderly process. It is

also known as pipeline processing. Pipelining is a technique

where multiple instructions are overlapped during execution.

Pipeline is divided into stages and these stages are connected

with one another to form a pipe like structure. Instructions

enter from one end and exit from another end. Pipelining

increases the overall instruction throughput. In pipeline

system, each segment consists of an input register followed

by a combinational circuit. The register is used to hold data

and combinational circuit performs operations on it. The

output of combinational circuit is applied to the input register

of the next segment. Pipeline system is like the modern day

assembly line setup in factories. For example in a car

manufacturing industry, huge assembly lines are setup and at

each point, there are robotic arms to perform a certain task,

and then the car moves on ahead to the next arm.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

48/91 SUBMITTED TEXT 99 WORDS

categories: 1. Arithmetic Pipeline 2. Instruction Pipeline 2.8.1.1

Arithmetic Pipeline Arithmetic pipelines are usually found in

most of the computers. They are used for floating point

operations, multiplication of fixed point numbers etc. For

example: The input to the Floating Point Adder pipeline is:

Suppose X=A*2^a and Y=B*2^b Here A and B are mantissas

(significant digit of floating point numbers), while a and b are

exponents. The floating point addition and subtraction is

done in 4 parts: 1. Compare the exponents. 2. Align the

mantissas. 3. Add or subtract mantissas 4. Produce the result.

274 |

96% MATCHING TEXT 99 WORDS

categories: 1. Arithmetic Pipeline 2. Instruction Pipeline

Arithmetic Pipeline Arithmetic pipelines are usually found in

most of the computers. They are used for floating point

operations, multiplication of fixed point numbers etc. For

example: The input to the Floating Point Adder pipeline is: X =

A*2^a Y = B*2^b Here A and B are mantissas (significant digit

of floating point numbers), while a and b are exponents. The

floating point addition and subtraction is done in 4 parts: 1.

Compare the exponents. 2. Align the mantissas. 3. Add or

subtract mantissas 4. Produce result.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

49/91 SUBMITTED TEXT 13 WORDS

Registers are used for storing the intermediate results

between the above operations.

100% MATCHING TEXT 13 WORDS

Registers are used for storing the intermediate results

between the above operations.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

50/91 SUBMITTED TEXT 85 WORDS

Instruction Pipeline In this a stream of instructions can be

executed by overlapping fetch, decode and execute phases of

an instruction cycle. This type of technique is used to increase

the throughput of the computer system. An instruction

pipeline reads instruction from the memory while previous

instructions are being executed in other segments of the

pipeline. Thus we can execute multiple instructions

simultaneously. The pipeline will be more efficient if the

instruction cycle is divided into segments of equal duration.

276 |

100% MATCHING TEXT 85 WORDS

Instruction Pipeline In this a stream of instructions can be

executed by overlapping fetch, decode and execute phases of

an instruction cycle. This type of technique is used to increase

the throughput of the computer system. An instruction

pipeline reads instruction from the memory while previous

instructions are being executed in other segments of the

pipeline. Thus we can execute multiple instructions

simultaneously. The pipeline will be more efficient if the

instruction cycle is divided into segments of equal duration.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

51/91 SUBMITTED TEXT 79 WORDS

In this a stream of instructions can be executed by

overlapping fetch, decode and execute phases of an

instruction cycle. This type of technique is used to increase

the throughput of the computer system. An instruction

pipeline reads instruction from the memory while previous

instructions are being executed in other segments of the

pipeline. Thus we can execute multiple instructions

simultaneously. The pipeline will be more efficient if the

instruction cycle is divided into segments of equal duration.

100% MATCHING TEXT 79 WORDS

In this a stream of instructions can be executed by

overlapping fetch, decode and execute phases of an

instruction cycle. This type of technique is used to increase

the throughput of the computer system. An instruction

pipeline reads instruction from the memory while previous

instructions are being executed in other segments of the

pipeline. Thus we can execute multiple instructions

simultaneously. The pipeline will be more efficient if the

instruction cycle is divided into segments of equal duration.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

52/91 SUBMITTED TEXT 151 WORDS

Pipeline Conflicts There are some factors that cause the

pipeline to deviate its normal performance. Some of these

factors are given below: (i) Timing Variations All stages cannot

take same amount of time. This problem generally occurs in

instruction processing where different instructions have

different operand requirements and thus different processing

time. (ii) Data Hazards When several instructions are in partial

execution, and if they reference same data then the problem

arises. We must ensure that next instruction does not attempt

to access data before the current instruction, because this will

lead to incorrect results. (iii) Branching In order to fetch and

execute the next instruction, we must know what that

instruction is. If the present instruction is a conditional

branch, and its result will lead us to the next instruction, then

the next instruction may not be known until the current one is

processed. 279 |

97% MATCHING TEXT 151 WORDS

Pipeline Conflicts There are some factors that cause the

pipeline to deviate its normal performance. Some of these

factors are given below: 1. Timing Variations All stages cannot

take same amount of time. This problem generally occurs in

instruction processing where different instructions have

different operand requirements and thus different processing

time. 2. Data Hazards When several instructions are in partial

execution, and if they reference same data then the problem

arises. We must ensure that next instruction does not attempt

to access data before the current instruction, because this will

lead to incorrect results. 3. Branching In order to fetch and

execute the next instruction, we must know what that

instruction is. If the present instruction is a conditional

branch, and its result will lead us to the next instruction, then

the next instruction may not be known until the current one is

processed. 4.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

53/91 SUBMITTED TEXT 16 WORDS

Interrupts Interrupts set unwanted instruction into the

instruction stream. Interrupts effect the execution of

instruction. (

100% MATCHING TEXT 16 WORDS

Interrupts Interrupts set unwanted instruction into the

instruction stream. Interrupts effect the execution of

instruction. 5.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

54/91 SUBMITTED TEXT 77 WORDS

Data Dependency It arises when an instruction depends upon

the result of a previous instruction but this result is not yet

available. 2.8.3 Advantages of Pipelining 1. The cycle time of

the processor is reduced. 2. It increases the throughput of the

system 3. It makes the system reliable. 2.8.4 Disadvantages of

Pipelining 1. The design of pipelined processor is complex

and costly to manufacture. 2. The instruction latency is more.

2.9

100% MATCHING TEXT 77 WORDS

Data Dependency It arises when an instruction depends upon

the result of a previous instruction but this result is not yet

available. Advantages of Pipelining 1. The cycle time of the

processor is reduced. 2. It increases the throughput of the

system 3. It makes the system reliable. Disadvantages of

Pipelining 1. The design of pipelined processor is complex

and costly to manufacture. 2. The instruction latency is more.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

55/91 SUBMITTED TEXT 17 WORDS

A processor, which works on simple instruction at a time,

which operates on single data items

96% MATCHING TEXT 17 WORDS

a normal processor, which works on simple instruction at a

time, which operates on single data items.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

56/91 SUBMITTED TEXT 25 WORDS

Scalar CPUs can manipulate one or two data items at a time,

which is not very efficient. Also, simple instructions 283 |

100% MATCHING TEXT 25 WORDS

Scalar CPUs can manipulate one or two data items at a time,

which is not very efficient. Also, instructions

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

57/91 SUBMITTED TEXT 15 WORDS

like ADD A to B, and store into C are not practically efficient. •

100% MATCHING TEXT 15 WORDS

like ADD A to B, and store into C are not practically efficient.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

58/91 SUBMITTED TEXT 21 WORDS

not only use instruction pipeline, but it also pipelines the data,

working on multiple data at the same time. •

100% MATCHING TEXT 21 WORDS

not only use Instruction pipeline, but it also pipelines the data,

working on multiple data at the same time.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

59/91 SUBMITTED TEXT 23 WORDS

the use of registers. • In Superscalar processor, multiple such

pipelines are introduced for different operations, which

further improves parallel processing. •

85% MATCHING TEXT 23 WORDS

the processing of instructions. In Superscalar processor,

multiple such pipelines are introduced for different

operations, which further improves parallel processing.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

60/91 SUBMITTED TEXT 44 WORDS

Pipelining is the process of accumulating instruction from the

processor through a pipeline. It allows storing and executing

instructions in an orderly process. It is also known as pipeline

processing. • Pipelining is a technique where multiple

instructions are overlapped during execution. •

100% MATCHING TEXT 44 WORDS

Pipelining is the process of accumulating instruction from the

processor through a pipeline. It allows storing and executing

instructions in an orderly process. It is also known as pipeline

processing. Pipelining is a technique where multiple

instructions are overlapped during execution.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

61/91 SUBMITTED TEXT 25 WORDS

Arithmetic pipelines are usually found in most of the

computers. They are used for floating point operations,

multiplication of fixed point numbers etc. •

100% MATCHING TEXT 25 WORDS

Arithmetic pipelines are usually found in most of the

computers. They are used for floating point operations,

multiplication of fixed point numbers etc.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

62/91 SUBMITTED TEXT 22 WORDS

An instruction pipeline reads instruction from the memory

while previous instructions are being executed in other

segments of the pipeline. •

100% MATCHING TEXT 22 WORDS

An instruction pipeline reads instruction from the memory

while previous instructions are being executed in other

segments of the pipeline.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

63/91 SUBMITTED TEXT 44 WORDS

PIPELINING Pipelining is the practice of accumulating

instruction from the processor through a pipeline. In

pipelining, storing and executing of the instructions allows

being in an orderly process. It is also known as pipeline

processing. Multiple instructions are overlapped during

execution

68% MATCHING TEXT 44 WORDS

Pipelining? Pipelining is the process of accumulating

instruction from the processor through a pipeline. It allows

storing and executing instructions in an orderly process. It is

also known as pipeline processing. Pipelining is a technique

where multiple instructions are overlapped during execution.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

64/91 SUBMITTED TEXT 83 WORDS

pipeline is separated into stages, and these stages are

attached to one another to form a pipe like structure.

Instructions enter from one end and exit from another end.

Pipelining improved the overall instruction throughput. In the

pipeline system, each segment consists of an input register

followed by a combinational circuit. The register is used to

hold data and a combinational circuit performs operations on

it. The output of the combinational circuit is applied to the

input register of the next segment.

87% MATCHING TEXT 83 WORDS

Pipeline is divided into stages and these stages are connected

with one another to form a pipe like structure. Instructions

enter from one end and exit from another end. Pipelining

increases the overall instruction throughput. In pipeline

system, each segment consists of an input register followed

by a combinational circuit. The register is used to hold data

and combinational circuit performs operations on it. The

output of combinational circuit is applied to the input register

of the next segment.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

65/91 SUBMITTED TEXT 49 WORDS

Pipeline system is like some assembly line set up in different

factories. For example, in an automobile manufacturing

industry, huge assembly lines are arranged and at each point,

there are robotic arms to perform a particular task, and then

the product moves on ahead to the next arm.

69% MATCHING TEXT 49 WORDS

Pipeline system is like the modern day assembly line setup in

factories. For example in a car manufacturing industry, huge

assembly lines are setup and at each point, there are robotic

arms to perform a certain task, and then the car moves on

ahead to the next arm.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

66/91 SUBMITTED TEXT 22 WORDS

The floating point addition and subtraction is done in 4 parts:

Compare the exponents, align the mantissas, add or subtract

mantissas

100% MATCHING TEXT 22 WORDS

The floating point addition and subtraction is done in 4 parts:

1. Compare the exponents. 2. Align the mantissas. 3. Add or

subtract mantissas 4.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

67/91 SUBMITTED TEXT 22 WORDS

same task can be processed in six segment pipeline with a

clock cycle of 10 ns. Determine the speedup ratio of

82% MATCHING TEXT 22 WORDS

Same task can be executed in six-segment pipeline with a

clock cycle of 10 ns. Determine the speed up ratio of

https://odl.ptu.ac.in/slm/mca/6th/MCA603%20Advanced%20Comp%20Architecture.pdf

68/91 SUBMITTED TEXT 21 WORDS

data hazards: 1) Read after Write (RAW) 2) Write after Read

(WAR) 3) Write after Write (WAW)

75% MATCHING TEXT 21 WORDS

data hazards are: 1. read after write (RAW), a true dependency

2. write after read (WAR), an anti-dependency 3. write after

write (WAW),

https://odl.ptu.ac.in/slm/mca/6th/MCA603%20Advanced%20Comp%20Architecture.pdf

69/91 SUBMITTED TEXT 16 WORDS

DELAY SLOT An instruction slot being executed devoid of the

effects of a preceding instruction

76% MATCHING TEXT 16 WORDS

delay slot is an instruction slot being executed without the

effects of a preceding instruction.

http://wikimili.com/en/Delay_slot

70/91 SUBMITTED TEXT 75 WORDS

The most familiar form is a particular arbitrary instruction

located without delay after a branch instruction on a DSP or

RISC architecture; this instruction will execute even if the

prior branch is taken. In that way, by design, the instructions

appear to execute in an incorrect or illogical order. It is usual

for assemblers to automatically rearrange instructions by

default, hiding the unease from assembly developers and

compilers.[3] 310 |

66% MATCHING TEXT 75 WORDS

The most common form is a single arbitrary instruction

located immediately after a branch instruction on a RISC or

DSP architecture; this instruction will execute even if the

preceding branch is taken. Thus, by design, the instructions

appear to execute in an illogical or incorrect order. It is typical

for assemblers to automatically reorder instructions by

default, hiding the awkwardness from assembly developers

and compilers.[

http://wikimili.com/en/Delay_slot

71/91 SUBMITTED TEXT 108 WORDS

A simple design would insert stalls into the Pipeline after a

branch instruction until the new branch target address is

computed and loaded into the program counter. Each cycle

where a stall is inserted is considered one branch delay slot. A

more sophisticated design would execute program

instructions that are not dependent on the branch instruction.

This optimization can be performed in software at compile

time by moving instructions into branch delay slots in the in-

memory instruction stream if the hardware supports this.

Another side effect is that special handling is needed when

managing breakpoints on instructions and stepping while

debugging within branch delay slot[3]. 3.12

96% MATCHING TEXT 108 WORDS

A simple design would insert stalls into the pipeline after a

branch instruction until the new branch target address is

computed and loaded into the program counter. Each cycle

where a stall is inserted is considered one branch delay slot. A

more sophisticated design would execute program

instructions that are not dependent on the result of the

branch instruction. This optimization can be performed in

software at compile time by moving instructions into branch

delay slots in the in-memory instruction stream, if the

hardware supports this. Another side effect is that special

handling is needed when managing breakpoints on

instructions as well as stepping while debugging within

branch delay slot.

http://wikimili.com/en/Delay_slot

72/91 SUBMITTED TEXT 14 WORDS

deals with data dependences in pipelining between

instructions by renaming their register operands

76% MATCHING TEXT 14 WORDS

deals with data dependences between instructions by

renaming their register operands.

http://d.umn.edu/~gshute/arch/register-renaming.html

73/91 SUBMITTED TEXT 38 WORDS

Renaming replaces architectural register names by, in effect,

value names with a new value name for each instruction

destination operand. This process eliminates the name

dependences (anti- dependences and output dependences)

between instructions and automatically recognizes true

dependences.

84% MATCHING TEXT 38 WORDS

Renaming replaces architectural register names by, in effect,

value names, with a new value name for each instruction

destination operand. This eliminates the name dependences

(output dependences and antidependences) between

instructions and automatically recognizes true dependences.

http://d.umn.edu/~gshute/arch/register-renaming.html

74/91 SUBMITTED TEXT 24 WORDS

An assembly language programmer or a compiler specifies

these operands using architectural registers - the registers are

explicit in the instruction set architecture.

97% MATCHING TEXT 24 WORDS

An assembly language programmer or a compiler specifies

these operands using architectural registers - the registers

that are explicit in the instruction set architecture.

http://d.umn.edu/~gshute/arch/register-renaming.html

75/91 SUBMITTED TEXT 60 WORDS

The identification of true data dependences between

instructions allows a more flexible life cycle for instructions.

Maintaining a status bit for each value indicating whether or

not it has been computed yet allows the execution phase of

two instruction operations to be performed out of order

when there are no true data dependences between them.

92% MATCHING TEXT 60 WORDS

The recognition of true data dependences between

instructions permits a more flexible life cycle for instructions.

By maintaining a status bit for each value indicating whether

or not it has been computed yet, it allows the execution

phase of two instruction operations to be performed out of

order when there are no true data dependences between

them.

http://d.umn.edu/~gshute/arch/register-renaming.html

76/91 SUBMITTED TEXT 21 WORDS

R6, R0, R2 DIV R4, R2, R0 ADD R0, R6, R2 Instruction R0 R2

R4 R6

71% MATCHING TEXT 21 WORDS

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R0 R1

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

77/91 SUBMITTED TEXT 14 WORDS

An instruction slot being executed devoid of the effects of a

preceding instruction

76% MATCHING TEXT 14 WORDS

an instruction slot being executed without the effects of a

preceding instruction.

http://wikimili.com/en/Delay_slot

78/91 SUBMITTED TEXT 31 WORDS

PIPELINING: Pipelining is the practice of accumulating

instruction from the processor through a pipeline. In

Pipelining, Storing and executing of the instructions allows

being in an orderly process.

62% MATCHING TEXT 31 WORDS

Pipelining? Pipelining is the process of accumulating

instruction from the processor through a pipeline. It allows

storing and executing instructions in an orderly process.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

79/91 SUBMITTED TEXT 17 WORDS

STALL: It is a delay in execution of an instruction in order to

resolve a hazard.

90% MATCHING TEXT 17 WORDS

stall is a delay in execution of an instruction in order to

resolve a hazard.

http://wikimili.com/en/Delay_slot

80/91 SUBMITTED TEXT 16 WORDS

DELAY SLOT: An instruction slot being executed devoid of the

effects of a preceding instruction.

76% MATCHING TEXT 16 WORDS

delay slot is an instruction slot being executed without the

effects of a preceding instruction.

http://wikimili.com/en/Delay_slot

81/91 SUBMITTED TEXT 24 WORDS

REGISTER RENAMING:Register Renaming is a process to

deals with data dependences in pipelining between

instructions by renaming their register operands. 3.16

66% MATCHING TEXT 24 WORDS

Register Renaming Register renaming is a form of pipelining

that deals with data dependences between instructions by

renaming their register operands.

http://d.umn.edu/~gshute/arch/register-renaming.html

82/91 SUBMITTED TEXT 24 WORDS

is the process of collecting instruction from the processor

through a pipeline. It stores and executes instructions in an

orderly process." 2.

76% MATCHING TEXT 24 WORDS

is the process of accumulating instruction from the processor

through a pipeline. It allows storing and executing

instructions in an orderly process.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

83/91 SUBMITTED TEXT 16 WORDS

The design of pipelined processor is complex and costly to

manufacture. 319 |

100% MATCHING TEXT 16 WORDS

The design of pipelined processor is complex and costly to

manufacture. 2.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

84/91 SUBMITTED TEXT 12 WORDS

the floating point addition and subtraction is done in

____________ parts.

100% MATCHING TEXT 12 WORDS

The floating point addition and subtraction is done in 4 parts:

1.

https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_ ...

85/91 SUBMITTED TEXT 20 WORDS

A pipeline ______ is a delay in execution of an instruction in

order to resolve a hazard. 7.

96% MATCHING TEXT 20 WORDS

a pipeline stall is a delay in execution of an instruction in order

to resolve a hazard.

http://wikimili.com/en/Delay_slot

86/91 SUBMITTED TEXT 27 WORDS

Computer Organization and Design – The Hardware /

Software Interface", David A. Patterson and John L. Hennessy,

4th.Edition, Morgan Kaufmann, Elsevier, 2009. [7] "Computer

system Architecture",

93% MATCHING TEXT 27 WORDS

Computer Organization and Design – The Hardware /

Software Interface, David A. Patterson and John L. Hennessy,

4th Edition, Morgan Kaufmann, Elsevier, 2009. • Computer

Architecture –

https://www.cs.umd.edu/~meesh/411/CA-online/chapter/advanced-concepts-of-ilp-dynamic-scheduling/i ...

87/91 SUBMITTED TEXT 41 WORDS

R1, R3, 3 LD R4, 0(R1) ADD R2, R2, R4 SUB R3, R3, 1 BNEZ R3,

-4 MUL R1, R3, 3 LD R4, 0(R1) NOP ADD R2, R2, R4 SUB R3,

R3, 1 NOP NOP BNEZ R3, -4 In

48% MATCHING TEXT 41 WORDS

R3; R3 R1þ R2; Add R4, R5, R6; R6 R4þ R5; I 6 ! SL R3 R3 SL

(R3) I 7 ! Add R6, R4, R7; R7 R4 þ R6; In

https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewin ...

88/91 SUBMITTED TEXT 14 WORDS

feature that provides alternative to conditional transfer of

control, implemented by machine instructions

84% MATCHING TEXT 14 WORDS

feature that provides an alternative to conditional transfer of

control, as implemented by conditional branch machine

instructions.

http://wikimili.com/en/Delay_slot

89/91 SUBMITTED TEXT 91 WORDS

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S 15 S

16

96% MATCHING TEXT 91 WORDS

s s(s + 1)(s − 5) + 1 s 2 (s + 1)(s − 5) = 1 6 5 s − 5 + 1 s + 1 + e

−5s 30 − 6 s + 5 s + 1 + 1 s − 5 + 1 150 − 30 s 2 + 24 s − 25 s +

1 + 1

https://home.iitk.ac.in/~peeyush/102A/Lecture-notes.pdf

90/91 SUBMITTED TEXT 41 WORDS

P2 P1 P2 P4 P1 P3 P3 P6 P1 P5 P4 P8

91% MATCHING TEXT 41 WORDS

P P (a) P P (b) p p p p p p p p (

https://pdfcoffee.com/fundamentals-of-computer-organization-and-architecture-by-mostafa-pdf-free.html

91/91 SUBMITTED TEXT 56 WORDS

X = 10 P1 X = 10 P2 X = 10 P3 X = 10 Main Memory Caches

Processors Bus X = 50 P1 X = 10 P2 X = 10 P3 X = 50 Main

Memory Caches Processors Bus X = 50 P1 X = 10 P2 X = 10

P3 X = 50

37% MATCHING TEXT 56 WORDS

x) = 1 P 1 (x) = x P 2 (x) = 3/2 x 2 − 1/2 P 3 ,x) = 5/2x 3 − 3/2x P

4 (x) = 35 8 x 4 − 15 4 x 2 + 3/8 P 5 (x) = 63 8 x 5 − 35 4 x 3 +

15 8 x P 6 (x) = 231 16 x 6 − 315 16 x 4 + 105 16 x 2 − 5 16 P 7

(x) = 429 16

https://www.math.tamu.edu/~dallen/m640_03c/lectures/chapter2.pdf

