
Document Information

Analyzed document INF_1036.pdf (D164968063)

Submitted 4/25/2023 7:40:00 AM

Submitted by Dipankar Saikia

Submitter email dipgu2009@gmail.com

Similarity 7%

Analysis address dipgu2009.gauhati@analysis.urkund.com

Sources included in the report

URL: https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-

semester-departme...

Fetched: 12/6/2022 5:59:12 AM

70

URL: https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf

Fetched: 1/8/2022 7:02:29 PM
6

URL: https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/

Fetched: 11/14/2022 8:17:23 AM
6

URL: https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

Fetched: 10/12/2022 5:16:49 PM
24

URL: https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-

1571835796976-os.pdf

Fetched: 5/25/2021 3:28:34 PM

57

URL: https://quizlet.com/216326436/osg202-flash-cards/

Fetched: 1/18/2022 12:05:43 PM
26

URL: https://www.guru99.com/shortest-job-first-sjf-scheduling.html

Fetched: 3/20/2020 9:48:43 PM
14

URL: https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

Fetched: 10/17/2022 2:40:24 PM
41

URL: https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

Fetched: 11/29/2019 4:46:42 AM
10

URL: https://qdoc.tips/download/key-os-pdf-free.html

Fetched: 9/26/2022 9:45:44 PM
9

URL: https://quizlet.com/143614504/osg-flash-cards/

Fetched: 11/8/2021 3:10:53 PM
11

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department-of-it-prepared-by-asst-prof-v-mohamed-keeran-it.html
https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf
https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/
https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling
https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf
https://quizlet.com/216326436/osg202-flash-cards/
https://www.guru99.com/shortest-job-first-sjf-scheduling.html
https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling
https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483
https://qdoc.tips/download/key-os-pdf-free.html
https://quizlet.com/143614504/osg-flash-cards/

URL: https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

Fetched: 11/13/2022 5:20:29 PM
9

URL: https://quizlet.com/vn/582275437/osg202-flash-cards/

Fetched: 3/13/2022 5:55:50 PM
10

URL: http://cs.joensuu.fi/pages/mhk/harjoitukset/kj/h4/h4.html

Fetched: 4/11/2021 2:42:30 PM
4

URL: https://www.slideshare.net/JasonMarandi1/cpu-scheduling-qusetions

Fetched: 9/17/2022 1:27:49 PM
4

URL: http://www.eg.bucknell.edu/~cs315/wordpress/wp-content/uploads/2019/10/activity14-02-

19.pdf

Fetched: 11/7/2022 5:42:25 PM

3

URL: https://saf1.net/blog/cpu-scheduling-simulation-algorithms

Fetched: 10/17/2022 8:18:12 AM
7

URL: https://slideplayer.com/slide/13412463/

Fetched: 6/15/2021 7:54:25 PM
2

URL: https://www.proprofs.com/quiz-school/story.php?title=ntmyndu1

Fetched: 1/7/2023 7:14:00 AM
2

URL: https://www.geeksforgeeks.org/gate-gate-cs-2012-question-31/

Fetched: 1/29/2020 10:22:40 AM
2

URL: https://www.sciencedirect.com/topics/computer-science/tertiary-storage

Fetched: 4/25/2023 7:41:00 AM
3

Entire Document

(1) GAUHATI UNIVERSITY Institute of Distance and Open Learning First Semester (under CBCS) M.Sc.-IT Paper: INF-1036

OPERATING SYSTEM Contents: BLOCK I: REVIEW OF COMPUTER ORGANIZATION, MEMORY ARCHITECTURE,

CONCURRENT PROCESS AND SCHEDULING Unit 1 : Computer System Review Unit 2 : Operating System Overview Unit

3 : Introduction to Linux Unit 4 : Process Management Unit 5 : System Calls Unit 6 : Process Scheduling Algorithms I Unit

7 : Process Scheduling Algorithms II Unit 8 : Concurrent Process Management BLOCK II: MEMORY AND I/O

MANAGEMENT, SYSTEM DEADLOCK AND MULTIPROGRAMMING SYSTEM Unit 1 : Memory Management Unit 2 : Input-

Output Organization Unit 3 : Introduction to Deadlock Unit 4 : Deadlock Prevention, Detection and Avoidance Unit 5 :

Multiprogramming System Unit 6 : Secondary Storage Management Unit 7 : Security Unit 8 : Distributed Operating

Systems M.Sc.-IT-19-

I-1036

(2) SLM Development Team: HoD, Department of Computer Science, GU Programme Coordinator, MSc-IT (GUIDOL)

Prof. Shikhar Kr. Sarma, Department of IT, GU Dr. Khurshid Alam Borbora, Assistant Professor, GUIDOL Dr. Swapnanil

Gogoi, Assistant Professor, GUIDOL Mrs. Pallavi Saikia, Assistant Professor, GUIDOL Dr. Rita Chakraborty, Assistant

Professor, GUIDOL Mr. Hemanta Kalita, Assistant Professor, GUIDOL

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf
https://quizlet.com/vn/582275437/osg202-flash-cards/
http://cs.joensuu.fi/pages/mhk/harjoitukset/kj/h4/h4.html
https://www.slideshare.net/JasonMarandi1/cpu-scheduling-qusetions
http://www.eg.bucknell.edu/~cs315/wordpress/wp-content/uploads/2019/10/activity14-02-19.pdf
https://saf1.net/blog/cpu-scheduling-simulation-algorithms
https://slideplayer.com/slide/13412463/
https://www.proprofs.com/quiz-school/story.php?title=ntmyndu1
https://www.geeksforgeeks.org/gate-gate-cs-2012-question-31/
https://www.sciencedirect.com/topics/computer-science/tertiary-storage

Contributors: Dr. Mirzanur Rahman (Block I : Unit- 1) Asstt. Prof., Dept. of IT, Gauhati University Dr. Sruti Sruba Bharali

(Block I : Unit- 2) Asstt. Prof., HCB School of Science and Technology. KKHSOU Dr. Khurshid Alam Borbora (Block I :

Units- 3 & 5) Asstt. Prof., GUIDOL,Gauhati University Dr. Kshirod Sarmah (Block I : Unit- 4) Asstt. Prof., Dept. of Computer

Science PDUAM, Goalpara, Assam Dr. Sisir Kumar Rajbongshi (Block I : Unit- 6) Asstt. Prof., Dept. of Computer Science

PDUAM, Goalpara, Assam Mr. Hem Chandra Das (Block I : Unit- 7) Asstt. Prof., Dept. of Computer Science & Technology

Bodoland University, Kokrajhar(BTAD), Assam Dr. Irani Hazarika (Block I : Unit- 8/ Block II: Units: 3 & 4) Asstt. Prof., Dept.

of Computer Science Gauhati University, Assam Dr. Pranab Das (Block II : Unit- 1) Asstt. Prof. (Sr.), Dept. of Computer

Applications Assam Don Bosco University Mr. Dipankar Dutta (Block II : Unit- 2) Asstt. Prof., Dept. of Computer Science

NERIM, Guwahati, Assam Mrs. Pinky Saikia Dutta (Block II : Unit- 5) Asstt. Prof., Dept. of Computer Science & Engineering,

GIMT, Guwahati Dr. Utpal Barman (Block II : Unit- 6) Asstt. Prof., Dept. of Computer Science & Engineering, GIMT,

Guwahati

(3) Ms. Mala Ahmed (Block II : Unit- 7) Asstt. Prof., Dept. of Computer Science & Engineering, GIMT, Guwahati Dr. Manoj

Kumar Deka (Block II : Unit- 8) Asstt. Prof., Dept. of Computer Science & Technology Bodoland University,

Kokrajhar(BTAD)

Course Coordination: Director IDOL, Gauhati University Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Dipankar Saikia Editor SLM, GUIDOL Content Editing: Dr. Ridip Dev Choudhury Associate Professor, HCB School of

Science and Technology, KKHSOU, Assam Cover Page Designing: Bhaskar Jyoti Goswami IDOL, Gauhati University ISBN:

May, 2022 © Copyright by IDOL, Gauhati University. All rights reserved. No part of this work may be reproduced, stored

in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise.

Published on behalf of Institute of Distance and Open Learning, Gauhati University by the Director, and printed at Gauhati

University Press, Guwahati- 781014.

BLOCK I: REVIEW OF COMPUTER ORGANIZATION, MEMORY ARCHITECTURE, CONCURRENT PROCESS AND

SCHEDULING

1 | P a g e Space for learners: UNIT 1: COMPUTER SYSTEM REVIEW Unit Structure: 1.1 Introduction 1.2 Unit Objectives 1.3

Components of a Computer 1.3.1 Functional Units of a Computer 1.3.1.1 Input Unit 1.3.1.2 Output Unit 1.3.1.3 Central

Processing Unit (CPU) 1.3.1.4 Memory Units 1.3.1.5 Units of Memory 1.4 Basic Instruction Sets of Computer 1.4.1

Instruction Set Architectures 1.4.1.1 RISC (Reduced Instruction Set Computer) 1.4.1.2 CISC (Complex Instruction Set

Computer) 1.4.1.3 MISC (Minimal Instruction Set Computers) 1.4.1.4 VLIW (Very Long Instruction Word) 1.4.1.5 EPIC

(Explicitly Parallel Instruction Computing) 1.4.1.6 OISC (One Instruction Set Computer) 1.4.1.7 ZISC (Zero Instruction Set

Computer) 1.4.2 Instruction Set 1.4.3 Addressing Mode 1.5 Summing Up 1.6 Answers to Check Your Progress 1.7 Possible

Questions 1.8 References & Further Readings

2 | P a g e Space for learners: 1.1 INTRODUCTION In this unit you will learn about different functional units or sub

systems of a computer. A computer system is said to be functional if all the major subsystems works properly. This unit

introduces a number of hardware units presents in a computer and give a broad overview and functional aspects of the

same. Instruction set is another aspect of a computer systems to be discussed here, where we will learn about different

addressing modes and Instruction set architecture of a computer. 1.2 UNIT OBJECTIVES After going through this unit,

you will be able to ? understand the major hardware units of Computer System ? learn about the instruction set

architectures ? learn about the various types of addressing modes 1.3 COMPONENTS OF A COMPUTER An electronic

calculating machine that takes digitized information as input, processes the input according to internally stored one or

more instructions and produces the output information can be termed as computer. Digital computer consists of five

functionally independent main units a) Input units b) Output units c) Central processing unit i. Arithmetic and logic units

ii. Control Units iii. Registers d) Memory units

3 | P a g e Space for learners: Data Flow Control Flow Figure 1: Block Diagram of a Computer Figure 1 shows the block

diagram of a computer introduced by John Von Neumann based on a stored-program concept. In this stored-program

concept, programs and data or information are stored in a separate storage unit called memories and are treated the

same. Instructions are the commands that move the information within computer or between different computers and

its Input and output (I/O) devices and performs arithmetic and logic operations. A set of instructions that performs a task

is called a program. The processor fetches the instructions from memory, one at a time and performs the desired

operations unless there is some interrupt signal occurs. Secondary Storage Primary Storage Control Unit Arithmetic and

Logic Unit Input Unit Output Unit

4 | P a g e Space for learners: 1.3.1 Functional Units of a Computer 1.3.1.1 Input Unit Input unit or device is hardware

equipment through which data and control signals are transferred to computer. Input unit converts data and command

to computer understandable form. Examples of input devices: keyboards, mouse, scanners, digital cameras, joysticks,

digital pen, digitizers, Touch Panel etc. Figure: Keyboard, Mouse, Scanner, Joystick, Digital Pen 1.3.1.2 Output Unit An

output unit or device is a hardware equipment which converts digital information into human readable or

understandable form. Example of output device: Monitor, Printer, Plotters, Speakers etc. Figure: Monitor, Printer, Plotters,

Speaker CHECK YOUR PROGRESS 1. State TRUE or FALSE: (a) Input device takes inputs from computer (b) Joysticks is an

input device (c) Printer is used to display Output (True/False) (d) Through Instruction we can move information within a

computer 2. Fill in the Blanks: (a) Computer use _________Unit to store information. (b) Computer use _________Unit

to do all arithmetic operations. (c) Instruction are _________used in computer. (d) Speaker is a ________ Device

5 | P a g e Space for learners: 1.3.1.3 Central Processing Unit (CPU) Central processing Unit; in short CPU is the brain of a

computer system. All calculations are made inside the CPU. CPU is responsible for controlling all the devices and

maintain communication between them. Arithmetic and logic unit, Control Unit and Registers together referred as

central processing unit or processor. i. Arithmetic and Logic Unit (ALU): The arithmetic logic unit is that part of the CPU

that handles all the calculations the CPU may need, e.g. Addition, Subtraction, Comparisons. It performs Logical

Operations, Bit Shifting Operations, and Arithmetic Operations. ii. Control Unit: The control unit manages and co-

ordinates all the operations of computer system through signals. It transfers all input and output flow, fetches

instructions and controls data moves around the system. iii. Registers: Registers are small amounts of high-speed

memory contained within the CPU used as a temporary storage area. They are used by the processor to store small

amounts of data that are needed during processing, such as: ? Stores the address of the next executing instruction ? The

current instruction being executed ? The results of calculations Different processors have different numbers of registers

for different purposes, but most have some, or all, of the following: ? Program Counter: Program Counter (PC) is used to

keep the track of execution of the program. After successful completion of an instruction, PC points to the address of

the next instruction to be fetched from the main memory. ? Memory Data Register (MDR): Memory Data Register

contains data to be read or write from an addressed location.

6 | P a g e Space for learners: ? Memory Address Register (MAR): Memory Address Register is used to hold address of the

location to be accessed from memory. The communication between the CPU and the main memory is handled by MAR

and MDR. ? Instruction Register (IR): The Instruction Register holds the instruction which is just about to be executed.

The instruction from PC is fetched and stored in IR. As soon as the instruction in placed in IR, the CPU starts executing

the instruction and the PC points to the next instruction to be executed. ? Accumulator (Acc) : Accumulator is the

frequently used register for storing data taken from memory. It is commonly used as a temporary location for storing

data. ? General Purpose Register: These are numbered as R0, R1, R2….Rn-1, and used to store temporary data during any

ongoing operation. All the components of CPU are connected to the computer through buses. A bus is a high-speed

internal connection. It can be assuming as an electrical wire for connecting and communicating between the units of

CPU. Buses are used to send control signals and data between the processor and other components. Three types of bus

are used: ? Address bus - carries memory addresses from the processor to other components such as primary memory

and input/output devices. ? Data bus - carries the actual data between the processor and other components. ? Control

bus - carries control signals from the processor to other components. The control bus also carries the clock's pulses.

STOP TO CONSIDER Program Counter always points to the address of the next instruction to be fetched from the main

memory. Accumulator is the frequently used register for storing data taken from memory.

7 | P a g e Space for learners: 1.3.1.4 Memory Units Memory Units are the storage space for storing program and data.

Memory units are used for storing intermediate results and for final results. It has two broad categories. i. Main Memory

or Primary Memory ii. Secondary Memory Main Memory or Primary Memory All computer uses primary memory for

storing program and data when computing is running. Primary memory can operate at electronic speeds. When

programs are being executed, it must be residing in the main memory. In main memory, a distinct address is mapped

with each data location for accessing or manipulating data. Addresses are the numbers that identify successive location

Types of Primary Memory: ? Read Only Memory (ROM) ? Random Access Memory (RAM) ? Cache Memory Read Only

Memory (ROM): ROM is a memory device or storage medium that stores information permanently. It is called read only

memory as we can only read the programs and data stored on it but cannot write on it. The manufacturer of ROM fills

CHECK YOUR PROGRESS 3. State TRUE or FALSE: (a) Control Unit Controls Only Arithmetic and Logic Unit (b) Registers

re used as Temporary Storage (c) Adress bus is a register (d) Data bus carries actual data 4. Fill in the Blanks: (a) Program

counter points____________ (b) Memory Data Register contains ____________ (c) Memory Address Register is used to

hold _____________ (d) The Instruction Register holds__________ (e) Control Signal is transferred through ______ bus

8 | P a g e Space for learners: the programs into the ROM at the time of manufacturing the ROM. After this, the content

of the ROM can't be altered, which means you cannot reprogram, rewrite, or erase its content later. Various types of

ROMs: Programmable Read only Memory (PROM) is a programmable read only memory to store information only once

by a user. PROM data cannot be erased. Erasable Programmable Read Only Memory (EPROM) also a programmable read

only memory to store information by a user. Stored information can be erased exposing it to strong ultraviolet light

source Electrically Erasable Programmable Read Only Memory (EEPROM) is a read only memory that can be

programmed and can be erased electrically. Random Access Memory (RAM): RAM provides operating memory for

computer, when a program and data is being executed. CPU can access contents from RAM randomly from any location

and any order. It is also called as read/write memory, since the information can be written to it as well as read from it.

The more processes a computer needs to run at a single time, the more RAM it needs. RAM is as volatile memory.

Volatile means information will be lost as soon as the power supply goes off. Cache Memory: Cache memory is a type of

fast, relatively small memory, which computer microprocessors can access more quickly than regular RAM. It is typically

directly integrated with the CPU chip, or is placed on a separate chip that can connect CPU and RAM. The main purpose

of this type memory is to store program instructions that are frequently used by software during its general operations,

this is why fast access is needed as it helps to keep the program running quickly. STOP TO CONSIDER Before executing

any data or instruction in a processor, it should be residing in RAM. RAM termed as Random access because any location

can be reached randomly with a same amount of time.

9 | P a g e Space for learners: Secondary Memory Secondary memory is a non-volatile and persistent computer memory.

It enables a user to store data that can be retrieved, transmitted, and utilized by applications and services in real time.

Secondary memory is used to store large amount of data or programs permanently. Some basic characteristics of

Secondary Memory a) It is non-volatile, i.e. it retains data when power is switched off b) It is large capacities to the tune

of terabytes c) It is cheaper as compared to primary memory. Secondary storage can be broadly divided into three

category ? Magnetic Storage ? Optical Storage ? Solid state storage ? Magnetic Storage: Magnetic devices use magnetic

fields to magnetise tiny individual sections of a metal spinning disk. Each tiny section represents one bit. A magnetised

section represents a binary '1' and a demagnetised section represents a binary '0'. As the disk is spinning, a read/write

head moves across its surface. To write data, the head magnetises or demagnetises a section of the disk that is spinning

under it. To read data, the head makes a note of whether the section is magnetised or not. Magnetic devices are fairly

cheap, high in capacity and durable. Example of Magnetic storage device: Hard Disks, Floppy Disk, magnetic tape ?

Optical storage: Optical devices use a laser to store and read the stored data from an optical spinning disc made from

metal and plastic. The disc surface is divided into tracks, with each track containing many flat areas and hollows. The flat

areas are known as lands and the hollows as pits. When the laser shines on the disc surface, lands reflect the light back,

whereas pits scatter the laser beam. A sensor looks for the reflected light. Reflected light - land - represents a binary '1',

and no reflection - pits - represents a binary '0'. Example of Optical storage : CD-ROM(Compact Disc -Read only

10 | P a g e Space for learners: Memory), DVD-ROM (Digital Versatile Disc-Read Only Memory), Blue Ray Disc ? Solid

state storage: Solid state storage is a special type of storage made from silicon microchips. It can be written to and

overwritten like RAM but it is non-volatile. Solid state is also used as external secondary storage. One of the major

benefits of solid state storage is that is has no moving parts. Because of this, it is more portable, and produces less heat

compared to traditional magnetic storage devices. Example of Solid State Storage: USB memory sticks and solid state

drives (SSD) CHECK YOUR PROGRESS 5. State TRUE or FALSE: (a) Secondary memory is also known as Main Memory (b)

ROM is volatile Memory (c) RAM is a volatile Memory (d) DVD is an Optical Media 6. Fill in the Blanks: (a) ______ provides

operating memory for computer (b) Cache Memory Stores the instruction that are _________used (c) Magnetic devices

use _______ fields to store data (d) SSD is mode from _________Microchips STOP TO CONSIDER ? ROM is non-volatile

memory ? RAM is volatile memory ? Cache is a volatile memory ? Magnetic Storage device like hard disk is non-volatile

memory ? Optical Storage device like CD DVD is non-volatile memory ? Solid state storage device like SSD Hard Disk,

pen drive is non-volatile Memory

11 | P a g e Space for learners: 1.3.1.5 Units of Memory The storage capacity of the memory is expressed in various units

of memory. Bit (Binary Digit) is the primary or smallest unit of memory. A microprocessor uses binary digits 0 and 1 to

decide the OFF and ON state respectively. The following table shows memory units Sl Units Description 1 Bit A binary

digit is a logical 0 or 1 that indicates whether a component in an electric circuit is in the passive or active state. 2 Nibble A

group of 4 bits is called nibble. 3 Byte A byte is a collection of 8 bits. The smallest unit that can represent a data item or a

character is a byte. 4 Kilobyte (KB) 1 KB = 1024 Bytes 5 Megabyte (MB) 1 MB = 1024 KB 6 GigaByte (GB) 1 GB = 1024 MB 7

TeraByte (TB) 1 TB = 1024 GB 8 PetaByte (PB) 1 PB = 1024 TB 1.4 BASIC INSTRUCTION SETS OF COMPUTER As

mentioned in the previous section Instructions are the commands that move the information within computer or

between CHECK YOUR PROGRESS 7. Calculate the followings: (a) 4 Nibble = ________bit (b) 1 byte = ________bit (c)

1kilobyte = ________bit (d) 1024 MB = ________byte

12 | P a g e Space for learners: different computers and its Input and output (I/O) devices and performs arithmetic and

logic operations An instruction set is a collection of machine language commands for a CPU. The term can apply to all of

a CPU's potential instructions or a subset of instructions designed to improve performance in specific scenarios. The

instruction set consists of addressing modes, instructions, native data types, registers, memory architecture, interrupt,

and exception handling, and external I/O Machine language is the language, through which computer can understand

and communicate. Machine language is made up of instructions and data that are all binary numbers. An instruction set

architecture (ISA), also called computer architecture, is an abstract model of a computer. There are various types of

instruction set architecture available and each one has its own usage and advantages. The ISA serves as the boundary

between software and hardware. 1.4.1 Instruction Set Architecture Following are the instruction set architectures based

on microprocessor architecture: ? RISC(Reduced Instruction Set Computer) ? CISC(Complex Instruction Set Computer) ?

MISC(Minimal Instruction Set Computers) ? VLIW(Very Long Instruction Word) ? EPIC(Explicitly Parallel Instruction

Computing) ? OISC(One Instruction Set Computer) ? ZISC(Zero Instruction Set Computer) 1.4.1.1 Reduced Instruction Set

Computer (RISC) Reduced Instruction Set Computer is an instruction set architecture (ISA) with less number of cycles per

instruction (CPI) with extremely optimized set of Instruction 1.4.1.2 Complex Instruction Set Computer (CISC)

13 | P a g e Space for learners: Complex Instruction Set Computer is an instruction set architecture (ISA) with fewer

instructions per program than RISC. In CISC, single instructions can execute multiple low-level operations (like an

arithmetic operation, load from memory and a memory store) or are capable of multi-step operations 1.4.1.3 Minimal

instruction set computers (MISC) Minimal instruction set computers is a processor architecture which has a very small

number of primary instruction operations and corresponding opcodes. So MISC has smaller instruction set, a smaller and

faster instruction set decode unit, and faster operation of individual instructions. 1.4.1.4 Very long instruction word (VLIW)

Very long instruction word is an instruction set architectures designed to achieve instruction level parallelism (ILP).

Central processing units commonly allow programs to specify instructions to execute in sequence only. A VLIW

processor allows programmes to explicitly define concurrent execution of instructions. This design aims to provide

higher performance without the complexity inherent in some other designs. Instruction-level parallelism (ILP) is the

parallel or simultaneous execution of a sequence of instructions in a computer program 1.4.1.5 Explicitly parallel

instruction computing (EPIC) Hewlett Packard and Intel collaboratively defined and designed 64-bit microprocessor

instruction set, for Explicitly Parallel Instruction Computing. EPIC is an instruction set that allows microprocessors to

execute software instructions to control parallel instruction execution using compiler 1.4.1.6 One instruction set

computer (OISC) One instruction set computer is an abstract machine that uses only one instruction where no machine

language opcode is used. OISC also well-known as ultimate reduced instruction set computer (URISC). OISCs have been

used as computational models in

14 | P a g e Space for learners: structural computing research and guides in teaching computer architecture. 1.4.1.7 Zero

instruction set computer (ZISC) A computer architecture based on pattern matching and the absence of micro-

instructions is known as a zero instruction set computer (ZISC). 1.4.2 Instruction Set The instruction set consists of a

limited set of unique codes or commands that let the processor know what to do next, along with some basic rules of

how to express them. Instruction of a computer can be express with the followings ? Instruction length (Length may

vary): Instruction length can range from as little as four bits in certain microcontrollers to hundreds of bits in some very

long instruction word systems. ? Opcodes: An opcode (operation code) also known as instruction machine code is a

command to the central processing unit ? Operands: An operand is the part of a computer instruction that specifies data

that is to be operating on or manipulated. Basically, a computer instruction describes an operation (add, subtract, and so

forth) and the operand or operands on which the operation is to be performed ? Registers: A processor register is a

quickly accessible location available to a computer's processor. ? Memory: It is an external storage for larger and more

versatile number of locations, with slower to access An instruction can vary in length depending on the architecture. In

x86 systems, the length of the instruction is normally 1 to 3 bytes (for the opcode), and a number of bytes needed for the

operands, depending on the addressing mode.

15 | P a g e Space for learners: 1.4.3 Addressing Mode An addressing mode provides the way to calculate the effective

memory address of an operand by using the information stored in registers and/or constants contained within a machine

instruction. The different ways for specifying the locations of instruction operands are known as addressing modes. In an

instruction; the operation field specifies the operation to be performed. The executed operation may have executed on

some data that is given explicitly on the instruction or stored in computer registers or memory words. The addressing

mode of the instruction decides how the operands to be chosen during program execution. The addressing mode

specifies a rule for interpreting or modifying the address field of the instruction before the operand is actually referenced.

High-level language like C, C++, Java etc uses local and global variables, arrays, constants and pointers. For translating a

high- level language program with human understandable code into assembly language or machine Language, the

compiler must be able to implement or use these constructs using the facilities provided in the instruction set of the

computer in which the program will be executed. The ways through which the location of an operand can be found is

known as addressing modes. Variables and constants are the CHECK YOUR PROGRESS 8. State TRUE or FALSE: (a) One

Instruction set uses only one instruction. (b) An operand is the part of a computer instruction. (c) Instruction-level

parallelism is the parallel or simultaneous execution of a sequence of instructions in a computer program. (d) zero

instruction set computer uses only one instruction. 9. Fill in the Blanks: (a) Full form of RISC _________ (b) Full Form of

CISC ________ (c) An opcode is a _____ to the central processing unit.

16 | P a g e Space for learners: simplest data types and are found in almost every computer program. In assembly

language, registers or memory locations are used to represent the variable to hold values. Followings are the different

types of Addressing Modes: Register mode: CPU register contains the operand and the name of the register is given in

the instruction. Example: Add R2, R3 Absolute mode (Direct Mode): Here the operand is stored in memory location and

the address of the location is given explicitly in the instruction. Example: Add LOC, R3 Immediate mode: In this mode,

the operand is explicitly given in the instruction without any register or memory location. Say we want to store value 200

in register R0. Then, using the following immediate instruction we can do that Move #200, R0 Immediate mode is

commonly used to specify the source operand values. The number sign (#) is used in front of the value to represent as

an immediate operand. Constant values are used frequently in high-level language programs. For example, if we evaluate

the expression A = B + 8, where the expression contains the constant value 8. With the assumption that A and B variables

have been declared earlier. Memory locations A and B may be accessed using the Absolute mode. The expression A = B

+ 8 can be expressed in assembly language as follows Move B, R1 Add #8, R1 Move R1, A

17 | P a g e Space for learners: Indirect mode: In the addressing mode operand or its address is not explicitly specified in

the instruction. Instead, it provides information from which the memory address of the operand can be determined. This

address can be referred as effective address (EA) of the operand. So in this mode, the effective address of the operand is

the contents of a register or memory location whose address specifies in the instruction. The indirection mode is

denoted by placing the name of the register or the memory address in the instruction in parentheses. For example,

consider the instruction, Add (R1), R0. For executing the above Add instruction, the processor fetches the value in register

R1 and use as the effective address of the operand. Then the processor starts a read operation from the memory to read

the contents of the specified location. The value fetches after read operation is the required operand, which the

processor adds to the contents of register R0. The register or memory location that contains the address of an operand

is called a pointer. Indirection and the use of pointers are important and powerful concepts in programming. Index

mode: In this mode, a constant value (displacement) is added to the contents of a register to generate the effective

address of the operand. The register used may be any one of the general-purpose registers or a special register for this

purpose. In each case, it is referred to as an index register. Index mode is symbolically identified as

18 | P a g e Space for learners: X(Ri) Where Ri is the name of the register involved and X is the constant value contained in

the instruction. The effective address of the operand can be calculated by EA = X + [Ri]. Square bracket [] indicates the

address of that location. Here [Ri] means, address of Ri. During the process of generating effective address, the contents

of the index register are not changed. In an assembly language program, the constant X may be given either as an

explicit number or as a symbolic name representing a numerical value. When the instruction is translated into machine

language, the constant X is given as a part of the instruction and is usually represented by fewer bits than the word length

of the computer. In the above figure, R1 is the index register that contains the address of a memory location. The value X

defines an offset or displacement from the address in index register to the location where the operand is found.

According to the above figure; R1 contains address 1000. Program statement is Add 20(R1), R2. So 20 displacements will

be added to memory address 1000. So the operand will be found in memory location 1020. Result of the expression will

be the addition of the content of operand stored in memory location 1020 and the Register R2. There are two other

variants of index mode; ? Here two register is used for index content. This type of index mode can in write as (Ri,Rj) The

effective address can be calculated by adding the contents of registers Ri and Rj.

19 | P a g e Space for learners: ? This type of Index mode uses a constant along with two registers. This mode can be

denoted as X(Ri,Rj) The effective address is the sum of the constant X and the contents of registers Ri and Rj. Relative

mode: Relative mode is same as index mode. The only difference is that instead of general purpose register, here

program counter (PC) for different execution. Auto increment mode: In this mode, contents of a register is used as

Effective Address of the operand. After accessing the operand, the contents of this register is automatically incremented

to point to the next instruction in the list. Example: (Ri)+ In the above example Ri contains address of the operand. After

execution of the instruction, the address contains in Ri will be incremented to point to the next instruction.

Autodecrement mode: In this mode, contents of a register are used as Effective Address of the operand. After accessing

the operand, the contents of this register is automatically decremented to point to the next instruction. Autodecrement

mode is be denoted by putting the specified register in parentheses, preceded by a minus sign to indicate that the

contents of the register are to be decremented before being used as the effective address Example : - (Ri) In the above

example Ri contains address of the operand. After execution of the instruction, the address contains in Ri will be

decremented to point to the next instruction.

20 | P a g e Space for learners: 1.5 SUMMING UP ? A computer a fast calculating electronic machine. It has five main

functional units; Input, output, Central processing and memory units ? CPU is a combination of these other units called

ALU, Control unit and registers ? Program Counter (PC) registers point to the next instruction to be executed next. ? All

the components of CPU are connected to the computer through buses. In an ideal computer system three types of bus

used; address bus, data bus and control bus ? Before executing a program or instruction it should be stored in main or

primary memory. From main memory CPU will fetch and executed the instruction ? RAM (Random access memory) is

termed as Random access because any location can be reached randomly in a short and fixed amount of time after

specifying its address. ? Cache memory is faster than RAM. And it is placed between RAM and Processor to synchronize

the speed of processor and other slow speed devices CHECK YOUR PROGRESS 10. State TRUE or FALSE: (a) Absolute

mode is also known as indirect mode. (b) In Immediate mode, the operand is explicitly given in the instruction without

any register or memory location (c) Constant value in Index Mode is also known as displacement. (d) Relative mode used

General Purpose Register. 11. Fill the Blanks: (a) The ways through which the location of an operand can be found is

known as_________ (b) In Register Mode, Operand is stored in ______________ (c) After accessing the operand, the

contents of this register is automatically decremented in ________ Addressing mode.

21 | P a g e Space for learners: ? An instruction set is a group of commands for a CPU in machine language ? Machine

language is the language, through which computer can understand and communicate. ? An instruction set architecture

(ISA), also called computer architecture, is an abstract model of a computer. The ISA serves as the boundary between

software and hardware. ? An addressing mode specifies how to calculate the effective memory address of an operand by

using information held in registers and/or constants contained within a machine instruction. 1.6 ANSWERS TO CHECK

YOUR PROGRESS 1. 1) False 2) True 3) False 4) True 2. (a) Memory (b) Arithmetic and Logic Unit (c) Commands (d) Output

3. (a) False (b) True (c) False (d) True 4. (a) Next Instruction (b) Data (c) Address (d) Instruction (e) Control 5. (a) False (b)

False (c) True (d) True 6. (a) RAM (b) Frequently

22 | P a g e Space for learners: (c) Magnetic (d) Silicon 7. (a) 16 (b) 8 (c) 8192 (d) 1073741824 8. (a) True (b) True (c) True (d)

False 9. (a) Reduced Instruction Set Computer (b) Complex Instruction Set Computer (c) Command 10. (a) False (b) True

(c) True (d) False 11. (e) Addressing modes (f) CPU register (g) Autodecrement 1.7 POSSIBLE QUESTIONS Short answer

questions: 1. What is a computer? 2. Give two examples of pointing device? 3. Why we use secondary memory? 4. What

is the role of Control Unit? 5. What is the functions of Arithmetic and logic Unit? 6. What is a program? 7. What is an

instruction? 8. What do you understand by computer memory? 9. Why RAM is called as Random Access Memory 10.

What is a registers?

23 | P a g e Space for learners: 11. What is a Program counter? 12. What is Memory Data Registers? 13. What is Memory

Address Register? 14. What is the use of Instruction register? 15. What are the different types of Primary memory? 16.

Convert the followings a. 1024 MB to bytes b. 1TB to Kilobytes c. 1 GB to Megabytes 17. What is addressing modes? 18.

What is an opcode? 19. What is an operand? Long answer questions 1. Mention four features of a computer system 2.

Briefly describe the different units of computers. 3. Draw the block diagram of a computer and describe each unit. 4.

Write difference between the followings a. Input unit and Output Unit b. RAM and ROM c. Primary Memory and

Secondary Memory 5. What is bus? Discuss the different types of bus used in computer 6. What is Optical Storage

media? Discuss how Optical media stores data in media. 7. What is Instruction set Architecture (ISA)? Discuss different

types of ISA briefly. 8. Discuss different addressing modes use in computer Architecture. 9. What is index addressing

modes? Discuss different index addressing modes with example.

24 | P a g e Space for learners: 10. Discuss the advantages and disadvantages of secondary memory. 1.8 REFERENCES

AND SUGGESTED READINGS ? V. Carl Hamacher, Zvonko G. Vranesic, Safwat G. Zaky, Computer Organization ,

McGraw-hill International Editions

25 | P a g e Space for learners: UNIT 2: OPERATING SYSTEM OVERVIEW Unit Structure: 2.1 Introduction 2.2 Unit

Objectives 2.3 Operating System (OS) 2.3.1 Operating Systems Goals 2.4 History of Operating Systems and Computers

2.5 Types of Operating Systems 2.6 Functions of Operating Systems 2.7 Summing Up 2.8 Answers to Check Your

Progress 2.9 Possible Questions 2.10 References & Suggested Readings 2.1 INTRODUCTION We have often come across

the term “operating system” and have used different kinds of operating system in our day to day life. For example, we use

an operating system when we use a computer, a laptop or a mobile. Operating System can be defined

80% MATCHING BLOCK 1/320

as an interface between the user and the computer hardware. The goal of

operating system is to improve the efficiency of a computer system. Different kinds of operating systems have been

developed over the decades depending on their uses and new technical advances. Operating system performs various

functions in the computer system like program execution, I/O operation, error detection etc. 2.2 UNIT OBJECTIVES After

going through this unit, you will be able to ? define operating system ? describe the history of operating system ? explain

the different types of operating systems ? describe the various functions of operating systems

26 | P a g e Space for learners: 2.3 OPERATING SYSTEM The operating system controls and performs a lot of the

functions in the computer system. Depending on the function it performs, there are various ways in which the operating

system can be defined. However, the operating system can be defined in the following ways: “

100% MATCHING BLOCK 2/320

Operating system is a program that manages the computer hardware. It

also provides a basis for application programs and acts as an intermediary between the computer user and the computer

hardware.” – [Ref 1] Basically, the operation system has two main purposes. The first purpose is to provide a platform that

is easier and convenient for the user to access and use the computer hardware. And the second purpose is to efficiently

manage the different resources in the computer system. 2.3.1 Operating Systems Goals The operating system has

primarily two main goals. These goals are: ? Efficiency ? Convenience Any operating system needs to be efficient in

managing the various resources of the computer system. The optimum of the resources like CPU, memory, input/output

devices etc. has to be made. The computer user does not directly communicate with the computer hardware. The

computer user communicates with the hardware with the use of an operating system. Hence the operating system

needs to be convenient for use to the user. Most of the operating systems are designed to be either efficient or

convenient and some are designed for both. In addition to these two goals, the operating system should also be able to

evolve over the years. Over the years, the user would require newer services and features and these need to be provided

to the user. A good operating system should evolve by upgrading to newer versions that have better convenience and

efficiency along with updated features.

27 | P a g e Space for learners: 2.4 HISTORY OF OPERATING SYSTEMS AND COMPUTERS Computers have been in use

for many decades now. The first digital computer was developed by Charles Baggage and named the “analytical engine”,

but it did not have an operating system. Operating systems have evolved a lot over the ages and there is no perfect

mapping of operating systems with the different generations of computers. Still, let us look at the history of operating

systems that have been developed and in use over the different generations of computers. First Generation of Computer

(1945-55): Vacuum Tubes The technological advancement in the first generation of computers was the development of

vacuum tubes. The machines used in this generation were mostly calculating engines which used mechanical relays.

These mechanical relays were replaced by vacuum tubes. Programming was done using machines language in these

machines. Assembly and high level programming languages were not used in this generation. Operating systems were

also not used in this generation of computers. However, punched cards were introduced in this generation. Second

Generation of Computer (1956-65): Transistors and Batch Systems The technological advancement in the second

generation of computers was the development of transistors. There were now customers for the large sized computers

used in this generation that took large rooms and are called as “mainframes”. To run a job in these machines, a

programmer would write the code and hand it over to the operator present in the input room. Depending on the

language used in writing the programming code, the operator would load the compiler for that programming language.

For example, if the code was written in FORTRAN, then the operator would search for the CHECK YOUR PROGRESS Q1:

Define operating system? Q2. What are the goals of operating system?

28 | P a g e Space for learners: FORTRAN compiler and load it to the computer for execution of that code. If the next job

was written in a different programming language, then it required to unload the FORTRAN compiler and load the

compiler for that specific language. This caused a lot of wastage of time. Hence, batch operating systems were

introduced to reduce this wastage of time. A batch of similar jobs was collected together and then read and loaded one

after another. For example, a batch of jobs using written in FORTRAN language. After the completion of one job, the

operating system read and loaded the next job run immediately. This process saved the time required for loading and

unloading of the compilers of different jobs. Third Generation of Computer (1965-1980): ICs and Multiprogramming The

technological advancement in the third generation of computers was the development of integrated circuits (ICs). The

integrated circuits replaced the transistors of the second generation computers. The concept of multiprogramming was

also developed in this third generation of computers. The CPU till now worked on the one job at hand and executed the

CPU burst of instructions for that job. But when there was an I/O set of instructions, the CPU would remain idle since it

had to wait for the I/O operation to be completed and this was a major loss of time and resource. The solution to this

problem was to partition the computer memory and then have different jobs in these different partitions. The basic idea

was that when one job was waiting for I/O operations to be complete, the CPU could be allocated to another job in one

of these partitions. This would keep the CPU busy and waste the resource. The concept of time sharing operating system

also introduced in this generation used multiprogramming to provide each user with a small portion of a time-shared

computer. In the time sharing systems, each user had a terminal and the computer provided fast interactive service to

multiple users such that it seemed like many users were using the computer at the same time. The first general-purpose

timesharing system was CTSS (Compatible Time Sharing System) and its success led to the development of the MULTICS

(MULTiplexed Information and Computing Service) system which was developed to support hundreds of simultaneous

users. The MULTICS had an influence in the development of other operating systems like UNIX and Linux.

29 | P a g e Space for learners: Fourth Generation of Computer (1980- Present): Personal Computers The technological

advancement in the fourth generation of computers was the development of large scale integrated circuits (LSI). With

LSIs in use now the size of the computer became small now as thousands of transistors could now be fitted into a square

centimetre of silicon and thus gave rise to the development of personal computers. Disk Operating System (DOS) was

one of the operating systems used in these times. Microsoft developed a new revised system called MS-DOS (MicroSoft

Disk Operating System) which was hugely popular. The Apple Macintosh system was also developed during these times

and was a success because of the cheap cost and user friendly GUI. Following the success of Macintosh, Microsoft

developed their own graphical interface Windows, which was first used as a graphical environment on top of MS-DOS.

But in 1995, Windows 95 was launched as a freestanding operating system with MS-DOS as an underlying component

for booting and running MS-DOS programs. Over the years many newer versions of Windows were launched like

Windows 98, Windows XP, Windows NT, Windows Me and Windows Vista. Windows 7 was one of the prominent

operating system launched by Microsoft that had widespread popularity and demand. Later on, other newer versions of

Windows were also launched like Windows 8, Windows 10 and Windows 11. UNIX is another popular operating system.

LINUX is another alternative operating system that is popular for personal computers. In addition, network operating

systems and distributed operating systems were also being developed in this generation of computers. Fifth Generation

of Computer (1990-Present): Mobile Computers There are many operating systems specially developed for mobiles and

smartphones. Symbian operating system was widely used in the early days of smartphones. It was the operating system

that was used by major companies like Samsung, Motorola and Nokia. But soon other newly developed operating

systems like Blackberry OS and iOS also gave competition to the existing operating systems. In 2011, Nokia introduced

their smartphones with Windows platform. After the launch of Android operating system, it has quickly become one of

the most popular operating system that is currently used in

30 | P a g e Space for learners: smartphones. Android is a Linux-based operating system and has the advantage that it is

open source and available under a permissive license to evolve and adapt its operating system to cater to today’s users’

needs and demands. Apple’s iOS is another operating system that is widely popular nowadays for smartphones. 2.5

TYPES OF OPERATING SYSTEMS Operating systems can be classified into different types. Let us look at some of the

different types of operating systems: ? Mainframe Operating Systems: The mainframe operating systems are used in

heavy processing oriented jobs where huge amounts of data and I/O are processed. There are typically three kinds of

services for mainframe systems: batch, transaction processing and timesharing. Batch systems are used in jobs like sales

reporting where interactive user are not required. Transaction processing systems are used in jobs that handle a large

number of small requests in a short span of time. For example, in airline or train ticket reservation systems. Timesharing

systems allow multiple remote users to execute jobs on the computer at the same time. Some mainframe computers

perform all of the three functions. OS/390 is an example of mainframe operating system. ? Server Operating Systems:

Server operating systems have servers which may be large personal computers, workstations or even mainframes. They

serve multiple users who are connected over a network. The users can share different hardware and software resources

among themselves like printer services, web services etc. Websites use these servers to store web pages and to handle

the requests of clients. Some of the server operating systems are Solaris, Linux and Windows Server 201x. ?

Multiprocessor Operating System: Multiprocessor operating systems are used to increase the computing power of a

computer system by connecting multiple CPUs in a single system. Depending on the way these CPUs are connected the

can be classified as parallel computers,

31 | P a g e Space for learners: multicomputer or multiprocessors. With the introduction of multicore chips in personal

computers, the number of cores in personal computers like desktop and notebooks are only going to increase further

more. Windows and Linux operating systems run on multiprocessors. ? Personal Computer Operating System: Modern

personal computer operating systems use multiprogramming to run multiple programs and are designed to support a

single user. These are mostly used for simple applications like word processing, games and to access the Internet. Many

versions from Linux, Windows and Apple OS are examples for personal computer operating system making these

operating systems the most popular in the world. ? Handheld Computer Operating Systems: Handled computers or PDA

(Personal Digital Assistant) are small computers that can be held in our hand. Smartphones and tablets are some of the

examples of handheld devices. Some of the popular operating systems used in these devices are Google’s Android and

Apple’s iOS. These devices have multicore CPUs, camera and other sensors. Third party applications acan also be

installed and used in these operating systems. ? Embedded Operating System: Embedded operating systems are used in

devices like washing machines, microwave ovens etc. These devices are generally not thought of as computers. They

differ from handheld devices like smartphones in the way that no third party applications can be installed or run in these

machines as all the software is pre-installed in the ROM. This makes these devices safe from malicious software and in

turn leads to a much less complicated design. Embedded Linux and VxWorks are two examples of embedded operating

systems. ? Sensor - Node Operating System: Sensor – node operating systems are used in wireless sensor nodes. These

sensors are small computers with CPU, RAM, ROM and one or more environmental sensors. It has a small operating

system that is used to respond to events like for example detection of fire in

32 | P a g e Space for learners: a building. Like embedded systems here too the programs are pre-installed and third party

applications cannot be installed which makes these devices safe and simpler to design. One of the most popular

operating system for sensor node is the TinyOS. ? Real – Time Operating System: In real time operating systems, time is

a major factor. Depending on the way deadlines are met, real time systems can be divided either into hard real - time

systems or soft real – time systems. The hard real – time system must meet the deadlines and the actions need to

happen at the exact precise time or else catastrophic events may occur. For example if a welding robot welds the car at

wrong time then the car will get ruined. Soft real time systems on the other hand allow small flexibilities in meeting the

deadlines provided there is no permanent damage. eCos is an example of a real time operating system. There is often an

overlap between the handheld, embedded and real time operating systems. 2.6 FUNCTIONS OF OPERATING SYSTEM An

operating system provides an environment to the user to run application programs and to communicate with the

computer hardware. The operating system also needs to perform the jobs requested by the user in an efficient manner

and in optimum time. This requires management of a lot of services and collaboration between the different parts of the

computer system. Some of the main functions of the operating system are described below: ? User interface: All

operating systems have a user interface. This user interface can be a command based interface or a graphical user

interface (GUI). In the command-line based CHECK YOUR PROGRESS Q3: Name two devices where embedded

operating systems are used? Q4: What are hard and soft real time operating systems?

33 | P a g e Space for learners: interface, the user uses text commands to issue orders to the computer system. In the

graphical user interface, instead of commands the user uses a pointing device to choose options from a menu, direct I/O

and use a keyboard to enter text. Some systems also provide a combination of both the user interfaces. ? Program

execution: The operating system must be able to control the execution of the program. The operating system must be

able to load the program into the computer memory and then execute it. The program must be able to end either

normally or abnormally i.e. with errors. ? I/O operations: While a program is running, it may require I/O, which may

involve a file or an I/O device. The device requested by the program may be for a printer or scanner or some other

specific devices. Some of the I/O devices may require special functions for the use of I/O. Users cannot control the I/O

directly and hence the operating systems are used to act as an interface between the user and I/O. ? File – system

manipulation: Managing file system is an important function of the operating system. Programs need to read and write to

files and directories while in executed. There are also other functions to be done on files like creating, deleting and

appending a file. File permissions also need to be strictly maintained so that users can only access those files for which

they have the required permission and access rights. ? Communications: Communications need to be maintained

between processes for exchanging of information. These communications can be done through either message passing

or through shared memory. The communication can be between processes that are on the same computer and even on

different computers that are linked by a computer network. ? Error detection: One of the primary functions of operating

system is to detect errors and take necessary action. These errors may happen in any part of the computer system like

34 | P a g e Space for learners: the CPU, the memory, the I/O devices or in the program itself. Once the error is detected

the operating system should take action to ensure correct computing. ? Resource allocation: The operating system

needs to have an efficient way to deal with resource allocation for multiple users and their resource needs. Different

types of resources are managed in different ways by the operating system based on the type of resource. For example, to

allocate a resource like CPU between different processes, CPU-scheduling algorithms may be used based on different

strategies like first come first serve or priority based. Similarly, operating system uses different handling and managing

mechanisms for other resources also. ? Protection and security: Protection and security are important aspects to be

considered for operating systems in today’s world. Several processes are executed concurrently in the computer system

and it should not be possible for one process to interfere with another process. Protection means that all access to

system resources should be controlled. Security means that outsider’s access to system resources is not allowed. This

can be done by authenticating users by means of a password or other tools. The protection and security is maintained

for all users and for all resources in the computer system. 2.7 SUMMING UP ? The operating system controls and

performs a lot of the functions in the computer system. ? The operating system has primarily two main goals: efficiency

and convenience. CHECK YOUR PROGRESS Q5: What are the different types of user interface provided by operating

systems? Q6: Give an example on how operating system does resource allocation.

35 | P a g e Space for learners: ? The technological advancement in the first generation of computers was the

development of vacuum tubes. ? The technological advancement in the second generation of computers was the

development of transistors. ? The technological advancement in the third generation of computers was the development

of integrated circuits (ICs) and the concept of multiprogramming. ? The concept of time sharing operating system also

introduced in this generation used multiprogramming to provide each user with a small portion of a time-shared

computer. ? The technological advancement in the fourth generation of computers was the development of large scale

integrated circuits (LSI). ? There are different types of operating systems like mainframe operating system, server

operating system, personal computer operating system, multiprocessor operating systems, handheld computer

operating system, embedded operating systems, sensor node operating system, real time operating system etc. ? The

main functions of the operating system includes providing

83% MATCHING BLOCK 3/320

user interface, program execution, I/O operations, file system manipulation, communication, error detection,

100% MATCHING BLOCK 4/320

program execution, I/O operations, file system manipulation, communication, error detection, resource allocation

and to look after the protection and security of the computer systems. 2.8 ANSWERS TO CHECK YOUR PROGRESS Q1:

100% MATCHING BLOCK 5/320

Operating system is a program that manages the computer hardware. It

also provides a basis for application programs and acts as an intermediary between the computer user and the computer

hardware Q2: The operating system has primarily two main goals: efficiency and convenience Q3: Two devices where

embedded operating systems are used are washing machines and microwave ovens. Q4: The hard real time system must

meet the deadlines and the actions need to happen at the exact precise time or else catastrophic

36 | P a g e Space for learners: events may occur. Soft real time systems on the other hand allow small flexibilities in

meeting the deadlines provided there is no permanent damage Q5: This user interface can be a command based

interface or a graphical user interface (GUI). In the command-line based interface, the user uses text commands to issue

orders to the computer system. In the graphical user interface, instead of commands the user uses a pointing device to

choose options from a menu, direct I/O and use a keyboard to enter text. Some systems also provide a combination of

both the user interfaces. Q6: To allocate a resource like CPU between different processes, the operating system uses

CPU-scheduling algorithms that are based on different strategies like first come first serve or priority based methods. 2.9

POSSIBLE QUESTIONS 1. What is an operating system? 2. What are the goals of operating system? 3. What are handheld

operating systems and personal computer operating systems? 4. What are sensor node operating systems? Give two

applications where sensor node operating systems are used. 5. Describe in brief the concept behind batch operating

systems. 6. Describe the concept behind multiprogramming and time sharing operating systems. 7. Write a brief note on

the different operating systems used in smartphones. 8. Discuss the history of operating system in relation to the

different generations of computers. 9. Describe the different types of operating system. 10. Describe the functions of

operating system.

37 | P a g e Space for learners: 2.10 REFERENCES AND SUGGESTED READINGS 1. Silberschatz, Abraham, Peter Baer

Galvin, and Greg Gagne. Operating system principles. John Wiley & Sons, 2006. 2. Tanenbaum, Andrew S., and Herbert

Bos. Modern operating systems. Pearson, 2015. 3. Tanenbaum, Andrew S., and Albert S. Woodhull. Operating systems:

design and implementation. Vol. 68. Englewood Cliffs: Prentice Hall, 1997.

38 | P a g e Space for learners: UNIT 3: INTRODUCTION TO LINUX Unit Structure: 3.1 Introduction 3.2 Unit Objectives

3.3 History of Linux 3.4 Linux Distributions 3.5 Linux Architecture 3.6 Linux Shells 3.7 Linux Commands for File and

Directory 3.8 Linux Commands for Process Management 3.9 Linux Commands for File Content and User Management

3.10 Summing Up 3.11 Answers to Check Your Progress 3.12 Possible Questions 3.13 References and Suggested Readings

3.1 INTRODUCTION Like Window and Mac, Linux is also an Operating System. It is Free and Open Source. As of now,

Linux is the largest Open- Source Software Projects in the world. 3.2 UNIT OBJECTIVES After going through this unit,

you will be able to: ? know the history of linux, ? understand the Architecture and File System of Linux, ? know different

Linux commands.

39 | P a g e Space for learners: 3.3 HISTORY OF LINUX Linux is a free open-source secure community used operating

system. The operating system is based on Linux Kernel which was released on September 17, 1991, by Linus Torvalds. The

source code of the operating system can be modified and distributed to anyone by the Linux community under the GNU

General Public License. Earlier, it was used for personal computers and gradually, used in servers, mainframe computers,

supercomputers, etc. It is also used in embedded systems, robotic automation, smartwatches, etc. The Androids

(operating system) running on a smartphone, smartwatch, and tablets are based on the Linux kernel and are the key

success of Linux in the current time. It is generally packaged and distributed in a Linux distribution under GNU. 3.4 LINUX

DISTRIBUTIONS From the very beginning of the development of Linux, the idea followed regarding its distribution were:

? user can have it for free, ? user has the source code also for free, ? user can modify the code and redistribute it for free

or priced along with the source code. The above ideas were then termed copyleft. This term was originated from Free

Software Foundation. The Free Software Foundation is a non-profit organization and was founded by Richard Stallman in

the year 1985. The distribution of the Linux operating system is made up of Linux kernel software or libraries. The

distribution of Linux systems is distributed in different embedding systems or devices, or the personnel computers. A few

of the Linux distributions are mentioned below. i) MX Linux: It is one of the popular OSs which is based on the Debian

Linux OS. The OS is more friendly for beginners and intermediates. ii) Linux Mint: The Linux Mint OS is working as a

windows OS more simply and any newcomers can use this OS as like Windows OS.

40 | P a g e Space for learners: iii) Ubuntu: The Ubuntu OS is very simple and easy to use as Mac OS. This OS is based on

the Debian OS and hence, it is a stable OS. iv) Debian: The Debian Linux OS is very stable. It is more complex than other

Linux OS and hence, it is not recommended to a new user. v) Solus: This Linux distribution is developed independently

for 64-bit architecture. It is intentionally developed for personal computers where enterprise and server environment-

based software are not included. vi) Fedora: This Linux distribution was developed by the Fedora project, which is similar

to RedHat. It is easy to use on laptop and desktop systems. It includes the latest data center technologies. vii) openSUSE:

This Linux OS is a project Linux distribution that serves to promote the use of Free and Open-Source Software(FOSS). viii)

RedHat: This Linux OS is commercial, and its products are freely available. The OS kept their trademark for not

distributing their software for being redistributed. ix) CentOS: CentOS provides an upstream open-source computing

platform to the developer to contribute continuously with its upstream source, i.e., Red Hat Linux. x) Arch Linux: The arch

Linux OS is an independent Linus OS that has been developed for 64-bit OS. It provides the latest stable version of the

software.

41 | P a g e Space for learners: 3.5 LINUX ARCHITECTURE The Linux Architecture depicted in Fig. 3.1. Fig. 3.1:

Architecture of Linux Let’s discuss the components, mentioned in fig. 3.1 one by one. Hardware: This layer, as all of you

know, consists of different computer peripherals like ROM, RAM, CPU, Keyboard, Monitor, etc. Kernel: It is the core/heart

of the Linux O/S. The kernel is the core software interface between a computer system’s hardware and its processes. It

also prevents and mitigates conflicts between different processes. The kernel code is mostly written in C language. When

a system boots (in UNIX/Linux), the kernel is loaded into the memory. The types of kernels are: ? Monolithic Kernels ?

Hybrid Kernels ? Exo Kernels ? Micro Kernels The jobs of the kernel are: ? Process Management (and System Calls) ?

Memory Management ? Device Drivers Shell: Shell is a software layer between the Kernel and User Processes like

Application, Utilities, and Commands, etc. It is commonly known as Command Interpreter. Thus, whenever a user

Hardware Kernel Shell Applications Utilities

42 | P a g e Space for learners: gives instructions to execute an application or command, the shell interprets them first

and then executes them. Apart from being a Command Interpreter, it is also a scripting language with components like

variables, loops, conditional statements, functions, and many more. Utilities and Applications: Linux OS has System

Libraries that are used for different services such as process management, concurrency, memory management, etc.

These libraries are implemented for several OS functionalities and need to access the code for the same. Utilities are the

programs that provide almost all the functionalities of an O/S to the users. These perform the specialized level and

individual activities of the OS. The applications, as we all know, are programs that are for different purposes. 3.6 LINUX

SHELLS As discussed above, a shell

76% MATCHING BLOCK 6/320

is a program that acts as an interface between a user and the

kernel. It allows a user to give commands to the kernel and receive responses from it. Through a shell, we can execute

programs and utilities on the kernel. There are different types of shells that exist in Linux. Let’s know about some

commonly used shells. Bourne Shell: It was developed by Steve Bourne in AT&T Bell Labs and is denoted by “sh”. In UNIX,

the Bourne shell is CHECK YOUR PROGRESS - I 1. What is a Linux operating system? 2. What do you mean by Linux

Mint? 3. What is a debian Linux? 4. What is fedora Linux? 5. What is Linux kernel and library? 6. True or false? a. The core

part of linux is kernel. b. Shell provides the command line interpreter.

43 | P a g e Space for learners: regarded as the first shell. Due to its compactness and speed, this shell gained

tremendous popularity. Path to the shell: /bin/sh and /sbin/sh root User Prompt: # Non root User Prompt: $ C Shell: It

was developed by Bill Joy at the University of California and is denoted by “bash”. This shell has the support for arithmetic

operations with syntax similar to C Programming Language. Path to the shell: /bin/csh root User Prompt: # Non root

User Prompt: % Korn Shell: It was developed by David Korn in AT&T Bell Labs and is denoted by “ksh”. It supports all the

features of Bourne Shell and also the arithmetic programming features like C shell. Path to the shell: /bin/ksh root User

Prompt: # Non root User Prompt: $ GNU Bourne-Again Shell: This shell was developed not only to match with the

Bourne shell but also to incorporate the features of C and Korn shells. It is the default shell in Linux. Path to the shell:

/bin/bash root User Prompt: bash-versionNumber# Non root User Prompt: bash-versionNumber$ The computer which

is designed to run the UNIX shell is known as a shell script. It is a list of commands, which are listed in the order of

execution. A good shell script will have comments, preceded by the # sign, describing the steps. Lets, you are writing a

shell script. A shell script can be saved as a .sh extension. Before you add anything, you need to start your shell script as

follows. #!/bin/sh

44 | P a g e Space for learners: This tells the system that the commands that follow are to be executed by the Bourne

shell. One can put comments in the script as follows – #!/bin/bash # University: Gauhati University # Branch: IDOL pwd

ls Now, Save the above content and make the script executable form. Before that save your shell as the filename.sh. lets

the file of the shell is test.sh $chmod +x test.sh Now, the shell script is ready to be executed and for that type, $./test.sh

3.7 LINUX COMMANDS FOR FILE AND DIRECTORY In the Linux OS, the command is considered a Linux utility, and all the

basic and advanced tasks are executed using the Linux commands. The commands are executed in the Linux terminal.

Commands in Linux are case-sensitive. To open a terminal, one needs to press the "CTRL + ALT + T" keys together and

execute the command by pressing ENTER. Few of the Linux commands are defined as follows. i) pwd : The pwd

directory denotes the current directory of the user. The command gives the absolute path which starts from the root.

The root is the base of any Linux system. The path is denoted by the slash(/) and the current user directory is as like

below "/home/username" ii) ls :

45 | P a g e Space for learners: The ls command is used to know what files are in the directory you are in. The user can

see all the hidden files by using the command “ls -a”. iii) cd: The cd directory command is used to go to a directory. For

example, if the user want o move another directory from the home directory, then the user can type the following cd

directory_name The command is case-sensitive, so the user needs to type the directory exactly the correct one. iv)

mkdir & rmdir: The mkdir command is used to create a new folder or a directory. For example, if a user wants to make a

directory IDOL, then the user should type “mkdir IDOL”. If the user wants to make a directory in a specific position or

under a specific directory, then the user should go to these directories before the creation of a new directory by using

the command cd. The rmdir is used to delete an empty directory. But to delete a directory with files, the user should use

the rm. v) rm : The rm command is used to delete files and directories. The user should type "rm -r" to delete just the

directory. It deletes both the folder and the files it contains when using only the rm command. vi) touch: The touch

command is used to create a file in the Linux system. The command can be used for anything, from an empty text file to

an empty zip file. For example, “touch idol.txt”. vii) man & --help: The man command is used to know more about

command and how to use it. For example, “man cd” shows the manual pages of

46 | P a g e Space for learners: STOP TO CONSIDER Under a directory (in Linux), apart from the entries for files and sub-

directories two more entries exists and these are “.” and “..”. “.” refers to the current working directory and “..” refers to the

parent directory of the current working directory the cd command. Typing in the command name and the argument

helps it show which ways the command can be used (e.g., cd – help). viii) cp: The cp command is used to copy files

through the command line by considering two arguments: The first is the location of the file to be copied, the second is

where to copy. ix) mv: The mv command is used to rename a file. For example, if a user wants to rename the file “idol1”

to “idol2”, we can use “mv idol1 idol2”. x) locate: The locate command is used to locate a file in a Linux system, just like

the search command in Windows. This command is useful when you don't know where a file is saved or the actual name

of the file. If you want a file that has the word “idol”, it gives the list of all the files in your Linux system containing the

word "hello" when you type in “locate -I idol”. 3.8 LINUX COMMANDS FOR PROCESS MANAGEMENT A process is an

instance of a running program. When a user executes a program or executes a command in Linux, it means that the OS

creates a process. The Linux operating system creates the five-digit ID for each process which is known as Process ID

(PID). Each process has a unique ID. The OS tracks the process through the PID. Pids eventually repeat because all the

possible numbers are used up and the next PID rolls or starts over. At any

47 | P a g e Space for learners: point in time, no two processes with the same PID exist in the system because it is the PID

that Unix uses to track each process. The user can start the UNIX process in two ways: i) Foreground Processes: Every

process that a user runs are in the foreground. The process gets the input from the keyboard and sends the output to the

screen. It can be shown using the ls command. The foreground process is also known as the interactive process. These

processes are initiated by the user but not by the system. While these processes are running we can not directly initiate a

new process from the same terminal. The process runs in the foreground, the output is directed to the user screen, and if

the ls command wants any input (which it does not), it waits for it from the keyboard. ii) Background Processes A

background process runs without being connected to the user keyboard. If the background process requires any

keyboard input, it waits. That’s why such kinds of processes are known as non-interactive processes. These processes are

initiated by the system itself or by users, though they can be managed by users. These processes have a unique PID or

process. The system can initiate other processes also with different PIDs. The different terms related to the Linux process

are presented below.

48 | P a g e Space for learners: i) Listing Running Processes It is easy to see the processes by running the ps (process

status) command. The –f flag is used more commonly along with the ps command for more information such as UID,

PID, PPID, C, STIME, TTY, TIM, and CMD. The UID denotes the User ID that this process belongs to. The PID denotes the

process ID. The PPID denotes the parent process ID. C is the CPU utilization process. STIME is process time. TTY is the

terminal type associated with the process. Time denotes the CPU time taken by the process. CMD denotes the

command that started this process. ii) Stopping Processes The ending of the process can be done in several different

ways. The CTRL + C keystroke will exit the command. This works when the process is running in the foreground mode. If

a process is running in the background, the user should get its Job ID using the ps command and then use the kill

command to kill the process as follows. kill job_ID. iii) Parent and Child Processes The process of UNIX has two numbers.

The first number represents the Process ID (PID) and the second number represents the parent process ID (PID). The user

can use the ps –f command for the process ID and the parent process ID. iv) Zombie and Orphan Processes Whenever

the parent process is killed before its child, then this process is called an orphan process. In this case, the "parent of all

processes," the init process, becomes the new PPID (parent process ID). A Zombie is a process that has completed its

task but still, it shows an entry in a process table. Zombie process states always indicated by Z. The zombie process

treated as dead they are not used for system processing.

49 | P a g e Space for learners: v) Daemon Processes The system-related process which is running in the background is

known as Daemon Process. The daemon process does not have controlling terminals. If a program runs for a long time,

then this process is a daemon process. vi) The top Command: The top command is a very useful command in Linux OS

which is used to display the Linux process. The real-time view of the Linux system can be viewed by using the top

command. The running operation of the system along with the process running in the OS can be viewed using the top

command. 3.9 LINUX COMMANDS FOR FILE CONTENT AND USER MANAGEMENT The operations in Linux OS have

been performed on files. The files are handled using directories that are organized in a tree structure. The files of a Linux

OS can be divided into 3 categories. i) Regular Files: Regular files are the common types of files that include text files,

images, binary files, etc. These files can be created using the touch command. The regular file contains ASCII or Human

Readable text, executable program binaries, program data, etc. ii) Directories: The windows OS represents the directories

as folders. But in the Linux operating system, it is known as directories. The directories store the list of file names and the

related information. The root directory(/) is the base of the system, /home/ is the default location for the user’s home

directories, /bin for Essential User Binaries, /boot – Static Boot Files, etc. One can create new directories with the mkdir

command iii) Special Files:

50 | P a g e Space for learners: The real physical devices in the Linux system can be used as special files. The user can use

these file systems as ordinary files. In the Linux operating system, a user is an entity that can manipulate the files and

perform different operations in the OS. An ID is assigned to each user in the operating system. The root user ID is 0

whereas the other ID varies from 1 to 999 are assigned for the system user. The other local user IDs start from 1000. The

following commands are used for the user management i) Using the id command of the Linux OS, one can get the ID of

the username. ii) The command useradd adds a new user to the directory. The user is given the ID automatically

depending on which category it falls in. iii) The password command is used to assign a password to the user. After using

this command, the user can update a new password. iv) To access user configuration file cat /etc/passwd command is

used. This command prints the data of the configuration file. v) The usermod -u new_id username command is used to

change the user id. vi) The command usermod -g new_group_id username is used to modify the group id of the user. vii)

Using the command sudo usermod -l new_login_name old_login_name, one can change the login name. viii) The

command usermod -d new_home_directory_path username is used to change the home directory. ix) Using the

command, userdel -r username, anyone can delete the user information.

51 | P a g e Space for learners: 3.10 SUMMING UP ? Linux is a free open-source secure community used operating

system. ? The source code of the operating system can be modified and distributed to anyone by the Linux community

under the GNU General Public License. ? MX Linux is one of the popular OSs which is based on the Debian Linux OS. ?

The Linux Mint OS is working as windows OS more simply and any newcomers can use this OS as like Windows OS. ?

The Ubuntu OS is very simple and easy to use as Mac OS. This OS is based on the Debian OS and hence, it is a stable OS.

? The Debian Linux OS is very stable. It is more complex than other Linux OS. ? Solus Linux distribution is developed

independently for 64-bit architecture. ? Fedora Linux distribution was developed by the Fedora project, which is similar

to RedHat. It is easy to use on laptop and desktop systems. ? openSUSE Linux OS is a project Linux distribution that

serves to promote the use of Free and Open-Source Software(FOSS). ? RedHat Linux OS is commercial, and its products

are freely available. CHECK YOUR PROGRESS - II 7. What is a shell and types of shell? 8. What is command prompt in

Linux? 9. How does a shell script start? 10. Give five examples of command. 11. What is Linux process and types? 12.

What is daemon process?

52 | P a g e Space for learners: ? CentOS provides an upstream open-source computing platform to the developer to

contribute continuously with its upstream source, i.e., Red Hat Linux. ? A Shell is an interface that acts as the interface

between kernel and user. It collects the input from the user and executes the program based on the user input and

displays that output. ? For shell prompt, the Linux user should type prompt, $, i.e called as command prompt. ? In the

Unix system, the following shells are available in UNIX. ? Bourne Shell ? C Shell ? The pwd directory denotes the current

directory of the user. ? cd command is used the change the directory of the linux system. ? The ls command is used to

display the contents of the directory. ? The cat command is used to list the contents of a file. For example, cat idol.txt. ?

The mv command is used to move the files from one place to another. ? To rename a file, the Linux system also uses the

mv command. ? The mkdir command is used to create a new directory. The rmdir command is used to remove an

empty directory. ? The rm is used to delete directories and their contents. For example, rm –r idol. It means that the

command deletes all the files and directories recursively. 3.11 ANSWER TO CHECK YOUR PROGRESS 1) Linux is a free

open-source secure community used operating system. 2) The Linux Mint OS is working as windows OS more simply

and any newcomers can use this OS as like Windows OS. 3) The Debian Linux OS is very stable. It is more complex than

other Linux OS.

53 | P a g e Space for learners: 4) Fedora Linux distribution was developed by the Fedora project, which is similar to

RedHat. It is easy to use on laptop and desktop systems. 5) The Linux kernel is the core part of the Linux operating

system. The kernel acts as the core interface between computer hardware and its process, manages the resources

between them. A library is a collection of pre-compiled pieces of code called functions. The library contains common

functions and together, they form a package called — a library 6) a) True; b) True 7) A Shell is an interface that acts as the

interface between kernel and user. It collects the input from the user and executes the program based on the user input

and displays that output. 8) For shell prompt, the Linux user should type prompt, $, i.e., called as command prompt. 9) A

shell script starts with #!/bin/sh 10) The following 5 are the commands in the Linux. a. The cat command is used to list

the contents of a file. For example, cat idol.txt. The command will display the contents of the idol.txt file. b. The cp

command is used to copy files from one directory to another directory. For example, cp idol.txt

/home/username/idolfile. c. The mv command is used to move the files from one place to another. For example: mv

idol.txt /home/username/idolfile. d. To rename a file, the Linux system also uses the mv command. For example, mv

idol.txt idol1.txt e. The mkdir command is used to create a new directory. For example, mkdir idol 11) A process is an

instance of a running program. When a user executes a program or executes a command in Linux, it means that the OS

creates a process. The types of the Linux process are a. Foreground processes, b. Background process. 12) The system-

related process which is running in the background is known as Daemon Process.

54 | P a g e Space for learners: 3.12 POSSIBLE QUESTIONS 1. What are basic elements or components of Linux? 2. What

is Kernel? Explain its functions. 3. What are two types of Linux User Mode? 4. What do you mean by a Process States in

Linux? 5. What is Linux Shell? What types of Shells are there in Linux? 6. What is a Zombie Process? 7. What do you mean

by Shell Script? Give example. 8. Why /etc/resolv.conf and /etc/hosts files are used? 9. Name some Linux variants. 10.

Give some examples of Linux command 11. Difference between Zombie and Orphan Processes. 12. What is Linux file

system? Explain the types of Linux file system. 3.13 REFERENCES AND SUGGESTED READINGS ? Linux: The Complete

Reference, Sixth Edition - Richard Petersen

55 | P a g e Space for learners: UNIT 4: PROCESS MANAGEMENT Unit Structure: 4.1 Introduction 4.2 Unit Objectives 4.3

Process 4.3.1 Process Control Block (PCB) 4.4 Process States 4.5 Thread 4.5.1 Difference between Process and Thread

4.5.2 Advantages of thread 4.5.3 User Level Threads 4.5.4 Kernel Level Threads 4.6 Operations on the Process 4.6.1

Process Creation 4.6.2 Process Termination 4.7 Process Schedulers 4.7.1 Scheduling Objectives 4.7.2 Difference among

Schedulers Long-Term Vs. Short Term Vs. Medium-Term 4.8 Process Queues 4.9 Various Times Related to the Process

4.10 Process Scheduling Queues 4.10.1 Types of CPU Scheduling 4.10.2 Non-Preemptive Scheduling 4.10.3 Preemptive

Scheduling 4.11 Scheduling Criteria 4.12 The Concepts of Context Switch 4.13 Interrupt Mechanism 4.13.1 Hardware

Interrupts 4.13.2 Software Interrupts 4.14 Virtual Processor 4.15 Summing Up 4.16 Answers to Check Your Progress 4.17

Possible Questions 4.18 References and Suggested Readings

56 | P a g e Space for learners: 4.1 INTRODUCTION We know that a program is a set of instructions given to the

computer system to do some specific task.

100% MATCHING BLOCK 7/320

A program does nothing unless its instructions are executed by a CPU. A program in execution is called a process. In

order to accomplish its task, process needs the computer resources

like memory and processor.

99% MATCHING BLOCK 8/320

There may exist more than one process in the system which may require the same resource at the same time.

Therefore, the operating system has to manage all the processes and the resources in a convenient and efficient way.

Some resources may need to be executed by one process at one time to maintain the consistency otherwise the

system can become inconsistent and deadlock may occur. The operating system is responsible for the following

activities in connection with Process Management ? Scheduling processes and threads on the CPUs. ? Creating and

deleting both user and system processes. ? Suspending and resuming processes. ? Providing mechanisms for process

synchronization. ? Providing mechanisms for process communication. A process

operates in either user mode or kernel mode. In user mode, a process executes application code with the machine in a

non-privileged protection mode. When a process requests services from the operating system with a system call, it

switches into the machine’s privileged protection mode via a protected mechanism and then operates in kernel mode.

The resources used by a process are similarly split into two parts. The resources needed for execution in user mode are

defined by the CPU architecture and typically include the CPU’s general-purpose registers, the program counter, the

processor-status register, and the stack-related registers, as well as the contents of the memory segments that

constitute the FreeBSD notion of a program (the text, data, shared library, and stack segments). Kernel-mode resources

include those required by the underlying hardware— such as registers, program counter, and stack pointer—and also by

the state required for the FreeBSD kernel to provide system services for a process. This kernel state includes parameters

to the current system call, the current process’s user identity, scheduling information, and so on.

57 | P a g e Space for learners: 4.2 UNIT OBJECTIVES After going through this unit you will be able to: ? understand the

basic concepts of process management of operating system ? know about the process and its different attributes. ?

understand various states of a process ? give the basic concept of a thread and how it differ from a process ? know about

concept of process scheduling concepts ? define what is virtual processor ? understand about interrupt mechanism of

processes. 4.3 PROCESS A process is basically a program in execution. The execution of a process must progress in a

sequential fashion. A process is defined as an entity which represents the basic unit of work to be implemented in the

system. To put it in simple terms, we write our computer programs in a text file and when we execute this program, it

becomes a process which performs all the tasks mentioned in the program. When a program is loaded into the memory

and it becomes a process, it can be divided into four sections ─ stack, heap, text and data. Stack: The process stack

contains the temporary data such as method/function parameters, return address, and local variables. Heap: Heap is a

dynamically allocated memory to a process during its runtime. Text : Text section of a process includes the current

activity represented by the value of Program Counter and the contents of the processor's registers. Data: Data section of

any process contains the global and static variables.

58 | P a g e Space for learners: Stack Heap Data Text Fig.4.1. The simplified layout of a process in main memory 4.1.1

Process Control Block (PCB) A Process Control Block is a data structure maintained by the Operating System for every

100% MATCHING BLOCK 9/320

process. The attributes of the process are used by the Operating System to create the process control block (PCB) for

each of them. This is also called context of the process.

A PCB keeps all the information needed to keep track of a process with following some important attributes: Process

State, Process ID(PID), Process privileges, Pointer, Program Counter, CPU registers, CPU Scheduling Information,

Memory management information, Accounting information and IO status information.

100% MATCHING BLOCK 10/320

Process State: The Process, from its creation to the completion, goes through various states which are new, ready,

running and waiting.

The current state of the process i.e., whether it is ready, running, waiting, or whatever. Process ID: The PCB is identified

by an integer process ID (PID) which is the unique identification for each of the process in the operating system. Process

privileges This is required to allow/disallow access to system resources. Pointer A pointer to parent process. Program

Counter: Program Counter is a pointer to

100% MATCHING BLOCK 11/320

the address of the next instruction to be executed for this process.

100% MATCHING BLOCK 12/320

A program counter stores the address of the last instruction of the process on 59 |

P a g e Space for learners:

100% MATCHING BLOCK 13/320

which the process was suspended. The CPU uses this address when the execution of this process is resumed.

CPU registers: Various CPU registers where process need to be stored for execution for running state. CPU Scheduling

Information: Process priority and other scheduling information which is required to schedule the process. Memory

management information: This includes the information of page table, memory limits, Segment table depending on

memory used by the operating system. Accounting information: This includes the amount of CPU used for process

execution, time limits, execution ID etc. IO status information: This includes a list of I/O devices allocated to the process.

Process ID Process states Pointer Program Counter Priority CPU Register I/O status information Accounting information

Etc. Fig.4.2. The Simplified Diagram of a PCB. The architecture of a PCB is completely dependent on Operating System

and may contain different information in different operating systems. The PCB is maintained for a process throughout its

lifetime, and is deleted once the process terminates.

60 | P a g e Space for learners: 4.4 PROCESS STATES Fig.4.3. States diagram of a process The process, from its creation to

completion, passes through various states. The minimum number of states is five which are New, Ready, Running, Block

or Wait, and Termination. Sometimes there are two more states namely suspend ready and suspend wait have been seen

for some particular cases of process. The names of the states are not standardized although the process may be in one

of the following states during execution. (i) New A program which is going to be picked up by the OS into the main

memory is called a new process. (ii) Ready Whenever a process is created, it directly enters in the ready state, in which, it

waits for the CPU to be assigned. The OS picks the new processes from the secondary memory and put all of them in

the main memory. The processes which are ready for the execution and reside in the main memory are called ready

state processes. There can be many processes present in the ready state. (iii) Running

61 | P a g e Space for learners: One of the processes from the ready state will be chosen by the OS depending upon the

scheduling algorithm. Hence, if we have only one CPU in our system, the number of running processes for a particular

time will always be one. If we have n processors in the system then we can have n processes running simultaneously. (iv)

Block or wait From the Running state, a process can make the transition to the block or wait state depending upon the

scheduling algorithm or the intrinsic behaviour of the process. When a process waits for a certain resource to be

assigned or for the input from the user then the OS move this process to the block or wait state and assigns the CPU to

the other processes. (v) Completion or termination When a process finishes its execution, it comes in the termination

state. All

54% MATCHING BLOCK 14/320

the context of the process (Process Control Block) will also be deleted the process will be terminated by the Operating

system. (

vi) Ready Suspended A process in the ready state, which is moved to secondary memory from the main memory due to

lack of the resources (mainly primary memory) is called in the suspend ready state. If the main memory is full and a

higher priority process comes for the execution then the OS have to make the room for the process in the main memory

by throwing the lower priority process out into the secondary memory. The suspend ready processes remain in the

secondary memory until the main memory gets available. (vii) Block Suspended Instead of removing the process from

the ready queue, it's better to remove the blocked process which is waiting for some resources in the main memory.

Since it is already waiting for some resource to get available hence it is better if it waits in the secondary memory and

make room for the higher priority process. These processes

62 | P a g e Space for learners: complete their execution once the main memory gets available and their wait is finished.

4.5 THREAD A thread is a flow of execution through the process code, with its own program counter that keeps track of

which instruction to execute next, system registers which hold its current working variables, and a stack which contains

the execution history. A thread shares with its peer threads few information like code segment, data segment and open

files. When one thread alters a code segment memory item, all other threads see that. A thread is also called a

lightweight process. Threads provide a way to improve application performance through parallelism. Threads represent a

software approach to improving performance of operating system by reducing the overhead thread is equivalent to a

classical process. Each thread belongs to exactly one process and no thread can exist outside a process. Each thread

represents a separate flow of control. Threads have been successfully used in implementing network servers and web

server. They also provide a suitable foundation for parallel execution of applications on shared memory multiprocessors.

The following figure shows the working of a single-threaded and a multithreaded process. 4.5.1. Difference Between

Process and Thread Followings are the differences between processes and threads: (i) Process is heavy weight or

resource intensive. On the other hand thread is lightweight, taking lesser resources than a process. (ii) Process switching

needs interaction with operating system but thread switching does not need to interact with operating system. (iii) In

multiple processing environments, each process executes the same code but has its own memory and file

63 | P a g e Space for learners: resources. But all threads can share same set of open files, child processes. (iv) If one

process is blocked, then no other process can execute until the first process is unblocked. While one thread is blocked

and waiting, a second thread in the same task can run. (v) Multiple processes without using threads use more resources.

On the other hand multiple threaded processes use fewer resources. (vi) In multiple processes each process operates

independently of the others. But in case of thread, one thread can read, write or change another thread's data. Fig.4.4.

Block Diagram for the Single-Threaded and Multithreaded Process Model 4.5.2 Advantages of Thread (i) Threads

minimize the context switching time. (ii) Use of threads provides concurrency within a process. (iii) Threads provide

efficient communication.

64 | P a g e Space for learners: (iv) It is more economical to create and context switch threads. (v) Threads allow

utilization of multiprocessor architectures to a greater scale and efficiency. Threads are implemented in following two

ways: (i) User Level Threads – These types of threads are user managed threads. (ii) Kernel Level Threads -- These types

of threads are operating system managed threads acting on kernel, an operating system core. 4.5.3 User Level Threads In

this case, the thread management kernel is not aware of the existence of threads. The thread library contains code for

creating and destroying threads, for passing message and data between threads, for scheduling thread execution and for

saving and restoring thread contexts. The application starts with a single thread. Advantages: (i) Thread switching does

not require Kernel mode privileges. (ii) User level thread can run on any operating system. (iii) Scheduling can be

application specific in the user level thread. (iv) User level threads are fast to create and manage. Disadvantages: (i) In a

typical operating system, most system calls are blocking. (ii) Multithreaded application cannot take advantage of

multiprocessing. 4.5.4 Kernel Level Threads In this case, thread management is done by the Kernel. There is no thread

management code in the application area. Kernel threads are

65 | P a g e Space for learners: supported directly by the operating system. Any application can be programmed to be

multithreaded. All of the threads within an application are supported within a single process. The Kernel maintains

context information for the process as a whole and for individual threads within the process. Scheduling by the Kernel is

done on a thread basis. The Kernel performs thread creation, scheduling and management in Kernel space. Kernel

threads are generally slower to create and manage than the user threads. Advantages: (i) Kernel can simultaneously

schedule multiple threads from the same process on multiple processes. (ii) If one thread in a process is blocked, the

Kernel can schedule another thread of the same process. (iii) Kernel routines themselves can be multithreaded.

Disadvantages: (i) Kernel threads are generally slower to create and manage than the user threads. (ii) Transfer of control

from one thread to another within the same process requires a mode switch to the Kernel. 4.6 OPERATIONS ON THE

PROCESS The following operations are done with a

95% MATCHING BLOCK 15/320

process: (i) Creation Once the process is created, it will be ready and come into the ready queue (main memory) and

will be ready for the execution. (ii) Scheduling Out of the many processes present in the ready queue, the Operating

system chooses one process and start executing it. Selecting the process which is to be executed next, is known as

scheduling. (iii) Execution 66 |

P a g e Space for learners:

97% MATCHING BLOCK 16/320

Once the process is scheduled for the execution, the processor starts executing it. Process may come to the blocked

or wait state during the execution then in that case the processor starts executing the other processes. (iv)

Deletion/killing Once the purpose of the process gets over then the OS will kill the process. The Context of the process

(PCB) will be deleted and the process gets terminated by the Operating system. 4.6.1 Process

Creation Through appropriate system calls, such as fork or spawn, processes may create other processes. The process

which creates other process, is termed the parent process of the other process, while the created sub-process is termed

its child process. Each process is given an integer identifier, termed as process identifier, or PID. The parent PID (PPID) is

also stored for each process. On a typical UNIX system the process scheduler is termed as sched, and is given PID 0. The

first thing done by it at system start-up time is to launch init, which gives that process PID 1. Further Init launches all the

system daemons and user logins, and becomes the ultimate parent of all other processes. A child process may receive

some amount of shared resources with its parent depending on system implementation. To prevent runaway children

from consuming all of a certain system resource, child processes may or may not be limited to a subset of the resources

originally allocated to the parent. There are two options for the parent process after creating the child: ? Wait for the

child process to terminate before proceeding. Parent process makes a wait() system call, for either a specific child

process or for any particular child process, which causes the parent process to block until the wait() returns. UNIX shells

normally wait for their children to complete before issuing a new prompt.

67 | P a g e Space for learners: ? Run concurrently with the child, continuing to process without waiting. When a UNIX

shell runs a process as a background task, this is the operation seen. It is also possible for the parent to run for a while,

and then wait for the child later, which might occur in a sort of a parallel processing operation. There are also two

possibilities in terms of the address space of the new process: 1. The child process is a duplicate of the parent process. 2.

The child process has a program loaded into it. To illustrate these different implementations, let us consider the UNIX

operating system. In UNIX, each process is identified by its process identifier, which is a unique integer. A new process is

created by the fork system call. The new process consists of a copy of the address space of the original process. This

mechanism allows the parent process to communicate easily with its child process. Both processes (the parent and the

child) continue execution at the instruction after the fork system call, with one difference: The return code for the fork

system call is zero for the new (child) process, whereas the(non zero) process identifier of the child is returned to the

parent. Typically, the execlp system call is used after the fork system call

90% MATCHING BLOCK 17/320

by one of the two processes to replace the process memory space with a new program.

71% MATCHING BLOCK 18/320

to replace the process memory space with a new program. The execlp system call

loads a binary file into memory - destroying the memory image of the program containing the execlp system call – and

starts its execution. In this manner the two processes are able to communicate, and then to go their separate ways.

Below is a C program to illustrate forking a separate process using UNIX (using Ubuntu): #include>stdio.h< void

main(int argc,char *argv[]) {

68 | P a g e Space for learners: int pid=fork(); // fork another process if(pid>0) { fprintf(stderr, “fork failed”); \\Error

occurs exit(-1); } If(pid==0) { execlp(“/bin/ls”,”ls”,NULL); //child process } else { wait(NULL); //parent process printf(“Child

Complete”); exit(0); } } 4.6.2 Process Termination By making the exit (system call), typically returning an int, processes

may request their own termination. This int is passed along to the parent if it is doing a wait(), and is typically zero on

successful completion and some non-zero code in the event of any problem.

69 | P a g e Space for learners: Processes may also be terminated by the system for a variety of reasons, including : ? The

inability of the system to deliver the necessary system resources. ? In response to a kill command or other unhandled

process interrupts. ? A parent may kill its children if the task assigned to them is no longer needed i.e. if the need of

having a child terminates. ? If the parent exits, the system may or may not allow the child to continue without a parent (In

UNIX systems, orphaned processes are generally inherited by init, which then proceeds to kill them.) When a process

ends, all of its system resources are freed up, open files flushed and closed, etc. The process termination status and

execution times are returned to the parent if the parent is waiting for the child to terminate, or eventually returned to init

if the process already became an orphan. The processes which are trying to terminate but cannot do so because their

parent is not waiting for them are termed zombies. These are eventually inherited by init as orphans and killed off. CPU

scheduling is a process that allows one process to use the CPU while

100% MATCHING BLOCK 19/320

the execution of another process is on hold (in waiting state) due to unavailability of any resource like I/O etc,

thereby making full use of CPU. The aim of CPU scheduling is to make the system efficient, fast, and fair. Whenever the

CPU becomes idle, the operating system must select one of the processes in the ready queue to be executed.

80% MATCHING BLOCK 20/320

The selection process is carried out by the short-term scheduler (or CPU scheduler). The scheduler selects from

among the processes in memory that are ready to execute and allocates the CPU to

one of them.

70 | P a g e Space for learners: 4.7 PROCESS SCHEDULERS Process Scheduling is an operating system task that

schedules processes of different states like ready, waiting, and running. Process scheduling allows OS to allocate a time

interval of CPU execution for each process. Another important reason for using a process scheduling system is that it

keeps the CPU busy all the time. This allows you to get the minimum response time for programs. Operating system uses

various schedulers for the process scheduling. 4.7.1 Scheduling Objectives There are some important objectives of

Process scheduling (i) Maximize the number of interactive users within acceptable response times. (ii) Achieve a balance

between response and utilization. (iii) Avoid indefinite postponement and enforce priorities. (iv) It also should give

reference to the processes holding the key resources. There are three types of process schedulers we have namely (i)

long term scheduler, (ii) short term scheduler and (iii) medium term scheduler. (i)

100% MATCHING BLOCK 21/320

Long term scheduler Long term scheduler is also known as job scheduler. It chooses the processes from the pool

(secondary memory) and keeps them in the ready queue maintained in the primary memory. Long Term scheduler

mainly controls the degree of Multiprogramming. The purpose of long term scheduler is to choose a perfect mix of IO

bound and CPU bound processes among the jobs present in the pool. If the job scheduler chooses more IO bound

processes then all of the jobs may reside in the blocked state all the time and the CPU will remain idle most of the time.

This will reduce the degree of Multiprogramming. Therefore, the Job of long term scheduler is very critical and may

affect the system for a very long time. 71 |

P a g e Space for learners: (ii)

99% MATCHING BLOCK 22/320

Short term scheduler Short term scheduler is also known as CPU scheduler. It selects one of the Jobs from the ready

queue and dispatch to the CPU for the execution. A scheduling algorithm is used to select which job is going to be

dispatched for the execution. The Job of the short term scheduler can be very critical in the sense that if it selects job

whose CPU burst time is very high then all the jobs after that, will have to wait in the ready queue for a very long time.

This problem is called starvation which may arise if the short term scheduler makes some mistakes while selecting the

job. (iii)Medium term scheduler Medium term scheduler takes care of the swapped out processes.If the running state

processes needs some IO time for the completion then there is a need to change its state from running to waiting.

Medium term scheduler is used for this purpose. It removes the process from the running state to make room for the

other processes. Such processes are the swapped out processes and this procedure is called swapping. The medium

term scheduler is responsible for suspending and resuming the processes. It reduces the degree of multiprogramming.

The swapping is necessary to have a perfect mix of processes in the ready queue. 4.7.2

Difference among Schedulers Long-Term Vs. Short Term Vs. Medium-Term Sl No Long-Term Short-Term Medium-Term

1 Long term is also known as a job scheduler Short term is also known as CPU scheduler Medium-term is also called

swapping scheduler. 2 It is either absent or minimal in a time-sharing system. It is insignificant in the time- sharing order.

This scheduler is an element of Time-sharing systems.

72 | P a g e Space for learners: Sl No Long-Term Short-Term Medium-Term 3 Speed of long-term schedulers is less

compared to the short term scheduler. Speed is the fastest compared to the short-term and medium- term scheduler. It

offers medium speed. 4 It allows us to select processes from the loads and pool back into the memory It only selects

processes that are in a ready state of the execution. It helps you to send process back to memory. 5 It offers full control It

offers less control It reduces the level of multiprogramming. 4.8

98% MATCHING BLOCK 23/320

PROCESS QUEUES The Operating system manages various types of queues for each of the process states. The PCB

related to the process is also stored in the queue of the same state. If the Process is moved from one state to another

state then its PCB is also unlinked from the corresponding queue and added to the other state queue in which the

transition is made. There are the following process queues maintained by the Operating system. (i) Job Queue In

starting, all the processes get stored in the job queue. It is maintained in the secondary memory. The long term

scheduler (Job scheduler) picks some of the jobs and put them in the primary memory. (i) Ready Queue Ready queue

is maintained in primary memory. The short term scheduler picks the job from the ready queue and dispatch to the

CPU for the execution. (ii) Waiting Queue When the process needs some IO operation in order to complete its

execution, OS changes the state of the process from running to waiting. The context (PCB) associated with the process

gets stored 73 |

P a g e Space for learners:

100% MATCHING BLOCK 24/320

on the waiting queue which will be used by the Processor when the process finishes the IO. 4.9

VARIOUS TIMES RELATED TO THE PROCESS (i). Arrival Time The time at which the process enters into the ready queue is

called the arrival time. (ii). Burst Time The total amount of time required by the CPU to execute the whole process is

called the Burst Time. This does not include the waiting time. It is confusing to calculate the execution time for a process

even before executing it hence the scheduling problems based on the burst time cannot be implemented in reality. (iii).

Completion Time The

50% MATCHING BLOCK 25/320

time at which the process enters into the completion state or the time at which the process completes its execution,

61% MATCHING BLOCK 26/320

the time at which the process completes its execution, is called completion time. (iv). Turnaround time The

total amount of time spent by the process from its arrival to its completion, is called Turnaround time. (v). Response Time

The difference between the arrival time and the time at which the process first gets the CPU is called Response Time.

4.10 PROCESS SCHEDULING QUEUES Process Scheduling Queues help us to maintain a distinct queue for each and

every process states and PCBs. All the process of the same execution state is placed in the same queue. Therefore,

whenever the state of a process is modified, its PCB needs to be unlinked from its existing queue, which moves back to

the new state queue.

74 | P a g e Space for learners: Three types of operating system queues are: I. Job queue – All processes, upon entering

into the system, are stored in the Job Queue. It helps us to store all the processes in the system. II. Ready queue – This

type of queue helps us to set every process residing in the main memory, which is ready and waiting to execute.

Processes in the ready state are placed in the Ready Queue. III. Device queues – It is a process that is blocked because of

the absence of an I/O device. Processes waiting for a device to become available are placed in Device Queues. There are

unique device queues available for each I/O device. Fig.4.5. Block Diagram of Process Scheduling Queues Here in the

above-given block Diagram of process scheduling queues, we use the rectangle that represents a queue, circle denotes

the resource and arrow indicates the flow of the process. Here we discuss the every step from 1 to 7 as follows: 1. Every

new process first put in the Ready queue .It waits in the ready queue until it is finally processed for execution.

75 | P a g e Space for learners: Here, the new process is put in the ready queue and wait until it is selected for execution

or it is dispatched. 2. One of the processes is allocated the CPU and it is executing 3. The process should issue an I/O

request 4. Then, it should be placed in the I/O queue. 5. The process should create a new subprocess 6. The process

should be waiting for its termination. 7. It should remove forcefully from the CPU, as a result interrupt. Once interrupt is

completed, it should be sent back to ready queue. The act of determining which process is in the ready state, and should

be moved to the running state is known as Process Scheduling. The prime aim of the process scheduling system is to

keep the CPU busy all the time and to deliver minimum response time for all programs. For achieving this, the scheduler

must apply appropriate rules for swapping processes IN and OUT of CPU. 4.10.1 Types of CPU Scheduling Here we

observed that CPU scheduling decisions may take place under the following

83% MATCHING BLOCK 28/320

four circumstances: 1. When a process switches from the running state to the waiting state(for I/O request or

invocation of wait

87% MATCHING BLOCK 27/320

When a process switches from the running state to the waiting state(

for the termination of one

69% MATCHING BLOCK 30/320

of the child processes). 2. When a process switches from the running state to the ready state (for example, when an

interrupt occurs). 3. When a process switches from the waiting state to the ready state(for example, completion of I/O).

4. When a process terminates.

60% MATCHING BLOCK 29/320

When a process switches from the running state to the ready state (for example, when an interrupt occurs). 3. When a

process switches from the waiting state to the ready state(

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process(if one exists in the ready queue) must

be selected for execution. There is a choice, however in circumstances 2 and 3. When Scheduling takes place only under

circumstances 1 and 4, we say the scheduling scheme is non-preemptive; otherwise, the scheduling scheme is

preemptive.

76 | P a g e Space for learners: 4.10.2

62% MATCHING BLOCK 32/320

Non-Preemptive Scheduling In non-preemptive scheduling, once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by

70% MATCHING BLOCK 31/320

In non-preemptive scheduling, once the CPU has been allocated to a process, the process

95% MATCHING BLOCK 34/320

non-preemptive scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it releases

the CPU either by terminating or by switching to the waiting state.

96% MATCHING BLOCK 33/320

once the CPU has been allocated to a process, the process keeps the CPU until it releases the CPU either by

terminating or by switching to

73% MATCHING BLOCK 35/320

It is the only method that can be used on certain hardware platforms because It

does not require the special hardware needed for preemptive scheduling. This scheduling method is used by the

Microsoft Windows 3.1 and by the Apple Macintosh operating systems. In non-preemptive scheduling, it does not

interrupt a process running CPU in the middle of the execution. Instead, it waits till the process completes its CPU burst

time, and then after that it can allocate the CPU to any other process. Some Algorithms based on non-preemptive

scheduling are: Shortest Job First (SJF basically non-preemptive) Scheduling and Priority (non- preemptive version)

Scheduling, etc. 4.10.3 Preemptive Scheduling In this type of process scheduling, the tasks are usually assigned with

priorities. At times it is necessary to run a certain task that has

35% MATCHING BLOCK 36/320

a higher priority before another task although it is running. Therefore, the running task is interrupted for some time and

resumed later when the priority task has finished its execution. Thus this type of scheduling

is used mainly

58% MATCHING BLOCK 37/320

when a process switches either from running state to ready state or from waiting state to ready

state. The resources (like CPU cycles) are mainly allocated to the process for a limited amount of time and then are taken

away, and after that, the process is again placed back in the ready queue in the case if that process still has a CPU burst

time remaining. That process stays in the ready queue until it gets the next chance to execute.

77 | P a g e Space for learners: Some Algorithms that are based on preemptive scheduling are Round Robin Scheduling

(RR), Shortest Remaining Time First (SRTF), Priority (preemptive version) Scheduling, etc. 4.11 SCHEDULING CRITERIA

There are many different criteria to check the best scheduling algorithm, they are respectively: CPU Utilization To make

out the best use of the CPU and not to waste any CPU cycle, the CPU would be working most of the time (Ideally 100%

of the time). Considering a real system, CPU usage should range from 40% (lightly loaded) to 90% (heavily loaded.)

Throughput It is the total number of processes completed per unit of time or rather says the total amount of work done

in a unit of time. This may range from 10/second to 1/hour depending on the specific processes. Turnaround Time It is

the amount of time taken to execute a particular process, i.e.

52% MATCHING BLOCK 39/320

The interval from the time of submission of the process to the time of completion of the process(Wall clock time).

Waiting Time The sum of the periods spent waiting in the ready queue

52% MATCHING BLOCK 38/320

to the time of completion of the process(Wall clock time). Waiting Time The sum of the periods spent waiting in the

ready queue

100% MATCHING BLOCK 40/320

amount of time a process has been waiting in the ready queue

to acquire get control on the CPU. Load Average It is the average number of processes residing in the ready queue

waiting for their turn to get into the CPU.

100% MATCHING BLOCK 41/320

Response Time Amount of time it takes from when a request was submitted until the first response is produced.

Remember, it is the time till the first response and not the completion of process execution (final response).

78 | P a g e Space for learners: In general CPU utilization and Throughput are maximized and other factors are reduced

for proper optimization. 4.12 THE CONCEPTS OF CONTEXT SWITCH Context switch means

100% MATCHING BLOCK 44/320

switching the CPU to another process requires saving the state of the old process and loading the saved state for the

new process.

59% MATCHING BLOCK 45/320

CPU to another process requires saving the state of the old process and loading the saved state for the new process.

61% MATCHING BLOCK 46/320

CPU to another process requires saving the state of the old process and loading the saved state for the new process.

90% MATCHING BLOCK 42/320

saving the state of the old process and loading the saved state for the new

90% MATCHING BLOCK 43/320

saving the state of the old process and loading the saved state for the new process.

The context of a process is represented in the Process Control Block (

68% MATCHING BLOCK 47/320

PCB) of a process which includes the value of the CPU registers, the process state and memory- management

information.

When a context switch occurs, the Kernel saves the context of the old process in its PCB and loads the saved context of

the new process scheduled to run. Context switch time is pure overhead, because the system does no useful work while

switching. Its speed varies from machine to machine, depending on the memory speed, the number of registers that

must be copied, and the existence of special instructions (such as a single instruction to load or store all registers).

Typical speeds range from 1 to 1000 microseconds. 4.13 INTERRUPT MECHANISM An interrupt refers to an external

event that needs immediate attention from the processor. An interrupt signals the processor, indicating the need of

attention, and requires interruption of the current code the processor is executing. As a response, the processor

suspends its current activities, saves its state and executes a particular function to service the event that has caused the

interruption. Such function is often called an interrupt handler or an interrupt service routine. Once the processor has

responded to the interrupt, i.e. after the processor has executed the interrupt handler, the processor resumes its

previously saved state and resumes the execution of the same program it was executing before the interrupt occurred.

The interrupts are often caused by external devices that communicate with the processor (Interrupt-driven I/O).

Whenever these devices require the processor to execute a particular task, they generate interrupts and wait until the

processor has acknowledged that the task has been performed. To be able to receive and respond to interrupts a

processor is equipped with an interrupt port. Through

79 | P a g e Space for learners: the interrupt port the processor can receive the interrupt request signals and can respond

to these requests through the interrupt acknowledge signals. Interrupts are important because they give the user better

control over the computer. Without interrupts, a user may have to wait for a given application to have a higher priority

over the CPU to be run. This ensures that the CPU will deal with the process immediately. An interrupt is also referred to

as an input signal that has the highest priority for hardware or software events that requires immediate processing of an

event. During the early days of computing, the processor had to wait for the signal to process any events. The processor

should check every hardware and software program to understand if there is any signal to be processed. This method

would consume a number of clock cycles and makes the processor busy. Just in case, if any signal was generated, the

processor would again take some time to process the event, leading to poor system performance. A new mechanism

was introduced to overcome this complicated process. In this mechanism, hardware or software will send the signal to a

processor, rather than a processor checking for any signal from hardware or software. The signal alerts the processor

with the highest priority and suspends the current activities by saving its present state and function, and processes the

interrupt immediately, this is known as ISR. As it doesn’t last long, the processor restarts normal activities as soon as it is

processed. Interrupts are classified into two main types. 4.13.1 Hardware Interrupts An electronic signal sent from an

external device or hardware to communicate with the processor indicating that it requires immediate attention. For

example, strokes from a keyboard or an action from a mouse invoke hardware interrupts causing the CPU to read and

process it. So it arrives asynchronously and during any point of time while executing an instruction. 4.13.2 Software

Interrupts The processor itself requests a software interrupt after executing certain instructions or if particular conditions

are met. These can be a specific instruction that triggers an interrupt such as subroutine

80 | P a g e Space for learners: calls and can be triggered unexpectedly because of program execution errors, known as

exceptions or traps. 4.14 VIRTUAL PROCESSOR A virtual processor is a representation of a physical processor core to the

operating system of a logical partition that uses shared processors. This allows the operating system to calculate the

number of concurrent operations that it can perform. A virtual processor is a representation of a physical processor core

to the operating system of a logical partition that uses shared processors. When you install and run an operating system

on a server that is not partitioned, the operating system calculates the number of operations that it can perform

concurrently by counting the number of processors on the server. For example, if you install an operating system on a

server that has eight processors, and each processor can perform two operations at a time, the operating system can

perform 16 operations at a time. In the same way, when you install and run an operating system on a logical partition that

uses dedicated processors, the operating system calculates the number of operations that it can perform concurrently

by counting the number of dedicated processors that are assigned to the logical partition. In both cases, the operating

system can easily calculate how many operations it can perform at a time by counting the whole number of processors

that are available to it. However, when you install and run an operating system on a logical partition that uses shared

processors, the operating system cannot calculate a whole number of operations from the fractional number of

processing units that are assigned to the logical partition. The server firmware must therefore represent the processing

power available to the operating system as a whole number of processors. This allows the operating system to calculate

the number of concurrent operations that it can perform. A virtual processor is a representation of a physical processor

to the operating system of a logical partition that uses shared processors. Advantages of virtual processors ? Virtual

processors can share processing. ? Virtual processors save memory and resources.

81 | P a g e Space for learners: ? Virtual processors can perform parallel processing. ? You can start additional virtual

processors and terminate active CPU virtual processors while the database server is running. 4.15 SUMMING UP ? A

program is a set of instructions given to the computer system to do some specific task.

100% MATCHING BLOCK 48/320

A program in execution is called a process. In order to accomplish its task, process needs the computer resources

like memory and processor. ? A process operates in either user mode or kernel mode. In user mode, a process executes

application code with the machine in a nonprivileged protection mode. CHECK YOUR PROGRESS Multiple Choice

Questions: 1. A program in execution is called (A) Process (B) Instruction (C) Procedure (D) Function 2. Which of the

following is not a fundamental process state (A) ready (B) terminated (C) executing (D) blocked 3. A scheduler which

selects processes from secondary storage device is called (A) Short term scheduler. (B) Long term scheduler. (C) Medium

term scheduler. (D) Process scheduler. 4. Program ‘preemption’ is (A) forced de allocation of the CPU from a program

which is executing on the CPU. (B) release of CPU by the program after completing its task. (C) forced allotment of CPU

by a program to itself. (D) a program terminating itself due to detection of an error. 5. Interval between the time of

submission and completion of the job is called (A) Waiting time (B) Turnaround time (C) Throughput (D) Response time

82 | P a g e Space for learners: ? When a process requests services from the operating system with a system call, it

switches into the machine’s privileged protection mode via a protected mechanism and then operates in kernel mode. ?

When a program is loaded into the memory and it becomes a process, it can be divided into four sections ─ stack, heap,

text and data. ? A Process Control Block is a data structure maintained by the Operating System for every

100% MATCHING BLOCK 49/320

process. The attributes of the process are used by the Operating System to create the process control block (PCB) for

each of them. This is also called context of the process. ?

The process, from its creation to completion, passes through various states. The minimum number of states is five which

are New, Ready, Running, Block or Wait, and Termination. ? A thread is a flow of execution through the process code,

with its own program counter that keeps track of which instruction to execute next, system registers which hold its

current working variables, and a stack. ? A thread is also called a lightweight process. Threads provide a way to improve

application performance through parallelism. ? User Level Threads – These types of threads are user managed threads. ?

Kernel Level Threads -- These types of threads are operating system managed threads acting on kernel, an operating

system core. ? Through appropriate system calls, such as fork or spawn, processes may create other processes. The

process which creates other process, is termed the parent process of the other process, while the created sub-process is

termed its child process. ? By making the exit (system call), typically returning an int, processes may request their own

termination. ? Process Scheduling is an operating system task that schedules processes of different states like ready,

waiting, and running. Process scheduling allows OS to allocate a time interval of CPU execution for each process.

83 | P a g e Space for learners: ?

95% MATCHING BLOCK 50/320

Long term scheduler is also known as job scheduler. It chooses the processes from the pool (secondary memory) and

keeps them in the ready queue maintained in the primary memory. ? Short term scheduler

100% MATCHING BLOCK 51/320

is also known as CPU scheduler. It selects one of the Jobs from the ready queue and dispatch to the CPU for the

execution. ?

100% MATCHING BLOCK 52/320

Medium term scheduler takes care of the swapped out processes. If the running state processes needs some IO time

for the completion then there is a need to change its state from running to waiting. ?

Process Scheduling Queues help us to maintain a distinct queue for each and every process states and PCBs. ?

70% MATCHING BLOCK 53/320

In non-preemptive scheduling, once the CPU has been allocated to a process, the process

95% MATCHING BLOCK 56/320

non-preemptive scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it releases

the CPU either by terminating or by switching to the waiting state. ?

68% MATCHING BLOCK 54/320

scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it releases the CPU either

by

96% MATCHING BLOCK 55/320

once the CPU has been allocated to a process, the process keeps the CPU until it releases the CPU either by

terminating or by switching to

In premptive scheduling, the tasks are usually assigned with priorities. At times it is necessary to run a certain task that has

a higher priority before another task although it is running. ? Context switch means

100% MATCHING BLOCK 59/320

switching the CPU to another process requires saving the state of the old process and loading the saved state for the

new process. ?

59% MATCHING BLOCK 60/320

CPU to another process requires saving the state of the old process and loading the saved state for the new process. ?

61% MATCHING BLOCK 61/320

CPU to another process requires saving the state of the old process and loading the saved state for the new process. ?

90% MATCHING BLOCK 57/320

saving the state of the old process and loading the saved state for the new

90% MATCHING BLOCK 58/320

saving the state of the old process and loading the saved state for the new process. ?

An interrupt refers to an external event that needs immediate attention from the processor. An interrupt signals the

processor, indicating the need of attention, and requires interruption of the current code the processor is executing. ? An

electronic signal sent from an external device or hardware to communicate with the processor indicating that it requires

immediate attention. ? The processor itself requests a software interrupt after executing certain instructions or if

particular conditions are met. ? A virtual processor is a representation of a physical processor core to the operating

system of a logical partition that uses shared processors. This allows the operating system to calculate the number of

concurrent operations that it can perform.

84 | P a g e Space for learners: 4.16 ANSWERS TO CHECK YOUR PROGRESS 1(A), 2(D), 3(C), 4(A), 5(B) 4.17 POSSIBLE

QUESTIONS Short Type Questions: 1. What is process? How it differ from a program? 2. What do you mean by PCB in a

process? 3. What are the different states of a process? 4. What is a thread? How it differ from a process? 5. What is

process scheduler? What are its different categories? Long Answer Type Questions: 1. Explain different attributes found in

PCB in a process. 2. Explain the three types of process schedulers with its functions. 3. Explain the different criteria of

process scheduling. 4. What do you mean by interrupt? Explain its different categories. 4.18 REFERENCES AND

SUGGESTED READINGS ? Avi Silberschatz, Greg Gagne and Peter Baer Galvin, OPERATING SYSTEM CONCEPTS, WILEY

PUBLICATION. ? William Stallings, OPERATING SYSTEMS, INTERNALS AND DESIGN PRINCIPLES, SEVENTH

EDITION,PEARSON PUBLICATION.

85 | P a g e Space for learners: UNIT 5: SYSTEM CALLS Unit Structure: 5.1 Introduction 5.2 Unit Objectives 5.3 What is

System Call? 5.4 System Calls for Process Management 5.5 System Calls for File Management 5.6 Summing Up 5.7

Answers to Check Your Progress 5.8 Possible Questions 5.9 References and Suggested Readings 5.1 INTRODUCTION

System call is a mechanism through which user programs are offered the services of the operating system. It basically an

interface between a process and the Operating System (O/S). 5.2 UNIT OBJECTIVES After going through this unit, you

will be able to: ? know the basics of system call, ? understand the different system calls in Linux O/S., ? gain a hands-on

experience using system calls. 5.3 WHAT IS SYSTEM CALL? System Calls are basically a set of extended instructions

provided by the O/S for communications between the user programs and the O/S. These varies form O/S to O/S but the

basic concepts are almost similar. System Calls are low level functions of O/S and are basically written in high level

language C or C++. Here, in this unit we will basically discuss the System Calls of Linux O/S.

86 | P a g e Space for learners: When we call a library function (suppose in C++) to perform certain task the underlying

system call(s) is/are invoked and this is illustrated in Fig. 5.1. Fig. 5.1: Invocation of System Call In the above illustration

(Fig. 5.1), within the C++ program cin (from C++ standard library) statement is used read data. And there is a system call,

read(), in linux for reading data from source. When the cin statement is executed and in turn the read() system call gets

invoked. System Calls are mostly used through an interface known as API (Application Programming Interface) rather

than direct use. Few examples of API are: ? POSIX API for Unix, Linux, Mac OS ? Win32 API for Windows Traditionally, the

system calls are divided in to two broad categories and they are: ? System Calls for Processes Management ? System

Calls for File System Management Let’s discuss the system calls related to the above two categories. STOP TO

CONSIDER In Linux, there are about 60 system calls and most of them are written in C language. User Space void main()

{ int a; ……….. ……….. cin<<a; ……….. ……….. } Kernel Space read() System Call C + + L i b r a r y

87 | P a g e Space for learners: 5.4 SYSTEM CALLS FOR PROCESS MANAGEMENT Before plunging into more detail, let’s

understand few basic concepts/terminologies which will be very much related to our discussion taking Linux O/S as an

example. ? A program in execution is termed as Process. ? Each process is assigned with a Process Id. ? A shell, also

known as command interpreter, is basically a process which reads the command issued to a linux terminal. ? A process

can create other processes and these are termed as Child Process. A child process is also assigned a process id. Here, in

this section we will discuss the few system calls related to Process Management. 5.4.1 exit() System Call exit() system call

is used to end a process. The syntax for the system call is: void exit(status); The status is an integer between 0 to 255

which is returned to the parent process. It is useful when one process requires to tell its parent that how it ends. The

status value ‘0’ means the process have not encountered any problem. In general, the parent of all the processes in linux

is init() with Process Id 1. Program-1: Example of exit() system call. int main() { printf(“Program Ends….”); exit (0); //End the

Process } In the above program, the exit value is set to 0. 5.4.2 fork() System Call

88 | P a g e Space for learners: fork() system call is used to create a new process. The process from which the fork()

system call is invoked is termed as Parent and the new process is termed as Child. The syntax of the fork() system call is:

pid_t fork(); The header files for pid_t and fork() are “sys/types.h” and “unistd.h” respectively. The points, which are

important while working with fork system call, are mentioned below: ? fork() creates an exact duplicate copy of the

original process. ? The variables, declared before the execution fork(), are also exist in child process. ? After the execution

of fork(), different memory space is allocated for the child and both of them are executed simultaneously. Thus, the

operations performed by both the processes, in spite of having the same content, do not affect each other. ? The return

value of fork(), inside the parent, is the process id of the child. But inside the child it is 0 (zero). ? Process ids for both the

processes, parent and child, are different. Program-2: Write a C program which creates a child process and then wait for

the child to terminate. #include>stdio.h< #include>unistd.h< #include>sys/types.h< int main() { pid_t

process_id; process_id = fork(); if (process_id>0) { printf(“Error in creating child process using fork system call…”);

exit(-1); } else if (process_id == 0) { printf(“Child Process is running…”); } else

89 | P a g e Space for learners: { printf(“Parent Process is running…”); wait(); printf(“Child Process terminates…”); exit(0); } }

Ideal Output (if fork() executes successfully): Child Process is running… Parent Process is running… Child Process

Terminates… Ideal Output (if fork() does not execute successfully): Error in creating child process using fork system call…

Explanation: ? The code within the dotted box is actually the child process’ code (if fork executes successfully). ? The

other codes are for the parent process. ? The variable, process_id, declared before the fork also exists in the child

process. ? When fork executes, o and if successful, it returns an integer greater than 0 (zero). o and if unsuccessful, it

returns and integer less than 0 (zero). ? After successful execution of fork, the values of process_id inside the parent

process is an integer and inside child process is 0 (zero). Now, the Program-2 is executed and suppose the fork executes

successfully and hence a child process is created. ? Considering the ideal situation after fork, o the created child process

start execution which displays “Child Process is running… ”. STOP TO CONSIDER The output of a program (consisting of

both parent & child) depends on the processes’ switching.

90 | P a g e Space for learners: o Process switching occurs and parent continues its execution, which displays “Parent

Process is running… ”. o The wait() executes and parent suspended(blocks) itself until the child terminates. o Again,

process switching occurs and child gets its turn and since there is no other statements to execute, the child exit. o After

receiving the termination signal by the child, the parent resumes and displays “Child Process terminates… ” and then exit()

function gets executed and parent is terminated. Now, the Program-2 is executed and suppose the fork executes

unsuccessfully and will display “Error in creating child process using fork system call… ” and the process gets terminated

due to the execution of the exit() function call. 5.4.3 wait() System Call The wait() is a very important system call. As

already mentioned in the above explanation. It make the parent process to wait for a process (child) to be terminated

created by fork() system call. The syntax of the wait() system call is: pid_t wait(int *status); If we call wait() inside a

program without a child then it returns - 1. But if the process has a child, it will wait for the child to exit and when it

happens it will return the child’s process id. The argument, status is optional. This is a pointer to the integer where the

unix/linux stores the value returned by the child process. Program-3: Write a C program which creates a child. The child

calculates the summation of all the even nos. between 1 and 100 and then displays it. The parent should wait till the child

exit. #include>stdio.h< #include>unistd.h< #include>sys/types.h< int main() { pid_t process_id;

91 | P a g e Space for learners: int i, sum; process_id = fork(); if (process_id>0) { printf(“Error in creating child process

using fork system call…”); exit(-1); } else if (process_id == 0) { for(i=1, sum=0; i>=100; i++) { if((i%2) == 0) sum = sum +

i; } printf(“The summation = %d”, sum); } else { printf(“Parent Process is running…”); wait(); printf(“Child Process

terminates…”); exit(0); } } Ideal Output (if fork() executes successfully): Parent Process is running… The summation = 2550

Child Process Terminates… But suppose, a process has more than one child then how will the wait() work??? In this kind

of situation, when wait() executes, it will wait for any of the child processes to exit. Thus, when one of the child processes

exits the wait ends. And if this is so then what will happen to the remaining child processes as the parent itself dies after

the termination of one of its childs??? In this kind of situation, the remaining child processes, termed as Orphan

Processes, becomes the child of the init process (process ID 1). 5.4.4 System Calls for Process Identification: getpid(),

getppid() The getpid() and getppid() system calls are used to get the process ids. As we all know that Processes create

Processes and thus every process has their Process Id as well as their Parent Process Id.

92 | P a g e Space for learners: getpid() system call is used to get the process id of the current process and getppid()

system call is used to get the process id of the parent process of the currently running process. Program-4: Write a C

program which creates a child. Within the child process itself print the process id of the child and its parent.

#include>stdio.h< #include>unistd.h< #include>sys/types.h< int main() { pid_t process_id, c_pid, p_pid;

process_id = fork(); if (process_id>0) { printf(“Error in creating child process using fork system call…”); exit(-1); } else if

(process_id == 0) { c_pid = getpid(); p_pid = getppid(); printf(“Child process id = %u”, c_pid); printf(“\nParent process id =

%u”, p_pid); } else { printf(“Parent Process is running…”); wait(); printf(“Child Process terminates…”); exit(0); } } 5.4.5 The

exec System Call Basically, exec is family of system calls related to process execution. These are basically used to run

system commands as separate processes. The library file for these system calls is unistd.h. The system calls fall under the

family are: int execl (const char *path, const char *arg, …, NULL); int execlp (const char *file, const char *arg, …, NULL);

93 | P a g e Space for learners: int execv (const char *path, char *const argv[]); int execvp (const char *file, char *const

argv[]); int execle (const char *path, const char *arg, …, NULL, char * const envp[]); int execve (const char *file, char

*const argv[], char *const envp[]); Let’s discuss few of the above system calls. ? “execl” System Call This system call takes

the path of the executable file as the 1 st and 2 nd argument. The arguments that follow the 1 st two are also related to

the task. And the last argument should be NULL. It will return -1 if any error occurs but otherwise will return nothing. For

example: execl ("/bin/ls", "/bin/ls", “-al”, “/idol”, NULL); When the above code executes, a detailed list of files and

directories under the directory “/idol” will be displayed. ? “execlp” System Call This system call is almost like “execl”

except it takes only the name of the executable file since it uses the PATH environment variable to get the path of the

executable. The arguments that follow the 1 st two are also related to the task. And the last argument should be NULL.

For example: execl ("ls", "ls", “-al”, “/idol”, NULL); When the above code executes, a detailed list of files and directories

under the directory “/idol” will be displayed. ? “execv” System Call This system call takes only two arguments. 1 st

argument is path of the executable file and the 2 nd argument is a list of parameters terminated by NULL. For example:

char *arg[] = {“/bin/ls”, “-al”, “/idol”, NULL”}; execv ("/bin/ls", arg); The output of the above code will be the same as

above. ? “execvp” System Call

94 | P a g e Space for learners: The arguments to this system call are same as “execv” but we need to mention only the

name of the executable file not the whole path as it uses the PATH environment variable. For example: char *arg[] = {“ls”,

“-al”, “/idol”, NULL”}; execvp ("ls", arg); The output of the above code will be the same as above. 5.5 SYSTEM CALLS FOR

FILE MANAGEMENT These system calls are used for handling the tasks like creating a file/directory, opening a file,

reading a file, writing to a file etc. The header files necessary to include are - sys/types.h, sys/stat.h, fcntl.h and unistd.h.

5.5.1 open System Call This system call is used to open or creating a file. The syntax is: int open(const char *path, int

flags,... /* mode_t mod */); This will return a filed descriptor or will return -1 if fails. The 1 st argument is the path of the

file to be opened. 2 nd argument takes how the file is to be opened such as read-only, write-only etc. These flags are as

follows: O_RDONLY: means Open for reading only, O_WRONLY: means Open for writing only, O_RDWR: means Open

for both reading and writing. O_APPEND: means Open and writing will from the end of the file. O_CREAT: means if file

does not exist then Create and then Open. These flags are defined in fcntl.h header file. The 3 rd argument is necessary

while creating a new file. When file is opened a file pointer is placed at 1 st byte of the file except while opening with

O_APPEND flag where the file pointer is place at the end of the file. 5.5.2 creat System Call This system call is used to

create a new file. The syntax is:

95 | P a g e Space for learners: int creat (const char *path, mode_t mod); This will return a filed descriptor or will return -1

if fails. The 1 st argument, path, indicates the name of the file and the 2 nd argument, mod, indicates the file access

rights. 5.5.3 read System Call Using this system call we can read data (no. of bytes) starting from the current position,

pointed by the file pointer, in a file. The syntax is: ssize_t read (int fd, void* buf, size_t noct); This will return no. of bytes

read or 0 for EOF (End of File) or -1 if error occurs. The 1 st argument, fd, is the File Descriptor of the file to be read. 2 nd

argument, buf, is the buffer (storage) where the data after the read will be stored and 3 rd argument, noct, is the no. of

bytes to be read from the file. 5.5.4 write System Call Using this system call we can write data (no. of bytes) at the current

position, pointed by the file pointer, in to a file. The syntax is: ssize_t write (int fd, const void* buf, size_t noct); This will

return no. of bytes written or -1 if error occurs. The 1 st argument, fd, is the File Descriptor of the file where data are to

be written. 2 nd argument, buf, is the buffer (storage) where the data after the read will be stored and 3 rd argument,

noct, is the no. of bytes to be written to the file. 5.5.5 close System Call This system call is used to close an opened file.

The syntax is: int close (int fd); The only argument to this system call is the descriptor of the file which need to be closed.

This returns 0 if successful or -1 if error occurs and also frees the assigned file descriptor.

96 | P a g e Space for learners: 5.5.6 lseek System Call When reading/writing is to be done from/to a particular position in

an opened file, lseek system call should be used. In short, it is used to position the file pointer. The syntax of this system

call is: off_t lseek (int fd, off_t offset, int ref); This returns the current position of the file pointer or -1 if error occurs. The

file pointer positioning will be performed based on the 3 rd argument, ref, which should be one from the following

values: SEEK_SET: positioning relative to the Beginning-of-File (BOF), SEEK_CUR: positioning relative to the current file

pointer position, SEEK_END: positioning relative to the End-of-File (EOF). CHECK YOUR PROGRESS - I 1. What is System

Call? 2. When a cin statement executed, what system call will be invoked? 3. What is a Process? 4. What is Shell? 5. Write

down the syntax of the fork() system call. State TRUE or FALSE: 6. fork() system call is defined inside the unistd.h header

file. 7. Win32 API is for Windows. 8. exit() system call is used to end a process. 9. fork() creates an exact duplicate copy of

the original process. 10. The getpid() system call is used to get the process id of the parent process of the current

process.

97 | P a g e Space for learners: 5.6 SUMMING UP ? System Calls are basically a set of extended instructions provided by

the O/S for communications between the user programs and the O/S. ? System Calls are mostly used through an

interface known as API (Application Programming Interface) rather than direct use. For example POSIX, Win32 etc. ? A

program in execution is termed as Process and each process is assigned with a Process Id. ? A process can create other

processes and these are termed as Child Process. ? exit() system call is used to end a process. ? The parent of all the

processes in linux is init() with Process Id 1. ? fork() system call is used to create a new process. It creates an exact

duplicate copy of the original process. ? wait() system call makes the parent process to wait for a process (child) to be

terminated created by fork() system call. ? getpid() system call is used to get the process id of the current process and

getppid() system call is used to get the process id of the parent process of the currently running process. ? The exec is

family of system calls related to process execution. They are – execl, execlp, execv, execp, execle, execve. 5.7 ANSWERS

TO CHECK YOUR PROGRESS 1. System Calls are basically a set of extended instructions provided by the O/S for

communications between the user programs and the O/S. 2. When the cin statement is executed and in turn the read()

system call gets invoked. 3. A program in execution is termed as Process. 4. A shell, also known as command interpreter,

is basically a process which reads the command issued to a linux terminal. 5. The syntax of the fork() system call is:

98 | P a g e Space for learners: pid_t fork(); 6. True 7. False 8. True 9. True 10. False 5.8 POSSIBLE QUESTIONS 1. What is a

system call? How is it invoked indirectly? Explain. 2. What is API? 3. Write down the basic difference between a program

and a process. 4. Write short notes on: a. exit() system call b. fork() system call c. wait() system call 5. Write a program in

C to create a child process which will calculate the length the string “GUIDOL” and displays it. The parent should only

terminate when the child completes its task. 6. Discuss the OPEN system call. 7. Write a program in C to illustrate the use

of creat, open, read, write and close system calls. 5.9 REFERENCES AND SUGGESTED READINGS ? Tanenbaum, A.S.,

BOS, H., Modern Operating Systems, PEARSON Publications.

99 | P a g e Space for learners: UNIT 6: PROCESS SCHEDULING ALGORITHMS-I Unit Structure: 6.1 Introduction 6.2 Unit

Objective 6.3 CPU Scheduling 6.4 Process Scheduling Queues 6.5 Two State Process Model 6.6 Type of Process

Schedulers 6.7 Scheduling Algorithms 6.7.1 When Scheduling is Preemptive or non-Preemptive 6.7.2 Important CPU

scheduling Terminologies 6.7.3 CPU

52% MATCHING BLOCK 62/320

Scheduling Criteria 6.7.4 First Come First Serve (FCFS) 6.7.5 Shortest Job Next (SJN) or Shortest Job First (SJF) 6.7.6

Shortest Remaining Time

First (SRTF) 6.8 Summing Up 6.9 Answers to Check Your Progress 6.10 Possible Questions 6.11 References & Suggested

Readings 6.1 INTRODUCTION In this unit you will learn the basic concept of process scheduling which is the activity of

the process manager that handles the removal of the running process from the CPU and the selection of another

process on the basis of a particular strategy. Process scheduling is an essential part of Multiprogramming operating

systems. Such operating systems allow more than one process to be loaded into the executable memory at a time and

the loaded process shares the CPU using time multiplexing. The unit will also familiarize you with key terms related to

process

100 | P a g e Space for learners: scheduling like turn-around time, burst time, waiting time etc. You will also learn that

scheduling algorithms are divided in to two categories: preemptive and non-preemptive. The unit will thoroughly discuss

some important scheduling algorithms like: FCFS, SJF, SRTF etc. 6.2 UNIT OBJECTIVES After going through this unit, you

will be able to: ? understand about CPU scheduling ? know various types of CPU Scheduling ? identify the important CPU

scheduling Terminologies ? define CPU Scheduling Criteria ? understand various types of CPU scheduling Algorithm In a

system, there are a number of processes that are present in different states at a particular time. Some processes may be

in the waiting state, others may be in the running state and so on. Have you ever thought how CPU selects one process

out of some many processes for execution? Yes, you got it right. CPU uses some kind of process scheduling algorithms

to select one process for its execution amongst so many processes. The process scheduling algorithms are used to

maximize CPU utilization by increasing throughput. In this unit, we will learn about various process scheduling

algorithms used by CPU to schedule a process. 6.3 CPU SCHEDULING?

98% MATCHING BLOCK 63/320

CPU Scheduling is a process of determining which process will own CPU for execution while another process is on

hold. The main task of CPU scheduling is to make sure that whenever the CPU remains idle, the OS at least select one

of the processes available in the ready queue for execution. The selection process will be carried out by the CPU

scheduler. It selects one of the processes in memory that are ready for execution. 6.4 PROCESS SCHEDULING

QUEUES

101 | P a g e Space for learners: Process Scheduling Queues help you to maintain a distinct queue for each and every

process states and PCBs. All the processes of the same execution state are placed in the same queue. Therefore,

whenever the state of a process is modified, its PCB needs to be unlinked from its existing queue, which moves back to

the new state queue. Three types of operating system queues are: 1. Job queue – It helps you to store all the processes

in the system. 2. Ready queue – This type of queue helps you to set every process residing in the main memory, which is

ready and waiting to execute. 3. Device queues – It is a process that is blocked because of the absence of an I/O device.

6.5 TWO STATE PROCESS MODEL Two-state process models are: Running In the Operating system, whenever a new

process is built, it is entered into the system, which should be running. Not Running The processes that are not running

are kept in a queue, which is waiting for their turn to execute. Each entry in the queue is a point to a specific process. 6.6

TYPE OF PROCESS SCHEDULERS A scheduler is a type of system software that allows you to handle process scheduling.

There are mainly three types of Process Schedulers: 1. Long Term 2. Short Term 3. Medium Term Long Term Scheduler

102 | P a g e Space for learners: Long term scheduler is also known as a job scheduler. This scheduler regulates the

program and selects process from the queue and loads them into memory for execution. It also regulates the degree of

multi-programing. However, the main goal of this type of scheduler is to offer a balanced mix of jobs, like processor, I/O

jobs that allow managing multiprogramming. Medium Term Scheduler Medium-term scheduling is an important part of

swapping. It enables you to handle the swapped out-processes. In this scheduler, a running process can become

suspended, which makes an I/O request. Short Term Scheduler Short term scheduling is also known as CPU scheduler.

The main goal of this scheduler is to boost the system performance according to set criteria. This helps you to select

from a group of processes that are ready to execute and allocates CPU to one of them. 6.7 SCHEDULING ALGORITHMS

A Process Scheduler schedules different processes to be assigned to the CPU based on particular scheduling algorithms.

There are six popular process scheduling algorithms which we are going to discuss in this unit: ? First-Come, First-

Served (FCFS) Scheduling ? Shortest-Job-Next (SJN) Scheduling ? Priority Scheduling ? Shortest Remaining Time ?

Round Robin(RR) Scheduling ? Multiple-Level Queues Scheduling These algorithms are either non-preemptive or

preemptive. Non- preemptive algorithms are designed so that once a process enters the running state; it cannot be

preempted until it completes its allotted time, whereas the preemptive scheduling is based on priority where a scheduler

may preempt a low priority running process anytime when a high priority process enters into a ready state.

103 | P a g e Space for learners: Preemptive Scheduling is a CPU scheduling technique that works by dividing time slots

of CPU to a given process. The time slot given might be able to complete the whole process or might not be able to it.

When the burst time of the process is greater than CPU cycle, it is placed back into the ready queue and will execute in

the next chance. This scheduling is used when the process switch to ready state. Algorithms that are backed by

preemptive scheduling are round- robin (RR), priority, SRTF (Shortest Remaining Time First). Non-preemptive Scheduling

is a CPU scheduling technique the process takes the resource (CPU time) and holds it till the process gets terminated or

is pushed to the waiting state. No process is interrupted until it is completed, and after that processor switches to

another process. Algorithms that are based on non-preemptive Scheduling are non- preemptive priority and Shortest

Job First. Preemptive Vs Non-Preemptive Scheduling Preemptive Scheduling Non-Preemptive Scheduling Resources are

allocated according to the cycles for a limited time. Resources are used and then held by the process until it gets

terminated. The process can be interrupted, even before the completion. The process is not interrupted until its life cycle

is complete. Starvation may be caused, due to the insertion of priority process in the queue. Starvation can occur when a

process with large burst time occupies the system. Maintaining queue and remaining time needs storage overhead. No

such overheads are required.

104 | P a g e Space for learners: 6.7.1 When Scheduling is Preemptive or Non- Preemptive To determine if scheduling is

preemptive or non-preemptive, consider these four parameters: 1.

68% MATCHING BLOCK 65/320

A process switches from the running to the waiting state. 2. Specific process switches from the running state to the

ready state. 3. Specific process switches from the waiting state to the ready state. 4.

73% MATCHING BLOCK 64/320

process switches from the running state to the ready state. 3. Specific process switches from the waiting state to the

ready state. 4.

Process finished its execution and terminated. Only conditions 1 and 4 apply, the scheduling is called non- preemptive.

All others scheduling are preemptive . 6.7.2 Important CPU scheduling Terminologies Various times related to process are

1. Arrival time 2. Waiting time 3. Response time 4. Burst time 5. Completion time 6. Turn Around Time 7. Gant Chart 1)

Arrival Time (AT) The time when the process arrives into the running state is called as the Arrival time of the process. In

simple words, the time at which any process enters the CPU is known as the arrival time. 2) Waiting Time (WT) It is the

time for which a process waits for going into the running state. It is the sum of the time spent by the process in the ready

state and the waiting state. Another way of calculating it is as follows: Waiting Time= Turn Around Time – Burst Time WT

= TAT – BT

105 | P a g e Space for learners: 3) Response Time The time difference between the first time a process goes into the

running state and the arrival time of the process is called the response time of the process. 4) Burst Time (BT) The time

for which the process needs to be in the running state is known as the burst time of the process. We can also define it as

the time which a process requires for execution is the Burst time of the process. 5) Completion Time (CT) The time when

the Process is done with all its execution and it enters the termination state is called as the completion time of the

process. It can be also defined as the time when a process ends. 6) Turnaround Time (TAT) Turn Around time can be

defined as the total time the process remains in the main memory of the system. The Ready state, waiting for state and

the Running State, together make up the main memory of the system. So, the time for which the process remains in

these states is known as the turnaround time of the process. In simple words, it is the time that a process spends after

entering the ready state and before entering the termination state. It can be calculated as follows: Turn Around Time =

Completion Time – Arrival Time TAT = CT - AT 7) Gant Chart The Gant chart is used to represent the currently executing

process at every single unit of time. This time unit is the smallest unit of time in the processor. 6.7.3 CPU Scheduling

Criteria A CPU scheduling algorithm tries to maximize and minimize the following:

106 | P a g e Space for learners: Fig 6.1 Scheduling Criteria Maximize:

100% MATCHING BLOCK 66/320

CPU utilization: CPU utilization is the main task in which the operating system needs to make sure that CPU remains as

busy as possible. It can range from 0 to 100 percent.

However, for the RTOS, it can be range from 40 percent for low-level and 90 percent for the high-level system.

Throughput:

96% MATCHING BLOCK 67/320

The number of processes that finish their execution per unit time is known Throughput. So, when the CPU is busy

executing the process, at that time, work is being done, and the work completed per unit time is called Throughput.

Minimize: Waiting

100% MATCHING BLOCK 68/320

Waiting time: Waiting time is an amount that specific process needs to wait in the ready queue. Response time: It is an

amount to time in which the request was submitted until the first response is produced. Turnaround Time: Turnaround

time is an amount of time to execute a specific process. It is the calculation of the total time spent waiting to get into

the memory, waiting in the queue and, executing on the CPU. The period between the time of process submission to

the completion time is the turnaround time. 6.7.4

First Come First Serve (FCFS) First Come First Serve (FCFS) is an operating system scheduling algorithm that automatically

executes queued requests and processes in order of their arrival.

69% MATCHING BLOCK 69/320

It is the easiest and simplest CPU scheduling algorithm. In this type of algorithm, processes which request the 107 |

P a g e Space for learners: CPU first get the CPU allocation first. This is managed with a FIFO queue. The full form of

FCFS is First Come First Serve.

93% MATCHING BLOCK 70/320

As the process enters the ready queue, its PCB (Process Control Block) is linked with the tail of the queue and, when

the

80% MATCHING BLOCK 71/320

CPU becomes free, it should be assigned to the process at the beginning of the queue. It supports both non-

preemptive and pre-emptive scheduling algorithm.

Example of FCFS scheduling A real-life example of the FCFS method is buying a movie ticket on the ticket counter. In this

scheduling algorithm, a person is served according to the queue manner. The person who arrives first in the queue first

buys the ticket and then the next one. This will continue until the last person in the queue purchases the ticket. Using this

algorithm, the CPU process works in a similar manner. Advantages- ? It is simple and easy to understand. ? It can be

easily implemented using queue data structure. ? It does not lead to starvation. Disadvantages- ? It does not consider the

priority or burst time of the processes. ? It suffers from convoy effect. How FCFS Works? Calculating Average Waiting

Time Problem-01:

100% MATCHING BLOCK 72/320

Consider the set of 5 processes whose arrival time and burst time are given below-

51% MATCHING BLOCK 74/320

Consider the set of 5 processes whose arrival time and burst time are given below- Table 6.1 Process Id Arrival time

Burst time P1 3 4 P2 5 3 P3 0 2 P4 5 1 108 | P

100% MATCHING BLOCK 73/320

set of 5 processes whose arrival time and burst time are given below-

100% MATCHING BLOCK 75/320

Process Id Arrival time Burst time P1 3 4 P2 5 3 P3 0 2 P4 5 1 108 | P

a g e Space for learners: P5 4 3

87% MATCHING BLOCK 76/320

If the CPU scheduling policy is FCFS, calculate the average waiting time

and average turnaround time. Solution- Here, the Gantt Chart- 0 2 3 7 10 13 14 P3 P1 P5 P2 P4 Fig 6.2 Gannt chart Here,

black box represents the idle time of CPU. Now, we know that-

50% MATCHING BLOCK 77/320

Turn Around time = Exit time – Arrival time Waiting time = Turn Around time – Burst time Table 6.2 Process Id Exit time

Turn Around time Waiting time

72% MATCHING BLOCK 78/320

time – Burst time Table 6.2 Process Id Exit time Turn Around time Waiting time P1 7 7 – 3 = 4 4 – 4 = 0 P2 13 13 – 5 =

8 8 – 3 = 5 P3 2 2 – 0 = 2 2 – 2 = 0 P4 14 14 – 5 = 9 9 – 1 = 8 P5 10 10 – 4 = 6 6 – 3 = 3

100% MATCHING BLOCK 79/320

Average Turn Around time = (4 + 8 + 2 + 9 + 6) / 5 = 29 / 5 = 5.8 unit Average waiting time = (0 + 5 + 0 + 8 + 3) / 5 =

16 / 5 = 3.2 unit 6.7.5 Shortest Job

Next (SJN) or Shortest

82% MATCHING BLOCK 81/320

Job First (SJF) Shortest Job First (SJF) is an algorithm in which the process having the smallest execution time is chosen

for the next execution. This scheduling method can be preemptive or non-preemptive. It 109 | P a g e Space for

learners: significantly reduces the average waiting time for other processes awaiting execution. The full form of SJF is

Shortest Job First. There are basically two types of

92% MATCHING BLOCK 80/320

SJF) is an algorithm in which the process having the smallest execution time is chosen for the next execution. This

scheduling

100% MATCHING BLOCK 82/320

There are basically two types of SJF methods: Non-Preemptive SJF and Preemptive SJF.

91% MATCHING BLOCK 84/320

of SJF methods: Non-Preemptive SJF and Preemptive SJF. Characteristics of SJF Scheduling ? It is associated with

each job as a unit of time to complete. ? This algorithm method is helpful for batch-type processing, where waiting for

jobs to complete is not critical. ? It can improve process throughput by making sure that shorter jobs are executed first,

hence possibly have a short turnaround time. ? It improves job output by offering shorter jobs, which should be

executed first, which mostly have a shorter turnaround time.

100% MATCHING BLOCK 83/320

is associated with each job as a unit of time to complete. ? This algorithm method is helpful for batch-type processing,

where waiting for jobs to complete is not critical. ?

Advantages- Preemtive-SJF

91% MATCHING BLOCK 85/320

is optimal and guarantees the minimum average waiting time. ? It provides a standard for other algorithms since no

other algorithm performs better than it. Disadvantages- It cannot be implemented practically since burst time of the

processes cannot be known in advance. ? It leads to starvation for processes with larger burst time. ? Priorities cannot

be set for the processes. ? Processes with larger burst time have poor response time. 6.7.5.1.

96% MATCHING BLOCK 87/320

time. 6.7.5.1. Non-Preemptive SJF In non-preemptive SJF scheduling, once the CPU cycle is allocated to process, the

process holds it till it reaches a waiting state or terminated. Consider the following five processes each having its own

unique burst time and arrival time. 110 |

88% MATCHING BLOCK 86/320

Preemptive SJF In non-preemptive SJF scheduling, once the CPU cycle is allocated to process, the process holds it till

it reaches a waiting state or terminated.

P a g e Space for learners: Table 6.3

95% MATCHING BLOCK 94/320

Process Queue Burst time Arrival time P1 6 2 P2 2 5 P3 8 1 P4 3 0 P5 4 4 Step 0) At time=0, P4 arrives and starts

execution. Step 1) At time= 1, Process P3 arrives. But, P4 still needs 2 execution units to complete. It will continue

execution. Step 2) At time =2, process P1 arrives and is added to the waiting queue. P4 will continue execution. Step 3)

At time = 3, process P4 will finish its execution. The burst time of P3 and P1 is compared. Process P1 is executed

because its burst time is less compared to P3. Step 4) At time = 4, process P5 arrives and is added to the waiting queue.

P1 will continue execution. Step 5) At time = 5, process P2 arrives and is added to the waiting queue. P1 will continue

execution. Step 6) At time = 9, process P1 will finish its execution. The burst time of P3, P5, and P2 is compared.

Process P2 is executed because its burst time is the lowest. Step 7) At time=10, P2 is executing and P3 and P5 are in the

waiting queue. Step 8) At time = 11, process P2 will finish its execution. The burst time of P3 and P5 is compared.

Process P5 is executed because its burst time is lower. Step 9) At time = 15, process P5 will finish its execution. Step 10)

At time = 23, process P3 will finish its execution. Step 11) Let's calculate the average waiting time for above example.

Wait time of, P4= 0-0=0 P1= 3-2=1 P2= 9-5=4 111 | P a g e Space for learners: P5= 11-4=7 P3= 15-1=14 Average

Waiting Time= 0+1+4+7+14/5 = 26/5 = 5.2 6.7.5.2 Preemptive SJF In Preemptive SJF Scheduling, jobs are put into the

ready queue as they come. A process with shortest burst time begins execution. Even, if a process with a shorter burst

time arrives, the current process is removed or preempted from execution, and the shorter job is allocated CPU cycle.

Consider the

75% MATCHING BLOCK 88/320

Step 0) At time=0, P4 arrives and starts execution. Step 1) At time= 1, Process P3 arrives. But, P4 still needs 2 execution

units to complete. It will continue execution. Step 2) At time =2, process P1 arrives and is added to the waiting queue.

P4 will continue execution. Step 3) At time = 3, process P4 will finish its execution. The burst time of P3 and P1 is

100% MATCHING BLOCK 89/320

compared. Process P1 is executed because its burst time is less compared to P3.

86% MATCHING BLOCK 90/320

Step 4) At time = 4, process P5 arrives and is added to the waiting queue. P1 will continue execution. Step 5) At time =

5, process P2 arrives and is added to the waiting queue. P1 will continue execution. Step 6) At time = 9, process P1 will

finish its execution. The burst time of P3, P5, and P2

53% MATCHING BLOCK 91/320

is compared. Process P2 is executed because its burst time is the lowest. Step 7) At time=10, P2 is executing and P3

and P5 are in the waiting queue. Step 8) At time = 11, process P2 will finish its execution. The burst time of P3 and P5 is

compared. Process P5 is executed because its burst time is

77% MATCHING BLOCK 92/320

Step 9) At time = 15, process P5 will finish its execution. Step 10) At time = 23, process P3 will finish its execution.

95% MATCHING BLOCK 93/320

jobs are put into the ready queue as they come. A process with shortest burst time begins execution. Even, if a process

with a shorter burst time arrives, the current process is removed or preempted from execution, and the shorter job is

allocated CPU cycle.

table5.3 with the five processes.

71% MATCHING BLOCK 95/320

Step 0) At time=0, P4 arrives and starts execution. Step 1) At time= 1, Process P3 arrives. But, P4 has a shorter burst

time. It will continue execution. Step 2) At time = 2, process P1 arrives with burst time = 6. The burst time is more than

that of P4. Hence, P4 will continue execution. Step 3) At time = 3, process P4 will finish its execution. The burst time of

P3 and P1 is

93% MATCHING BLOCK 97/320

Step 1) At time= 1, Process P3 arrives. But, P4 has a shorter burst time. It will continue execution. Step 2) At time = 2,

process P1 arrives with burst time = 6. The burst time is more than that of P4. Hence, P4 will continue execution. Step

3) At time = 3, process P4 will finish its execution. The burst time of P3 and P1 is compared. Process P1 is executed

because its burst time is lower. Step 4) At time = 4, process P5 will arrive. The burst time of P3, P5, and P1 is compared.

Process P5 is executed because its burst time is lowest. Process P1 is preempted. Step 5) At time = 5, process P2 will

arrive. The burst time of P1, P2, P3, and P5 is compared. Process P2 is executed because its burst time is least. Process

P5 is preempted.

100% MATCHING BLOCK 96/320

compared. Process P1 is executed because its burst time is lower.

73% MATCHING BLOCK 98/320

Step 4) At time = 4, process P5 will arrive. The burst time of P3, P5, and P1 is compared. Process P5 is executed

because its burst time is lowest. Process P1 is preempted. Step 5) At time = 5, process P2 will arrive. The burst time of

P1, P2, P3, and P5 is compared. Process P2 is executed because its burst time is least. Process P5 is preempted.

73% MATCHING BLOCK 100/320

Step 6) At time =6, P2 is executing. Step 7) At time =7, P2 finishes its execution. The burst time of P1, P3, and P5 is

compared. Process P5 is executed because its burst time is

100% MATCHING BLOCK 102/320

Step 6) At time =6, P2 is executing. Step 7) At time =7, P2 finishes its execution. The burst time of P1, P3, and P5 is

compared. Process P5 is executed because its burst time is lesser. 112 |

76% MATCHING BLOCK 99/320

is executing. Step 7) At time =7, P2 finishes its execution. The burst time of P1, P3, and P5 is compared. Process P5 is

executed because its burst time is

78% MATCHING BLOCK 101/320

Step 7) At time =7, P2 finishes its execution. The burst time of P1, P3, and P5 is compared. Process P5 is executed

because its burst time is

P a g e Space for learners:

63% MATCHING BLOCK 104/320

Step 8) At time =10, P5 will finish its execution. The burst time of P1 and P3 is compared. Process P1 is executed

because its burst time is less. Step 9) At time =15, P1 finishes its execution. P3 is the only process left. It will start

execution. Step 10) At time =23, P3 finishes its execution.

100% MATCHING BLOCK 105/320

Step 8) At time =10, P5 will finish its execution. The burst time of P1 and P3 is compared. Process P1 is executed

because its burst time is less. Step 9) At time =15, P1 finishes its execution. P3 is the only process left. It will start

execution. Step 10) At time =23, P3 finishes its execution. Step 11) Let's calculate the average waiting time for above

example. Wait time P4= 0-0=0 P1= (3-2) + 6 =7 P2= 5-5 = 0 P5= 4-4+2 =2 P3= 15-1 = 14 Average Waiting Time =

0+7+0+2+14/5 = 23/5 =4.6 6.7.6.

98% MATCHING BLOCK 103/320

At time =10, P5 will finish its execution. The burst time of P1 and P3 is compared. Process P1 is executed because its

burst time is

Shortest Remaining Time First (SRTF) This Algorithm is the preemptive version of SJF scheduling. In SRTF, the execution

of the process can be stopped after certain amount of time. At the arrival of every process, the short term scheduler

schedules the process with the least remaining burst time among the list of available processes and the running process.

Once all the processes are available in the ready queue, No preemption will be done and the algorithm will work as SJF

scheduling. The context of the process is saved in the Process Control Block when the process is removed from the

execution and the next process is scheduled. This PCB is accessed on the next execution of this process. Advantages:

SRTF algorithm makes the processing of the jobs faster than SJN algorithm. Disadvantages: The context switch is done a

lot more times in SRTF than in SJN, and consumes CPU’s valuable time for processing.

113 | P a g e Space for learners: Example: In this Example, there are five jobs P1, P2, P3. Their arrival time and burst time

are given below in the table. Table 6.4 Process Burst Time Arrival Time P1 7 0 P2 3 1 P3 4 3 Fig 6.2 Gantt Chart

Explanation ? At the 0th unit of the CPU, there is only one process that is P1, so P1 gets executed for the 1 time unit. ? At

the 1st unit of the CPU, Process P2 arrives. Now, the P1 needs 6 more units more to be executed, and the P2 needs only

3 units. So, P2 is executed first by preempting P1. ? At the 3rd unit of time, the process P3 arrives, and the burst time of P3

is 4 units which is more than the completion time of P2 that is 1 unit, so P2 continues its execution. ? Now after the

completion of P2, the burst time of P3 is 4 units that mean it needs only 4 units for completion while P1 needs 6 units for

completion. ? So, this algorithm picks P3 above P1 due to the reason that the completion time of P3 is less than that of

P1 ? P3 gets completed at time unit 8, there are no new process arrived. ? So again, P1 is sent for execution, and it gets

completed at the 14th unit. As

90% MATCHING BLOCK 106/320

Arrival Time and Burst time for three processes P1, P2, P3

95% MATCHING BLOCK 107/320

Arrival Time and Burst time for three processes P1, P2, P3

are given in the above diagram. Let us calculate Turnaround time, completion time, and waiting time.

114 | P a g e Space for learners: Table 6.5 Average waiting time is calculated by adding the waiting time of all processes

and then dividing them by no. of processes. average waiting time = waiting for time of all processes/ no.of processes

average waiting time=7+1+1=9/3 = 3ms CHECK YOUR PROGRESS A. Multiple Choice Questions: 1. Which of the

following scheduling algorithm is non-preemtive?

92% MATCHING BLOCK 109/320

a) SJF b) FCFS c) SRTF d) none of the mentioned 2. The processes that are residing in main memory and are ready and

waiting to execute are kept on a list called _____________ a) job queue b) ready queue c) execution queue d) process

queue 3. The interval from the time of submission of a process to the time of completion is termed as ____________

a) waiting time b) turnaround time c) response time d) throughput

100% MATCHING BLOCK 108/320

The interval from the time of submission of a process to the time of completion is

78% MATCHING BLOCK 110/320

Process Arrival Time Burst Time Completion Time Turn Around Time Waiting Time P1 0 7 14 14-0=14 14-7=7 P2 1 3 5

5-1=4 4-3=1 P3 3 4 8 8-3=5 5-4=1 115 | P

a g e Space for learners: 4.

100% MATCHING BLOCK 112/320

Which scheduling algorithm allocates the CPU first to the process that requests the CPU first? a) first-come, first-

served scheduling b) shortest job scheduling c) priority scheduling d) none of the mentioned 5.

76% MATCHING BLOCK 111/320

a) first-come, first-served scheduling b) shortest job scheduling c) priority scheduling

Scheduling algorithms that work on complex: a). uses few resources b). uses most resources c). are suitable for large

computers d). all of the mentioned 6.

63% MATCHING BLOCK 113/320

Scheduling algorithm which allocates the CPU first to the process which requests the CPU first? a). FCFS scheduling b).

priority scheduling c).

shortest job scheduling d). none of the mentioned 7. In an operating system, the portion of the process scheduler that

forward processes is concerned with : a). running processes are assigning to blocked queue b). ready processes are

assigning to CPU c). ready processes are assigning to the waiting queue d). all of the mentioned 8. CPU performance is

measured through ________. a. Throughput b. MHz c. Flaps d. None of the above 9. FCFS maintains a __________ a.

Queue b. Stack c. Tree d. List 10. Full form of FCFS is- a). First Come First Save

116 | P a g e Space for learners: b). Frequently Come First Save c). First Come First Serve d). First Come Final Serve B. Fill

in the Blanks: 1. Waiting Time=Turn Around Time - _________________. 2. _________ Chart is used to represent the

currently executing process at every single unit of time. 3. Turn Around Time= Completion Time- ______________. 4.

The Time difference between the first time a process goes into the running state and arrival time of the process is called

__________________. 5. The OS maintains all PCBs in process scheduling _____________. 6. __________ scheduler

determines which programs are admitted to the system for processing. 7. ___________ scheduling method can be

managed with a FIFO queue. 8. ___________ is sometimes called SRTF scheduling. 9. __________ is the full of SJF

algorithm. 10. __________ method selects the process with the shortest execution time for execution next. C. State

whether TRUE or FALSE 1.

100% MATCHING BLOCK 114/320

CPU scheduling is a process of determining which process will own CPU for execution while another process is on

hold. 2.

100% MATCHING BLOCK 115/320

In Preemptive Scheduling, the tasks are mostly assigned with their

shortest. 3. In the Non-preemptive

100% MATCHING BLOCK 116/320

scheduling method, the CPU has been allocated to a specific process. 4.

Burst time is a time required for the process to wait. 5.

90% MATCHING BLOCK 117/320

CPU utilization is the main task in which the operating system needs to make sure that CPU remains as busy as

possible. 6. The number of processes that finish their execution per unit time is known

scheduler.

117 | P a g e Space for learners: 7.

90% MATCHING BLOCK 118/320

Waiting time is an amount that specific process needs to wait in the ready queue. 8. Waiting time is an amount to

complete the execution. 9.

100% MATCHING BLOCK 119/320

Turnaround time is an amount of time to execute a specific process. 10.

The CPU uses scheduling not to improve its efficiency, D. Match Column A with Column B Column A Column B 1. CPU

performance is measured through A. First Come First Serve 2. amount of time to execute a specific process B. Shortest

job next 3. SNF C. turnaround time 4. SJF D. Shortest remaining time first 5. FCFS E. preemtive 6. can be managed with a

FIFO queue F. Grantt chart 7. smallest unit of time in the processor G. troughput 8. ______ method is the simplest and

Easy to understand H. Shortest job first 9. SRTF I. Non-preemtive 10. No such overheads are required in _______

scheduling J. Waiting time 6.8 SUMMING UP ?

100% MATCHING BLOCK 120/320

CPU scheduling is a process of determining which process will own CPU for execution while another process is on

hold. ?

100% MATCHING BLOCK 121/320

In Preemptive Scheduling, the tasks are mostly assigned with their priorities. ?

In the Non-preemptive

100% MATCHING BLOCK 122/320

scheduling method, the CPU has been allocated to a specific process. ?

55% MATCHING BLOCK 123/320

Burst time is a time required for the process to complete execution. It is also called running time. 118 |

88% MATCHING BLOCK 124/320

time is a time required for the process to complete execution. It is also called running time. 118 |

P a g e Space for learners: ? CPU

88% MATCHING BLOCK 125/320

utilization is the main task in which the operating system needs to make sure that CPU remains as busy as possible ?

The number of processes that finish their execution per

91% MATCHING BLOCK 126/320

per unit time is known Throughput. ? Waiting time is an amount that specific process needs to wait in the ready queue.

? It is an amount to time in which the request was submitted until the first response is produced. ? Turnaround time is

an amount of time to execute a specific process. ?

Timer interruption is a method that is closely related to preemption, ? A

76% MATCHING BLOCK 127/320

dispatcher is a module that provides control of the CPU to the process. ?

Some popular process

87% MATCHING BLOCK 128/320

scheduling algorithms are: 1) First Come First Serve (FCFS), 2) Shortest-Job-First (SJF)

71% MATCHING BLOCK 129/320

scheduling algorithms are: 1) First Come First Serve (FCFS), 2) Shortest-Job-First (SJF) Scheduling 3) Shortest

Remaining Time 4)

100% MATCHING BLOCK 130/320

First Come First Serve (FCFS), 2) Shortest-Job-First (SJF) Scheduling 3) Shortest Remaining Time 4) Priority Scheduling

etc. ? In the First Come First Serve method,

100% MATCHING BLOCK 131/320

the process which requests the CPU gets the CPU allocation first. ?

In the Shortest Remaining time, the process will be allocated to the task, which is closest to its completion. ? In Shortest

job first the shortest execution time should be selected for execution next ? The CPU uses scheduling to improve its

efficiency. 6.9 ANSWERS TO CHECK YOUR PROGRESS A. Answers: 1. (b), 2.(b), 3.(b), 4(a), 5(c), 6(a), 7(b), 8(a), 9(a), 10(c) B.

Answers: 1. Burst time, 2. grantt, 3. arrival, 4. response, 5. queue, 6. Job scheduler, 7. FCFS, 8. Preemtive SJF, 9. Shortest

Job First, 10. SJF

119 | P a g e Space for learners: C. Answers: 1. True, 2. False, 3. True, 4. False, 5. True, 6. False, 7. True, 8. False, 9. True, 10.

false D. Answers: 1. G, 2. C, 3. B, 4. H, 5. A, 6. A, 7. F, 8. A, 9. D, 10. E 6.10 POSSIBLE QUESTIONS Short-Answer Questions:

1. What is process scheduling? 2. What is the need of process scheduling? 3. What is preemptive and non-preemptive

scheduling? 4. What are the various scheduling criteria for CPU scheduling? 5. Define throughput. 6. What is turnaround

time? 7. What is waiting time in CPU scheduling? 8. What is response time in CPU scheduling? 9. What is Gantt Chart? 10.

What are the advantages of FCFS algorithm? Long-Answer Questions: 1. Discuss the FCFS scheduling algorithm with

illustration. 2. Explain SJF scheduling algorithm with illustration. 3. Explain shortest remaining time next scheduling

algorithm with illustration. 4.

100% MATCHING BLOCK 132/320

Consider the set of 5 processes whose arrival time and burst time are given below:

54% MATCHING BLOCK 134/320

Consider the set of 5 processes whose arrival time and burst time are given below: Process No Arrival Time Burst Time

P1 3 1 P2 1 4 P3 4 2 P4 0 6 P5 2 3

100% MATCHING BLOCK 133/320

set of 5 processes whose arrival time and burst time are given below:

56% MATCHING BLOCK 135/320

If the CPU scheduling policy is SJF non-preemptive, calculate the average waiting time and average turnaround time.

5. Consider the set of 6 processes whose arrival time and burst time are given below: 120 |

39% MATCHING BLOCK 137/320

the average waiting time and average turnaround time. 5. Consider the set of 6 processes whose arrival time and burst

time are given below: 120 | P a g e Space for learners: Process No Arrival Time Burst Time P1 3 4 P2 5 3 P3 0 2

100% MATCHING BLOCK 136/320

set of 6 processes whose arrival time and burst time are given below: 120 |

P4 5 1 P5 4 3 P6 7 5 If the CPU scheduling policy is STRF, calculate the average waiting time and average turnaround

time. 6. Discuss the various key terms used in process scheduling. 7. Discuss the criteria for a scheduling algorithm can

be preemptive or non-preemptive. 8. Discuss the importance of scheduling algorithms. 9. Explain the various scheduling

criteria for CPU scheduling. 10. Compare the preemptive and non-preemptive scheduling algorithms. 6.11 REFERENCES

AND SUGGESTED READINGS ? lberschatz, Galvin, and Gagne's Operating System Concepts, Seventh Edition.

121 | P a g e Space for learners: UNIT 7: PROCESS SCHEDULING ALGORITHM-II Unit Structure: 7.1 Introduction 7.2 Unit

Objectives 7.3 Round Robin Scheduling 7.4 Priority CPU Scheduling 7.4.1 Pre-emptive Priority Scheduling 7.4.2 Non-

Preemptive Priority Scheduling 7.4.3 Problem with Priority Scheduling Algorithm 7.4.4 Using Aging Technique with Priority

Scheduling 7.5 Multilevel Queue Scheduling 7.6 Implementation Of Concurrency Primitives 7.6.1 Problems In

Concurrency 7.6.2 Advantages of Concurrency 7.6.3 Drawbacks of Concurrency 7.6.4 Issues Of Concurrency 7.6.5

Process Synchronization 7.6.6 Race Condition 7.6.7 Critical Section Problem 7.6.8 Semaphore 7.7 Scheduling In Real Time

System 7.8 Summing Up 7.9 Answers to Check Your Progress 7.10 Possible Questions 7.11 References and Suggested

Readings

122 | P a g e Space for learners: 7.1 INTRODUCTION CPU scheduling is a technique that allows one process to use the

CPU while another's execution is halted (in a waiting state) due to the lack of a resource such as I/O, allowing the CPU to

be fully utilised. I/O and CPU time are both used in a typical procedure. Time spent waiting for I/O in a uni-programming

system like MS- DOS is wasted, and CPU is free during this time. One process can use the CPU while another waits for

I/O in multiprogramming systems. This is only possible with process scheduling. CPU scheduling is the foundation of a

multi-programmed operating system. The OS can make a computer more productive by switching the CPU among the

processes. The operating system must choose one of the processes in the ready queue to execute whenever the CPU

becomes idle. The short-term scheduler is in charge of the selecting process (or CPU scheduler). The scheduler chooses

from among the ready-to-run processes in memory and assigns the CPU to one of them. A multiprogramming system

allows multiple processes to run at the same

56% MATCHING BLOCK 138/320

time. When a process must wait, the OS takes the CPU away from that process and assigns it to another. This pattern

persists. Multiprogramming's goal is to keep at least one process running at all times in order to maximise CPU utilisation.

Only one process can execute at a time on a single processor system; any other processes

100% MATCHING BLOCK 139/320

must wait until the CPU is free and can be rescheduled.

CPU scheduling is to make the system more efficient, quick, and fair. The introduction and objective portion of Process

scheduling algorithm were discussed in the previous Process scheduling algorithm Unit VI with different scheduling

algorithm. As a result, another five scheduling algorithms, such as Round Robin Scheduling, Priority CPU Scheduling,

Multilevel Queue Scheduling, Multilevel Queue Scheduling, and Scheduling in Real Time System, have been discussed in

this Unit VII. 7.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? understand about Round Robin

scheduling ? understand about various types of priority CPU scheduling

123 | P a g e Space for learners: ? know about Multilevel Queue Scheduling ? explain various issues related to the

implementation of concurrency primitives ? explain scheduling in real time system 7.3 ROUND ROBIN SCHEDULING The

RR scheduling algorithm was created with time-sharing systems in mind. It's the same as FCFS scheduling, but with the

addition of pre-emption to switch between processes. Every process is given

95% MATCHING BLOCK 140/320

a small unit of time called a quantum or time slice.

The duration of a time quantum is typically 10 to 100 milliseconds. When a process has completed its execution for the

specified amount of time, it is pre-empted and another process executes for the specified amount of time. The CPU

scheduler goes around the ready queue, allocating the CPU to every process for 1 time quantum intervals. A circular

queue is used to treat

75% MATCHING BLOCK 141/320

the ready queue. The ready queue is kept as a FIFO queue of processes

to execute RR scheduling. New processes are added to the ready queue's

61% MATCHING BLOCK 142/320

tail. The CPU scheduler selects the first process from the ready queue, sets the timer to interrupt after one time

quantum, and dispatches it. Then two cases may arise; the process may have a CPU burst of less than 1 time quantum,

in which case the process will surrender the CPU voluntarily. After that, the scheduler will move on to the next process in

the ready queue. Another scenario is that if the current operating process's CPU burst

59% MATCHING BLOCK 143/320

is longer than one time quantum, the timer will go off, causing an OS interrupt. A context switch is performed, and the

process is pushed to the back of the ready queue. The

CPU scheduler will then choose the next available process from the ready queue. For example: suppose time quantum is

5ms and the process

31% MATCHING BLOCK 144/320

P1,P2,P3 and P4 are scheduled by using RR scheduling Process Burst Time P1 20 P2 2 P3 6 P4 2 124 | P a g e Space for

learners: GANTT chart P1 P2 P3 P4 P1 P3 P1 P1

45% MATCHING BLOCK 145/320

P1 20 P2 2 P3 6 P4 2 124 | P a g e Space for learners: GANTT chart P1 P2 P3 P4 P1 P3 P1 P1 Process

87% MATCHING BLOCK 146/320

GANTT chart P1 P2 P3 P4 P1 P3 P1 P1 Process P1

receives the first 5 milliseconds, but because it requires another 15 milliseconds, it is pre-empted after the first time

quantum, and the CPU is given to process P2. P2 finishes its execution before the 5ms time limit expires. The CPU is

subsequently allocated to the third process, P3. it is pre-empted after first time quantum, and the CPU is given to the

next process p4. P4 does not require 5ms and exits before reaching its time quantum. The following process, P1, receives

the CPU and it is pre-empted after the second time quantum, and the CPU is given to process P3. P3 finishes its

execution before the 5ms time limit expires. The following process, P1, receives the CPU. Average waiting time is

calculated by adding the waiting time of all processes and then dividing them by no. of processes. Average waiting time

= waiting time of all processes/ no. of processes Processes Burst Time Turn Around

79% MATCHING BLOCK 147/320

Time Turn Around Time = Completion Time – Arrival Time Waiting Time Waiting Time = Turn Around Time – Burst

Time

79% MATCHING BLOCK 148/320

Time Turn Around Time = Completion Time – Arrival Time Waiting Time Waiting Time = Turn Around Time – Burst

Time

40% MATCHING BLOCK 149/320

Burst Time P1 20 30-0=32 30-20=10 P2 2 7-0=7 7-2=5 P3 6 20-0=21 20-6=14 P4 2 14-0=15 14-2=12 0 5 7 12 14 19

20 25 30 125 | P a g e Space for learners: Average waiting time= (10+5+14+12)/4 = 44/4= 10.25ms If the ready queue

has n processes and the time quantum is q, each process receives 1/n of the CPU time in chunks of at most q time

units. Each process must wait (n-1) x q time units

before proceeding to the next time quantum. The magnitude of the time quantum determines the RR policy;

52% MATCHING BLOCK 150/320

if the time quantum is extremely big, the RR policy is the same as FCFS; if the time quantum is extremely tiny, the RR

technique is known as processor sharing. 7.4 PRIORITY CPU SCHEDULING

98% MATCHING BLOCK 153/320

A priority is associated with each process, and the CPU is allocated to the process with the highest priority. Equal

priority processes are scheduled in FCFS order.

100% MATCHING BLOCK 151/320

the CPU is allocated to the process with the highest priority.

100% MATCHING BLOCK 152/320

the CPU is allocated to the process with the highest priority.

87% MATCHING BLOCK 154/320

the CPU is allocated to the process with the highest priority. Equal priority processes are scheduled in FCFS order. The

priority of a process in the Shortest Job First scheduling technique is generally the inverse of the CPU burst time, i.e. the

larger the burst time the lower is the priority of that process. Assume that low numbers indicate high priority in this case.

GANTT chart P2 P1 P4 P3 The average waiting time will be (0+2+22+24)/4=12 ms Priorities can be established both

internally and externally. Internally specified priorities compute the priority of a process using some measurable quantity

or quantities. The priority of process, when internally defined, can be decided based on memory requirements, time

limits, number of open files, ratio of I/O burst to CPU burst etc. Process Burst Time Priority P1 20 2 P2 2 1 P3 6 4 P4 2 3 0

2 22 30 24

126 | P a g e Space for learners: External priorities, on the other hand, are determined by factors outside of the operating

system, such as the importance of the process, the funds paid for the usage of computer resources, the department

sponsoring the activity, and other frequently political concerns. Types of Priority Scheduling Algorithm Priority scheduling

can be of two types: 7.4.1 Pre-emptive Priority Scheduling If a new process arrives at the ready queue with a higher

priority than the presently running process, the CPU is pre-empted, which means the current process's processing is

halted and the incoming new process with the higher priority is given the CPU for execution. 7.4.2 Non-Preemptive

Priority Scheduling If a new process comes with a higher priority than the currently running process in a non-preemptive

priority scheduling algorithm, the incoming process is placed at the front of the ready queue, which means it will be

executed after the current process has completed. 7.4.3

80% MATCHING BLOCK 156/320

Problem with Priority Scheduling Algorithm A major problem with priority scheduling algorithm is indefinite blocking or

starvation. A process is

87% MATCHING BLOCK 155/320

A major problem with priority scheduling algorithm is indefinite blocking or starvation.

considered blocked when it is ready to run but has to wait for the CPU as some other process is running currently. But in

case of priority scheduling if new higher priority processes keeps coming in the ready queue then the processes waiting

in the ready queue with lower priority may have to wait for long durations before getting the CPU for execution. 7.4.4

Using Aging Technique with Priority Scheduling Aging is a solution to the problem of low priority processes being

blocked indefinitely. Aging is a method of progressively boosting the priority of processes that have been waiting for a

long period in the system. For example, if we decide the aging factor to be 0.5 for each day of waiting, then if a process

with priority 10(which is comparatively

127 | P a g e Space for learners: low priority) comes in the ready queue. After one day of waiting, its priority is increased

to 9.5 and so on. 7.5 MULTILEVEL QUEUE SCHEDULING For circumstances when processes can be easily categorised

into separate groups, a new family of scheduling algorithms has been developed. Foreground (or interactive) processes

are distinguished from background (or batch) processes. These two processes have varying response times and, as a

result, may have different scheduling requirements. Furthermore, foreground processes could take precedence over

background processes. The ready queue is divided into numerous different queues using a multi-level

67% MATCHING BLOCK 157/320

queue scheduling technique. The processes are assigned to one queue indefinitely, usually depending on some

property of the process, such as memory size, priority, or kind. Each queue has its own

method for scheduling. Separate queues could be used for foreground and background processes, for example. The

Round Robin algorithm may be used to schedule the foreground queue, while an FCFS algorithm may be used to

schedule the background queue. In addition, the queues must be scheduled, which frequently did using fixed-priority

pre-emptive scheduling. The foreground queue, for example, may have absolute precedence over the background

queue. Consider the following example of a five-queue multilevel queue scheduling algorithm: ? System Processes ?

Interactive Processes ? Interactive Editing Processes ? Batch Processes ? Student Processes Each queue has absolute

precedence over ones with lower priority. If the queues for system processes, interactive processes, and interactive

editing processes were all empty, no process in the batch queue could run. The batch process will be pre-empted if an

128 | P a g e Space for learners: interactive editing process enters the ready queue while a batch process is running. Only

the processes on the lower priority queues will run if there are no processes on the higher priority queue. Consider the

following Example: Once processes on the system queue, the Interactive queue, and Interactive editing queue become

empty, only then the processes on the batch queue will run. The processes in the above diagram are described as

follows: ? System Process: The operating system has its own set of processes to run, which are referred to

33% MATCHING BLOCK 158/320

as System Processes. ? Interactive Process: The Interactive Process is one in which all participants should participate in

the same way. ? Batch Processes: Batch processing is a mechanism in the operating system that gathers programmes

and data into a batch before processing begins. ? Student Process: The system process is always given top priority,

whereas student processes are always given lowest priority System Processes

Interactive Processes Interactive Editing Processes Batch Processes Student Processes Highest Priority Lowest Priority

129 | P a g e Space for learners: There are numerous processes in an operating system, and we can't put them all in a

queue to get the desired outcome; consequently, multilevel queue scheduling is used to overcome this problem. We

may use this scheduling to apply various types of scheduling to various types of processes:

100% MATCHING BLOCK 159/320

For System Processes: First Come First Serve (FCFS) Scheduling. For Interactive Processes: Shortest Job First (SJF)

Scheduling. For Batch Processes: Round Robin (RR) Scheduling

The problem of starvation for lower-level processes is the fundamental drawback of Multilevel Queue Scheduling.

Lower-level processes are either never executed or have to wait a long period due to lower priority or higher priority

processes requiring a long time due to starvation. Example: Suppose there are three queues. Q0- RR with a 10-

millisecond time quantum Q1- RR with a 20-millisecond time quantum Q2-FCFS Scheduling: ? A new job is added to

queue Q0, which is handled by FCFS. Job receives 10 milliseconds when it gains CPU. If it takes longer than 10

milliseconds to complete, the job is pushed to queue Q1. ? In Q1, the work is served FCFS for the second time and is

given an additional 20 milliseconds. It gets pre-empted and pushed to queue Q2 if it still does not complete. 7.6

IMPLEMENTATION OF CONCURRENCY PRIMITIVES Multiple instruction sequences are executed at the same time, which

is known as concurrency. This occurs when numerous process threads are running in parallel in the operating system.

Message passing or shared memory is used by the running process threads to communicate with one another.

Concurrency causes resource sharing, which leads to issues like as deadlocks and resource

130 | P a g e Space for learners: starvation. It aids with approaches such as coordinating execution of processes, memory

allocation, and execution scheduling in order to maximise throughput. 7.6.1 Problems in Concurrency ? Sharing global

resources – If two processes use the same global variable and conduct read and write operations on it, the order in

which those operations are performed is critical. ? Optimal allocation of resources – It is difficult for the operating

system to manage the allocation of resources optimally. ? Locating programming errors – Because reports are rarely

reproducible, finding a programming error might be challenging. ? Locking the channel – The operating system may find

it inefficient to simply lock the channel and prohibit other processes from using it. 7.6.2 Advantages of Concurrency ?

Running of multiple applications – It allows you to execute many programmes at the same time. ? Better resource

utilization – It allows resources that aren't being used by one application to be used by other application. ? Better

average response time – Without concurrency, one application must be completed before moving on to the next. ?

Better performance – When one application only utilises the processor and another only uses the disc drive, the time it

takes to complete both applications concurrently is less than the time it takes to complete each application sequentially.

7.6.3 Drawbacks of Concurrency ? Multiple applications must be protected from each other. ? Additional mechanism is

necessary to coordinate various applications.

131 | P a g e Space for learners: ? Switching between programmes necessitates additional performance overheads and

complications in the operating system. ? Sometimes running too many applications concurrently leads to severely

degraded performance. 7.6.4 Issues of Concurrency ? Non-atomic – Operations that are non-atomic but interruptible by

multiple processes can cause problems. ? Race conditions – A race condition occurs of the outcome depends on which

of several processes gets to a point first. ? Blocking – Processes can block waiting for resources. A process could be

blocked for long period of time waiting for input from a terminal. If the process is required to periodically update some

data, this would be very undesirable. ? Starvation – It occurs when a process does not obtain service to progress. ?

Deadlock – It occurs when two processes are blocked and hence neither can proceed to execute. 7.6.5 Process

Synchronization Processes are classified into one of two categories based on their synchronisation: ? Independent

Process: Execution of one process does not affect the execution of other processes ? Cooperative Process: The

execution of one process has an impact on the execution of others. Process synchronization problem arises in the case

of Cooperative process also because resources are shared in Cooperative processes. 7.6.6 Race Condition

82% MATCHING BLOCK 160/320

A race condition is an undesirable scenario that arises when a device or system seeks to perform two or more

operations at the same time,

yet the activities must be performed in the correct sequence due to

132 | P a g e Space for learners: the nature of the device or system. When several processes access and process the same

data at the same time, the outcome is determined by the order in which the access takes place. A race condition is an

occurrence that can happen within a critical section. This occurs, when the result of multiple thread execution in the

critical region varies depending on the sequence in which the threads run. If the critical section is regarded as an atomic

instruction, race situations in critical sections can be avoided. Race problems can also be avoided by employing thread

synchronisation techniques such as locks or atomic variables. 7.6.7 Critical Section Problem A critical section is a code

segment that only one process can access at a time. In a critical section, atomic action is required, which means that

only one process can run in that region at a time. All the other processes have to wait to execute in their critical sections.

64% MATCHING BLOCK 161/320

The critical section is given as follows: do { Entry Section Critical Section Exit Section Remainder Section } while (

TRUE); In the above code, the entry section handles the entry into the critical section. It obtains the resources required

for the process's execution. The exit section handles the exit from the critical section. It frees up resources while also

informing other processes that a critical section is now available. The process asks entrance into the Critical Section at

the entry section. Any solution to the problem of the critical section must meet three criteria:

133 | P a g e Space for learners: ? Mutual Exclusion: If a process is running in its crucial section, no other processes are

permitted to run in that section. ? Progress: If a process isn't using the critical section, it shouldn't prevent other

processes from using it. ? Bounded Waiting: Bounded waiting implies that each process must have a set amount of time

to wait. It should not have to wait indefinitely to get to the critical section. 7.6.8 Semaphore A semaphore is a signalling

mechanism and a thread that is waiting on a semaphore can be signalled by another thread. This is different than a

mutex as the mutex can be signalled only by the thread that called the wait function. A semaphore uses two atomic

operations, wait and signal for process synchronization. The wait operation decrements the value of its argument S, if it is

positive. If S is negative or zero, then no operation is performed. wait(S){ while (S>=0); S--; } The signal operation

increments the value of its argument S. signal(S){ S++; } There are two types of semaphores: Binary Semaphores and

Counting Semaphores ? Binary Semaphores: They can only be either 0 or 1. They are also known as mutex locks, as the

locks can provide mutual exclusion. All the processes can share the same mutex semaphore that is initialized to 1. Then,

a process has to wait until the lock becomes 0. Then, the process can make the

134 | P a g e Space for learners: mutex semaphore 1 and start its critical section. When it completes its critical section, it

can reset the value of mutex semaphore to 0 and some other process can enter its critical section. ? Counting

Semaphores: They can have any value and are not restricted over a certain domain. They can be used to control access

to a resource that has a limitation on the number of simultaneous accesses. The semaphore can be initialized to the

number of instances of the resource. Whenever a process wants to use that resource, it checks if the number of

remaining instances is more than zero, i.e., the process has an instance available. Then, the process can enter its critical

section thereby decreasing the value of the counting semaphore by 1. After the process is over with the use of the

instance of the resource, it can leave the critical section thereby adding 1 to the number of available instances of the

resource. 7.7 SCHEDULING IN REAL TIME SYSTEM In real-time computing, scheduling analysis refers to the examination

and testing of the scheduler system and the algorithms used in real-time applications. Real-time systems are those that

do tasks in real time. Real-time scheduling analysis is the examination, testing, and verification of the scheduling system

and algorithm used in real-time activities in the field of computer science. A real-time system's performance must be

evaluated and certified before it can be used in essential tasks. The scheduler, clock, and processing hardware

components make up a real-time scheduling system. Hard real-time tasks and soft real- time tasks are two types of real-

time activities. A hard real-time task must be completed within a certain amount of time, or massive losses may occur. A

defined deadline can be missed in soft real-time jobs. This is due to the fact that the task can be rescheduled (or)

performed after the deadline. The scheduler, which is often a short-term task scheduler, is the most significant

component in real-time systems. Instead of dealing with the deadline, the main goal of this scheduler is to lower the

response time connected with each of the linked processes. If a pre-

135 | P a g e Space for learners: emptive scheduler is employed, the real-time task must wait until the time slice for its

related task has finished. Even if the task is given the highest priority, a non-preemptive scheduler must wait until the

current task is completed before moving on to the next one. This task may be slow (or) of the low priority, resulting in a

lengthier delay. Combining pre-emptive and non-preemptive scheduling creates a more effective strategy. This can be

accomplished by incorporating time-based interrupts into priority-based systems, which implies that the presently

operating process is interrupted on a time-based interval, and if a higher priority process exists in a ready queue, it is

performed by pre-empting the current process. Analysis of the algorithm execution times is used to undertake

performance verification and execution on a real-time scheduling algorithm. Testing the scheduling algorithm under

various test situations, including the worst-case execution time, will be required to verify the performance of a real-time

Scheduler. To evaluate the algorithm's performance, these testing scenarios encompass worst- case and unfavourable

circumstances. In a real-time system, different ways can be used to test a scheduling system. Input/output verifications

and code analysis are two examples of techniques. One way involves putting each input condition to the test and

observing the results. Depending on how many inputs there are, this method could take a lot of effort. A risk- based

strategy, in which representative critical inputs are selected for testing, is another faster and more cost-effective

alternative. This method is more cost-effective, but if the wrong approach is utilised, it may result in less-than-optimal

findings about the system's validity. After changes to the scheduling system, retesting requirements are considered on a

case-by-case basis. Real-time system testing and verification should not be restricted to input/output and code

verifications, but should also include testing and verification of operating applications employing intrusive and non-

intrusive methods.

136 | P a g e Space for learners: CHECK YOUR PROGRESS Multiple Choice Questions: Q1: On receiving an interrupt from

an I/O device, the CPU (A) Halts for predetermined time. (B) Branches off to the interrupt service routine after completion

of the current instruction. (C) Branches off to the interrupt service routine immediately. (D) Hands over control of address

bus and data bus to the interrupting device. Q2: The problem of indefinite blockage of low-priority jobs in general

priority scheduling algorithm can be solved using: (A) Parity bit (B) Aging (C) Compaction (D) Timer Q3: Consider n

processes sharing the CPU in round robin fashion. Assuming that each process switch takes s seconds, what must be the

quantum size q such that the overhead resulting from process switching is minimized but, at the same time each process

is guaranteed to get its turn at the CPU at least every t seconds? (A) ≤ (B) ≥ (C) ≤ (D) ≥ Q4: A CPU generally handles an

interrupt by executing an interrupt service routine (A) As soon as an interrupt is raised (B) By checking the interrupt

register at the end of fetch cycle (C) By checking the interrupt register after finishing the executing the current instruction

(D) By checking the interrupt register at fixed time intervals

92% MATCHING BLOCK 162/320

Q5: Pre-emptive scheduling is the strategy of temporarily suspending a gunning process (A) Before the CPU time slice

expires 137 |

P a g e Space for learners: (

100% MATCHING BLOCK 163/320

B) To allow starving processes to run (C) When it requests I/O (D)

To avoid collision

98% MATCHING BLOCK 164/320

Q6: In round robin CPU scheduling as time quantum is increased the average turnaround time (A) Increases (B)

Decreases (C) remains constant (D) Varies irregularly Q7:

Which of the following scheduling algorithm could result in starvation? (

88% MATCHING BLOCK 165/320

A) First-come, first-served (B)Shortest job first (C) Round robin (D)

Priority Q8: Switching the CPU to another process requires performing a state save of the current process and a state

restore of a different process. This task is known as a (A) Swapping (B) Context switch (C) Demand paging (D) Page fault

100% MATCHING BLOCK 167/320

Q9: Consider the 3 processes, P1, P2 and P3 shown in the table. Process Arrival time Time Units Required P1 0 5 P2 1 7

P3 3 4 The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU

quantum

100% MATCHING BLOCK 166/320

Consider the 3 processes, P1, P2 and P3 shown in the table.

96% MATCHING BLOCK 169/320

Consider the 3 processes, P1, P2 and P3 shown in the table. Process Arrival time Time Units Required P1 0 5 P2 1 7 P3 3

4 The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU

quantum of 2 time units) are (A) FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS: P1, P2, P3

RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2: P1, P2, P3 138 |

97% MATCHING BLOCK 170/320

Consider the 3 processes, P1, P2 and P3 shown in the table. Process Arrival time Time Units Required P1 0 5 P2 1 7 P3 3

4 The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU

quantum of 2 time units) are (A) FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS: P1, P2, P3

RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2: P1, P2, P3 138 |

100% MATCHING BLOCK 171/320

Consider the 3 processes, P1, P2 and P3 shown in the table. Process Arrival time Time Units Required P1 0 5 P2 1 7 P3 3

4 The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU

quantum of 2 time units) are (A) FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS: P1, P2, P3

RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2: P1, P2, P3 138 |

93% MATCHING BLOCK 173/320

P1 0 5 P2 1 7 P3 3 4 The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling

with CPU quantum of 2 time units) are (A) FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS:

P1, P2, P3 RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2: P1, P2, P3 138 | P a

100% MATCHING BLOCK 168/320

time units) are (A) FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS: P1, P2, P3 RR2: P1, P3,

P2 (

52% MATCHING BLOCK 172/320

FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS: P1, P2, P3 RR2: P1, P3, P2 (D) FCFS: P1, P3,

P2 RR2: P1, P2, P3 138 | P

g e Space for learners:

74% MATCHING BLOCK 175/320

Q10: Consider the following set of processes, with the length of the CPU burst given in milliseconds: Process Burst

Time Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4

84% MATCHING BLOCK 174/320

Consider the following set of processes, with the length of the CPU burst given in milliseconds: Process Burst Time

Priority P1 10 3 P2 1 1 P3 2 3

59% MATCHING BLOCK 176/320

Consider the following set of processes, with the length of the CPU burst given in milliseconds: Process Burst Time

Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The processes are assumed to have arrived in

73% MATCHING BLOCK 177/320

Consider the following set of processes, with the length of the CPU burst given in milliseconds: Process Burst Time

Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The processes are assumed to have arrived in order P1, P2, P3, P4,

84% MATCHING BLOCK 180/320

Consider the following set of processes, with the length of the CPU burst given in milliseconds: Process Burst Time

Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The processes are assumed to have arrived in order P1, P2, P3, P4, P5 all at

time 0. a. Draw two Gantt chart that illustrates the execution of these processes using

82% MATCHING BLOCK 181/320

Consider the following set of processes, with the length of the CPU burst given in milliseconds: Process Burst Time

Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The processes are assumed to have arrived in order P1, P2, P3, P4, P5 all at

time 0. a. Draw two Gantt chart that illustrates the execution of these processes using

97% MATCHING BLOCK 178/320

The processes are assumed to have arrived in order P1, P2, P3, P4, P5 all at time 0.

97% MATCHING BLOCK 179/320

The processes are assumed to have arrived in order P1, P2, P3, P4, P5 all at time 0.

the following scheduling algorithms:

93% MATCHING BLOCK 184/320

non- primitive priority (a smaller priority number implies a higher priority) and RR (quantum=1). b. What is the

turnaround time of each process for each of the scheduling algorithms in part a? c. What is the waiting time of each

process for each of the scheduling algorithm in part a? d.

100% MATCHING BLOCK 182/320

What is the turnaround time of each process for each of the scheduling

88% MATCHING BLOCK 183/320

What is the waiting time of each process for each of the scheduling

What is the algorithm in part a results in the minimum average waiting time (overall processes)? Q11. Consider a system

implementing multilevel queue scheduling. What strategy can a computer user employ to maximize the amount of CPU

time allocated to the user’s process? 7.8 SUMMING UP ? Context Switching: The process of switching the CPU from one

process or task to another is known as context switching. The kernel suspends the execution of the process that is in the

running state, and the CPU executes another process that is in the ready state. ? Multiprogramming: A computer that can

execute multiple programmes at the same time (like running Excel and Firefox simultaneously).

139 | P a g e Space for learners: ? Multiprocessing: A computer that uses multiple CPUs at the same time. ? Multitasking:

Tasks sharing a common resource (like 1 CPU). ? Multithreading: It is an extension of multitasking. ? Pre-emptive

Scheduling: Pre-emptive Scheduling is a style of scheduling in which jobs are largely assigned according to their priority.

Even if the lower priority task is still running, it is sometimes necessary

44% MATCHING BLOCK 185/320

to run a higher priority task before a lower priority task. The lower priority task is put on hold for a while and then

resumes when the higher priority task is completed. ? Non-preemptive Scheduling: Once the CPU has been allocated

to a process

35% MATCHING BLOCK 186/320

Non-preemptive Scheduling: Once the CPU has been allocated to a process in non-preemptive scheduling, the

process holds the CPU until it releases it, either by terminating or transitioning to the waiting state. It does not interrupt

a process executing on the CPU in the middle of its execution

while using non-preemptive scheduling. Instead, it waits until the process has finished its CPU burst period before

allocating the CPU to another process. ? Starvation: Starvation is the problem that occurs when high priority processes

keep executing and low priority processes get blocked for indefinite time. ? Aging: To prevent starvation of any process,

we can use the concept of aging where we keep on increasing the priority of low-priority process based on the its

waiting time. ? Round Robin Scheduling: Round Robin is the pre-emptive process scheduling algorithm. Each process is

provided a fix time to execute, it is called a quantum. Once a process is executed for a given time period, it is pre-empted

and other process executes for a given time period. Context switching is used to save states of pre-empted processes. ?

Priority CPU Scheduling: Priority scheduling is a non- preemptive method that is one of the most widely used in batch

systems. A priority is assigned to each process. The process with the highest priority will be carried out first, and so on.

On a first-come, first-served basis, processes of the same priority are executed. ? Multilevel Queue Scheduling: The

ready queue has been separated into seven different queues by the multilevel queue

140 | P a g e Space for learners: scheduling method. These processes are permanently assigned to one queue based on

their priority,

85% MATCHING BLOCK 187/320

such as memory size, process priority, or process kind. Each queue has its own

method for scheduling. Some queues are utilised for the foreground process, while others are used for the background

process. ? Scheduling in Real time system: Real-time systems are those that do tasks in real time. Real-time scheduling

analysis is the examination, testing, and verification of the scheduling system and algorithm used in real-time activities in

the field of computer science. A real-time system's performance must be evaluated and certified before it can be used in

essential tasks. ? Throughput: Throughput is the amount of work completed in a unit of time. In other words throughput

is the processes executed to number of jobs completed in a unit of time. The scheduling algorithm must look to

maximize the number of jobs processed per time unit. ? Turnaround time: The turnaround time is the period between

when a process is submitted and when it is completed. The total time spent

87% MATCHING BLOCK 188/320

waiting in the ready queue, executing on the CPU, and performing I/O

is the turnaround time. ? Waiting time: The CPU scheduling technique has no effect on the amount of time a process

executes or performs I/O; it only impacts the amount of time the ready queue is active. The total amount of time spent

waiting in the ready queue is referred to as waiting. ? Response time: The time it takes from submitting a request to

receiving the first response. That is, reaction time refers to the time it takes to initiate a response rather than the time it

takes to complete the response.

141 | P a g e Space for learners: 7.9 ANSWERS TO CHECK YOUR PROGRESS Q1.Ans: (B) Q2.Ans: (B) Q.3.Ans: (A)

Explanation: When the CPU is performing the same job while also receiving an interrupt, i. It will first complete the

current task. ii. It will branch off to the interrupt service function after the current instruction is completed. ISR stands for

interrupt service routine or also known as an interrupt handler. It is a software process invoked by an interrupt request

from a hardware device. It handles the request and sends it to the CPU i.e. interrupting the active process. When the ISR

is complete, the process is resumed. Aging is a solution to the problem of low-priority processes being blocked

indefinitely.

52% MATCHING BLOCK 189/320

Aging is a method of gradually raising the priority of processes that have been waiting for a long time

in the system. Explanation: Each process will get CPU for q seconds and each process wants CPU again after t seconds.

Thus, there will be (n-1) processes once after current process gets CPU again. Each process takes s seconds for context

switch. (P1)(s)(P2)(s)(P3)(s)(P1) It can be seen that since P1 left and arrived again, there have been n context switches and

(n-1) processes. Thus, equation will be: q*(n-1) + n*s >= t q*(n-1) >= t - n*s q >= (t-n.s) / (n-1)

142 | P a g e Space for learners: Q.4.Ans: (C) Q.5.Ans: (A) Q.6.Ans. (D) Explanation: A CPU handles interrupt by executing

interrupt service subroutine by checking interrupt register after execution of each instruction.

58% MATCHING BLOCK 190/320

In preemptive scheduling tasks are usually assigned with priorities. At times it is necessary to run a

certain task that has

35% MATCHING BLOCK 191/320

a higher priority before another task although it is running. Therefore, the running task is interrupted for some time and

resumed later when the priority task has finished its execution.

This is called preemptive scheduling. In non-preemptive scheduling, a running task is executed till completion. It cannot

be interrupted. Explanation:-There are few criteria are used for measuring the performance of a particular scheduling

algorithm. The

38% MATCHING BLOCK 193/320

turnaround time is the interval of time between the submission of a process and its completion. The wait time is the

amount of time a process has been waiting in the ready queue. The response time is the

100% MATCHING BLOCK 192/320

amount of time a process has been waiting in the ready queue.

time taken between the process submission and the first response produced. In RR algorithm, the value of time quantum

or the time slice, plays a crucial role in deciding how effective the algorithm is. If the time quantum is too small, there

could be lot of context switching happening which could slow down the performance. If the time quantum is too high,

then RR behaves like FCFS. If the time quantum is increased, the average response time varies irregularly. If you take any

comprehensive material on operating system, you will come across a graph which depicts this behavior. So the answer is

option D.

143 | P a g e Space for learners: Q.7.Ans. (B) Q.8.Ans. (B) Q.9.Ans. (C) 7.10 POSSIBLE QUESTIONS 1. What is round robin

scheduling? Explain with an example. 2. Explain Priority CPU scheduling with example. 3. Define Pre-emptive and non-

pre-emptive Priority Scheduling. 4. Explain multilevel queue scheduling. Shortest job first could cause starvation. Priority

is always given to the shortest job meaning that a job in queue which is long could constantly be starved by arrival of

jobs which are shorter than that job. In computing, a context switch is the process of storing the state of a process or

thread, so that it can be restored and resume execution at a later point. ... In a multitasking context, it refers to the

process of storing the system state for one task, so that task can be paused and another task resumed. Explanation: The

GANTT chart for the FCFS scheduling algorithm is

32% MATCHING BLOCK 195/320

P1 P2 P3 The completion order for FCFS is P1→P2→P3 The GANTT chart for the RR scheduling algorithm is P1 P2 P1

P3 P2 P1 P2 P3 P1 The

25% MATCHING BLOCK 196/320

P1 P2 P3 The completion order for FCFS is P1→P2→P3 The GANTT chart for the RR scheduling algorithm is P1 P2 P1

P3 P2 P1 P2 P3 P1 The completion order for RR is:P1→P3→P2 0 5 12 16 0 2 4 6 8 10 11 13 15 16 144 |

55% MATCHING BLOCK 194/320

P1→P2→P3 The GANTT chart for the RR scheduling algorithm is P1 P2 P1 P3 P2 P1

59% MATCHING BLOCK 197/320

scheduling algorithm is P1 P2 P1 P3 P2 P1 P2 P3 P1 The completion order for RR is:P1→P3→P2 0 5 12 16 0 2 4 6 8 10

11 13 15 16 144 | P

52% MATCHING BLOCK 198/320

P1 P2 P1 P3 P2 P1 P2 P3 P1 The completion order for RR is:P1→P3→P2 0 5 12 16 0 2 4 6 8 10 11 13 15 16 144 | P

52% MATCHING BLOCK 199/320

P1 P2 P1 P3 P2 P1 P2 P3 P1 The completion order for RR is:P1→P3→P2 0 5 12 16 0 2 4 6 8 10 11 13 15 16 144 | P

a g e Space for learners: 5. What is concurrency? What are problems associated with concurrency. What are the

advantages of concurrency? Explain. 6. Define process synchronisation. 7. Define race condition. 8. Explain critical

section. 9. Define semaphore. 10. How scheduling is done in real time system. Explain. 7.11 REFERENCES AND

SUGGESTED READINGS ? lberschatz, Galvin, and Gagne's Operating System Concepts, Seventh Edition.

145 | P a g e Space for learners: UNIT 8: CONCURRENT PROCESS MANAGEMENT Unit Structure: 8.1 Introduction 8.2

Unit Objectives 8.3 Inter-process Communication Mechanism 8.3.1 First issue in inter-process communication 8.3.2

Second issue in inter-process communication 8.3.3 Third issue in inter-process communication 8.3.4 Design Issues for

Message Passing Systems 8.4 Summing Up 8.5 Answers to Check Your Progress 8.6 Possible Questions 8.7 References

and Suggested Readings 8.1 INTRODUCTION In this unit you will learn about the mechanism of inter-process

communication. In inter-process communication two or more processes communicating with each other using shared

memory or message passing system. There are many issues associated with a shared memory system. When two

processes use shared memory simultaneously then race condition may occur. Mutual exclusion is a way to avoid this

race condition. The piece of code by using which a process accesses the shared memory is known as critical region.

One can achieve mutual exclusion by restricting the use of this critical region by a process. Different methods to achieve

mutual exclusion in shared memory environment have been discussed here. Again, in message passing system processes

communicate with each other using two procedures called send() and receive(). The design issues associated with

message passing system have been discussed here.

146 | P a g e Space for learners: 8.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? understand the

concept of inter-process communication mechanism ? know about shared memory and message passing methods ?

learn about race condition, critical region and mutual exclusion ? learn about different ways to achieve mutual exclusion

with and without busy waiting ? learn about the variable semaphore 8.3 INTER-PROCESS COMMUNICATION

MECHANISM Inter Process Communication (IPC) is a mechanism that involves communication of one process with

another

95% MATCHING BLOCK 200/320

process. A process is independent if it cannot be affected by the other processes executing in the system. A process

59% MATCHING BLOCK 201/320

is cooperating if it can affect or be affected by the other processes executing in the systems. Any process that shares

data with other processes is

a cooperating process. Cooperating processes need inter-process communication (IPC) mechanism that will allow them

to exchange data and information. In Interposes Communication or IPC, the system has to deals with three issues- 8.3.1

First Issue in Inter-Process Communication The first issue of inter-process commutation deals with how information is

passed between processes. 8.3.1.1 Shared Memory It is a region of memory that is shared by cooperating processes.

Processes can change information by reading and writing data to the shared region Shared memory allows multiple

processes to share virtual memory space. This is the fastest but not necessarily

147 | P a g e Space for learners: the easiest way for processes to communicate with one another. In general, one process

creates or allocates the shared memory segment. The size and access permissions for the segment are set when it is

created. The process then attaches the shared segment, causing it to be mapped into its current data space. If needed,

the creating process then initializes the shared memory. Once created, and if permissions permit, other processes can

gain access to the shared memory segment and map it into their data space. Each process accesses the shared memory

relative to its attachment address. While the data that these processes are referencing is in common, each process uses

different attachment address values. For each process involved, the mapped memory appears to be no different from

any other of its memory addresses. 8.3.1.2 Message Passing In message passing system communication takes place by

means of messages exchanged between the cooperating processes. - Message Passing is useful for exchanging smaller

amounts of data and easier to implement for inter-computer communication. Message Passing provides a mechanism

for processes to communicate and to synchronize their actions without sharing the same address space. This method of

inter-process communication uses two primitives, send and receive, which are system calls rather than language

constructs. As such, they can easily be put into library procedures, such as send(destination, &message); receive(source,

&message); The former call sends a message to a given destination and the latter one receives a message from a given

source (or from ANY, if the receiver does not care). If no message is available, the receiver could block until one arrives.

Alternatively, it could return immediately with an error code. 8.3.2 Second Issue in Inter-Process Communication The

second issue is to proper sequencing of processes when dependencies are present: if process A produces data and

process

148 | P a g e Space for learners: B prints it, B has to wait until A has produced some data before starting to print. 8.3.2.1

Race Condition In some operating systems, processes that are working together may share some common storage that

each one can read and write. The shared storage may be in main memory (possibly in a kernel data structure) or it may

be a shared file; the location of the shared memory does not change the nature of the communication or the problems

that arise. Let us see how inter-process communication works. Suppose a process wants to print a file in printer spooler.

The process enters the file names in a special spooler directory that has a large number of slots, numbered 0, 1, 2, ..., etc

to store the file names. Another process printer daemon periodically checks and removes the file name of next file to be

printed from the spooler directory. Suppose there are two shared variables, out, which points to the next file to be

printed, and in, which points to the next free slot in the spooler directory. At a certain instant, slots 0 to 3 are empty (the

files have already been printed) and slots 4 to 6 are full (with the names of files to be printed). More or less

simultaneously, processes A and B decide they want to queue a file for printing. Process A reads in and stores the value,

7, in a local variable called next_free_slot. Just then a clock interrupt occurs and the CPU decides that process A has run

long enough, so it switches to process B. Process B also reads in, and also gets a 7, so it stores the name of its file in slot

7 and updates in to be an 8. Then it goes off and does other things. Eventually, process A runs again, starting from the

place it left off last time. It looks at next_free_slot, finds a 7 there, and writes its file name in slot 7, erasing the name that

process B just put there. Then it computes next_free_slot + 1, which is 8, and sets in to 8. The spooler directory is now

internally consistent, so the printer daemon will not notice anything wrong, but process B will never receive any output.

User B will hang around the printer room for years, wistfully hoping for output that never comes. Situations like this,

where two or more processes are reading or writing some shared data and the final result depends on who runs

precisely when, are called race conditions.

149 | P a g e Space for learners: 8.3.3. Third Issue in Inter-Process Communication The third issue is to prevent two or

more processes from accessing the critical section simultaneously when shared memory is in used. 8.3.3.1 Mutual

Exclusion The key to avoid race condition is prohibiting more than one process from reading and writing the shared data

at the same time. To achieve this, we need mutual exclusion mechanism. Mutual exclusion is a way to make

100% MATCHING BLOCK 202/320

sure that if one process is using a shared variable or file, the other processes will be excluded from

accessing that shared variable or file.

89% MATCHING BLOCK 205/320

That part of the program where the shared memory is accessed is called the critical region or critical section. Thus if no

two processes were ever in their critical regions at the same time, we could avoid race conditions. Although this

100% MATCHING BLOCK 203/320

part of the program where the shared memory is accessed

61% MATCHING BLOCK 204/320

no two processes were ever in their critical regions at the same time, we could avoid race conditions.

is a key to avoid race condition, but

100% MATCHING BLOCK 206/320

this is not sufficient for having parallel processes cooperate correctly and efficiently using shared data.

Hence, the necessary and sufficient conditions to hold to have a good solution are- 1.

97% MATCHING BLOCK 209/320

No two processes may be simultaneously inside their critical regions. 2. No assumptions may be made about speeds or

the number of CPUs. 3. No process running outside its critical region may block other processes. 4. No process should

have to wait forever to enter its critical region. 8.3.3.2

83% MATCHING BLOCK 207/320

No assumptions may be made about speeds or the number of CPUs. 3.

73% MATCHING BLOCK 208/320

No process running outside its critical region may block other processes. 4. No process should have to wait forever to

enter its

Methods to Achieve Mutual Exclusion With Busy Waiting In this section we will discuss about various methods for

achieving mutual exclusion, so that while one process is updating a shared variable in its critical region, no other

processes will enter its critical region.

150 | P a g e Space for learners: ? Disabling Interrupts Different kinds of interrupts are used to switch the CPU between

processes. Therefore, one solution to achieve mutual exclusion is each process disables all interrupts just after entering

its critical region and re-enable them just before leaving it. With interrupts turned off the CPU will not be able to

switched between processes. But it is not a good idea to give a user process permission to turn off interrupts. Suppose

that one of them did, and then never turned them on again? If an interrupt occurred while the list of ready processes, for

example, was in an inconsistent state, race conditions could occur. Again in multiprocessor system disabling interrupts in

one CPU will not affect other CPUs. Thus disabling interrupt by user process is not an appropriate way for mutual

exclusion. ? Lock Variables Consider a shared variable lock which can take the value either 0 or 1. The value of variable

lock is 0 means no process is in its critical region and a 1 means some process is in its critical region. Initially the value of

the variable lock is set to 0. Before entering critical region, the process checks the value of lock and set it to 1 if it is

already 0. Otherwise it will wait until the value of lock becomes 0. Now suppose one process reads the lock and sees

that it is 0. Before it can set the lock to 1, another process is scheduled, runs, and sets the lock to 1. When the first

process runs again, it will also set the lock to 1, and two processes will be in their critical regions at the same time. Again

the first process can be reading out the lock value, then checking it again just before storing into it, but that really does

not help. The race now occurs if the second process modifies the lock just after the first process has finished its second

check. ? Strict Alternation In this approach a spin lock called turn is used whose value initially set to 0. A lock that uses

busy waiting is called a spin lock and continuously testing a variable until some value appears is called busy waiting. The

variable turn keeps track of whose turn it is to enter the critical region. Initially the value of turn is set to 0. Initially,

process 0 examines turn, finds it to be 0, and enters its

151 | P a g e Space for learners: critical region. At this time if Process 1 checks the value of turn and finds it to be 0, it will

continuously testing turn to see when it becomes 1. When process 0 leaves the critical region, it sets turn to 1, to allow

process 1 to enter its critical region. while (TRUE) { while (TRUE) { while (turn != 0); while (turn != 1); critical_region();

critical_region(); turn = 1; turn = 0; noncritical_region(); noncritical_region(); } } (a) Process 0 (b) Process 1. When one

of the processes is much slower than the other then this method may not work. Suppose that process 1 finishes its

critical region quickly, so both processes are in their noncritical regions, with turn set to 0. Now process 0 executes its

critical region and leave it by setting turn to 1. At this point turn is 1 and both processes are executing in their noncritical

regions. Now suppose process 0 finishes its noncritical region quickly and tries to enter its critical region. Unfortunately,

it is not permitted to enter its critical region now, because turn is 1 and process 1 is busy with its noncritical region. This

situation violates condition 3 discussed previously: process 0 is being blocked by a process not in its critical region. ?

Peterson’s Solution Before using the shared variables (i.e., before entering its critical region), each process calls

enter_region with its own process number, 0 or 1, as the parameter. This call will cause it to wait, if need be, until it is safe

to enter. After it has finished with the shared variables, the process calls leave_region to indicate that it is done and to

allow the other process to enter, if it so desires. #define FALSE 0 #define TRUE 1 #define N 2 /* number of processes */

int turn; /* whose turn is it? */ int interested[N]; /* all values initially 0 (FALSE) */

152 | P a g e Space for learners: void enter_region(int process) /* process is 0 or 1 */ { int other; /* number of the other

process */ other = 1 − process; /* the opposite of

97% MATCHING BLOCK 210/320

process */ interested[process] = TRUE; turn = process; while (turn == process && interested[other] == TRUE); } void

leave_region(int process) /* process:

who is leaving */ { interested[process] = FALSE; } Initially, process 0 calls enter_region as neither process is in its critical

region. It indicates its interest by setting its array element and sets turn to 0. Since process 1 is not interested,

enter_region returns immediately. If process 1 now calls enter_region, it will hang there until interested [0] goes to FALSE.

Now consider the situation in which both processes call enter_region almost simultaneously. Both processes will store

their process number in turn. Whichever store it last will reflect in turn; the first one will lost. Suppose that process 1

stores last, so turn is 1. When both processes come to the while statement, process 0 executes it zero times and enters

its critical region. Process 1 loops and does not enter its critical region. ? The TSL (Test and Set Lock) Instruction Many

computers, especially those designed with multiple processors in mind, have an instruction

153 | P a g e Space for learners: TSL RX, LOCK The above Test and Set Lock instruction will read the contents of the

memory word LOCK into register RX and then stores a nonzero value at the memory address LOCK. This LOCK is a

shared variable. No interrupt will occur during the execution of this instruction. When LOCK is 0, any process may set it

to 1 using the TSL instruction and then read or write the shared memory. When it is done, the process sets LOCK back to

0 using an ordinary move instruction. Now, a process can enter and leave critical region using the following instruction

subroutine. enter_region: TSL REGISTER, LOCK CMP REGISTER, #0 | was LOCK zero? JNE enter_region | if it was non

zero, LOCK was set, so loop RET | return to caller; critical region entered leave_region: MOVE LOCK, #0 | store a 0 in

LOCK RET | return to caller Before entering its critical region, a process calls enter_region. In enter_region, the first

instruction copies the old value of LOCK to the register and then sets LOCK to 1. Then the old value of LOCK is

compared with 0. If it is nonzero, the lock was already set, so the program just goes back to the beginning and tests it

again. When a process currently in its critical region is done with its critical region it calls leave_region, which stores a 0

in LOCK and the subroutine returns, with the lock set. 8.3.3.3 Methods to Achieve Mutual Exclusion Without Busy Waiting

Both Peterson’s solution and the solution using TSL are correct, but both have the defect of requiring busy waiting. Not

only does this approach waste CPU time, but it can also have unexpected effects. Some other situation for achieving

mutual exclusion without busy waiting have been discussed below-

154 | P a g e Space for learners: ? Solving Producer consumer problem using Sleep() and Wakeup() system calls Instead of

wasting CPU time in busy waiting, a process can be blocked when it is not allowed to enter its critical region. The

available system calls that can be used for this purpose are- sleep() and wakeup(). The sleep() system call is used to block

the caller process and the wakeup() system call is used to wake up a blocked process. Let us consider the producer-

consumer problem (also known as the bounded buffer problem). Two processes share a common, fixed-size buffer. One

of them, the producer, puts information into the buffer, and the other one, the consumer, takes it out. Suppose the

maximum number of items the buffer can hold is N and a variable count keeps track of the number of items in the buffer.

Now what will happen when the producer wants to put a new item in the buffer. The producer will first check if count is

N. If it is, the producer will go to sleep; if it is not, the producer will add an item into the buffer using the procedure

insert_item() and increment count. Again if consumer wants to remove an item from the buffer then it will first check the

value of count. If it is 0 then consumer will go to sleep. If it is nonzero then consumer will remove an item from the

buffer using the procedure remove_item() and decrement the count. Each of the processes also tests to see if the other

should be sleeping, and if not, wakes it up. But this method could lead to race condition, because access to count is

unconstrained. #define N 100 /* number of slots in the buffer */ int count = 0; /* number of items in the buffer */ void

producer(void) { int item; while (TRUE) { /* repeat forever */ item = produce_item(); /* generate next item */ if (count ==

N) sleep(); /* if buffer is full, go to sleep */ insert_item(item); /* put item in buffer */ count = count + 1; /* increment

count of items in buffer */

155 | P a g e Space for learners: if (count == 1) wakeup(consumer); /* was buffer empty? */ } } void consumer(void) { int

item; while (TRUE) { /* repeat forever */ if (count == 0) sleep(); /* if buffer is empty, got to sleep */ item = remove_item(

); /* take item out of buffer */ count = count −1; /* decrement count of items in buffer */ if (count == N −1)

wakeup(producer); /* was buffer full? */ consume_item(item); /* print item */ } } Suppose the buffer is empty and the

consumer has just read count to see if it is 0. At that instant, the scheduler decides to stop running the consumer

temporarily and start running the producer. The producer enters an item in the buffer, increments count, and notices

that it is now 1. Reasoning that count was just 0, and thus the consumer must be sleeping, the producer calls wakeup to

wake the consumer up. Unfortunately, the consumer is not yet logically asleep, so the wakeup signal will have lost. When

the consumer next runs, it will test the value of count it previously read, find it to be 0, and go to sleep. Sooner or later

the producer will fill up the buffer and also go to sleep. Both will sleep forever. ? Solving Producer consumer problem

using Semaphores Semaphores are integer variables that are used to solve the critical section problem by using two

operations, down and up that are used for process synchronization. To solving synchronization problems and avoiding

race conditions all the actions happening inside each of these down and up operations must be done as single atomic

action. Hence, once a semaphore operation has started, no other process can access the semaphore until the operation

has completed or going to sleep. The operating system briefly disables all interrupts while it is executing down or up

156 | P a g e Space for learners: operation on a semaphore. If multiple CPUs are being used, each semaphore should be

protected by a lock variable, with the TSL instruction used to make sure that only one CPU at a time examines the

semaphore. There are two main types of semaphores- i. Counting semaphores ii. Mutexes or Binary semaphores ?

Counting semaphores These are integer value semaphores and have an unrestricted value domain. In producer

consumer problem a semaphore could have the value 0, indicating that no wakeups were saved or some positive value if

one or more wakeups were pending. The down operation on a counting semaphore (s) checks to see if the value is

greater than 0. If the value is greater than 0 then it decrements the value and continues. If the value is 0, the process is

put to sleep or block without completing the down for the moment. The up operation on the counting semaphore

increments the value of the semaphore addressed. If one or more processes were sleeping on that semaphore, unable to

complete an earlier down operation, one of them is chosen by the system randomly and is allowed to complete its

down. ? Mutexes or Binary semaphores The mutexes or binary semaphores are like counting semaphores but their value

is restricted to 0 and 1. The down operation only works when the semaphore is 1 and the up operation only works when

the semaphore is 0. To solve produce consumer problem this solution uses three semaphores- full: This semaphore is

used for counting the number of slots that are full. Full is initially 0. It ensures that the producer stops running when the

buffer is full. empty: This semaphore is used for counting the number of slots that are empty. empty is initially equal to

the number of slots in the

157 | P a g e Space for learners: buffer. It ensures that the consumer stops running when the buffer is empty. mutex: The

mutex semaphore is used for mutual exclusion. This semaphore is used to make sure that the producer and consumer

do not access the buffer at the same time. mutex is initially 1. If each process does a down just before entering its critical

region and an up just after leaving it, mutual exclusion is guaranteed. #define N 100 /* number of slots in the buffer */

typedef int semaphore; semaphore mutex = 1; semaphore empty = N; semaphore full = 0; void producer(void) { int item;

while (TRUE) { item = produce_item(); /* generate something to put in buffer */ down(&empty); down(&mutex

insert_item(item); up(&mutex); up(&full); } } void consumer(void) { int item; while (TRUE) { down(&full); down(&mutex);

item = remove_item(); up(&mutex); up(&empty); consume_item(item); } } ? Monitors

158 | P a g e Space for learners: A monitor is a collection of procedures, variables, and data structures that are all grouped

together in a special kind of module or package. Processes may call the procedures in a monitor whenever they want to,

but they cannot directly access the monitor’s internal data structures from procedures declared outside the monitor.

Figure 2-15 illustrates a piece of code for a monitor. monitor example integer i; condition c; procedure producer(x); ...

end; procedure consumer(x); ... end; end monitor; Monitors have a key property that makes them useful for achieving

mutual exclusion: only one process can be active in a monitor at any instant. Monitors are a programming language

construct, so the compiler knows they are special and can handle calls to monitor procedures differently from other

procedure calls. Typically, when a process calls a monitor procedure, the first few instructions of the procedure will

check to see if any other process is currently active within the monitor. If so, the calling process will be suspended until

the other process has left the monitor. If no other process is using the monitor, the calling process may enter. 8.3.4

Design Issues for Message Passing Systems Message passing systems have many challenging problems and design issues

that do not arise with semaphores or monitors, especially if the communicating processes are on different machines

connected by a network. For example, messages can be lost by the network. To guard against lost messages, the sender

and receiver can agree that as soon as a message has been received, the receiver will send back a special

acknowledgement

159 | P a g e Space for learners: message. If the sender has not received the acknowledgement within a certain time

interval, it retransmits the message. Now consider what happens if the message itself is received correctly, but the

acknowledgement is lost. The sender will retransmit the message, so the receiver will get it twice. It is essential that the

receiver can distinguish a new message from the retransmission of an old one. Usually, this problem is solved by putting

consecutive sequence numbers in each original message. If the receiver gets a message bearing the same sequence

number as the previous message, it knows that the message is a duplicate that can be ignored. Message systems also

have to deal with the question of how processes are named, so that the process specified in a send or receive call is

unambiguous. Authentication is also an issue in message systems: how can the client tell that he is communicating with

the real file server, and not with an imposter? At the other end of the spectrum, there are also design issues that are

important when the sender and receiver are on the same machine. One of these is performance. Copying messages

from one process to another is always slower than doing a semaphore operation or entering a monitor. Much work has

gone into making message passing efficient. CHECK YOUR PROGRESS - I 1. What is IPC? 2. What is race condition? 3.

What is critical region? 4. What is semaphore? 5. What is monitor? State TRUE or FALSE: 6. Mutual exclusion is a way to

avoid race condition. 7. Counting semaphore is also known as mutex. 8. In producer consumer problem we can have N

producer and N consumer. 9. Both the solutions Peterson’s and TSL are correct to achieve mutual exclusion without

busy waiting. 10. The primitives of message passing system are-send () and receive ()

160 | P a g e Space for learners: 8.4 SUMMING UP ? Inter-Process Communication (IPC) is a mechanism that involves

communication of one process with another process. ? In inter-process commutation information are passed between

processes using shared memory or message passing. ? Shared memory is a region of memory that is shared by

cooperating processes ? In message passing system communication takes place by means of messages exchanged

between the cooperating processes. This method of inter-process communication uses two primitives, send and receive.

? When two or more processes are reading or writing some shared data and the final result depends on who runs

precisely are called race conditions. ? The key to avoid race condition is mutual exclusion. ? Mutual exclusion is a way to

make

100% MATCHING BLOCK 211/320

sure that if one process is using a shared variable or file, the other processes will be excluded from

accessing that shared variable or file. ? The

100% MATCHING BLOCK 212/320

part of the program where the shared memory is accessed

100% MATCHING BLOCK 213/320

part of the program where the shared memory is accessed is called the critical region or critical section. ?

The necessary and sufficient conditions to hold mutual exclusion are- 1.

97% MATCHING BLOCK 216/320

No two processes may be simultaneously inside their critical regions. 2. No assumptions may be made about speeds or

the number of CPUs. 3. No process running outside its critical region may block other processes. 4. No process should

have to wait forever to enter its critical region. ?

83% MATCHING BLOCK 214/320

No assumptions may be made about speeds or the number of CPUs. 3.

73% MATCHING BLOCK 215/320

No process running outside its critical region may block other processes. 4. No process should have to wait forever to

enter its

One solution to achieve mutual exclusion is each process disables all interrupts just after entering its critical region and

re-enable them just before leaving it. But disabling interrupt by user process is not an appropriate way for mutual

exclusion.

161 | P a g e Space for learners: ? Another one solution for mutual exclusion is using a shared lock variable. But this

solution may sometimes lead to race condition. ? Strict alternation is an another solution to achieve mutual exclusion. It

uses a spin lock called turn. ? In Peterson’s solution before using the shared variables each process calls enter_region

with its own process number, 0 or 1, as the parameter. This call will cause it to wait, if need be, until it is safe to enter.

After it has finished with the shared variables, the process calls leave_region to indicate that it is done and to allow the

other process to enter, if it so desires. ? Test and Set Lock (TSL) is a hardware solution to achieve mutual exclusion. ? All

the above methods for mutual exclusion have disadvantage of busy waiting. Instead of wasting CPU time in busy waiting,

a process can be blocked when it is not allowed to enter its critical region. The available system calls that can be used for

this purpose are- sleep() and wakeup(). ? In producer-consumer problem (also known as the bounded buffer problem),

two processes share a common, fixed-size buffer. One of them, the producer, puts information into the buffer, and the

other one, the consumer, takes it out. ? To achieve mutual exclusion in the producer consumer problem, we can use the

system calls sleep() and wakeup(). But this solution may sometimes leads to race condition. ? Semaphores are integer

variables that are used to solve the critical section problem by using two operations, down and up that are used for

process synchronization. ? Another solution to achieve mutual exclusion in producer consumer problem uses

semaphore to process synchronization. ? A monitor is a collection of procedures, variables, and data structures that are

all grouped together in a special kind of module or package.

162 | P a g e Space for learners: 8.5 ANSWERS TO CHECK YOUR PROGRESS State TRUE or FALSE: 6. True. 7. False. 8.

True. 9. False. 10. True 8.6 POSSIBLE QUESTIONS Short answer type questions: 1. Give the differences between shared

memory system verses message passing system. 2. What is mutual exclusion? What are the necessary and sufficient

conditions to achieve mutual exclusion? 3. Why disabling interrupt is not a good solution for mutual exclusion? 4.

Mention how TSL instruction works. 5. What is producer consumer problem? How sleep() and wakeup() system calls

avoid busy waiting in mutual exclusion? 6. What is semaphore? What are the operations that can be applied on a

semaphore? Briefly describe about counting semaphore and binary semaphore. 7. Briefly describe about monitor. Long

answer type questions: 1. Briefly describe race condition with an example. 2. Briefly describe about how the following

methods achieve

76% MATCHING BLOCK 217/320

mutual exclusion a) Lock variable b) Strict alternation c) Peterson’s solution d)

Test-and-Set Lock instruction

163 | P a g e Space for learners: 3. Give a solution to producer consumer problem using semaphore. 4. Briefly discussed

on the design issues of message passing system. 8.7 REFERENCES AND SUGGESTED READINGS ? “Operating System

Concepts” by Avi Silberschatz and Peter Galvin. ? “Operating Systems: Internals and Design Principles” by William

Stallings. ? “Operating Systems: A Concept-Based Approach” by D M Dhamdhere. ? “Modern Operating Systems” by

Andrew S Tanenbaum.

BLOCK II: MEMORY AND I/O MANAGEMENT, SYSTEM DEADLOCK AND MULTIPROGRAMMING SYSTEM

164 | P a g e Space for learners: UNIT 1: MEMORY MANAGEMENT Unit Structure: 1.1 Introduction 1.2 Unit Objectives 1.3

Hierarchy of Memory Types 1.4 Cache Memory 1.5 Associative Memory 1.6 Address Protection 1.7 Paging 1.7.1 Paging

Hardware Support 1.8 Segmentation 1.8.1 Segmentation Hardware 1.9 Virtual memory 1.9.1 Demand Paging 1.10 Page

Replacement Algorithms 1.10.1 FIFO Page Replacement 1.10.2 LRU Page Replacement 1.10.3 Optimal Page Replacement

1.11 Summing Up 1.12 Answers to Check Your Progress 1.13 Possible Questions 1.14 References and Suggested Readings

1.1 INTRODUCTION The unit deals with management of main memory during process execution. One of the most

important functions of operating system is memory management that includes the hardware support in processor for

paging, virtual memory and segmentation. Virtual memory allows a program with memory space larger than the size of

the main memory available in the system. This is possible by allowing only that section of the code that is active at that

point of time without the need of having all instructions and data of the process being present in main memory at the

same time. The concept of paging and segmentation eliminates the need of allocating main memory to the process in

contiguous manner. Also if the overall memory requirement exceeds the physical memory limit,

165 | P a g e Space for learners: pages from memory may need to be replaced to make room for new pages. Various

page replacement algorithms like FIFO, LRU and Optimal are used in such case. 1.2 UNIT OBJECTIVES After going

through this unit, you will be able to: ? explain memory hierarchy, cache memory and associative memory ? explain the

working of memory address protection. ? explain the paging memory management scheme. ? analyze and solve

problems on paging. ? explain the working of paging hardware. ? explain the concept of segmentation and solve

problems on segmentation. ? describe the benefits of Virtual memory management system ? explain and solve problems

on different page replacement algorithms. 1.3 HIERARCHY OF MEMORY TYPES The memory in a computer system can

be divided into a hierarchy as shown in Figure 1.1. The hierarchy is based on access time, speed, cost and capacity of the

memory. The five memory types in the hierarchy are registers at the top followed by the cache memory, main memory,

hard disk and magnetic tapes. The first three memory types register, cache and main memory are volatile memories that

is they lose their stored data in absence of power supply. The last two memory types, hard disk and magnetic tape keeps

the stored data permanently even in the absence of power. In the Figure 1.1, capacity that is the volume of information

the memory can store increases as we move from top to bottom in the hierarchy.

166 | P a g e Space for learners: Access time that is time required to perform read/write request increases as we move

from top to bottom in the hierarchy. Similarly, the speed gap between CPU and memory decreases as we move from

bottom to top of the hierarchy and finally cost per bit increases going from bottom to top of the hierarchy. Figure 1.1:

Memory Hierarchy 1.4 CACHE MEMORY Cache Memory is a type of memory that operates at a very high speed. It's used

to boost performance and synchronize with a high-speed CPU. Although cache memory is more expensive than main

memory but it is less expensive than CPU registers. Cache memory acts as a buffer between the main memory and the

CPU as shown in Figure 1.2. Cache memory stores frequently requested instructions and data so that they may be

accessed quickly by the CPU. It smaller and faster memory that reduces the average access time of main memory by

storing copies of most frequently used data. Figure 1.2: Cache Memory acting as a buffer between CPU and Main

Memory.

167 | P a g e Space for learners: 1.5 ASSOCIATIVE MEMORY Associative memory is also known as Translation Lookaside

Buffer (TLB) is a special type of memory that is optimized to perform parallel searches on data, in contrast to sequential

search of data. Operating system provides support for storing page table of a process. Generally, a page table can be

stored in following ways: ? Set of dedicated registers ? In main memory ? Associative Memory or Translation lookaside

buffer (TLB) The feasibility of the first approach using a set of dedicated registers is that the page table should be

reasonably smaller in size like 256 entries. With the second approach page table can be very large like millions of entries

can be stored in the main memory with a pointer to the starting address of the page table for referencing. However, in

this case the time required to access the page table is slower by a factor of two as it involves first accessing memory for

the page table to locate the frame number which is combined with the displacement to get the physical address and

then a second memory access to read the byte. The solution to the disadvantages of the first two approaches is resolved

using a fast lookup hardware support called Associative memory. Associative memory or TLB is a small, expensive but

very fast associative memory. It can store entries in the range of 64 to 1024. Associative memory has two parts: a tag and

a value. When a page/key needs to be searched the key is compared simultaneously with all the tags of the in the

associative memory. 1.6 ADDRESS PROTECTION In a main memory there can be several user process and operating

system running at a time. To protect the address space of the operating systems as well as user processes, so that they

do not run into to each other’s address space, the concept of hardware address protection is introduced. Address

protection is implemented with the help of two registers, the base register and the limit register. The base register holds

168 | P a g e Space for learners: the starting address of the process address and the limit register specifies the range. For

example, in Figure 1.3, the base register holds the starting address 5500 of Process-2 in the main memory and the limit

register specifies range of 750 meaning that the range of legal address of Process-2 is from 5500 to 6249 (inclusive).

15000 8000 7000 Process 4 6250 Process 3 750 5500 Process 2 Limit Register 5500 5000 Process 1 Base Register

Operating System 0 Figure 1.3: A logical address defined by base and limit register. The Memory address protection is

accomplished with the help of hardware support as shown in Figure1.4. The hardware checks that the CPU generated

address is within the range specified by base register and base + limit register. A memory access attempted outside the

valid range, results in trap or a fatal error.

169 | P a g e Space for learners: Figure 1.4: Memory address protection using base and limit register [1] . 1.7 PAGING To

understand the concept of Paging we have to go through the following concepts: ? Process: It is a program in execution

or a program placed in main memory for execution. ? Logical Address: It is the address that is generated by the CPU for a

program while it is running. As the address does not exist physically it is also called virtual address. The hardware unit of

memory known as memory management unit (MMU) maps logical address to physical address. ? Physical Address: A

physical address is the actual address in the main memory. Paging is a memory management scheme that is used to map

CPU generated logical address of a process to physical address in main memory. A process consists of fixed size blocks;

Figure 1.5 shows an example of a process with 4 blocks each of size 1 kilobyte. Size of a block depend upon architecture

of the computer and varies between 512 bytes to 16 megabytes.

170 | P a g e Space for learners: Figure 1.5: A Process with 4 blocks each of size 1 kilobyte. The paging technique divides

the logical memory to blocks of the fixed size known as Pages and divides physical memory into blocks of fixed- size

known as Frames. Figure 1.6 shows an example of pages and frames in logical and physical memory respectively. Page 1

1KB Frame 1 1KB Page 2 1KB Frame 2 1KB Page 3 1KB Frame 3 1KB Page 4 1KB Frame 4 1KB Logical Memory Physical

Memory Figure 1.6: A Process with 1KB block size in logical and physical memory. Page Frame Frame Number Page 0 0 5

0 Page 1 1 4 1 Page 3 Page 2 2 7 2 Page 3 3 1 3 Logical memory Page Table 4 Page 1 5 Page 0 6 7 Page 2 8 Main Memory

Figure 1.7: Paging model of physical and logical memory. Pag Block 1 Block 2 Block 3 Block 4 1KB 1KB 1KB

171 | P a g e Space for learners: Paging scheme allows a process to be stored in the main memory in noncontiguous

manner. It also solves the problem of searching and fitting blocks of different sizes in main memory by having all block of

same size. One more advantage of the paging scheme is that it prevents from external fragmentation that is if the main

memory blocks are of varying sizes and the size of the free blocks are smaller than the size of the pages, then the

operating will be required to merge two or more blocks into a single block large enough to fit a page. By keeping block

of equal sizes for both pages and frames, such problems are resolved. The Figure 1.7 shows paging model of physical

and logical memory.

65% MATCHING BLOCK 218/320

A page table is used for mapping between logical addresses and physical addresses. A page table

resides in the main memory. The Figure 1.7 shows noncontiguous allocation of a process in main memory. The mapping

of logical address to physical address is achieved using the page table. The hardware support for paging is demonstrated

using an example in Figure 1.8. The logical

100% MATCHING BLOCK 219/320

address generated by the CPU is divided into two parts

85% MATCHING BLOCK 220/320

address generated by the CPU is divided into two parts namely page number and

85% MATCHING BLOCK 221/320

address generated by the CPU is divided into two parts namely page number and

displacement with the page. The page number is used as an index in the page table to search for the corresponding

frame number. The displacement is combined with frame number to get the physical address. In the Figure 1.8, the

logical address having page number 3 is searched for the corresponding frame number in the page table which is frame

number 15. The frame number 15 is combined with the displacement 7 to form the physical address.

172 | P a g e Space for learners: Figure 1.8: Paging hardware support. If the size of the

41% MATCHING BLOCK 222/320

logical address space is 2 m and size of a page is 2 n bytes/words, then “m-n” bits of a logical address designate the

page number the “n” bits designate the

69% MATCHING BLOCK 223/320

a page is 2 n bytes/words, then “m-n” bits of a logical address designate the page number the “n” bits designate the

displacement or offset. Therefor the logical address is:

Page Number Displacement p d m - n n Paging Example -1: Assume a page size of 1K and a 15-bit logical address space.

How many pages are in the system? Solution: Page size = 1K = 2 10 i.e. displacement, n=10 bits No. of bits in logical

address = 15, i.e. m=15 bits. Therefore, no. of bits used for page number is, m - n = 5 bits Total no. of pages in the system

is 2 5 =32. Paging Example -2: Assume that a CPU has a 15-bit logical address space with 8 logical pages. How large are

the pages? Solution:

173 | P a g e Space for learners: There are 8 logical pages, that means 3 bits are required to address 8 logical pages (2 3 =

8). Therefore, m - n=3 bits Logical address is 15 bits, m=15 bits Displacement = 15 -3 = 12 bits. So, the pages are of size 2

12 = 4096 = 4K bytes 1.7.1 Paging Hardware Support The operating system provides hardware support for quick search in

the form of Associative memory or TLB. There are possibly two cases for a page search in TLB, Figure 1.9 illustrates the

paging hardware with Translation Look aside Buffer for these two cases: ? If the search key/page is found it is called as a

TLB hit and corresponding value/frame is returned from the TLB. Displacement is combined with frame number and the

physical address is accessed. ? If the search key/page is not found it is called as a TLB miss and the page is searched in

the page table stored in main memory. The frame number corresponding to the search page is combined with the

displacement to access the address in the physical memory. Also the page number and frame number is added to the

TLB so that if the same page is referred next time it is found quickly. In case the TLB is full, operating system selects a

page replacement algorithm to replace an existing page with the new entry. The percentage of times that a particular

page number is found in the TLB is called the hit ratio. If the hit ratio is 60% that means 60 times out of 100 references

the page will be found in TLB and remaining 40 times the page is found in the page table.

174 | P a g e Space for learners: Figure 1.9: Paging hardware with Translation Look aside Buffer [1]. Paging Example -3: If

72% MATCHING BLOCK 224/320

it takes 25 nanoseconds to search the TLB and 75 nanoseconds to access memory. If the hit ratio is 70%, calculate

effective memory access time.

Solution: If the page is in the TLB, time taken to access the physical address = Time taken to search the TLB + Time taken

to access memory = 25 +75 =100 nanoseconds If the page is in not in the TLB, time taken the physical address = Time

taken to search the TLB + Time taken to access page table + Time taken to access memory = 25 +75 +75 = 175

nanoseconds Hit ratio is 70%, therefore Effective access time = 0.70 X 100 + 0.30 X 175 =122.5 nanoseconds.

175 | P a g e Space for learners: 1.8 SEGMENTATION Segmentation is a memory management scheme similar to paging

that allows a process to be stored in the main memory in noncontiguous manner. Unlike paging where all the pages or

frames are of fixed size, segmentation allows blocks or segments of variable size. Segmentation maps the user’s view of a

program onto the physical memory. Looking at the user’s view in Figure 1.10, a program contains several variable size

segments, such as the main program, subroutine, symbol table, methods etc. It also includes data structures like arrays,

objects, variables, stacks etc. These segments and data structures are referred by their name without concerning about

the address these segments are stored in memory. Users are not concerned about the order in which the segments are

stored in the memory. Figure 1.10: User’s view of a program The

90% MATCHING BLOCK 225/320

logical address space is a group of segments. Each segment has a name and a length.

From the implementation point of view, segments are numbered instead of using name and the logical address is

represented using the two tuple: Segment-number Displacement

176 | P a g e Space for learners: 1.8.1 Segmentation Hardware The mapping of the logical address >segment-number,

displacement< to the physical address is achieved with the help of segment table and the segmentation hardware as

shown in Figure 1.11.

58% MATCHING BLOCK 227/320

Each entry of the segment table has a segment limit and segment base. The base represents the starting address of the

segment in the main memory and the limit specifies the length of the segment. The

54% MATCHING BLOCK 226/320

the segment table has a segment limit and segment base. The base represents the starting address of the segment in

the main memory and the limit specifies the length of the segment.

segment table is indexed on the segment number. Figure 1.11: Segmentation Hardware [1]. The working of segmentation

hardware starts by first identifying the segment number, s and the displacement, d of the logical address. The segment

number is used to search the segment table, which is indexed on

57% MATCHING BLOCK 228/320

the segment number. The displacement, d of the logical address should be between 0 and limit. If the condition is not

satisfied, it means that the logical address is going beyond the segment limit and a trap interrupt is initiated which is

handled by the operating system. A segmentation example is

71% MATCHING BLOCK 229/320

shown in Figure 1.12. There are 5 segments numbered from 0 through 4. The segments are stored in physical memory

in noncontiguous manner. Also no specific ordering is followed for storing the segments as can be observed in the

example. The segment table has an entry for each of the segment, the starting

177 | P a g e Space for learners:

55% MATCHING BLOCK 230/320

address of the segment mentioned as base and the length of the segment mentioned as limit. For example, segment 0

begins at address 5100 and length of the segment is limited to 500 bytes. Therefore, a reference to byte 17 of segment 0

is mapped to 5100 (base of segment 0) + 17 = 5117. Similarly, a reference to byte 88 of segment 4 is mapped to 7300 +

88 = 7388. A trap interrupt will be called if byte 1700 of segment 4 is referenced as the limit is 1500. Figure 1.12: Example

of Segmentation. 1.9 VIRTUAL MEMORY The memory management scheme discussed in previous section requires the

entire process to be in the main memory for execution. Most of the times there can be a requirement of many processes

to be in the memory simultaneously for execution. This situation can prevent simultaneous execution of multiple

processes due to the size of the main memory, which may not be large enough to hold all the processes. So, a concept

of virtual memory was introduced. A virtual memory management scheme allows execution of a process even if it is not

completely in memory. That is, it requires only that

178 | P a g e Space for learners: section of the process’s code to be in the memory that will be executed. Generally, a

process contains several functions or procedures and not all the functions are required to be in the memory at the same

time. So the function or the procedure that will be executed needs to be in the main memory, while the other functions

or procedures can be placed in the secondary memory and wait for their turn of execution. So whenever a function is

not available in the main memory, it is brought from the secondary memory to main memory for execution. The main

advantage of this scheme is that a program larger than main memory can still run on a smaller physical memory. This is

how a games like Need for speed or Call of Duty which require respectively 30 GB and 90 GB of memory can still run on

a system having 6 GB RAM with sufficient hard disk space. Also, as only a section of the code of a process needs to be in

memory so many process can be there in memory simultaneously. Thereby increasing CPU utilization and throughput.

Figure 1.13: Example showing virtual memory larger than physical memory [1]. Figure 1.13 shows an example of a larger

virtual memory than physical memory. The programmer thus need not have to worry about the size of the main memory

available, thus can concentrate on the problem to be programmed. As can be seen in the Figure 1.13, pages from the

large virtual memory address space is stored in the secondary memory and the pages are brought back to main memory

whenever a call to those

179 | P a g e Space for learners: pages are required. If the main memory does not have any free slot for the pages, then

some page replacement algorithms are used to replace the pages in main memory with the pages from secondary

memory. Figure 1.14 shows dynamic memory allocation, where the stack grows upward and the heap grows downward.

The gap shown in the figure between the heap and the stack is the part of virtual address space and will require physical

memory space only if either heap or stack grows or both of them grows. Figure 1.14: Virtual memory address space. 1.9.1

Demand Paging Suppose a user wants to run a program, so the entire program is loaded to main memory from the

secondary memory. However, if the program runs one option/case out of the several cases based on the user input, it is

impractical to load the code for all the cases, other cases my never be called for execution. So a virtual memory

technique known as demand paging is used to load only those pages of the process when they are required or whenever

there is a demand for the page occurs during the program execution.

180 | P a g e Space for learners: Figure 1.15: Example showing Demand Paging [1]. In Figure 1.15 shows and example of

demand paging where pages 4, 5, 6 and 7 of Program A is swapped out of memory and pages 17, 18 and 19 of Program B

is moved in to the memory because of the demand for the pages 17, 18 and 19. The method is implemented by a pager

program responsible for demand paging. 1.10 PAGE REPLACEMENT ALGORITHMS Since operating system allows virtual

memory to be larger than the main memory, as a result a page fault may occur. A page fault occurs when a running

process tries to accesses a memory page that is not loaded in main memory. In the event of a page fault, the operating

system may have to replace an existing page with the new page. A page replacement algorithm is required in an

operating system that utilizes paging for memory management. It determines which page has to be replaced when a

new page arrives. Different page replacement algorithms offer various methods for determining which pages to replace.

All methods have the same goal: to decrease page faults.

181 | P a g e Space for learners: 1.10.1 FIFO Page Replacement This is the most basic algorithm for replacing pages. The

operating system uses this technique to maintain track of all memory pages in a queue, with the oldest page at the top.

When a page has to be replaced, the first page in the queue is removed. For example, consider the reference string 4, 0,

2, 5, 3, 5, 4, 0, 4, 5, 2 as shown in Figure 1.16 that is the order in which the memory references for the pages will be made.

Assume that the memory which can accommodate three frames/pages at a time. The replacement algorithm uses the

FIFO approach that is the first page moved to memory will be the first one to be replaced, this is followed by replacing

second page, third page and so on with a new page. Initially, all the frames are empty so first three references (4, 0, 2) will

result in page fault and are brought into the empty frames. The next reference 5 will replace the page 4 as it was the first

page moved to the memory. Similarly, reference 3 will replace page 0 as it was the second page moved to memory. The

next reference 5 is already in memory so no page fault and hence no page replacement. The process continues until all

the page request in the reference string are processed. The total number of page faults using FIFO page replacement

algorithm is 9. Figure 1.16: FIFO page replacement algorithm. 1.10.2 LRU Page Replacement Least Recently Used (LRU)

page replacement algorithm is a Greedy algorithm where the page to be replaced is

76% MATCHING BLOCK 231/320

the page which has not been used for the longest duration of time

in the past. LRU keeps track of page usage over a period of time. It is based on the assumption that the

182 | P a g e Space for learners: pages that have been extensively utilized in the past will also be heavily used in the

future. For example, consider the reference string 4, 0, 2, 5, 3, 5, 4, 0, 4, 5, 2 as shown in Figure 1.17 that is the order in

which the memory references for the pages will be made. Assume that the memory which can accommodate three

frames/pages at a time. Initially, all the frames are empty so first three references (4, 0, 2) will result in page faults and are

brought into the empty frames. The next reference 5 will replace the page 4 as on scanning left starting at reference 5,

we find that among the pages (4, 0, 2), page 4 is the least recently used page. Similarly, the next reference 3 will replace

page 0 as on scanning left starting at reference 3, we find that among the pages (5, 0, 2), page 0 is the least recently used

page. The next reference 5 is already in memory so no page fault and hence no page replacement. The process

continues until all the page request in the reference string are processed. The total number of page faults using LRU

page replacement algorithm is 8. Figure 1.17: LRU page replacement algorithm. 1.10.3 Optimal Page Replacement The

best page replacement algorithm is the Optimal Page Replacement algorithm, which produces the fewest page faults.

This method replaces pages

75% MATCHING BLOCK 232/320

that will not be utilized for the longest period of time in the future. The algorithm is difficult to implement because it

requires future knowledge of the

pages referenced pages. For example, consider the reference string 4, 0, 2, 5, 3, 5, 4, 0, 4, 5, 2 as shown in Figure 1.18 that

is the order in which the memory references for the pages will be made. Assume that the memory which can

accommodate three frames/pages at a time. Initially, all the frames are empty so first three references (4, 0, 2) will result

in page faults and are brought into the empty frames. The next reference 5 will replace the

183 | P a g e Space for learners: page 2 as on scanning right starting at reference 5, we find that among the pages (4, 0,

2), page 2 is not used for the longest duration of time. Similarly, the next reference 3 will replace page 0 as on scanning

right starting at reference 3, we find that among the pages (4, 0, 5), page 0 is not used for the longest duration of time.

The next reference 5 is already in memory so no page fault and hence no page replacement. The process continues until

all the page request in the reference string are processed. The total number of page faults using LRU page replacement

algorithm is 7. Figure 1.18: Optimal page replacement algorithm.

184 | P a g e Space for learners: CHECK YOUR PROGRESS 1. A memory buffer used to minimize the speed difference

between CPU and Main memory is called ____________. a) Main memory b) Cache memory c) register d) disk buffer 2.

50% MATCHING BLOCK 233/320

Increasing the RAM improves performance because of _______________ a) Increase in Virtual memory b) Bigger

RAMs are faster c) Less page faults occur d) All of the

above 3. Page fault occurs when a) Exception is thrown b) Requested page is not in memory c) Page is corrupted d)

Requested page is in memory 4. Each logical address must be _______ than the value in limit register. a) less than b)

equal to c) Not equal to d) greater than 5. Which one is the fastest memory a) Cache Memory b) Associative Memory c)

Main Memory d) Secondary memory 6. Fixed-sized blocks in physical memory is called ________ a) Block b) Frame c)

Pages d) Segment 7. In paging CPU generated logical address has two parts _____________and _____________. a)

Page offset & frame bit

185 | P a g e Space for learners: b) Page number & Page offset c) Frame offset & displacement d) Frame number & page

offset 8. Paging does not suffer from ________.

91% MATCHING BLOCK 234/320

a) Internal Fragmentation b) External Fragmentation c) Both a) and b) d)

100% MATCHING BLOCK 235/320

c) Both a) and b) d) None of the above 9.

If

100% MATCHING BLOCK 236/320

it takes 10 milliseconds to search the TLB and 80 milliseconds to access the physical memory. If the TLB hit ratio is 0.6,

the effective memory access time (in milliseconds) is _________.

a) 120 b) 122 c) 134 d) 124 10.

44% MATCHING BLOCK 237/320

The displacement ‘d’ in a logical address must be ____________ a) Greater than segment limit b) Greater than the

segment number c) Between 0 and the segment number

d) Between 0 and segment limit 11. In segmentation, each address is specified by ____________ a) A key and value b) A

displacement and value c) A segment number & displacement d) A value and segment number 12. The virtual memory

manager loads only those component of a program during execution as a when required is known as a) Segmentation b)

Swapping

186 | P a g e Space for learners: c) Virtual memory d) Demand Paging 1.11 SUMMING UP ? The five memory types in the

hierarchy are register, cache, main memory, hard disk and magnetic tapes based on access time, speed, cost and

capacity of the memory. ? Cache memory acts as a buffer between the main memory and the CPU. ? Associative

memory is also known as Translation look aside Buffer (TLB) is a special type of memory that is optimized to perform

parallel searches on data. ? Address protection is implemented with the help of two registers, the base register and the

limit register. ? Paging is a memory management scheme that is used to map CPU generated logical address of a process

to physical address in main memory. ? Logical Address is the address that is generated by the CPU for a running program.

? A physical address is the actual address in the main memory. ? Paging is a memory management scheme that is used

to map CPU generated logical address of a process to physical address in main memory. ? The logical

100% MATCHING BLOCK 238/320

address generated by the CPU is divided into two parts

85% MATCHING BLOCK 239/320

address generated by the CPU is divided into two parts namely page number and

85% MATCHING BLOCK 240/320

address generated by the CPU is divided into two parts namely page number and

displacement with the page. ? Translation look aside Buffer is a small, expensive but very fast associative memory. ? In a

translation look aside buffer, if the search page is found it is called as an TLB hit if the page is not found it called as TLB

miss. ? The percentage of times that a particular page number is found in the TLB is called the hit ratio.

187 | P a g e Space for learners: ? Segmentation is a memory management scheme similar to paging that allows a

process to be stored in the main memory in noncontiguous manner. ? The mapping of the logical address >segment-

number, displacement< to the physical address is achieved with the help of segment table and the segmentation

hardware. ? A virtual memory management scheme allows execution of a process even if it is not completely in memory.

? A virtual memory technique known as demand paging is used to load only those pages of the process when they are

required or whenever there is a demand for the page occurs during the program execution. ? A page fault occurs when a

running process tries to accesses a memory page that is not loaded in main memory. ? A page replacement algorithm is

required in an operating system that utilizes paging for memory management. It determines which page has to be

replaced when a new page arrives. 1.12 ANSWERS TO CHECK YOUR PROGRESS i. b ii. c iii. b iv. a v. b vi. b vii. b viii. b ix. b

x. d xi. c xii. d 1.13 POSSIBLE QUESTIONS 1. What is an associative memory? Why it is used? 2. How does the operating

system ensure that two or more processes do not use the same address space? 3. Explain Paging memory management

scheme. 4. What is hit ratio? Why page should be replaced in the memory? 5.

95% MATCHING BLOCK 241/320

Consider a logical address space of 16 pages of 512 words each, mapped

95% MATCHING BLOCK 242/320

Consider a logical address space of 16 pages of 512 words each, mapped

95% MATCHING BLOCK 243/320

Consider a logical address space of 16 pages of 512 words each, mapped

on to a physical memory of 64 frames. How many bits are

188 | P a g e Space for learners:

96% MATCHING BLOCK 244/320

there in the logical address? How many bits are there in the physical address? 6.

66% MATCHING BLOCK 245/320

in the physical address? 6. If it takes 125 nanoseconds to search the TLB and 500 nanoseconds to access memory. If

the hit ratio is 90%, calculate effective memory access time. 7.

Assume a page size of 4K and an 18-bit logical address space. How many pages are in the system? 8. Assume that a CPU

has a 16-bit logical address space with 4 logical pages. How large are the pages? 9. What is segmentation? Explain. 10.

Define a virtual memory. With a neat diagram, explain the working of a virtual memory. What are the benefits of a virtual

memory? 11. What is demand paging? Explain. 12. Consider logical address 1025 and the following 13. page table for

some process P0. Assume a 15-bit address space with a page size of 1K. What is the physical address to which logical

address 1025 will be mapped? 6 2 3 14. Consider the following segment table: Segment Base Length 34 100 100 21 2500

200 0 1200 50 90 1700 300 7 500 500 2 600 50 99 650 200

189 | P a g e Space for learners: What are the physical address for the following logical address? i. 0,25 ii. 2,89 iii. 90,345

iv. 34,50 v. 99,201 15. Consider the reference string 0, 3, 0, 4, 5, 3, 2, 0, 5, 4, 6, 7, 3, 4 Find the number of Page faults in

each of the following cases assuming that memory can accommodate 4 pages/frames at a time. i. FIFO Page

Replacement ii. LRU Page Replacement iii. Optimal Page Replacement 1.14 REFERENCES AND SUGGESTED READINGS ?

Operating System Principles 8 th edition by Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin, Willey ? Operating

Systems: Internals and Design Principles 9 th edition by William Stallings, Pearson Education ? Madnik and Donovan,

Operating systems, McGraw Hill. ? Andrew, S. Tannenbaum, Modern operating system, PHI.

190 | P a g e Space for learners: UNIT 2: INPUT-OUTPUT ORGANIZATION Unit Structure: 2.1 Introduction 2.2 Unit

Objectives 2.3 Input/Output peripherals 2.4 Accessing I/O devices 2.5 Polling 2.6 Interrupts 2.6.1 Handling multiple

devices 2.6.2 Polling scheme 2.6.3 Vectored interrupt 2.6.4 Priority interrupt 2.6.5 Daisy chain 2.7 Direct memory access

2.7.1 Bus arbitration 2.8 Buses 2.9 Application I/O interface 2.10 Kernel I/O subsystem 2.10.1 I/O scheduling 2.10.2

Buffering 2.10.3 Caching 2.10.4 Spooling 2.10.5 Error handling 2.11 Summing Up 2.12 Answers to Check Your Progress

2.13 Possible Questions 2.14 References and Suggested Readings 2.1 INTRODUCTION Input and output peripherals are

the key components of a computer system. The main task of a computer system can be categorized as Input/output and

processing. In a computer system, the operating system (OS) is used to manage and control the input/output devices

and perform operations on the data receives from I/O devices and output it. In this chapter, we will discuss the basic

input/output hardware, Input/output services and interface provided by OS, how

191 | P a g e Space for learners: OS bridges the gap between Input/output hardware interface and Input/output

application interface, interrupts handling, etc. 2.2 UNIT OBJECTIVES After going through this unit, you will be able to: ?

know about the I/O devices. ? understand different implementation issues related to I/O devices. ? explain how the I/O

interface manages the gap between I/O devices and other units of a computer system. ? understand How to I/O devices

are connected to a computer. ? learn about the I/O device controller. ? Learn how to access the I/O devices. ? explain

how an OS handled interrupts and its different cases. ? understand how DMA is used to improve the throughput of a

system. ? learn about the bus organization of a computer system. ? know about the functionalities of the kernel of an OS.

2.3 INPUT/OUTPUT PERIPHERALS A computer system consists of four basic building blocks such as ALU, control unit,

memory unit, and input/output unit. An input device can be defined as a hardware unit used to provide inputs into a

system. The inputs may be a piece of data, information, control instruction, control signal, etc. The data or information

can be of a different format – text, graphics, signals, etc., which is converted into a machine-understandable format by

the input devices. The output hardware used in a computer system is keyboard, mouse, joystick, scanner, electronic pen,

microphone, sensor devices, CCTV, light pen, trackball, graphic tablet, etc. The hardware peripherals used to get the

output from the processor, project them or reproduce them in a human-understandable format can be defined as an

output device/hardware. Output hardware’s are monitor, printer, headphones, speaker, sound card, video card, plotter,

screen

192 | P a g e Space for learners: projector, speech synthesizer, GPS, etc. input/output hardware are may be wired or

wireless. To communicate with a machine, the I/O devices are connected with connection points of a machine known as

a port. The I/O devices may use a common set of wires to transfer data/signals/addresses are known as a bus. A bus

system in a computer can have three different types such as – to transfer data, data bus, control bus for transferring

control signals, and address bus for transferring addresses in between processor and I/O devices or memory units. A

controller is used to control the I/O devices, system buses, and ports. A processor can send data and commands to the

controller for performing I/O transfer. The controller has one or more registers to hold the data and commands. To read

and write the device control registers the processor uses a set of standard data-transfer instructions and thus executes

the I/O requests. The I/O device ports also have four registers namely – status, control, data in, and data out registers.

The bits contained in the status register are used to depicting the states of completeness, availability of a byte of

information to be read from the data-in register and occurring of a device error. To start a control command or to

change the mode of a device, the bits in the control register are used. Reading the contents from the data-in register a

host can access the inputs and by writing into the data-out register, a host can send output. The I/O device port registers

are typically 1 – 4 bytes in size. 2.4 ACCESSING I/O DEVICES The computer system uses a common line to connect all

the I/O devices with it called the bus. The bus system allows the I/O devices to exchange information as shown in figure

2.1. The bus system STOP TO CONSIDER 1. Certain bits in a control register of a serial port are used to choose a

communication between full-duplex and half-duplex. 2. Other bits are used to check the parity. 3. Third bits are used to

set the word-length between 7-8 bits. 4. Fourth bit is used choose the supported speed of the serial port.

193 | P a g e Space for learners: typically consists of three different sets of lines: to transfer addresses – address Figure

2.1: Bus structure of a computer system bus, data – data bus, and control signals – control bus. Each I/O device has a

unique set of specified addresses. When the processor placed a request by placing an address into the address line, any

one of the connected devices will recognize it and respond to the command issued on the control line. During

execution the processor request either a read or write command through the command line and transferred over the

data bus. If the I/O device and the memory shared the same address space then the mechanism will be known as

memory-mapped I/O. The accessing speed of the I/O devices is varied from device to device and with the CPU also. The

speed of the CPU is very high in comparison to the I/O devices. The CPU can execute millions of instructions when a

user supplies input through an input device such as the keyboard. The CPU can execute the input character received

from the keyboard, only after available in the input buffer of the keyboard interface. The I/O interface for each I/O device

provides a platform to connect between the buses and the devices such that it can communicate data to and fro

between the CPU and I/O devices. It has been depicted in figure 2.2. The interfaces are consists of four different set of

registers – data in, data out, status and control registers.

194 | P a g e Space for learners: Figure 2.2: Communication of data between CPU and I/O devices An input device

interface for the keyboard sets the SIN bit of the status register as 1 if it has to perform an input operation. If the data is

read by the processor for execution, it will be reset to 0. The SIN bit is regularly checked and read the data register. When

the processor repeatedly checks for the status flag to get the required synchronization between the I/O device and the

processor, is known as program-controlled I/O. Two other techniques to control the I/O device are interrupt-driven I/O

and Direct memory access (DMA). Interrupt-driven I/O devices use to send an interrupt request over the bus to indicate

that the device is ready for transferring data. In DMA, the I/O devices can directly communicate with the memory without

intervening with the CPU frequently. 2.5 POLLING The controller can announce its status using the busy-bit in the status

register. The busy bit is set to 1 to state the status of the controller as busy and set to 0 when it is ready to accept the

next command. The host machines announce the availability of commands to be executed by setting the command-

ready bit. To place a command, a host repeatedly checks the busy bit until it becomes clear. The host sets the write bit

into the command register and writes a byte into the data-out register. Then the host set the command bit ready. When

the controller gets the command-ready as 1, immediately it sets the busy bit. The controller will read the command

register and notice the write command. The controller

195 | P a g e Space for learners: reads the data-out register to get the bytes of information and do the input/output to the

device. After completion, the controller clears the command-ready bit, clears the error bit in the status register indicating

the successful completion of the I/O operation, and clears the busy bit to indicate that the task is finished. When the host

checks for the busyness of the controller by checking the status register repeatedly until the busy bit becomes clear or 0

is known as busy-waiting or polling. If the duration of a wait is long, the host may switch to another task. In many

computer architectures, three CPU instruction cycles such as

100% MATCHING BLOCK 246/320

read a device register, logical-and to extract a status bit, and branch if not zero

are sufficient to poll a device. Polling may be inefficient if the host repeatedly attempted for busy-bit but does not find

any device ready for service due to the involvement of the CPU with incomplete processing. To overcome this problem,

the hardware controller should inform the CPU, when the device becomes ready for service, rather than require the CPU

to poll repeatedly for an I/O completion.

100% MATCHING BLOCK 247/320

The hardware mechanism that enables a device to notify the CPU is called

88% MATCHING BLOCK 248/320

The hardware mechanism that enables a device to notify the CPU is called

90% MATCHING BLOCK 249/320

The hardware mechanism that enables a device to notify the CPU is called an interrupt. 2.6

100% MATCHING BLOCK 250/320

The hardware mechanism that enables a device to notify the CPU is called an interrupt. 2.6 INTERRUPTS

When an I/O device is busy performing a task for a long time, and the processor repeatedly asks for the status of the

device, the processor may not execute any necessary computation within this time and seat idle. But the CPU can

perform some other necessary computations while waiting for the I/O device to become ready. It is possible by sending

a signal called an interrupt to the processor. Using the concept of interrupt the waiting cycle can be eliminated and

increase the throughput of the system. Interrupts is a hardware mechanism where the CPU senses the interrupt-request

line after the execution of each instruction. Interrupts can take place at any time. The I/O device controller sets the

interrupts-request line to get the CPU cycle at any time. If the CPU detects an interrupt in the interrupts request line, it

immediately saves the current state on a processor stack and jumps to the interrupts handler routine. Suppose the CPU

executing the i th instruction during execution while the interrupt request arrives as shown in figure 2.3. The processor

will complete the execution of the instruction “i” and load the program counter by the first instruction of the interrupt

service routine. The address of the next

196 | P a g e Space for learners: instruction i+1 will be stored onto the processor stack and after completion of the

interrupt service routine, the PC will load the instruction i+1. Figure 2.3: Execution of a program instruction by CPU The

interrupt handler routine

57% MATCHING BLOCK 251/320

determines the cause of the interrupt, performs the required operations, and executes the return-from operation to

resume the CPU

60% MATCHING BLOCK 252/320

determines the cause of the interrupt, performs the required operations, and executes the return-from operation to

resume the CPU

states before the interrupt. The following figure 2.4 depicts a complete interrupts-driven input/output cycle. Input/output

operations can be classified as synchronous and asynchronous. Figure 2.4: Complete interrupt driven input/output cycle

197 | P a g e Space for learners: In the case of a synchronous scheme, the CPU execution has to wait when the I/O

devices are proceeds. But in the case of the asynchronous scheme, I/O operations can proceeds simultaneously with the

CPU execution. The basic interrupt mechanism of a system allows the CPU to respond to an asynchronous event. To

have an efficient input/output, the interrupt-controller hardware provides some more sophisticated features such as –

ability to handle interrupt during complex processing tasks, the need to know about the interrupt initiating device

without polling all the devices, and should support multilevel interrupt. Two request lines – maskable and non-maskable

are used by the CPU to identify the interrupt request type. In the case of a non- maskable interrupt, the CPU has to

respond immediately by switching itself from its current execution. In case of a maskable interrupt, the CPU can turn off

it such that the current execution is not interrupted. 2.6.1 Handling Multiple Devices A computer system may be

connected with several I/O devices. There is no definite order in which I/O devices can request an interrupt, as the I/O

devices are operationally independent. More than one device can activate the interrupt request line at the same time.

This can raise some difficulties or issues in the system: i. How a processor can recognize the interrupt generating device.

ii. If more than one device generates interrupt and maintain different interrupt service routine, then how the processor

can recognize the starting address of the appropriate routine. iii. Is it necessary to allow another device to set the

interrupt request line, while one device is already being served its interrupt service routine? iv. How to handle more than

one interrupt generated exactly at the same time. It is possible to handle more than one interrupt generated at the same

time by breaking the tie and select any one of the two for service. After completion of the service routine of the selected

device, the second one can be served. Some of the ways to handle multiple interrupts are:

198 | P a g e Space for learners: 2.6.1.1 Polling Scheme A device can indicate its interrupt request by placing 1 in one of

the bits of the status register. The particular bit in the status register is known as IRQ. To identify the interrupt requested

device, the interrupt service routine has to poll all the I/O devices connected with the bus system. For servicing, a

dedicated subroutine will call a device, which encountered its IRQ bit set at first and is being served. It is easy to

implement but wastes notable time during interrogating the IRQ bits of all the devices which are not requesting any

service. To overcome this problem vectored interrupt mechanism has been used. 2.6.1.2 Vectored Interrupt To reduce

the time used in interrogating IRQ bits of each device in the polling scheme, vectored interrupt mechanism is used. Here

the I/O device itself has to inform the CPU directly about its interrupt request. The interrupt requesting device sends the

first address of its interrupt service routine to the processor over the bus as an indication of generating an interrupt. Then

the processor can start the execution of the corresponding interrupt service routine from the specified starting address

send by the device. This system enables the processor to recognize the interrupt request if any I/O device even activates

a single interrupt request line. The location shared by the device with the processor has to be considered as the starting

address of the interrupt service routine. The CPU loads the starting address onto the program counter which is known as

the interrupt vector. Interrupt vector typically sends by the I/O devices over the data bus and the address length ranges in

between 4 – 8 bits. The processor may not respond to the interrupt vector immediately after requesting. The interrupts

requesting devices have to wait to get the acknowledgment from the processor until the completion of the current

execution. The interrupt requesting device can load its interrupt vector onto the bus if the CPU is ready to read it. While

the processor is ready to read the interrupt vector, it enables the interrupt acknowledgment (INTA) line. The I/O device

responds to the CPU by placing the interrupt vector onto the bus and turned off the INTR signal.

199 | P a g e Space for learners: 2.6.1.3 Priority Interrupt When more than one device is involved in requesting an

interrupt, the processor may have an arrangement to not allow other devices when one interrupt service routine is

already is in process. Once an interrupt service routine is started to serve by the processor, it continues until completion

of it and before the processor accepts an interrupt request from a second device. i.e. the second device has to wait until

the completion of the current interrupt service routine execution. Sometimes the delay of execution may lead to an

erroneous operation. Some of the waiting interrupt requests may have more priority than the executing one. To

overcome this situation, the I/O devices have to arrange in a priority-based structure. Here the processor will accept the

higher priority device request while servicing a device with lower priority. Figure 2.5: priority interrupt If the processor

accepts interrupt requests from other devices during the execution of an interrupt service routine; the accepting device

will be selected based on device priority. This type of arrangement of I/O devices is known as a multiple-level priority

organization. During the execution of a device request, the processor can accept interrupt requests from other devices

which have a higher priority level than the current one. Once the processor has started to serve an interrupt service

routine of a particular priority level, it disables interrupts from devices that have the same or lower priority level. The

interrupt from higher priority devices may continue and be accepted. A multiple priority scheme can be implemented

easily by using separate INTR and INTA lines for each device as shown in figure 2.5. In the diagram, each INTR line is

assigned a different level of priority.

200 | P a g e Space for learners: 2.6.1.4 Daisy Chain If more than one device generates interrupts simultaneously, in a

multiple-level priority organization it is clear that the processor will serve the device with the highest priority. But in the

case of vectored interrupt one device is select to send the interrupt request. Another efficient mechanism to solve this

problem is the daisy chain. In this widely used scheme, all the I/O devices are shared a common interrupt request line for

sending interrupt requests. But the processor uses only one interrupt acknowledgment (INTA) line to acknowledge the

devices. The INTA line is connected in a daisy chain fashion, such as it passes through all the I/O devices as shown in

figure 2.6. When the several I/O devices are activated the INTR line, the processor responds to it by enabling the INTA

line. At first, the CPU serves device 1. If device 1 has a pending request, it will hold the INTA signal line until the operations

have been completed. In the daisy chain arrangement, the device which is electronically closest to the processor has the

highest priority. The second device along the chain has the second-highest priority and so on. In daisy chain

arrangement the requirement of wires is less in comparison to the priority base structure as shown in figure 2.6. Figure

2.6: Daisy chain

201 | P a g e Space for learners: Figure 2.7: Daisy chain with priority based structure Combining both the priority interrupt

and daisy chain mechanism, a more general and useful interrupt handling mechanism can be achieved. An example of

such a hybrid structure is depicted in the following diagram 2.7. Here the devices are combined to form a group of a

particular priority level. Within the group, devices are connected in a daisy chain fashion. 2.8 DIRECT MEMORY ACCESS It

has been observed from the previous sections that the I/O operations are mainly concentrated on the transfer of data

between the processor and I/O devices. The processor can perform this by polling a device or the device itself can send

an interrupt request to the processor. During this process involvement of the processor is very high. When the processor

served an interrupt service routine, several program instructions have to be executed for each data word transfer.

Additionally, the processor may be busy with polling the status register of each device, instruction to increment the

memory address and keep a record of the word count. When an interrupt occurred, the additional overhead associated

with the saving of currently executed instruction address into a stack, load the program counter by starting address of

the interrupt service routine and again resume the previous execution. For transferring a large block of data directly in

between the I/O device and the main memory, a different technique may use known as Direct Memory Access (DMA). In

DMA the continuous intervention of the CPU is reduced by allowing the I/O devices to access the memory unit directly

under the control of a special control unit. The control unit is a part of the device interface and performed the DMA

transfer. This control circuit is known as the DMA controller. In general, the I/O devices are accessing the main memory

through the processor. But in the case of DMA, the role of the processor is replaced by the DMA controller. The DMA

controller is responsible for providing the required memory addresses and control signals needed for data transfer. The

controller unit performs the data transfer operation without interrupting the CPU, but the complete operation is under

the control of the main program executed by the processor. To start an operation, the CPU sends the starting address,

data words in the

202 | P a g e Space for learners: block, and the data flow direction to the controller. Once the DMA controller receives

this information, it started to perform the requested operation. After completion of the data transferring, the CPU is

informed by the DMA through an interrupt signal and the processor removes the control from the DMA controller.

During the data transfer using DMA, if the current execution cannot continue by the CPU, then CPU can switch the

operation to some other which is ready in the ready queue. After receiving the interrupt signal from the DMA controller,

the processor can return to the process requested for data transfer. The entire operations of input/output are always

performed by the operating system. OS is responsible for suspending a program executed by the processor and starting

another one. Initiation of a DMA is also a task of the OS. For example, to transfer a data block from the main memory to

disk, a dedicated program writes the starting address and the word count of the data block into the corresponding

registers of the disk controller. The DMA controller performs this operation independently without intervening in the

CPU. After completion of the transfer of the data block, the done bit of the status and the control register are set.

Simultaneously the controller sends an interrupt request to the CPU and sets the IRQ bit. The status register is used to

store the information about proper transferring of the data block or if there occurred any error during data transfer. The

priority of demanding the bus system by DMA devices is always more than the processor. Among the DMA devices, the

highest speed devices are getting higher priority than the others. Memory accesses by the processor and the DMA

devices are interwoven. In a computer system, most of the memory access requests are generated by the processor

itself. Thus it can be said STOP TO CONSIDER 1. DMA transfers may have several attributes such as: Source address,

destination address, transfer length, transfer type, block size, line stride, line length, etc. 2. DMA transfers can be

categorized into two forms based on the hardware design and the involved peripheral devices, such as – single cycle

DMA and burst transfer.

203 | P a g e Space for learners: that the DMA devices are stealing the memory cycles from the CPU. This mechanism is

known as cycle stealing. It can be stated that the DMA devices are allowed to access the memory of a computer system

exclusively to transfer a block of data without interruption and it can be defined as block or burst mode. But if the

processor and the DMA controller or two DMA controllers request the main memory at the same time, then a conflict

may arise. As a remedy or to resolve the conflict, a mechanism is used by the bus system to coordinate among the

memory accessing devices is known as bus arbitration. 2.7.1 Bus Arbitration A device known as a bus-master is used to

control the initiation of the data transfer through the bus system at any time. When the bus master relinquishes control

of the bus, another device may acquire it immediately. But using the bus arbitration mechanism, the next device which is

going to be the bus master will be selected and the bus mastership will be transferred. There are two arbitration

processes namely centralized and distributed arbitration. A single bus arbiter is used to perform the required arbitration in

centralized arbitration. In the case of distributed bus arbitration, all the devices participating in the selection process of

the next bus master. 2.8 BUSES The prime units of a computer system are interconnected through a common bus

system. The common bus is used to transfer data, addresses, and control signals among the prime computer units such

as memory, processor, I/O devices, and the control unit. The line required in bus arbitration and interrupt are also

included in this common bus system. During transferring information a set of rules have to be followed by the buses

known as protocols. A bus protocol can be defined as a set of rules to govern the behaviour of interconnected devices.

There are three kinds of buses available in a system. To transfer data – data bus, to transfer addresses – address bus, and

to transfer control signals – control bus. In the control lines, a single R/W signal is used to indicate, either read or write

operation to be performed on memory. If the signal bit is set to 1 means a read operation, and 0 indicates a write

operation.

204 | P a g e Space for learners: These lines are also used to carry time information, at what time a device will perform

the read/write operation i.e. at what time a device will place data onto the bus or at what time receives data from the

bus. Based on the timing of data transfer over a bus, two different categories can be obtained – synchronous and

asynchronous bus systems. In an asynchronous bus system, all the devices derived the time from a common clock.

Equal time duration is assigned for each device in the synchronous bus. Each of the time intervals of equal size is known

as the bus cycle. One word of data can transfer in a bus cycle. In an asynchronous bus system, the common clock is

replaced by two-time control lines such as Master–ready and Slave–ready. This method is based on the use of a

handshake between the master and slave. Here at first, the master indicates about the data whether it is ready for

transmission or not, and second, the slave will respond to it. According to the handshaking protocol – the master will

place the command information and addresses on the bus. It indicates the activation of the master–ready line and it is

received by all the interconnected devices. At this point, all the devices have to decode their addresses. The slave line

performs the required operation and informs the CPU by activating the slave–ready line. A full handshaking method can

provide the highest degree of flexibility and reliability. 2.9 APPLICATION I/O INTERFACE I/O interfaces are used to enable

the I/O devices and treat them in a standard and uniform manner. I/O interfaces can be customized with a layer known

as the device drivers. Device drivers are used to hiding the differences between the device controllers from the I/O

subsystem of the kernel. The use of the driver application encapsulates the behaviour of the devices in a few generic

classes that hide the hardware differences from applications. It makes the operating system (OS) independent of the

hardware and simplifies the job of the OS developers. This process restricts the device manufacturer either to

manufacture a product that is compatible with the existing host controller interface of the OS or write a device driver to

interface the new hardware to facilitate the OS. Thus a new device can be added to a computer through an OS. For

different OS

205 | P a g e Space for learners: types, the device drivers may vary. For example, a graphics driver for MS-DOS may not

be supported by the OS, MS- Windows 2000, or in MAC OS. The devices can be categorized based on the data transfer

style. The character-stream device transfers the data byte by byte whereas the

100% MATCHING BLOCK 253/320

block device transfers a block of bytes as a unit

at a time. The keyboard is an example of a character stream interface. In

75% MATCHING BLOCK 254/320

a sequential device data transfer occurred in a fixed order determined by the device, whereas a random access device

can instruct the device to

search data on any available memory location randomly. Some of the devices perform data transfer within a predictable

response time known as synchronous devices, whereas some of them show irregularity or in-predictable response time

known as an asynchronous device.

78% MATCHING BLOCK 255/320

A sharable device can be accessed by several processes or threads but a dedicated device cannot.

Some of the devices can perform both read/write operations, but some of them can perform either read or write

operations i.e. transfer of data in only one direction. The block device interface will collect all the related information for

accessing disk drivers and other block-oriented devices. These devices are expecting commands like read() or write().

Random access devices can expect to have a seek () command to locate the address of the next block to be transferred.

To interact with the network devices, most of the OS including UNIX, Windows NT have used a network socket interface.

The computer system has clock and timer hardware to provide some basic functions such as current time, elapsed time,

and a timer to perform trigger operations. The hardware used to maintain the STOP TO CONSIDER 1. The device drivers

are always operated within the kernel of an OS. 2. Kernel is the core part of an OS, which has direct access to the

computer hardwares. 3. Device drivers are splitted into two layers such as – logical and physical layer. 4. Broad

classification catrgories of device drivers are: kernel device drivers and user mode device drivers.

206 | P a g e Space for learners: trigger and the elapsed time is known as a programmable interval timer. The OS provides

an interface to the user to control the timer. During the power cut or shut-down mode of a system, a CMOS cell is used

to supply power to the clock and timer. 2.10 KERNEL I/O SUBSYSTEM The kernel of an OS provides lots of functionalities

related to input/output such as – scheduling, caching, buffering, spooling, device reservation, error handling, etc. The

kernel also protects the system from malicious software and errant processes. 2.10.1 I/O Scheduling The kernel

subsystem scheduled the I/O request such that the devices can perform their operations in an ordered manner. I/O

scheduling can improve the system performance by fairly distributing the devices among the processes and thus

improve the average waiting time. To implement I/O scheduling a wait queue containing I/O requests for the devices to

be maintained. If an application is issued a blocking I/O system call, then the I/O request will be kept in the wait queue

for that particular

56% MATCHING BLOCK 256/320

device. The I/O scheduler may rearrange the contents of the wait queue to improve the system performance and

average access time experienced by

the applications. In the case of an asynchronous I/O, the I/O scheduling has to keep track of many I/O requests

simultaneously. The efficiency of a computer system can be improved by using other techniques that use storage in

main memory or a disk via buffering, caching, and spooling. STOP TO CONSIDER 1. Different scheduling algorithms are

used by an OS to scheduled the operations of I/O devices. 2.

84% MATCHING BLOCK 257/320

First Come First Serve (FCFS), Shortest Job First (SJF), Priority scheduling, Round robin

etc. are the prime scheduling algorithms.

207 | P a g e Space for learners: 2.10.2 Buffering Before transferring data from a device to another device or device to

application, maybe store it in a memory area temporarily known as a buffer. Buffering is done due to three reasons. First,

cope up with the speed mismatch between the speed of the producer and the consumer. The second, to provide

adaptation for devices that have different data transfer sizes. A third use of buffering is to copy semantics for application

I/O. Copying of data between kernel buffer and application data space is common in the operating system despite the

overhead that this operation introduces, because of the clean semantics. 2.10.3 Caching Cache memory is a faster

memory placed in between the processor and the main memory. Caching is used to reduce the speed compatibility of

the processor and the memory access time. It stores a block of data word into it which is being used by the processor

shortly. The difference between buffering and caching is that in buffering an existing copy of data is hold whereas in

cache a copy of data items can be store that can remain elsewhere. 2.10.4 Spooling The output stream of data has to

store in a buffer before going to an output device. It is known as spooling. A printer can be used to print the output of a

process at a time, but many applications can request the printer at a time to print their output concurrently without

mixing the outputs. The OS allows this by intercepting all the outputs to the printer. The output of each application is

spooled into a separate disk file. Once the current printing process is being over, spooling system copied the next output

to be print from the queue. It can copy one output from the queue to the printer at a time. 2.10.5 Error Handling Using

protected memory, an OS can protect a system from loss of data or information due to any errors that occurred in

hardware or at the application level. Thus a system can protect from small mechanical faults. Devices and I/O data

transfer may fail due to

208 | P a g e Space for learners: several reasons. It may be either transient such as when a network becomes overloaded

or for permanent reasons such as when a disk controller becomes defective. An OS can handle transient kinds of failures

effectively. CHECK YOUR PROGRESS A. Choose the correct options for the following questions: 1. Which of the

following is a major part of the time taken when accessing data on the disk? A. Settle time B. Rotational latency C. Seek

time D. Waiting time 2. How does the hardware trigger an interrupt? A. Sending signals to CPU through the system bus B.

Executing a special program called interrupt program C. Executing a special program called system program D.

Executing a special operation called system call 3. Which operation is performed by an interrupt handler? A. Saving the

current state of the system B. Loading the interrupt handling code and executing it C. Once done handling, bringing back

the system to the original state it was before the interrupt occurred D. All of these 4. Which of the following is an

example of the spooled device? A. A graphic display device B. A line printer used to print the output of several jobs C. A

terminal used to enter input data to a running program D. A secondary storage device in a virtual memory system 5. An

application loads 100 libraries at start-up. Loading each library requires exactly one disk access. The seek time of the disk

to a random location is given as 10 ms. The rotational speed of the disk is 6000 rpm. If all 100 libraries are loaded from

random locations on the disk, how long does it take to load all libraries? (The time to

209 | P a g e Space for learners: transfer data from the disk block once the head has been positioned at the start of the

block may be neglected) A. 0.50 s B. 1.50 s C. 1.25 s D. 1.00 s 6.

98% MATCHING BLOCK 258/320

Consider the following table of arrival time and burst time for three processes P0, P1, and P2. Process Arrival time Burst

Time P0 0 ms 9 ms P1 1 ms 4 ms P2 2 ms 9 ms 7. The pre-emptive shortest job first scheduling algorithm is used.

Scheduling is carried out only at

100% MATCHING BLOCK 259/320

Consider the following table of arrival time and burst time for three processes P0, P1, and P2. Process Arrival time Burst

Time P0 0 ms 9 ms P1 1 ms 4 ms P2 2 ms 9 ms 7. The pre-emptive shortest job first scheduling algorithm is used.

Scheduling is carried out only at

the

100% MATCHING BLOCK 260/320

arrival or completion of processes. What is the average waiting time for the three processes? A. 5.0 ms B. 4.33 ms

100% MATCHING BLOCK 261/320

arrival or completion of processes. What is the average waiting time for the three processes? A. 5.0 ms B. 4.33 ms C.

6.33 ms D. 7.33 ms 8.

100% MATCHING BLOCK 262/320

Let the time taken to switch between user and kernel modes of execution be t1 while the time taken to switch between

two processes be t2. Which of the following is TRUE? (

GATE CS 2011) A. t1 < t2

100% MATCHING BLOCK 263/320

B. t1 = t2 C. t1 > t2 D. Nothing can be said about the relation between t1 and t2 9.

100% MATCHING BLOCK 264/320

A set of wires and a rigidly defined protocol that specifies a set of messages that can be sent on the wires. A. Port B.

Node C. Bus D. None of these 210 |

P a g e Space for learners: 10.

95% MATCHING BLOCK 265/320

The _________ presents a uniform device-access interface to the I/O subsystem, much as system calls provide a

standard interface between the application and the operating system. A. Devices B. Buses C. Device drivers D. I/O

systems 11.

100% MATCHING BLOCK 266/320

The interrupt vector contains A. The interrupts B. the memory addresses of specialized interrupt handlers C. the

identifiers of interrupts D. the device addresses 2.11

SUMMING UP ? An input device can be defined as a hardware unit used to provide inputs into a system. ? The hardware

peripherals used to get the output from the processor, project them or reproduce them in a human- understandable

format can be defined as an output device/hardware. ? To communicate with a machine, the I/O devices are connected

with connection points of a machine known as a port. ? A controller is used to control the I/O devices, system buses, and

ports. ? The controller has one or more registers to hold the data and commands. ? The I/O device ports have four

registers namely – status, control, data in, and data out registers. ? The I/O device port registers are typically 1 – 4 bytes

in size. ? The computer system uses a common line to connect all the I/O devices with it called the bus. ? If the I/O

device and the memory shared the same address space then the mechanism will be known as memory-mapped I/O.

211 | P a g e Space for learners: ? The CPU can execute the input character received from the keyboard, only after

available in the input buffer of the keyboard interface. ? When the processor repeatedly checks for the status flag to get

the required synchronization between the I/O device and the processor, is known as program-controlled I/O. ? The

controller can announce its status using the busy-bit in the status register. ? Using the concept of interrupt the waiting

cycle can be eliminated and increase the throughput of the system. ? In the case of a synchronous scheme, the CPU

execution has to wait when the I/O devices are proceeds. ? In the case of the asynchronous scheme, I/O operations can

proceeds simultaneously with the CPU execution. ? Two request lines – maskable and non-maskable are used by the

CPU to identify the interrupt request type. ? In the case of a non-maskable interrupt, the CPU has to respond

immediately by switching itself from its current execution. ? A device can indicate its interrupt request by placing 1 in one

of the bits of the status register. ? The CPU loads the starting address onto the program counter which is known as the

interrupt vector. ? In DMA the continuous intervention of the CPU is reduced by allowing the I/O devices to access the

memory unit directly under the control of a special control unit. ? The controller unit performs the data transfer

operation without interrupting the CPU, but the complete operation is under the control of the main program executed

by the processor. ? The priority of demanding the bus system by DMA devices is always more than the processor. ? A

device known as a bus-master is used to control the initiation of the data transfer through the bus system at any time. ?

Before transferring data from a device to another device or device to application, maybe store it in a memory area

temporarily known as a buffer.

212 | P a g e Space for learners: 2.12 ANSWERS TO CHECK YOUR PROGRESS A. 1. C 2. A 3. D 4. B 5. Answer B

Explanation: Since transfer time can be neglected, the average access time is the sums of average seek time and average

rotational latency. The average seeks time for a random location time is given as 10 ms. The average rotational latency is

half of the time needed for a complete rotation. It is given that 6000 rotations need 1 minute. So one rotation will take

60/6000 seconds which is 10 ms. Therefore average rotational latency is half of 10 ms, which is 5ms. Average disk

access time = seek time + rotational latency = 10 ms + 5 ms = 15 ms For 100 libraries, the average disk access time will

be 15*100 ms 6. Answer A Explanation: Process P0 is allocated processor at 0 ms as there is no other process in the

ready queue. P0 is preempted after 1 ms as P1 arrives at 1 ms and burst time for P1 is less than the remaining time of P0.

P1 runs for 4ms. P2 arrived at 2 ms but P1 continued as the burst time of P2 is longer than P1. After P1 completes, P0 is

scheduled again as the remaining time for P0 is less than the burst time of P2. P0 waits for 4 ms, P1 waits for 0 ms, and

P2 waits for 11 ms. So average waiting time is (0+4+11)/3 = 5.

213 | P a g e Space for learners: 7. Answer C Explanation: Process switching involves a

100% MATCHING BLOCK 267/320

mode switch. Context switching can occur only in kernel mode. 8.

C 9. C 10. B 2.13 POSSIBLE QUESTIONS A. Answer the following questions: 1. What is an interrupt? 2. What is the use of

the INTA line in a processor? 3. What is a device driver? 4. What is a socket? 5. What is the function of an interrupt

handler? 6. What is the role of a scheduler in an OS? 7. What types of errors can detect and correct by an OS? 8. What is

a vectored interrupt? 9. What do you mean by polling? 10. What is spooling? B. Answer the following questions: 1. Explain

different types of interrupts. 2. Explain the process how the CPU identifies an interrupt requesting device. 3. Prepare a list

of devices with its priority value for a particular operating system. 4. Explain the working principle of daisy chain. 5.

Explain at least two computer operations in details where DMA transfer is required. 6. How DMA transfer can be used in

storing data explain.

214 | P a g e Space for learners: 7. How DMA transfers take place when transfer a large block of data explain. 8. Explain

different categories of device drivers with example. 9. How the device drivers work? 10. Explain the architectures of

device drivers. 11. Explain the concept of virtual device driver. 12. Explain round robin and SJF scheduling algorithm with

example. 13. How buffering is used in printing process explain briefly. 14. What do you mean by bus arbitration? Explain

distributed bus arbitration with a block diagram. 15. Explain the bus structure of a computer system. 16. How daisy chain

is used to handle interruptions? Explain the procedure to make a priority base daisy chain with a block diagram. 17.

Explain how DMA is used in a system. 18. Explain the term memory-mapped I/O and program-controlled I/O. 19. Explain

the process of accessing I/O devices. 20. What is an interrupt? Explain how multiple I/O devices can be handle by an OS?

21. Explain the concepts of bus arbitration. 22. Differentiate between polling and vectored interrupt. 2.14 REFERENCES

AND SUGGESTED READINGS ? Operating System Principles 8 th edition by Abraham Silberschatz, Greg Gagne, and Peter

Baer Galvin, Willey ? Operating Systems: Internals and Design Principles 9 th edition by William Stallings, Pearson

Education ? Madnik and Donovan, Operating systems, McGraw Hill. ? Andrew, S. Tannenbaum, Modern operating

system, PHI.

215 | P a g e Space for learners: UNIT 3: INTRODUCTION TO DEADLOCK Unit Structure: 3.1 Introduction 3.2 Unit

Objectives 3.3 Definition of deadlock 3.4 Types of resources 3.5 Different types of deadlocks 3.5.1 Resource deadlock

3.5.2 Communication deadlock 3.6 Conditions for resource deadlock 3.7 Deadlock modelling 3.8 Strategies to deal with

deadlock 3.9 Starvation 3.10 Summing Up 3.11 Answers to Check Your Progress 3.12 Possible Questions 3.13 References

and Suggested Readings 3.1 INTRODUCTION In this unit you will learn about basic of deadlock. Deadlock is a situation

where a set of processes are blocked because each process is holding a resource and waiting for another resource

acquired by some other process. There are two types of resources available preemtable and non-preemptable. Deadlock

can be resource deadlock or communication deadlock. There are four conditions those must hold to occur deadlock.

The resource deadlock can be modelled using resource graphs. If the resource graph contains a cycle, then it means that

deadlock present. There are different strategies to deal with deadlock which will be discussed in next chapter. Starvation

is another process closely related to deadlock.

216 | P a g e Space for learners: 3.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? Understand the

concept of deadlock ? Know about different types of resources ? Learn about different types of deadlock ? Learn about

the four condition those must be hold to occur deadlock ? Learn about resource graph ? Learn how to modelled

deadlock for single resource type ? Know about different strategies to deal with deadlock ? Learn about starvation 3.3

DEFINITION OF DEADLOCK Computer systems are full of resources that can be used only by one process at a time.

Common examples include printers, tape drives etc. If a set of processes, try to simultaneously access the same

resources then sometimes situation like deadlock may arise. Deadlock is a situation where a set of processes are blocked

because each process is holding a resource and waiting for another resource acquired by some other process. Because

all the processes are waiting, none of them will ever cause any event that could wake up any of the other members of

the set, and all the processes continue to wait forever. Deadlock can be defined formally as follows:

77% MATCHING BLOCK 268/320

A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set

can cause. Deadlocks can also occur across machines. For example, many offices have a local area network with many

computers connected to it. Often devices such as scanners, Blu-ray/DVD recorders, printers, and tape drives are

connected to the network as shared resources, available to any user on any machine. If these devices can be reserved

remotely, deadlocks can occur. Again for example, in a database system a program may have to lock several

217 | P a g e Space for learners: records it is using, to avoid race conditions. If process A locks record R1 and process B

locks record R2 and then each process tries to lock the other one’s record, then the system will be deadlock. Thus,

deadlocks can occur on hardware resources or on software resources. 3.4 TYPES OF RESOURCES A major class of

deadlocks involves resources to which some process has been granted exclusive access. A computer will normally have

many different resources that a process can acquire. A resource can be a hardware device (e.g. a Blu-ray drive) or a piece

of information (e.g., a record in a database). A resource is anything that must be request, used, and released over the

course of time. If the resource is not available when it is requested, the requesting process has to wait. The process may

wait a little while and try again or it may automatically have blocked and awakened when it becomes available. Usually a

request or open system calls are provided to allow processes to explicitly ask for resources. The resources mainly

classified into two types- a) Preemptable resources b) Non-preemptable resources A preemptable resource is the

resource that can be taken away from its current owner (and given back later) without causing any effect. One

preemptable resource is memory. For example, a system has 1 GB of memory, one printer and two 1-GB processes A

and B. Each process A and B want to print something. At first process A requests and gets the printer, then starts to print.

But, before it has finished the computation, it exceeds its time quantum. Process B now runs and tries, unsuccessfully as

it turns out, to acquire the printer. Now this is a deadlock situation, because A has the printer and B has the memory, and

neither one can proceed without the resource held by the other. But we can get rid of this deadlock situation because it

is possible to preempt (take away) the memory from B by swapping it out and swapping A in. Now A can run, do its

printing, and then release the printer. No deadlock occurs.

218 | P a g e Space for learners: A non-preemptable resource, in contrast, is one that cannot be taken away from its

current owner without causing any effect. If a process has begun to burn a Blu-ray, suddenly taking the Blu-ray recorder

away from it and giving it to another process will result in a garbled Blu-ray. Blu-ray recorders are not preemptable at an

arbitrary moment. 3.5 DIFFERENT TYPES OF DEADLOCK 3.5.1 Resource Deadlock There are different types of deadlocks.

The resource deadlock is one of the common deadlock. As mentioned earlier if each member of the set of deadlocked

processes is waiting for a resource (non-preemtable) that is owned by a deadlocked process then none of the processes

can run, none of them can release any resources and none of them can be awakened. This kind of deadlock is called a

resource deadlock. Here the number of processes, the number of resources possessed and requested, hardware or

software resources these things are unimportant. 3.5.2 Communication Deadlocks Another kind of deadlock can occur

in communication systems (e.g. networks), in which two or more processes communicate by sending messages. For

example, consider a situation where process A sends a request message to process B and then blocks until B sends back

a reply message. Suppose the request message gets lost. Then A is blocked waiting for the reply and B is blocked waiting

for a request asking it to do something. This is a deadlock situation. But as we see that there are no resources involve in

the above situation, so this is not classical resource deadlock. This situation is called a communication deadlock. Since

there are no resources communication deadlocks cannot be prevented by ordering the resources. Again since there are

no moments when a request could be postponed communication deadlocks cannot be avoided by careful scheduling.

Timeouts is a technique to break communication deadlock. In most of the network communication

219 | P a g e Space for learners: systems, whenever a sender sends a message, it also starts a timer for a specific time

duration. If an acknowledgment is not received from the receiving end before the timer timeouts, then the sender has to

retransmit the message again. In this way, the deadlock is broken. Resource deadlocks can also occur in communication

network. As we know that in a network when a packet comes into a router from one of its hosts, it is put into a buffer for

forwarding to another router and then to another until it gets to the destination. These buffers are resources and there

are a finite number of them. Now consider four routers A, B, C and D. Each one has equal numbers of buffers. Suppose

that all the packets at router A need to go to B and all the packets at B need to go to C and all the packets at C need to

go to D and all the packets at D need to go to A. No packet can move because there is no extra buffer at the other end

and we have a classical resource deadlock. 3.6 CONDITIONS FOR RESOURCE DEADLOCKS Coffman et al. (1971) showed

that four conditions must hold to occur resource deadlock. If one of them is absent, no resource deadlock is possible. 1.

The first condition is mutual exclusion condition according to which each resource is either currently assigned to exactly

one process or is available. 2. The second condition is hold-and-wait condition. According to this condition processes

currently holding resources that were granted earlier can request new resources. 3. The third condition is no-preemption

condition. This condition holds when resources are non-preemptable i.e. resources previously granted cannot be

forcibly taken away from a process. They must be explicitly released by the process holding them. 4. The fourth

condition is circular wait condition. According to this condition there must be a circular list of two or more processes,

each of which is waiting for a resource held by the next member of the chain.

220 | P a g e Space for learners: 3.7 DEADLOCK MODELLING Holt (1972) showed how the four conditions of resource

deadlock can be modelled using a directed graph as follows- ? A circle represents a process. ? A square represents a

resource. ? A directed arc from a resource (square) to a process (circle) represents that the resource is currently held by

that process. In Figure 3.1(a) resource R is currently assigned to process A. ? A directed arc from a process to a resource

means that the process is currently blocked waiting for that resource. In Figure 3.1(b) process B is waiting for resource S.

? A cycle in the graph means that there is a deadlock involving the processes and resources in the cycle. In Figure 3.1(c),

process C is waiting for resource T, which is currently held by process D. Process D is not about to release resource T

because it is waiting for resource U, held by C. Both processes will wait forever. This directed graph can be mentioned as

resource allocation graph. Resource allocation graphs are a tool using which we will be able to see if a given

request/release sequence leads to deadlock. The requests and releases works are performed step by step and after every

step the resource allocation graph is checked to see if it contains any cycles. If so, deadlock occur; if not, there is no

deadlock. Here we consider the resource allocation graphs for the case of a single resource of each type. These resource

allocation graphs can also be generalized to handle multiple resources of the same type (Holt, 1972). Figure 3.1:

Resource allocation graphs. (a) Holding a resource (b) Requesting a resource (c) Deadlock

221 | P a g e Space for learners: (Reference: “Modern Operating Systems” by Andrew S Tanenbaum) Now, how these

resource allocation graphs can be used? For example, suppose there are three processes, A, B, C and three resources R,

S, T. All these processes do both I/O and computing. The operating system is free to run any unblocked process at any

instant. Thus, it could decide to run A, B, C sequentially without any pre-emption. Since all three processes are running

sequentially, so there is no competition for the resources. Hence deadlock will not occur. When the processes are run

sequentially, there is no possibility that while one process is waiting for I/O, another can use the CPU. Thus, running the

processes strictly sequentially may not be optimal in this situation. Figure 3.2: An example of how deadlock occurs and

how it can be avoided. (Reference: “Modern Operating Systems” by Andrew S Tanenbaum) Suppose the resource

requests occur in the orders as shown in Figure 3.2(d). For this order the six resulting resource allocation graphs are as

shown in Figure 3.2(e)–(j). From the Figure 3.2(j) it can be conclude that this order leads to deadlock as there is a cycle

A→S→B→T→C→R→A present in the graph.

222 | P a g e Space for learners: However, if operating system knew that granting a particular request might lead to

deadlock then it can simply suspend the process without granting the request until it is safe. In this example, it could

suspend B instead of granting it S as the orders shown in Figure 2.2(k). This order sequence leads to the resource

allocation graphs of Figure 3.2(l)–(q), which do not lead to deadlock. After step (q), process B can be granted S because A

is finished and C has everything it needs. Even if B blocks when requesting T, no deadlock can occur. B will just wait until

C is finished. 3.8 STRATEGIES TO DEAL WITH DEADLOCKS In general, there are four strategies to deal with deadlocks – ?

Just ignore the problem. Maybe if you ignore it, it will ignore you. ? Detection and recovery. Let them occur, detect

them, and take action. ? Dynamic avoidance by careful resource allocation. ? Prevention, by structurally negating one of

the four conditions. 3.9 STARVATION A problem closely related to deadlock is starvation. Starvation occurs if a process is

indefinitely delayed. This may happen if the process wants a resource for execution which is never provided to the

process or if the process is never provided the processor for some reason. Some of the common causes of starvation are

as follows – ? If a process is never allotted the resources it wants for execution. ? If high priority processes keep

executing and low priority processes get blocked for indefinite time ? If there are not enough resources to provide to

every process as required.

223 | P a g e Space for learners: ? If processes are selected randomly for execution, then a process may wait for a long

time because of non-selection. Some ways to handle starvation are as follows – ? An independent manager can be used

for allocation of resources. This resource manager distributes resources fairly and tries to avoid starvation. ? Random

selection of processes for resource allocation or processor allocation should be avoided as they encourage starvation. ?

The priority scheme of resource allocation should include concepts such as aging, where the priority of a process is

increased the longer it waits. This avoids starvation. 3.10 SUMMING UP ?

77% MATCHING BLOCK 269/320

A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set

can cause. CHECK YOUR PROGRESS 1. What is deadlock? 2. Mention the name of different resources. 3. What is the

purpose of resource allocation graph? 4. Mention the technique used to break communication deadlock. 5. What is

starvation? State TRUE or FALSE: 6. Deadlock occur when resources are pre-emptable. 7. In resource allocation graph a

circle represents a process. 8. Resource allocation graphs are undirected. 9. Resource deadlock does not occur in

network. 10. Starvation and deadlock are closely related. 11. A resource can be a hardware device or a piece of

information.

224 | P a g e Space for learners: ? A resource can be a hardware device (e.g. a Blu-ray drive) or a piece of information

(e.g., a record in a database). ? A resource is anything that must be request, used, and released over the course of time. ?

If the resource is not available when it is requested, the requesting process has to wait. ? Usually a request or open

system calls are provided to allow processes to explicitly ask for resources. ? The resources mainly classified into two

types- Preemptable and nonpreemptable. ? A preemptable resource is the resource that can be taken away from its

current owner (and given back later) without causing any effect. ? A nonpreemptable resource, in contrast, is one that

cannot be taken away from its current owner without causing any effect. ? If each member of the set of deadlocked

processes is waiting for a resource (non-preemtable) that is owned by a deadlocked process then none of the processes

can run, none of them can release any resources and none of them can be awakened. This kind of deadlock is called a

resource deadlock. ? Communication deadlock can occur in communication systems (e.g. networks), in which two or

more processes communicate by sending messages. ? Timeouts is a technique to break communication deadlock. ?

Four conditions must hold to occur resource deadlock- mutual exclusion condition, hold-and-wait condition, no-

preemption condition, circular wait condition. ? Resource deadlock can be modelled using a directed graph called

resource graph. ? A cycle in the resource allocation graph means that there is a deadlock involving the processes and

resources in the cycle. ? Starvation occurs if a process is indefinitely delayed.

225 | P a g e Space for learners: 3.11 ANSWERS TO CHECK YOUR PROGRESS State TRUE or FALSE: 6. False. 7. True. 8.

False. 9. False. 10. True. 11. True 3.12 POSSIBLE QUESTIONS Short answer type questions: 1. Briefly explain about

preemtable and nonpreemtable resources. 2. Briefly explain about different types of deadlock. 3. Mention about the four

conditions which must be satisfied to occur resource deadlock. 4. From a resource allocation graph how can we

conclude whether there occurs deadlock or not? 5. Mention four strategies to deal with deadlock. Long answer type

questions: 1. Briefly explain about the resource allocation graph used to modelling deadlock for single resource type

each. 2. Briefly explain with the help of an example how can we use the resource graph? 3.13 REFERNCES AND

SUGGESTED READINGS o “Operating System Concepts” by Avi Silberschatz and Peter Galvin o “Operating Systems:

Internals and Design Principles” by William Stallings o “Operating Systems: A Concept-Based Approach” by D M

Dhamdhere o “Modern Operating Systems” by Andrew S Tanenbaum

226 | P a g e Space for learners: UNIT 4: DEADLOCK PREVENTION, DETECTION AND AVOIDANCE Unit Structure: 4.1

Introduction 4.2 Unit Objectives 4.3 Strategies to deal with deadlock 4.3.1 Ignore the Problem All Together 4.3.2

Deadlock Detection and Recovery 4.3.3 Deadlock Avoidance 4.3.4 Deadlock Prevention 4.4 Summing Up 4.5 Answers to

Check Your Progress 4.6 Possible Questions 4.7 References and Suggested Readings 4.1 INTRODUCTION In this unit,

you will learn about different strategies to deal with deadlock in detail. The strategies are mainly divided into four

categories- simply ignore the deadlock, early detection and recovery of deadlock, avoid deadlock and prevent deadlock.

Both the detection and avoidance methods consider the facts of single resource type and multiple resource types. 4.2

UNIT OBJECTIVES After going through this unit, you will be able to: ? Understand about different strategies to deal with

deadlock ? Know about different methods to detect deadlock for both single resource type and multiple resource types ?

Learn about different ways to recover from deadlock ? Learn about different ways to avoid deadlock for both single

resource type and multiple resource types ? Learn about different methods to prevent deadlock

227 | P a g e Space for learners: 4.3 STRATEGIES TO DEAL WITH DEADLOCK 4.3.1 Ignore the Problem all Together The

simplest approach is the ostrich algorithm: stick your head in the sand and pretend there is no problem. If deadlocks only

occur once a year or so, it may be better to simply let them happen and reboot as necessary than to suffer the constant

overhead and system performance penalties associated with deadlock prevention or detection. This is the approach that

both Windows and UNIX take. 4.3.2 Deadlock Detection and Recovery The second technique is detection and recovery.

In the technique the system tries to detect the deadlock only when it is happening. After detection it will take some

action to recover. 4.3.2.1 Deadlock Detection with One Resource Of Each Type Suppose there is only one resource of

each type. For example, one scanner, one Blu-ray recorder, one plotter, and one tape drive, but no more than one of

each class of resource. As discussed in Unit 2, a resource allocation graph can be construct to detect deadlock in such a

system. Consider a system with seven processes A, B, C, D, E, F, G and six resources R, S, U, T, V, W. The state of the

system is as follows- ? Process A holds R and wants S. ? Process B holds nothing but wants T. ? Process C holds nothing

but wants S. ? Process D holds U and wants S and T. ? Process E holds T and wants V. ? Process F holds W and wants S. ?

Process G holds V and wants U. The question is: ‘‘Is this system deadlocked, and if so, which processes are involved?’’

228 | P a g e Space for learners: The resource allocation graph for this system will be as follows- Figure 4.1 (a) Resource

allocation graph (b) Cycle from (a) (Reference: “Modern Operating Systems” by Andrew S Tanenbaum) We can see that

the graph in Figure 4.1 (a) contains one cycle and processes D, E and G are all deadlocked. But Processes A, C and F are

not deadlocked because S can be allocated to any one of them, which then finishes and returns it. Then the other two

can take it in turn and also complete. Now to detect deadlock using this resource allocation graph, it is needed to detect

cycle in a directed graph. The following algorithm can detect cycles in a directed graph. The algorithm uses one dynamic

data structure L, a list of nodes, as well as a list of arcs. The arcs are either marked or unmarked. Marked arc means it is

already visited and unmarked arc means it is not visited yet. The steps are as follows- Algorithm 4.1 Step 1: For each node

N, in the graph, perform the following steps with N as the starting node. Step 2: Initialize L to the empty list and all arcs

remain unmarked. Step 3: Add the current node to the end of L and check to see if the node now appears in L two times.

If it does, the graph contains a cycle and the algorithm terminates. Step 4: From the given node, see if there are any

unmarked outgoing arcs. If so, go to Step 5; if not, go to Step 6. Step 5: Pick an unmarked outgoing arc at random and

mark it. Then follow it to the new current node and go to Step 3.

229 | P a g e Space for learners: Step 6: If this node is the initial node, the graph does not contain any cycles and the

algorithm terminates. Otherwise, we have now reached a dead end. Remove it and go back to the previous node, that is,

the one that was current just before this one, make that one the current node and go to Step 3. Working of Algorithm 4.1

on the resource allocation graph of Figure 4.1(a) Iteration 1: Let us first start the algorithm from a randomly selected node

R (Step 1). After that successively consider A, B, C, S, D, T, E, F as the starting node. Initialize L as empty list (Step 2). Add R

to the L and move through the only unmarked outgoing arc to node A. Add A to L. Thus L becomes L = [R, A] (Step 3,

Step 4, Step 5). From A go to node S. L becomes L = [R, A, S] (Repeat Step 3, Step 4, Step 5). S has no outgoing arcs, so it

is a dead end. Thus backtrack to node A (Repeat Step 3, Step 4, Step 6). A has no unmarked outgoing arcs, so backtrack

to R. Since R is the starting node so inspection of R has been completed (Repeat Step 3, Step 4, Step 6). Iteration 2: In

second iteration start the algorithm from the randomly selected node A (Step 1). Initialize L as empty list (Step 2). Add A to

L. From A move through the only unmarked outgoing arc to node S. L becomes L = [A, S] (Step 3, Step 4, Step 5).

230 | P a g e Space for learners: S has no outgoing arcs, so it is a dead end. Thus backtrack to node A. A is the starting

node so inspection of A has been completed (Repeat Step 3, Step 4, Step 6). Iteration 3: In third iteration start the

algorithm from the randomly selected node B (Step 1). Initialize L as empty list (Step 2). Add B to L. From B move through

the only unmarked outgoing arc to node T. L becomes L = [B, T] (Step 3, Step 4, Step 5). From T go to node E. L becomes

L = [B, T, E] (Repeat Step 3, Step 4, Step 5). From E go to node V. L becomes L = [B, T, E, V] (Repeat Step 3, Step 4, Step

5). From V go to node G. L becomes L = [B, T, E, V, G] (Repeat Step 3, Step 4, Step 5). From G go to node U. L becomes L

= [B, T, E, V, G, U] (Repeat Step 3, Step 4, Step 5). From U go to node D. L becomes L = [B, T, E, V, G, U, D] (Repeat Step

3, Step 4, Step 5). From D go to node T. L becomes L = [B, T, E, V, G, U, D, T] (Repeat Step 3, Step 4, Step 5). Now T is the

current node and it appears two times in L. Thus, there is a cycle in the graph. So the algorithm terminates here (Step 3).

4.3.2.2 Deadlock Detection with Multiple Resources of each Type Suppose there are multiple copies of some of the

resources. For such case the deadlock detection algorithm has been discussed below-

231 | P a g e Space for learners: Let, n is the numbers of processes and m is the number of resource Classes. The i th

process is denoted as P i , the i th class resource is denoted as E i . The processes are either marked or unmarked. Initially

all processes are unmarked. At the end of the algorithm if all processes are marked, then it indicates that they are able to

complete and are thus not deadlocked. Other it indicates deadlock occurs. At any instant of the algorithm some of the

resources are assigned and are not available. A i denotes the number of instances of i th class resource that are currently

available (i.e. unassigned). The existing resource vector E= (E 1 , E 2 , …., E m) gives the total number of instances of each

resource in existence. For example, if class 1 is tape drives, then E 1 =2 means the system has two tape drives. The

available resource vector A=(A 1 , A 2 , …, A m) gives the number of instances of each resource class that are currently

available. If both of the two tape drives are assigned, A 1 will be 0. Let, C be the current allocation matrix and R be the

request matrix. C ij is the number of instances of resource E j that are held by process P i . Similarly, R ij is the number of

instances of resource E j that P i wants. Again, every resource is either allocated or is available. ∑ +A j =E j Suppose A and

B are two vectors. Then the relation A ? B means that each element of A is less than or equal to the corresponding

element of B i.e. A ? B holds if and only if A i ? B i for 1 ? i ? m. The steps of deadlock detection algorithm are as given

below. Note that initially all processes are unmarked. Algorithm 3.2

232 | P a g e Space for learners: Step 1. Find an unmarked process P i such that the i th row of R is less than or equal to A.

Step 1.1. Add the i th row of C to A. Step 1.2 Mark the process and go back to step 1. Step 2. If no such process exists, the

algorithm terminates. Working of Algorithm 3.2 Suppose we have 3 processes (P 1 , P 2 , P 3) and 4 resource classes

(tape drives, plotters, scanners, and Blu-ray drives). Process P 1 has one scanner, Process P 2 has two tape drives and a

Blu-ray drive, Process P 3 has a plotter and two scanners. Each process needs additional resources, as shown in the

matrix R of Figure 4.2. Figure 4.2: An example of deadlock detection algorithm (Reference: “Modern Operating Systems”

by Andrew S Tanenbaum) Iteration 1: Suppose start the algorithm by picking the unmarked process P 1 . Now, is (R 1 ? A)

true? No. (Step 1) Pick another unmarked process P 2 and check whether (R 2 ? A) is true. No. (Step 1) Pick another

unmarked process P 3 and check whether (R 3 ? A) is true. Yes. (Step 1) Add C 3 to A and mark P 3 and go to Step 1(Step

1.1). Thus A becomes A= (2 2 2 0) Iteration 2:

233 | P a g e Space for learners: Pick the unmarked process P 2 and check whether (R 2 ? A) is true. Yes. (Step 1) Add C 2

to A and mark P 2 and go to Step 1(Step 1.1). Thus A becomes A= (4 2 2 1) Iteration 3: Pick the unmarked process P 1 and

check whether (R 1 ? A) is true. Yes. (Step 1) Add C 1 to A and mark P 1 and go to Step 1(Step 1.1). Thus A becomes A= (4 2

3 1) Iteration 4: No unmarked process found (Step 1). So go to Step 2 and terminate. At the end of the algorithm no

unmarked processes remain. So there is no deadlock in the system. 4.3.2.3 Recovery from Deadlock After detect a

deadlock the next work will be recover from deadlock. Some ways to recover from deadlock are discussed below- ?

Recovery through pre-emption One way to recover from deadlock is pre-emption i.e. temporarily take a resource away

from its current owner and give it to another process. Recovering this way is frequently difficult or impossible. ? Recovery

through rollback If the system designers and machine operators know that deadlocks are likely, they can arrange to have

processes checkpointed periodically. Checkpointing a process means that its state is written to a file so that it can be

restarted later. The checkpoint contains not only the memory image, but also the resource state, in other words, which

resources are currently assigned to the process. To be most effective, new checkpoints should not overwrite old ones

but should be written to new files, so as the process executes, a whole sequence

234 | P a g e Space for learners: accumulates. When

97% MATCHING BLOCK 270/320

a deadlock is detected, it is easy to see which resources are needed. To do the recovery, a process that owns a needed

resource is rolled back to a point in time before it acquired

that resource by starting at one of its earlier checkpoints. In effect, the process is reset to an earlier moment when it did

not have the resource, which is now assigned to one of the deadlocked processes. If the restarted process tries to

acquire the resource again, it will have to wait until it becomes available. ? Recovery through killing processes The

simplest way to break a deadlock is to kill one or more processes. In this approach, the process to be killed is carefully

chosen because it is holding resources that some process in the cycle needs. 4.3.3 Deadlock Avoidance The deadlock

detection methods assume that a process asks for all the necessary resources at once. But in most of the system

resources are requested one at a time. In this situation the system should decide whether granting a resource is safe or

not. The deadlock avoidance algorithms are designed based on the concept of safe states. A state is said to be safe if

there is some scheduling order in which every process can run to completion even if all of them suddenly request their

maximum number of resources immediately. Otherwise the state is unsafe. A safe state can guarantee that all processes

will finish. In unsafe state, there is no sequence that guarantees completion. An unsafe state is not a deadlocked state.

For example- Suppose we have 10 resources of same type. These 10 resources are used by three processes A, B, C as

shown in Figure 4.3 (a). Process A has 3 resources and it may need as many as 9 resources to complete it. Similarly, B has

2 resources and may need as many as 4 resources, C has 2 resources and may need as many as 7 resources to complete

it. Now, the question is- “Is the state shown in Figure 4.3 (a) safe?”

235 | P a g e Space for learners: Figure 4.3: Demonstration that the state in (a) is safe (Reference: “Modern Operating

Systems” by Andrew S Tanenbaum) From Figure 4.3 (a) it is seen that all three processes already have 7 resources. So,

number of available resources is 3. The maximum number of resources needed by B is 4. Thus, scheduler can run B as B

needs 2 more resources to complete it (Figure 4.3 (b)). After completion B will release the resources (Figure 4.3 (c)). At

this point number of available resources is 5 and A need 6 more resources to complete, C need 5 more resources to

complete. In this scenario scheduler can run C (Figure 4.3 (d)). After Completion of C number of available resources will

be 7 (Figure 4.3 (e)). At this point scheduler can run A. Hence the state shown in Figure 4.3 (a) is a safe state as there is an

execution order B, C, A for the processes. 4.3.3.1 The Banker’s Algorithm for a Single Resource Type The banker’s

algorithm is a well-known deadlock avoidance algorithm. Suppose a banker will grant loans to a group of customers.

The algorithm will check if granting the request leads to an unsafe state. If so, the request is denied. Otherwise the

request is carried out. For example- Suppose there are four customers A, B, C, D which needs total 22 credit units (Figure

4.4 (a)). The bankers assume that not all customers will need their maximum credit immediately, so he reserves only 10

credit units out of 22 credit units. Now from these 10 credit units he granted each customer a certain number of credit

units as shown in Figure 4.4 (b). Thus a total of 8 units are granted and 2 units remain free. This state is safe because there

is an ordered sequence like C, D, B, A to grant the credit units if all the customers suddenly asked for their maximum

credit units.

236 | P a g e Space for learners: Figure 4.4 Three resource allocation states: (a) Safe. (b) Safe. (c) Unsafe (Reference:

“Modern Operating Systems” by Andrew S Tanenbaum) Suppose at this point customer B request for one more unit and it

is granted (Figure 4.4 (c)). Thus a total of 9 units are granted and 1 unit remain free. This state is an unsafe state as there is

no sequence available to grant the credit units if all the customers suddenly asked for their maximum credit units. The

banker’s algorithm considers each request as it occurs, seeing whether granting it leads to a safe state. If it does, the

request is granted; otherwise, it is postponed until later. 4.3.3.2 The Banker’s Algorithm for Multiple Resource Types The

banker’s algorithm can be generalized to handle multiple resources. For example- Suppose there are 5 processes and 4

numbers of resources (Tape drives, Plotters, Printers, Blu-rays) The first matrix of Figure 3.5 is the current allocation

matrix (C). It shows how many of each resource are currently assigned to each of the five processes. The second matrix

is the request matrix (R) and it shows how many resources each process still needs in order to complete. The three

vectors of the Figure 3.5 show the existing resources E, the assigned resources P, and the available resources A

respectively.

237 | P a g e Space for learners: Figure 4.5 The banker’s algorithm with multiple resources (Reference: “Modern Operating

Systems” by Andrew S Tanenbaum) Steps of Banker’s algorithm for multiple resources- Step 1. Assume that a process

keeps its resources until it exits. Now search for a row in R which is less than or equal to A. Step 1.1 If no such row exists,

the system will eventually deadlock since no process can run to completion. Step 1.2. If such a row exists, then assume

that the process of the chosen row requests all the resources it needs and finishes. Mark that process as terminated and

add all of its resources to the A vector. Step 2. Repeat Steps 1 until either all processes are marked terminated (in which

case the initial state was safe) or no process is left whose resource needs can be met (in which case the system was not

safe). Now, in Figure 4.5 the current state is safe. Suppose that process B makes a request for the printer. This request can

be granted because the resulting state is still safe. After that process D can finish and then processes A or E, followed by

the rest. Now imagine that after giving B one of the two remaining printers, E wants the last printer. Granting that request

would reduce the vector of available resources to (1 0 0 0), which leads to deadlock, so E’s request must be deferred for

a while. 4.3.4 Deadlock Prevention Deadlock is essentially impossible, because it requires information about future

requests, which is not known. Thus to avoid deadlock in

238 | P a g e Space for learners: real systems Coffman et al. (1971) provides four conditions. If we can ensure that at least

one of these conditions is never satisfied, then deadlocks will be structurally impossible (Havender, 1968). ? Attacking the

Mutual-Exclusion Condition First let us attack the mutual exclusion condition. If no resource were ever assigned

exclusively to a single process, we would never have deadlocks. Avoid assigning a resource unless absolutely necessary,

and try to make sure that as few processes as possible may actually claim the resource. ? Attacking the Hold-and-Wait

Condition The second of the condition stated is that- if we can prevent processes that hold resources from waiting for

more resources, we can eliminate deadlocks. One way to achieve this goal is to require all processes to request all their

resources before starting execution. If everything is available, the process will be allocated whatever it needs and can run

to completion. If one or more resources are busy, nothing will be allocated and the process will just wait. An immediate

problem with this approach is that many processes do not know how many resources they will need until they have

started running. In fact, if they knew, the banker’s algorithm could be used. ? Attacking the

90% MATCHING BLOCK 271/320

No-Preemption Condition If a process is holding some resources and requests another resource that cannot be

immediately allocated to it, then

72% MATCHING BLOCK 272/320

requests another resource that cannot be immediately allocated to it, then all resources currently being held are pre-

empted. The pre-empted resources are added to the list of resources for which the process is waiting. The process will

be restarted only when

the old resources are assigned to it and as well as the new resources that it is requesting. ? Attacking the Circular Wait

Condition The circular wait is a scenario like

85% MATCHING BLOCK 273/320

there exists a set {P 0 , P 1 , …, P n } of waiting processes such that: P 0 is waiting for a resource that is held by P 1 , P 1 is

waiting for a resource that is held by P 2 , …, P n-1 is waiting for a resource that is held by P n and P

100% MATCHING BLOCK 275/320

such that: P 0 is waiting for a resource that is held by P 1 , P 1 is waiting for a resource that is held by P 2 , …, P n-1 is

waiting for a resource that is held by P n and P n is waiting for a resource that is held by P 0 .

87% MATCHING BLOCK 274/320

P n is waiting for a resource that is held by P 0 .

The circular wait can be avoided in several ways. One way is to a process is permitted only to a single resource at any

moment. If it needs a second one, it must release the first one.

239 | P a g e Space for learners: Another way to avoid the circular wait is to provide a global numbering of all the

resources, as shown in Figure 4.6. Now the rule is- processes can request resources whenever they want to, but all

requests must be made in numerical order. A process may request first a printer and then a tape drive, but it may not

request first a plotter and then a printer. Figure 4.6 (a) Numerically ordered resources. (b) A resource graph. (Reference:

“Modern Operating Systems” by Andrew S Tanenbaum) With this rule, the resource allocation graph can never have

cycles. In figure 4.6 it is seen that a deadlock will occur if and only if A requests resource j and B requests resource i.

Assuming i and j are distinct resources, they will have different numbers. If i < j, then A is not allowed to request j

because that is lower than what it already has. If i > j, then B is not allowed to request i because that is lower than what

it already has. Either way, deadlock is impossible. CHECK YOUR PROGRESS 1. What is existing resource vector? 2. What is

available resource vector? 3.What is resource allocation matrix? 4. What is request matrix? 5. Suppose A and B are two

vectors. Then what does the relation A ? B mean? State TRUE or FALSE: 6. In safe state there is an order sequence to

complete the processes. 7. Unsafe state is a deadlock state. 8. Banker’s algorithm is a well-known deadlock avoidance

algorithm. 9. To avoid circular wait one technique uses global numbering.

240 | P a g e Space for learners: 4.4 SUMMING UP ? Using deadlock detection algorithm, the system tries to detect

deadlock detect the deadlock only when it is happening. ? A resource allocation graph can be construct to detect

deadlock in a system with single resource type each. ? To detect deadlock (single resource type each) using resource

allocation graph, it is needed to detect cycle in a directed graph ? Suppose there are multiple copies of some of the

resources. For such case the resource allocation graph cannot detect deadlock. So, a different algorithm is needed to

deadlock detection in such situation. ? The deadlock detection algorithm (multiple copies of some of the resources)

considered all processes are either marked or unmarked. Initially all processes are unmarked. At the end of the algorithm

if all processes are marked, then it indicates that they are able to complete and are thus not deadlocked. Other it

indicates deadlock occurs. ? The existing resource vector gives the total number of instances of each resource in

existence. ? The available resource vector gives the number of instances of each resource class that are currently

available. ? Suppose A and B are two vectors. Then the relation A ? B means that each element of A is less than or equal

to the corresponding element of B i.e. A ? B holds if and only if A i ? B i for 1 ? i ? m. ? One way to recover from deadlock

is pre-emption. ? The second way to recover from deadlock is rollback. ?

70% MATCHING BLOCK 276/320

The simplest way to break a deadlock is to kill one or more processes. ? The

70% MATCHING BLOCK 277/320

The simplest way to break a deadlock is to kill one or more processes. ? The

deadlock detection methods assume that a process asks for all the necessary resources at once. But in most of the

system resources are requested one at a time. In this situation the system should decide whether granting a resource is

safe or not.

241 | P a g e Space for learners: ? A state is said to be safe if there is some scheduling order in which every process can

run to completion even if all of them suddenly request their maximum number of resources immediately. Otherwise the

state is unsafe. ? A safe state can guarantee that all processes will finish. ? In unsafe state, there is no sequence that

guarantees completion. ? An unsafe state is not a deadlocked state. ? The banker’s algorithm is a well-known deadlock

avoidance algorithm. Suppose a banker will grant loans to a group of customers. The algorithm will check if granting the

request leads to an unsafe state. If so, the request is denied. Otherwise the request is carried out. ? To avoid deadlock in

real systems Coffman et al. (1971) provides four conditions. ? The first condition statedprevent deadlock is attack the

mutual exclusion condition. If no resource were ever assigned exclusively to a single process, we would never have

deadlocks. ? The second of the condition stated is that- if we can prevent processes that hold resources from waiting for

more resources, we can eliminate deadlocks. ? The third condition is

97% MATCHING BLOCK 278/320

if a process is holding some resources and requests another resource that cannot be immediately allocated to it, then

82% MATCHING BLOCK 279/320

requests another resource that cannot be immediately allocated to it, then all resources currently being held are

pre-empted. ? The fourth condition to prevent deadlock is the circular wait. It can be avoided in several ways. One way is

to a process is permitted only to a single resource at any moment. If it needs a second one, it must release the first one. ?

Another way to avoid the circular wait is to provide a global numbering of all the resources. 4.5 ANSWERS TO CHECK

YOUR PROGRESS State TRUE or FALSE: 6. True 7. False.

242 | P a g e Space for learners: 8. True. 9. True. 4.6 POSSIBLE QUESTIONS Short answer type questions: 1. What is

checkpointing a process mean? 2. What is safe and unsafe state? 3. What is circular wait of processes? 4. Briefly explain

two techniques to avoid circular wait of processes? Long answer type questions: 1. Briefly explain the ways to detect

deadlock with one resource of each type. 2. Briefly explain the ways to detect deadlock with multiple resource of each

type. 3. Briefly explain the techniques to recovery from deadlock. 4. Briefly explain the Banker’s algorithm to avoid

deadlock with one resource of each type. 5. Briefly explain the Banker’s algorithm to avoid deadlock with multiple

resource of each type. 6. Briefly explain different ways to prevent deadlock. 7. For example- Suppose we have 12

resources of same type. These 12 resources are used by three processes A, B, C, D as shown in Figure 3.3 (a). Process A

has 1 resources and it may need as many as 8 resources to complete it. Similarly, B has 2 resources and may need as

many as 4 resources, C has 3 resources and may need as many as 6 resources to complete it, D has 4 resources and may

need as many as 5 resources to complete it Now, the question is- “Is the state safe?” 4.7 REFERENCES AND SUGGESTED

READINGS ? “Operating System Concepts” by Avi Silberschatz and Peter Galvin

243 | P a g e Space for learners: ? “Operating Systems: Internals and Design Principles” by William Stallings ? “Operating

Systems: A Concept-Based Approach” by D M Dhamdhere. ? “Modern Operating Systems” by Andrew S Tanenbaum

244 | P a g e Space for learners: UNIT 5: MULTIPROGRAMMING SYSTEM Unit Structure: 5.1 Introduction 5.2 Unit

Objectives 5.3 Basic Concepts of Multiprogramming 5.4 I/O System 5.5 Memory Management 5.6 File System 5.7

Summing Up 5.8 Answer to Check Your Progress 5.9 Possible Questions 5.10 References and Suggested Reading 5.1

INTRODUCTION As the name suggest, multiple process are in the main memory. In this case, CPU utilization is

increased. Two or more processes reside in main memory are executed concurrently. This is done by switching the CPU

from one program to another program almost instantaneously. To manage the entire resources of the system is the main

motive of multiprogramming. Command processor, file system, I/O control system, and transient area are the primary

components of multiprogramming system. 5.2 UNIT OBJECTIVES After going through this unit you will be able to ?

Understand the concept of multiprogramming ? Learn different scheduling algorithm used in multiprogramming ? Know

the structure and operations of I/O ? Learn about the data transfer using direct memory access ? Understand memory

management in multiprogramming ? Understand the algorithm for memory allocation ? Explain about paging and

segmentation.

245 | P a g e Space for learners: ? Understand the file system Structure ? Understand the operations on File system ?

Learn the file access methods 5.3 BASIC CONCEPTS OF MULTIPROGRAMMING The concept of multiprogramming

depends on the capability of a computer to store instructions (programs) for long-term use. Multiple programs are

loaded in main memory. Operating system assigns CPU to the first program. If that particular program needs some I/O

operations then CPU instead of waiting for that program, OS allocates the next program to CPU. Once the I/O operation

of the first program is completed, CPU continues with that program. In this fashion, execution takes place in

multiprogramming system. The objective is to reduce CPU idle time by allowing new jobs to take over the CPU

whenever the currently running job needed to wait (e.g. for user I/O). Before multiprogramming was introduced,

operating system working was very simple- it executes only one program at a time via CPU. With the introduction of

multiprogramming, operating system now executes multiple programs using different mechanism and several options

existed for allocating CPU time For decision-making two types of scheduling were introduced - Job scheduling and CPU

scheduling. The selection of jobs to load into memory is termed as Job Scheduling and the selection of a job existing in

memory to execute via the CPU is known as CPU scheduling. Both these decisions of Job scheduling and selection of a

job are made by the operating system. 5.3.1 Process Scheduling A process is a program which is in execution. The activity

which involve removal of running process from the CPU and selection of another process based on some strategy is

known as Process Scheduling.

94% MATCHING BLOCK 280/320

The objective of multiprogramming is to have some process running at all times, to maximize CPU utilization

100% MATCHING BLOCK 281/320

The objective of multiprogramming is to have some process running at all times, to maximize CPU utilization

and the

246 | P a g e Space for learners: objective of time sharing is to switch the CPU among processes so frequently that users

can interact with each program while it is running. To meet these objectives, the process scheduler selects an available

process (possibly from set of several available processes) for program execution on the CPU. In Multiprogramming

operating systems, process scheduling is an essential function. Multiprogramming system allows a number of process to

load in main memory and scheduler decides which program to remove and to execute next. 5.3.1.1 Process Scheduling

Queues All PCBs are maintained by operating system in Process Scheduling Queues. PCB stands for Process Control

Block. PCB is a data structure created by operating system. When a process is created, operating system maintains

certain information in Process Control Block. A separate queue for each of the process states and PCBs are maintained

by operating system. When the state of a process is changed, its PCB is unlinked from its current queue and moved to its

new state queue. The Operating System maintains the following important process scheduling queues − ? Job queue −

This queue keeps all the processes in the system. ? Ready queue − This queue keeps a set of all processes residing in

main memory, ready and waiting to execute. A new process is always put in this queue. ? Device queues − The processes

which are blocked due to unavailability of an I/O device constitute this queue. 5.3.1.2 Process State Transition Diagram

247 | P a g e Space for learners: 1. Running: The process in execution by the CPU. 2. Waiting/Blocked: When a process

needs some I/O operation or waiting for some other event to happen, it goes into waiting/blocked state. 3. Ready: A

process that is waiting to be executed is placed in the ready queue. 4. New: The process just being created is in new

state. The process will be in new state until long-term scheduler brings it to the ready state. 5. Terminated/Exit: A process

that is finished its execution or aborted due to some reason. STOP TO CONSIDER Process Scheduling is mainly use to

Schedule the process. Many processes waiting in the ready queue are assigned to CPU one by one according to

scheduling algorithm. A PCB is also called Process Descriptor. Whenever a new process is created, operating system

creates a PCB which contains information like Pointer, Process state, Process state, list of open files, list of open devices,

general purpose registers, priority. 5.3.2 Types of Scheduler Following are the various scheduler used for scheduling

process by the operating system.

248 | P a g e Space for learners: 1. Long term scheduler Long term scheduler is responsible for creating processes and to

bringing them into the system. It place processes from new state to ready queue. Since it creates processes that are why

it is known as Job Scheduler also. It

74% MATCHING BLOCK 282/320

controls the degree of Multiprogramming. It chooses a perfect mix of IO bound and CPU bound processes among the

jobs present in the pool. If

maximum processes are I/O bound then CPU will remain ideal as state

62% MATCHING BLOCK 283/320

most of the time. This will decrease the degree of multiprogramming. So the job of long term scheduler is very critical

and it may affect the system for long time. 2. Short term scheduler

This CPU scheduler is responsible for scheduling one of the processes from ready state to running state. In order to

select which job is going to assigned CPU, scheduling algorithm is used. If the selected job by Short term scheduler is

CPU burst time, then for a long time processes have to wait in ready queue and a situation occur which is known as

starvation. 3. Medium term scheduler This medium term scheduler is also known as swapper as it swaps processes from

main memory to secondary memory and vice versa. Processes which are IO bound are removed from the running state

and placed in the waiting queue so that perfect mixes of processes are in the ready queue. Suspending and resuming of

the processes is responsible of this scheduler. Various algorithms are used by operating system for this purpose. STOP

TO CONSIDER Long term scheduler brings process from Job POOL to the main memory ready for execution. It has

access to only job pool and ready queue. Whereas Short term scheduler selects job from ready queue and assigns CPU

to that process. It has access to ready queue and CPU. Medium term scheduler is used to keep the flow smooth.

Sometimes some process reserves memory in ready queue but may do nothing except reserving memory space.

Medium term scheduler takes this process out of the memory.

249 | P a g e Space for learners: 5.3.3 Scheduling Algorithm The Purpose of a Scheduling algorithm is: 1. Maximum CPU

utilization 2. Fare allocation of CPU 3. Maximum throughput 4. Minimum turnaround time 5. Minimum waiting time 6.

Minimum response time The following algorithms can be used to schedule the jobs: 1. First Come First Serve It is the

simplest algorithm to implement. The process with the minimal arrival time will get the CPU first. The lesser the arrival

time, the sooner will the process gets the CPU. It is the non-preemptive type of scheduling. 2. Round Robin In the Round

Robin scheduling algorithm, the OS defines a time quantum (slice). All the processes will get executed in the cyclic way.

Each of the process will get the CPU for a small amount of time (called time quantum) and then get back to the ready

queue to wait for its next turn. It is a preemptive type of scheduling. 3. Shortest Job First The job with the shortest burst

time will get the CPU first. The lesser the burst time, the sooner will the process get the CPU. It is the non- preemptive

type of scheduling. 4. Shortest remaining time first It is the preemptive form of SJF. In this algorithm, the OS schedules

the Job according to the remaining time of the execution.

250 | P a g e Space for learners: STOP TO CONSIDER A Scheduling Algorithm tells us how much each processes will get

CPU time. When a high priority process enters in the system, it preempts a low priority process in between and executes

the high priority process first. These algorithms are either non-preemptive or preemptive. Non- preemptive cannot be

preempted until it completes its allotted time, whereas preemptive process can be forcefully removed when a high

priority process comes for execution. FCFS Scheduling As the name implies, the processes which enters the ready queue

will get the CPU first. If the arrival time of the process is lesser then sooner the job will get CPU. It may cause the

problem of starvation if the burst time of the currently running process is more and thus the process waiting in the ready

queue has to wait for longer time. Advantages: 1. The logic of this algorithm is very simple; execution will be based on

first cum first serve. Very easy to understand and easy to implement algorithm 2. Each and every process gets a chance

to execute. Disadvantages: 1. This algorithm is non-preemptive means the process once gets the CPU will continue till its

completion. 2. The problem of starvation may occur, due to non-preemptive nature of this algorithm. 3. The average

waiting time is higher as compare to other scheduling algorithms, thus poor performance. Example Let’s consider 5

processes with process ID P0, P1, P2, P3 and P4. Arrival time of P0 is 0,

95% MATCHING BLOCK 284/320

P1 arrives at 1, P2 arrives at time 2, P3 arrives at time 3

and Process P4 arrival time is 4 in the ready queue. Arrival and Burst time of the processes are given in the following table

respectively. The Turnaround time and the waiting time are as follows-

251 | P a g e Space for learners: Turn Around Time = Completion Time - Arrival Time Waiting Time = Turnaround time -

Burst Time The average waiting Time is calculated by adding the respective waiting time of all the processes and divided

the sum by the total number of processes. GANTT CHART STOP TO CONSIDER FCFS simply allocates the process

according to the arrival time. Process which enters the ready queue first will be allocating the CPU. The problem of

starvation may occur if the first process has largest CPU burst among all the process.

252 | P a g e Space for learners: CHECK YOUR PROGRESS 1. Consider five processes with arrival and burst time given.

Calculate average waiting time and turnaround time Round Robin Algorithm In Round Robin algorithm, the processes

are dispatched in first in first out(FIFO) manner. Each processes are given limited amount of CPU time for execution in

round robin fashion. This limited amount of CPU time is known as quantum time or time-slice or fixed time. If the

process does not complete before CPU time expires, the CPU is preempted and given chance to next process waiting in

queue. ADVANTAGES: 1. All processes are given fair treatment. 2. Starvation does not takes place since each and every

process given CPU time. 3.Simple and widely used algorithm. DISADVANTAGES: 1. Determination of time quantum is too

critical.If it is too short, it causes frequent context switching and lower CPU efficiency. If it is too big, it causes poor

response time for short interactive process. 2. Process with long burst time may be starved. Example of Round-robin

Scheduling Consider this following three processes P1,P2,P3

253 | P a g e Space for learners: Time slice =2 Step 1) The execution begins with process P1and it has burst time 4. As

time slice given is 2 so every process executes for 2 seconds.

84% MATCHING BLOCK 285/320

P2 and P3 are still in the waiting queue. Step 2) At time =2, P2

starts executing and P1 is added to the end of the Queue Step 3) At time=4 , P2 is preempted as its burst time is 3 and

given time slice is 2 and added at the end of the queue. P3 starts executing.

254 | P a g e Space for learners: Step 4) At time=6 , P3 is preempted after time slice of 2 and add at the end of the queue.

P1 starts executing. Step 5) At time=8 , P1 has a burst time of 4. It has completed execution. P2 starts execution Step 6)

P2 has a burst time of 3. P2 has already executed for 2 interval. P2 completes execution at time=9. Then, P3 starts

execution till it burst time completed. Step 7) The average waiting time for above example is calculated as

255 | P a g e Space for learners: Wait time P1= 0+ 4= 4 P2= 2+4= 6 P3= 4+3= 7 CHECK YOUR PROGRESS Q2. Consider

five processes P1,P2,P3,P4,P5 with arrival and burst time. Given time quantum=2 units. Calculate Average turnaround

time and average waiting time using Round Robin algorithm. Shortest Job First Algorithm Out of all available (waiting)

processes,it selects the process with the smallest burst time to execute next. If process with small waiting time occurs

frequently then problem of starvation occurs. This can be solved with the concept of ageing. Two version of SJF exist-

preemptive or non-preemptive. Advantages: ? Minimum average waiting time and minimum turnaround time. ?

Maximum throughput provided. ? It provides a standard for other algorithms incase of average waiting time.

Disadvantages: ? Processes having larger burst time may face starvation. ?

87% MATCHING BLOCK 286/320

It is difficult to know the length of the upcoming CPU request. ?

59% MATCHING BLOCK 288/320

to know the length of the upcoming CPU request. ? Requires prior knowledge of how long a process or job will run.

100% MATCHING BLOCK 287/320

knowledge of how long a process or job will run.

Non-Preemptive SJF:

256 | P a g e Space for learners: Once the CPU is executing a process then that process can be released only after

completing its execution. That is in the middle of execution the process cannot be released. 1)At T=0,P4 arrives in ready

state,so CPU will be allocated to it. And it will continue till T=6 since forcefully cannot removed it. Note that in ready

queue all the processes(P1,P2,P3,P5) has arrived within time period 6(which is burst time of P4). 2)At T=6, P1 arrives and it

executes till T=7 since it has burst time of 1. 3)At T=7, P3 arrives and it executes till T=8,since it has burst time of T=8 4)At

T=8 ,P5 arrives and executes till T=11 since it has burst time T=3.

257 | P a g e Space for learners: 5) At last T=11,P2 arrives and it executes till T=16 since it has burst time T=5. At T=16, no

more processes are left for execution. Now lets see Completion time(CT),turn around time(TAT), waiting time(WT) and

response time(RT). Therefore from the above we can easily calculate average turnaround time which is 39/5=7.8 and

average waiting time which is 23/5=4.6. Note: Response time is the time at which CPU responded for first time minus

arrival time. Eg for P2=11-1=10 STOP TO CONSIDER Shortest Job First is a non preemptive algorithm. This algorithm

associates with each process the length of the processes next CPU burst. The process having least next CPU burst will be

one to get the CPU first.If two processes having same length arrives and waiting for CPU then FCFS scheduling takes

place to break the tie.

258 | P a g e Space for learners: CHECK YOUR PROGRESS Q3. Consider five processes with arrival and burst time.

Calculate average waiting time. Apply Shortest job scheduling with non- preemption. PREEMPTIVE SHORTEST JOB

FIRST(SJF WITH PREEMPTION) This algorithm is also known as Shortest remaining time first(SRTF).Whenever new

process arrives, there may be preemption of the running process. The process can be removed while it is executing

before termination of that process. It happens if the newly arrived process has shorter burst time then the currently

running process. This algorithm gives optimal solution compared to all other algorithm. 1)At time T=0,P4 arrived at ready

state, so CPU is allocated to P4

259 | P a g e Space for learners: 2) At time T=1,P2 arrived but since remaining burst time of P4=5 and burst time of P2=5

is same so no context switching takes place and P4 will continue till next process comes. 3) At T=2, P1 and P5 has arrived

but since burst time of P1=1 so CPU is allocated to P1 . 4)At T=3, P5 is allocated since it is in ready queue. 5)At T=4, P3

has arrived and is allocated the CPU. 6) Till now all the processes are arrived in the ready queue, so from this time SJRN

will work as same as SJF with non preemption. So at T=5, P5=2 (remaining burst time) is short of all remaing avaible

process ,so P5 allocated to CPU. 7)At T=7, burst time of P4 =4 and P2=5, since P4 burst time is short so P4 is allocated to

CPU. 8)At T=11 , only left process in the ready queue is P2 with burst time P2=5 and is allocated CPU.

260 | P a g e Space for learners: Now lets see Completion time(CT),turn around time(TAT), waiting time(WT) and

response time(RT). Therefore from the above we can easily calculate average turnaround time which is 33/5=6.6 and

average waiting time which is 17/5=3.4 STOP TO CONSIDER In Pre-emptive Shortest Job First Scheduling., when a new

process arrives with shorter burst time then currently running process is pre- empted or removed from CPU, and

executed process with shorter burst time. Once completes the previous suspended process is executed.

261 | P a g e Space for learners: CHECK YOUR PROGRESS Q4. Consider five processes with arrival and burst time. Apply

SJF with preemption in order to calculate average waiting time. 5.4 I/O SUPERVISORS 5.4.1 I/O Structure We know

without I/O a computer system is useless. I/O is gateway for the outside world. There are thousands of devices, each

slightly different from one another. How we will standardize the interfaces to those devices? Some devices provide single

byte at a time (i.e. keyboard), other devices provide whole blocks (i.e. disks, networks etc.). Some devices must be

accessed sequentially (i.e. tape), other can be accessed randomly (i.e. disk, CD etc.). Some devices require continual

monitoring. Others generate the interrupts when they need service. A large portion of operating system code is devoted

to managing I/O, both due to its importance to the reliability and performance of a system and since of the varying

nature of the devices. A general purpose computer system consists of CPUs and multiple device controllers that are

connected through a common bus. Typically, operating systems have a device driver for each device controller. The

device driver understands the device controller and presents a uniform interface to the device to the rest of the

operating system.

262 | P a g e Space for learners: This figure depicts how different I/O devices are connected. Processor is connected with

cache memory which is required to store frequently required data and instruction. Processor is connected with

bridge/memory controller. Data comes from bridge to memory may be for some I/O devices. It is connected with PCI

bus. PCI stands for peripheral component interconnect. This PCI bus is also known as I/O bus because it is dedicated to

established communication between the system and I/O devices. Monitor is an output device and is connected via

graphics controller. SCSI is a small computer system interface. With SCSI high speed hard disks are connected. SCSI

provides SCSI bus and with SCSI, disks are connected. Integrated device electronics (IDE disk) where multiple disk are

connected with local dedicated disk buses. Also expansion bus interfaces are available, which provides more port. Other

peripheral devices are connected with the help of port. Ports are categorized into two-Serial port in which against each

and every clock pulse, one

263 | P a g e Space for learners: bit at a time is sent for communication. Parallel port where multiple number of bits can

be transferred against each clock. 5.4.2 Working of an I/O Operation STOP TO CONSIDER In modern PC, three out of

four bus types commonly found are 1.PCI bus 2.Expansion Bus. 3. SCSI Bus. High speed bandwidth devices connected to

the memory subsystem (and the CPU) via PCI Bus, Slower low-bandwidth devices which transfers one character at a

time are connected by expansion bus. SCSI devices are connected to a common SCSI controller via SCSI bus.

264 | P a g e Space for learners: ? When any I/O operation has to be performing by any device, the respective device

driver loads appropriate registers within the device controller. ? The device controller in turn examines the contents of

these registers because in that registers the information or data about what is the exact I/O operation that has to perform

is available. ? Whatever has to perform that data transferred to the local buffer of the device controller. ? Once the

transfer of data is complete, the device controller informs the device driver that it’s finished its operation via an interrupt.

? The device then returns control to the operating system. ? This form of interrupt-driven I/O is good for transferring

small amount of data but its produce overhead when need to transfer large amount of data. In that case Direct Memory

Access (DMA) is used. CPU is free to do other work while DMA is used. ? After setting up pointers, buffers and counters

for the I/O device, the device controller transfer an entire block of data directly to or from its own buffer storage to

memory with no intervention by the CPU. ? In DMA only one interrupt is generated per block to tell the device driver that

the operation has completed. CPU perform other task while device controller is performing these operation. 5.4.3 Direct

Memory Access We know if we involve our CPU to perform read/write operation from the peripheral devices, then

actually we are mis-utilising the potentiality of the CPU. CPU performs best if we involves CPU for the I/O device

operation. But all the I/O devices are very slow; it cannot get synchronized with CPU. So CPU will have long waiting time.

And CPU is not actually meant for this. So concept of DMA

265 | P a g e Space for learners: controller has come. DMA controller does the needful data transfer between I/O devices

and the memory. DMA controller gets four parameters- 1. Source address from where data is to be read. 2. Target

address here this data is to be transferred. 3. Bytes count that is how many data is to be transferred. 4. Whether it is read

or writes operation so that it can decide that from which direction data is to be transferred. So, after getting all this

parameter the DMA controller will do the needful data transfer in between I/O device and the memory and this way CPU

keeps busy in some other tasks. But it is suggested use of CPU instead of DMA if device speed is fast or if CPU has

nothing to do as DMA cost is very high. There are six steps to perform data transfer- 1. Device driver is told to transfer

disk data to buffer at address x. 2. Device driver tells disk controller to transfer C bytes from disk to buffer at address x 3.

Disk controller initiates the DMA transfer. 4. Disk controller initiates the DMA transfer. 5. DMA controller transfers bytes to

buffer x, increasing memory address and decreasing c until c=0.

266 | P a g e Space for learners: 6. When c=0, DMA interrupts CPU to signal transfer completion. 5.5 MEMORY

MANAGEMENT We know computer memory is a location of computer system used to store information. It is a very

important function of operating system. In order to run any program, that program has to be load in computer memory.

So computer memory is important resources to execute a program inside the computer. Therefore we should use this

resource to our fullest usage, we should not keep any program in memory which is not executed or required in near

future. So only those programs are to be loaded in memory which is demanded in near future. Therefore the concept of

memory management comes here. 5.5.1 Binding A) Address Binding: 1) Compile time binding: In this compilation, the

absolute address will get embedded in executable code. That means the program knows from

267 | P a g e Space for learners: which address it is supposed to get loaded and where supposed to get executed.

Advantage: It requires minimum set up time. Disadvantage: If the memory space is occupied by another program,

collision takes place. The current program will overwrite the previous existing program in memory. 2) Load time address

binding: When the program gets compiled then all the addresses will be in re-locatable address. It is the translation of

the logical addresses to physical addresses at the time of loading. The relocating loader contains the base address in the

main memory from where the allocation would begin 3)Execution time address binding: The program has got loaded

into memory might be executing but during period of time if operating system can move the program to one block of

memory to another memory block then it is said to be execution time address binding. The new address will be allocated

to the respective program. B) Dynamic loading: A program written is divided into number of modules. When the program

is in execution, the program must be in main memory. All the modules at the same time are not required to bring in the

main memory. Dynamic loading says load the main module at first and load the other module when they are required.

That means all the module will not be jumbled up in the main memory, which may or may not be required in future. C)

Overlays: Whenever assembly language program gets executed, assembler comes into play. Assembles does this in two

phase-pass 1 and pass 2. Both the phase may not be required to be loaded in the main memory. In this overlay comes

into play. It decides which pass to reside in the memory for execution. 5.5.2 Logical Address Versus Physical Address The

address generated by CPU is called logical address and the address generated by the memory unit is called physical

address. Memory

268 | P a g e Space for learners: management unit converts logical address into physical address. Logical address space is

a set of all logical address generated by CPU and the physical address space is the set of all physical address generated

by the program. Logical address is Virtual and physical address is real. 5.5.3 Contiguous Memory Allocation

90% MATCHING BLOCK 289/320

In contiguous memory allocation, each process is contained in single contiguous section of memory. All

available memory resides at one place which means unused memory are not scattered here and there across the whole

memory space. Fixed Partitioning Operating system uses various techniques to manage the memory. The degree of

multiprogramming says that keep more and more program in main memory so that whenever CPU needs a process for

execution, it is easily available.

91% MATCHING BLOCK 290/320

Main memory must accommodate both operating system and various user processes. The memory is divided into two

partitions. One for resident operating system and one for user processes.

We want several user processes to reside in memory at the same time. . In contiguous memory allocation, one of the

simplest methods is fixed size partitioning. In fixed size partitioning,

76% MATCHING BLOCK 291/320

memory is divided into several fixed size partition. Each partition may contain exactly one process.

Degree of multiprogramming depends on the number of partition. Variable Size Partitioning In variable size partitioning,

97% MATCHING BLOCK 292/320

initially all memory is available for user processes and is considered one large block of available memory, a hole.

Eventually memory contains a set of holes of various sizes.

91% MATCHING BLOCK 293/320

The operating system keeps a table initially which parts of memory are available and which are occupied.

The memory blocks available comprise a set of holes of various sizes scattered throughout the main memory. So

whenever new process arrives, the system searches for a hole large enough for that process. If the hole is larger then

what is required by the process; in that case the hole is divided into two parts. One part is

269 | P a g e Space for learners: allocated to arriving process and other is written to the set of holes. Now when a

process terminates, it releases its block of memory and which is then placed back to set of holes. If the new hole is

adjacent to other hole, then these adjacent holes are merged to form a larger hole. 5.5.4 Partitioning Algorithm Infixed

partition, memory partition is fixed, once we allocate a process, the leftover space is unused. For example P0 is assigned

to the first hole which is large enough for the process but the space leftover is left unused. Since every partition is

allocate to one process only so the process left cannot be allocate to any other process. Thus causes internal

fragmentation. So it does not make sense to use various algorithms in Fixed size partition. The various algorithms for

memory allocation for variable size partitioning are: Here also it creates many holes but the spaces left over can be used

for other process. That’s why it makes sense to use various algorithm in variable size partition. 1. First fit 2. Next fit 3. Best

fit 4. Worst fit

100% MATCHING BLOCK 294/320

First fit: Allocate the first hole that is big enough.

100% MATCHING BLOCK 295/320

First fit: Allocate the first hole that is big enough.

100% MATCHING BLOCK 296/320

First fit: Allocate the first hole that is big enough.

100% MATCHING BLOCK 297/320

First fit: Allocate the first hole that is big enough.

Scanning is done from the beginning in order to find the hole which is big enough to size of the process need to

allocate. Next fit: Here it allocates the first hole that is big enough. It is similar to first fit but scanning is done from the

location at which previous search ended. Example say there are two processes. P0 is allocated first hole which is big

enough, after that scanning is performed for P1 where last search ended.

100% MATCHING BLOCK 298/320

Best fit: Allocate the smallest hole that is big enough

100% MATCHING BLOCK 299/320

Best fit: Allocate the smallest hole that is big enough

100% MATCHING BLOCK 300/320

Best fit: Allocate the smallest hole that is big enough

68% MATCHING BLOCK 301/320

Best fit: Allocate the smallest hole that is big enough thus it produces smallest leftover hole.

While scanning many holes may be bigger than

270 | P a g e Space for learners: the size of process which we are going to load. So minimum of these holes which fits

better will be taken. Worst fit: Allocate the largest hole which is big enough. It produces largest leftover hole which may

be more useful than a leftover hole from a best fit approach. After scanning one having the maximum size hole will be

taken for loading the correct process. First Fit: Fig 1 Fig 2 Fig 3 The figure shows memory layout. Consider A, C and E

memory space is occupied by some process. B,D are empty and is consider as available memory hole. Now we have four

process arriving. First P1 having memory requirement 300, second P2 having requirement 25, third P3 having 125 and

fourth P4 having 50. Now we have to check whether the first fit able to satisfy the entire four requests or not. So for first

process with memory requirement 300, first fit checks the first hole empty from the beginning whether hole is greater

than the arriving process size. Starting available space is 150 which is smaller then 300, so it searches for next available

space i.e. 350(D) in fig 1. Since 350 is larger than 300, process P1 will be allocated to that memory and thus 350-300=50

(F)is new leftover hole(fig 2). Next process size is 25 and starting available hole is 150. Since it is satisfied so P2 is allocate

to memory hole i.e. B and thus 150-25=125(G) hole is left in fig 3. Next third arriving process size is 125 and available

space

271 | P a g e Space for learners: is also 125(G) in fig 3. Thus this memory is occupied. Last process size is 50 and also

available hole is of size 50(F) in fig 3. Thus memory is occupied by P4. In this way, first fit works. Next Fit: We have to

check whether the next fit able to satisfy all the four request or not. First P1 having memory requirement 300, second P2

having requirement 25,third P3 having 125 and fourth P4 having 50. Fig 4 Fig 5 Fig 6 Consider figure 1 , Since hole D is

satisfying the size of Process P1 i.e 300,so D will be occupied by Process P1,leaving 350-300=50(F) as leftover hole

shown in fig 4. Now next Process is P2 with size 25. Next fit searches from where last searches took place i.e from D.

Since F satisfies the process P2 memory size i.e 25.So F will be allocate to process P2 and thus 50-25=25(G) leftover hole

available shown in fig 5. Next arriving process is P3 with 125 memory requirement. G is smaller so next fit searches next

larger hole. B is satisfying thus P3 will be allocate to hole B and thus 150-125=25(H) leftover hole available as shown in fig

6. For the next process P4 with size 50, available hole is H (25) which is not sufficient and also G(25) which is not

sufficient. Thus the last process P4 is not allocated memory by next fit algorithm. BEST FIT:

272 | P a g e Space for learners: Fig 7 Fig 8 Fig 9 Initially we have two free memory hole B with 150 and D with 350 in fig

1. Consider four same process P1 with 300, P2 with 25,P3 with 125 and P4 with 150. Among this memory hole P1

occupies memory hole D leaving 350-300=50 say F hole as shown in Figure 7. Now the available memory holes are B

with 150 and F with 50. Next process P2 has size 25 which both memory holes B and F satisfy. But since best fit searches

smallest best hole that satisfies that process so P2 occupies space F leaving 50-25=25 say G as shown in figure 8. Now

memory hole B of size 150 and G of size 25 available. Process P3 require 125 memory which is provided by B hole thus

150-125=25 left over hole say H in fig 9. Now, available memory hole are H and G of size 25 each. Process P4 with size

50 arrives but none of the holes satisfies P4 request. Two holes if we sum up it gives 50 but since they are not contiguous

it is not satisfying P4 request. This is known as External fragmentation. So Process P4 is not allocated with memory

space. Worst Fit:

273 | P a g e Space for learners: Fig 10 Fig 11 Initially holes of size 150 that is B and D of size 350 available as in fig 1.

Process P1 size 300 is satisfied by hole D leaving 350-300=50 say F as shown in fig 10. Next process P2 of size 25 arrives,

both hole B and F satisfies the requirement. But worst fit choose the largest hole that satisfies the process. Thus B is

occupied by process P2, leaving 150- 25=125 say G as shown in fig 11. Process P3 arrives with size 125 and is satisfied by

G. Process P4 of size 50 is satisfied by F. Thus the entire requests are satisfied by this algorithm. STOP TO CONSIDER First

fit scans from beginning and chooses first available block which is large enough. Best fit chooses among the free

memory partition, the smallest sufficient partition among for a process. Worst fit is just the opposite of best fit, allocates

the process in the largest sufficient partition among freely available partition. Next fit search for the first sufficient

partition from the last allocation point.

274 | P a g e Space for learners: CHECK YOUR PROGRESS Q5. 100 KB, 500 KB, 200 KB, 450 KB and 600 KB are five

memory partitions in the same order. If requests for blocks of size 212 KB, 417 KB, 112 KB and 426 KB in same order

comes sequentially; then which of the following algorithm makes the efficient use of memory? A. Best fit algorithm B.

First fit algorithm C. Next fit algorithm D. Both next fit and best fit results in same 5.5.5 Paging Paging is a physical

mapping. It avoids external fragmentation. The need of compaction is also reduced here. This is physical mapping in

which physical memory is divided into fixed size called frames. The size of each frame is same. The logical memory is

divided into fixed size block called pages. The size of each page is same in logical memory. Whenever a process to be

executed, the pages are to be loaded into the frames. That means size of page is equal to size of frames. Size of pages

and frames are same but number may be different. The logical address space is

65% MATCHING BLOCK 302/320

generated by CPU is divided into parts page number and page offset. By using page number

we identify the corresponding frame in physical memory using

90% MATCHING BLOCK 303/320

Page table. The page table contains base address of page in

90% MATCHING BLOCK 304/320

Page table. The page table contains base address of page in

the physical memory. That means in which location Page is loaded in physical memory. The page table contain frame

number at which address location the base address of the page resides. Frame number is added to offset by adding

simply location of physical memory.

275 | P a g e Space for learners: For example, suppose we have logical memory with four pages say page 0,1,2,3. Page

table contain page number 0,1,2,3. Again physical memory is supposed divided into 7 frames. In the page table page 0

contains 3,page 1 contain 4,page 2 contain 2 and page 3 contain 5 simultaneously. Page 0 contains 3 means it is the

frame number where page 0 will be loaded in physical memory. Page 1 is loaded in frame 4 and so on. This is how

paging works. See the diagram below for understanding of above explanation. Advantages: 1.No external fragmentation

takes place 2.Efficient use of memory 3.User’s view of memory and actual physical memory are separate. The user view

memory as a simple contiguous memory that contains only one process.But the user process is non-contigous in

physical memory.

276 | P a g e Space for learners: Disadvantages: 0 It suffers from internal fragmentation. 1 Page table requires extra

memory. So it may not be good for a system having small RAM. STOP TO CONSIDER It is a fixed-size partitioning

scheme. The secondary memory and main memory are divided into equal fixed-size partitions in Paging. It helps to avoid

external fragmentation. The paging technique divides the main memory also called physical memory into fixed-size

blocks that are known as Frames and divides the secondary memory also called logical memory into blocks of the same

size that are known as Pages. 5.5.6 Segmentation Here CPU generates logical address. Logical address is divided into two

parts-segment number(s) and offset (d). Segment number (s): It is the number of bits required to represent the segment.

277 | P a g e Space for learners: Segment offset (d): It is the number of bits required to represent the size of the segment.

Each segment number and offset is stored in the form of segment table. Limit is the length of each segment and base is

the starting physical address where segments reside. Each limits and base and each segment is checking whether it is

less than equal to limit or not. If it is yes, the physical address will be base address added with the offset. If it is greater

than segment table length register then addressing error will occur. This is how hardware implementation for the

segmentation takes place Advantages of Segmentation – ? No Internal fragmentation takes place. ? Segment Table

consumes less space in comparison to Page table in paging. Disadvantage of Segmentation – ? External fragmentation

takes place when the processes are loaded and removed from the

100% MATCHING BLOCK 305/320

memory; the free memory space is broken into little pieces.

100% MATCHING BLOCK 306/320

memory; the free memory space is broken into little pieces.

STOP TO CONSIDER External fragmentation occurs when sufficient quantity of memory is available for a process but

that available memory is not contiguous. Internal fragmentation occurs when memory block assigned to process is

bigger than process.

100% MATCHING BLOCK 307/320

Some portion of memory is left unused, as it cannot be used by another process.

Thus results in internal fragmentation. 5.6

80% MATCHING BLOCK 309/320

FILE SYSTEM A file is a named collection of related information recorded on

90% MATCHING BLOCK 308/320

A file is a named collection of related information recorded on

a secondary storage device. File can be anything. It can be document file, audio, video etc. Secondary storage can be

anything magnetic tape,

278 | P a g e Space for learners: optical device, hard disk etc. In the computer, file is the basic logical storage unit.

According to user perspective everything is kept on a file and the file is stored at a single place on secondary storage

device. But in secondary storage device, these files are stored as blocks. These files may occupy a block or may occupy

more than a single block and these blocks may not be contagious. Consider an example, user kept file1, file2, file 3 in a

folder named A. From user point of view, all the three files are in the same folder but actually these files may occupy

different blocks as shown in figure. All the information is maintained in a directory structure which is stored at the

beginning of secondary storage device. This directory structure keeps all the information about the files that is where the

file exactly located, its address and so on. These collections of files on secondary storage device together with directory

structure to manage, organize and to provide all the information together form the file system or file management

system task of operating system. Organization of files in secondary memory 5.6.1 File System Structure File system is

stored generally in secondary storage device such as hard disk. To perform different operations file system is organized

into different layers. So the layers are

279 | P a g e Space for learners: The top layer is application program and the bottom layer is devices. In between logical

file system, file organization module, basic file system, I/O control. Application Program-The program which is

developed by user is called application program. That application program is given as input to the logical file system.

Logical file system-It accepts the file name as input and checks whether that file is available in directory structure. If the

file is available in directory structure then it finds location of the file as well as logical block member of that file. File

organization module-That logical block member will be given as input to the file organization module and it performs a

mapping in order to find physical block member in which location file is stored in hard disk. The task of this module is to

find physical member block of the corresponding logical member. Basic file system-Physical block member will be input

to the basic file system. Basic file system issues a command to I/O control with the help of block member. I/O control-

I/O control accepts the command given by basic file system. Every I/O control contains device drivers. It is duty of device

drivers to work with device. Device driver takes responsibility of interacting with

280 | P a g e Space for learners: devices so that corresponding operation takes place. This is how the layered structure of

file system works. 5.6.2 Operations on File The various operations which can be implemented on a file such as read,

write, open and close etc. are called file operations. Some common operations are as follows: 1. Creating a file- ? Space

for newly created file must be found in the file system. ? After that directory must have entry for the newly created file. 2.

Open operation- ? Once file is created,it has to open in order to perform any operations. 3. Writing

57% MATCHING BLOCK 310/320

a file- ? Make a system call specifying both the name and the info to be written to the file. ?

A write pointer must be maintained by the system to the location where next write should take place. 4. Reading

94% MATCHING BLOCK 311/320

a file- ? Use a system call that specifies the name of the file and where in memory the next block of the file should put.

? The

read pointer is updated, once the read operation taken place. 5. Repositioning or Seek operation – ? The seek system call

reposition the file pointer to particular position in the file. Movement may be forward or backward depending on

requirement of the user. 6. Delete operation-

281 | P a g e Space for learners: ? Delete operation not only remove contents of file but also remove the file from disk

inorder to freed memory space occupied by it. 7. Truncate operation- ? This operation no doubt deleted the contents of

a file but the file is not deleted completely. 8. Close operation- ? After performing all operation ,it is suggested to close

the file so that the changes made are saved permanently and also resources used by the file releases. 9. Append

operations- ? This operation add data to the end of the file. 10. Rename operation- ? This operation is used to rename

the existing file. 5.6.3 Access Methods There are three methods to access the files 1. Sequential access 2. Direct access or

relative access or random access 3. Indexed sequential access Sequential access: It is the simplest method of all the

three method. As the name implies information of the file are accessed one by one sequentially. For example let’s say a

file contains 100 records and the file pointer is in 50 th record and we need 75 th record to access. Here the file pointer

moves one by one from 50 th record sequentially in order to read 75 th record. Thus it is not possible to access the 75 th

record directly. Magnetic tape is an example where files are accessed sequentially. Operations are: Read next// It reads

the next instruction pointed by pointer

282 | P a g e Space for learners: Write next// It writes the instruction in the next position Reset (or) rewind//moves the

pointer to the beginning Advantage: Simplest of all the three method. Disadvantage: Time consuming since need to

access each record sequentially. Direct access or relative access or random access: By using this technique we can

access the record directly. For the previous example, using this technique it is possible to access the 75 th record directly

without accessing one by one record sequentially. Example Hard disk, magnetic are random access device. Let’s see the

operation of random access Read n// read the instruction at position n pointed by pointer Write n //write content in the

location n pointed by pointer. Position to n //file pointer can be move to any location say n here Advantages: Pointer can

be move directly to particular position in order to access. Disadvantage: Implementation of direct-access systems is

often difficult because of the complexity and the high level of programming (software) support that such systems need.

In addition, the cost of developing and maintaining is greater than the expense of a sequential processing system. 3.

Indexed sequential access: It is used mainly in order to remove drawback of sequential access. Indexing is a data

structure technique which is used to quickly locate

283 | P a g e Space for learners: and access the data in database. From the name itself it is saying that index are used in

sequential order to access the data from the database. It is a static index structure in order for creating, maintain and

manipulating files of data. Here records can be retrieved sequentially or randomly by one or more keys. It is an advanced

sequential file organization. Advantage: Searching a data in large database is very easy and quick using this technique.

Disadvantage: Extra space in the memory is required in order to store the index value. STOP TO CONSIDER Sequential

access allows file to read/write sequentially up to the location where it is attempting to read or write. In direct access the

records does not need to be in sequence because they are updated directly and rewritten back in the same location

directly. In Index sequential index are used in sequential order to access the data from database. 5.7 SUMMING UP ?

Scheduling algorithm is use in order to schedule the process. ? Four types of scheduling algorithm are mainly discussed

here. They are round robin algorithm , First cum first serve algorithm , Shortest job first ,shortest remaining time first. ?

How memory is allocated to different process are explained using the concept of paging and segmentation. ? Different

memory partition algorithm like first fit, next fit, best fit and worst fit are explained using example . ? Concept of file along

with file structure, file access methods are explained very clearly.

284 | P a g e Space for learners: 5.8 ANSWER TO CHECK YOUR PROGRESS 1. Average turnaround time=8 units Average

waiting time=4.4 units 2. Average turnaround time=8.6 units Average waiting time=5.8 units 3. Average waiting time(non-

preemption)=5.2 units 4. Average waiting time(preemption)=4.6 units 5. D 5.9 POSSIBLE QUESTIONS 1. Among all

memory management techniques …………….. is simple to implement little operating system overhead. 2. Write difference

between fixed and variable partition. 3. What is contiguous and non-contiguous memory allocation. Explain with

example. 4. What is the function of DMA? Explain with diagram. 5. Why DMA data transfer is necessary? 6. What are job

queues, ready queues and device queues? 8. What are the benefits of multiprogramming? 9. What is PCB? What are the

information associate with it? 10. Explain FCFS, SJF with example. 11. Explain the concept of pages, frames. What is

physical and logical memory? 12. Define swapping. 13. What do you mean by compaction? 14. Process Burst time P1 10,

P2 29, P3 3, P4 7, and P5 12 given for five different processes in milliseconds. Consider the First come First serve (FCFS),

Non Preemptive Shortest Job First (SJF), Round Robin (RR) (quantum=10ms) scheduling algorithms. Calculate average

285 | P a g e Space for learners: waiting time and turnaround time. Illustrate the scheduling using Gantt chart. 15. Write

about various scheduling algorithm. 5.10 REFERENCES AND SUGGESTED READINGS ? Operating System Concept by

Abraham Silberschatz, Peter Baer Galvin, Greg Gagne ? Operating System Principles (Internal and design principles) by

William Stallings ? Modern Operating Systems by Andrew S Tanenbaum/ Herbert BOS ? Operating System Concept by

Willey

286 | P a g e Space for learners: UNIT 6: SECONDARY STORAGE MANAGEMENT Unit Structure: 6.1 Introduction 6.2 Unit

Objectives 6.3 Mass Storage Structure 6.4 Disk Structure 6.5 Disk Scheduling Algorithm 6.6 Swap Space Management 6.7

RAID Structure 6.8. Stable Storage 6.9 Tertiary Storage Structure. 6.10 Summing Up 6.11 Answers to Check Your Progress

6.12 Possible Questions 6.13 References and Suggested Readings 6.1 INTRODUCTION This unit gives an overview of

secondary storage management. The secondary storage means non-volatile memory management. The unit explains

the disk structure along with the different disk scheduling algorithms. The swap space management is also discussed in

the unit. The Redundant Arrays of Independent Disks (RAID) architectures are also discussed in the unit. The stable-

storage implementation is also highlighted in the unit along with the outcomes of the disk. The tertiary storage consists

of high-capacity data achieves and it is discussed nicely in the unit. 6.2 UNIT OBJECTIVES After going through this unit,

you will be able to ? Understand about the mass storage structure. ? Learn about the disk Structure

287 | P a g e Space for learners: ? Learn about the different disk scheduling algorithm ? Understand about the swap space

management ? Understand about the RAID structure ? Explain the stable storage and tertiary storage 6.3 MASS STORAGE

STRUCTURE The secondary storage is those where the memory is non-volatile. It means that the data will be intact with

the device even if the device or system turns off. The secondary storage structure is auxiliary storage and is less

expensive but has less speed than primary storage. Non-frequent data are saved in the secondary storage. Examples of

secondary steerages are magnetic disk, pen drive, HDD, etc. Mass storage refers to the storage of large amounts of data.

The data are stored in persisting and machine-readable form. The mass storage device includes tape, RAID system, HDD,

magnetic tape, optical disk, memory cards, and SSD, etc. The mass storage doesn’t include the RAM. There are two types

of the mass storage structure. The first one is local data storage which is a Smartphone or local computer. The other one

is global data storage which includes servers, data centres, cloud, etc. The mass storage device is characterized by: i)

Sustainable speed of the device ii) Seek time of the device iii) Cost of the device iv) The capacity of the device. 6.4 DISK

STRUCTURE The modern disk structure contains tracks and each sector contains multiple sectors. The disks are

arranged in a 1-D array of blocks. These blocks are the storage unit of the disk structure which is known as the sector.

For each surface, a read-write desk is available in the disk structure. The tracks on the surfaces are known as a cylinder.

The disk has the basic following structure.

288 | P a g e Space for learners: i) The disks are in the form of platters that are covered with magnetic media. The hard

disk platters are metal whereas the floppy disk platter is plastics. ii) Every platter has two working surfaces and each

working surface has some rings called tracks. The tracks which are in the same distance from the edge of the platter is

known as a cylinder. iii) Each track is further divided into sectors. The sector contains 512 bytes of data. Some sector uses

larger sector size. Each sector contains a header and trailer. iv) The data on a hard drive is read by read-write heads. In

standard, one head is reserved per surface, each on a separate arm., controlled by arm assembly. v) The storage capacity

of a disk is equal to the number of heads or number of bytes per sector. Fig.6.1 Disk Structure CHECK YOUR PROGRESS

1. True or False i) Pen drive is a mass storage device ii) Track of disk surface is known as cylinder. iii) Hard disk platters are

plastics. 2. What is a sector? 3. What is the data size of a sector? 4. What do you mean by the storage capacity of disk

structure?

289 | P a g e Space for learners: 6.5 DISK SCHEDULING ALGORITHM Disk scheduling is a process where the operating

system schedules the I/O requests and it is also known as I/O scheduling. Disk scheduling is important because to

manage the multiple I/O requests, this may arrive from a different process. But only one I/O request can be served at a

time by the disk controller. In this situation, other I/O request needs to wait in the waiting queue. The types of disk

scheduling algorithms are: i) First Come First Serve (FCFS) Algorithm ii) Shortest Seek Time First Scheduling iii) SCAN

Scheduling Algorithm iv) C-Scan Scheduling Algorithm Before discussing disk scheduling, you should learn the following

parameters. i) Seek Time: It is time to locate the disk arm to read or write data. ii) Rotational Latency: It is the time taken

by the sector to rotate itself into a position to access the read and write heads. iii) Transfer Time: It is the time to transfer

the information depending on the speed of the disk. iv) Disk Access Time: It is the combination of seek time + rotational

latency + transfer time. v) Disk Response Time: It is the average request waiting time to perform its I/O operation. 6.5.1

FCFS Disk Scheduling Algorithm The First Come First Serve (FCFS) is the simplest disk scheduling among all. In this

algorithm, the first request is always served first in the disk queue. Though there is no starvation in the algorithm it does

not provide the fastest service. Let understand the FCFS disk scheduling algorithm with the following examples. Let’s you

have following order of request. Request = {70, 3, 2, 40,4,6,90} and the position of the read and write head is 5 and the

total number of the track is 100.

290 | P a g e Space for learners: Fig. 6.2 FCFS Disk Scheduling The current position of the read and write head is 5. So, we

start at 5. As the algorithm is FCFS, the first move is towards 70. Then 3, 2, 40, 4, 6, and finally 90. So, the total cylinder

move (seek time) is: seek time = (70-5) + (70-3) + (3-2) + (40-2) + (40-4) + (6-4) + (90- 6) = 303 In this algorithm, every

request gets a reasonable chance. But it does not have any technique for optimization of seek time. 6.5.3 SSTF Disk

Scheduling Algorithm In Shortest Seek Time First (SSTF) algorithm, the request which has less seek time execute first. So,

the average response time is decreased in SSTF. It increases the throughput of the scheduling. But there is a chance of

starvation in SSTF. Let’s understand the algorithm by taking the following examples. Let’s you have a disk that contains

100 tracks (0-100). The requests are with the track numbers 70, 3, 2, 40, 4, 90, respectively. The current position of the

read/write head is 5. As we need the seek time for this algorithm, so the seek times of the heads are as follows. i) If you

will from 5 to 4, then it will give you the shortest seek time among all the requests and that is (5-4) = 1. ii) Then from 4,

the head will move 3. iii) Then it will move to 2. From 2, it will move to 40, 70, and finally 90.

291 | P a g e Space for learners: Fig. 6.3 SSTF Disk Scheduling So, seek time = (5-2) + (90-2) = 91 6.5.3 SCAN Disk

Scheduling Algorithm In the SCAN disk scheduling algorithm, we move the head either to the smaller value or to the

larger value. In the moving path, each request is addressed. When the disk arm reaches to end, it will move towards

reverse and all the requests are addressed. Let’s you have a disk that contains 100 tracks (0-100). The requests are with

the track numbers 70, 3, 2, 40, 4, 90, respectively. The current position of the read/write head is 5. Let’s the head will

move towards the larger end and it will execute as follows. i) As head movement is towards the larger value, so it will

move in the right direction from 5. From 5 it will reach 40, 70, and then 90. ii) From 90, it will move to 4, 3, and finally 2.

Fig. 6.4 SCAN Disk Scheduling So, seek time = (90-5) + (90-2) = 173

292 | P a g e Space for learners: 6.5.4 C- SCAN Disk Scheduling Algorithm In the C-SCAN algorithm, the disk moves in a

particular direction serving the requests to the end of the direction, and then comes back to the reverse direction until

the end. From that end, only the arm starts moving with serving the remaining requests. Let’s you have a disk that

contains 100 tracks (0-100). The requests are with the track numbers 70, 3, 2, 40, 4, 90, respectively. The current position

of the read/write head is 5. Let’s the head will move towards the larger end and it will execute as follows. i) Let’s the arm

move in the right direction. So its first move from 5 to 40, 70, the, 90 and finally it will go to 99. ii) From 99, it will directly

come to the reverse end, i.e. to the left side end 0. iii) From 0 it will go to 2, 3, and 4. Fig. 6.5 C – SCAN Disk Scheduling

So, seek time = (99-5) + (99-0) + (4-0) = 19 CHECK YOUR PROGRESS 5. What is a FCFS disk scheduling? 6. Assuming

that

94% MATCHING BLOCK 312/320

the disk head is located initially at 32, Find the number of disk moves required with FCFS if the disk queue of I/O block

requests are 98, 37, 14, 124, 65, 67 . 7.

86% MATCHING BLOCK 313/320

the disk head is located initially at 32, Find the number of disk moves required with FCFS if the disk queue of I/O block

requests are 98, 37, 14, 124, 65, 67 . 7.

Fill in the blanks i)

100% MATCHING BLOCK 314/320

The set of tracks that are at one arm position make up a ___________.

ii)

100% MATCHING BLOCK 315/320

The time taken to move the disk arm to the desired cylinder is called the ____________ 293 |

P a g e Space for learners: 6.6 SWAP SPACE MANAGEMENT Swapping in memory management means swapping of the

process so that the maximum number of processes sharing the CPU. It is used multiprogramming. It is a memory

management technique used to remove a process from the main memory to secondary memory and then bring it back

to the main memory. These are known as swap out and swap in. The area on the disk where the swapped-out processes

are stored is called swap space. Fig. 6.6: Example of Swap space management In Fig. 6.1, the process p1 is swapped out

from the main memory to swap space, and process p2 is swap in the main memory. So this process is Swap in and out.

Swap space management is another low-level task of the operating system because it deals with disk space. As

mentioned above, the process is out from main memory to secondary memory, i.e., disk space. So, disk space is required

in swap space management. But the disk space is slower than the memory access. So it will reduce system performance.

So, the goal of swap space management is to introduce virtual memory for better throughput. Swap spaces are variously

used by different operating systems. The swap space may contain the entire system or process images that are currently

not in use or loaded in RAM. So it is using paging techniques to manage the space. The size of swap space may vary from

megabytes to gigabytes. The amount of swap space needed on a system can vary depending on the amount of physical

memory, the

294 | P a g e Space for learners: amount of virtual memory it is backing, and how the virtual memory is used. Swap space

can reside in two ways. i) Normal File system ii) Separate Disk Partition In the Normal File system, swap space may create

by using the normal file system routine. In this process, external fragmentation can increase the swapping times.

Otherwise, swap space may create by using a raw partition. No presence of a file system is found here. Here, algorithms

are used to increase the speed of the swapping rather than storage. So, it may increase the internal fragmentation of the

system. 6.7 RAID STRUCTURE The performance of a single disk is less as compared to the multiple disks. The Redundant

Arrays of Independent Disks (RAID) is a technique where multiple disks are combined to form a single disk that increases

the performance of the system along with the data redundancy. Though the data redundancy takes extra space it

increases the reliability of the system. If a disk fails and the data is backed up in another disk, then at the time of disk

failure, the information will not lose. You can perform the disk operation. A RAID system is evaluated using the following

parameters. i) Reliability: It denotes the number of disk failures, but the RAID performance will not reduce. ii) Availability:

It denotes the available time, the system for actual use. iii) Performance: It denotes the response time and throughput of

the RAID system. iv) Capacity: It denotes the overall capacity of the RAID in terms of the number of disks per block. A

RAID structure is transparent. It appears as a big disk for the user. It has the following levels. i) RAID 0: In this type, the

blocks are “striped” across disks without any mirror and parity. Minimum two blocks are present in the RAID 0. As blocks

are stripped, the performance of the

295 | P a g e Space for learners: RAID in increasing as compared to the normal disk. As the system is very simple, it can

not be used for a complex system. Fig. 6.7: RAID 0. ii) RAID 1: In this level of RAID, the blocks are mirrors without stripe

and parity. Here also, a minimum of two blocks are required for the implementation. Due to no striping and parity, the

performance of the RAID 1 is more than the RAID 0. As blocks are mirrored, excellent redundancy is achieved in RAID 1.

Fig. 6.8 RAID 1 iii) RAID 5: In this level of RAID, the blocks are striped and distributed parity is used in the RAID 5. Minimum

3 blocks are used in RAID 5. As the blocks are stripped, the performance of the RAID level 5 is increasing. The RAID 5

achieved good redundancy due to the distributed parity. In RAID 5, the best cost-effective option is provided using both

performance and redundancy.

296 | P a g e Space for learners: Fig. 6.9: RAID 5 iv) RAID 10: In this level of RAID, the blocks are striped and mirrored. This

is also called a strip of the mirror. Minimum 4 blocks are used in RAID 5. Excellent performance and redundancy are

observed in RAID 10 due to the stripped and mirror. Fig. 6.10: RAID 10 CHECK YOUR PROGRESS 8. What are the level of

RAID? 9. Can we use RAID 0 for complex system? 10. What is RAID 10? 11. Which RAID type doesn’t use parity for data

protection? 12. What is the minimum number of disks required for RAID1?

297 | P a g e Space for learners: 6.8 STABLE STORAGE Stable storage means no data loss even if the disk of the computer

system fails. It is a computer data storage technology that guarantees atomicity for any read-write operation. To

implement stable storage, replication of data on different devices is required. It will help to recover a copy of the data

even if the data is removed from some devices. The causes of the system or device failure are defined below. i) System

Crashes ii) User Error iii) Carelessness iv) Sabotage (intentional corruption of data) v) Statement Failure vi) Application

software errors vii) Network Failure viii) Media Failure ix) Natural Physical Disasters 6.9 TERTIARY STORAGE STRUCTURE

72% MATCHING BLOCK 316/320

Tertiary storage consists of high-capacity data archives using vast numbers of removable media, such as tapes or

optical discs.

Tertiary storage or tertiary memory is a level below secondary storage. It involves a robotic mechanism that will mount

(insert) and dismount removable mass storage media into a storage device according to the system's demands; such

data are often copied to secondary storage before use.

298 | P a g e Space for learners:

100% MATCHING BLOCK 317/320

Figure 6.11: Tertiary storage platforms: (A) Quantum tape library, (B) BluRay optical jukebox [

Image Source: https://www.sciencedirect.com/topics/computer-science/tertiary- storage] The main objective of tertiary

storage is to provide hug storage at a low cost in terms of magnetic tapes, optical disks, and optical tapes. They are

consisting of fixed storage drives and removable media units. The storage drives are fixed to the computer system but

the removable media can be removed to increase the storage capacity by increasing the media units. When data on a

media are accessed, the media unit is accessed from its normal location and one storage drive is chosen from the local

computer. If there is a media unit in the storage system, the old storage system is unloaded and ejected so that the new

media unit can load in the drive. Each storage drive handles the driver and unit efficiently. 6.10 SUMMING UP ? The

secondary storage is those where the memory is non- volatile. It means that the data will be intact with the device even if

the device or system turns off. ? The secondary storage structure is auxiliary storage and is less expensive but has less

speed than primary storage. ? The mass storage device is characterized by: ? Sustainable speed of the device ? Seek time

of the device ? Cost of the device ? The capacity of the device. ? The disks are arranged in a 1-D array of blocks. These

blocks are the storage unit of the disk structure which is known as the sector. ? The disks are in the form of platters that

are covered with magnetic media. ? The hard disk platters are metal whereas the floppy disk platter is plastics.

299 | P a g e Space for learners: ? Every platter has two working surfaces and each working surface has some rings called

tracks. The tracks which are in the same distance from the edge of the platter is known as a cylinder. ? Each track is

further divided into sectors. The sector contains 512 bytes of data. Some sector uses larger sector size. Each sector

contains a header and trailer. ? Disk scheduling is a process where the operating system schedules the I/O requests and it

is also known as I/O scheduling. ? Disk scheduling is important because to manage the multipleI/O requests, this may

arrive from a different process. ? The types of disk scheduling algorithms are: o First Come First Serve (FCFS) Algorithm o

Shortest Seek Time First Scheduling o SCAN Scheduling Algorithm o C-Scan Scheduling Algorithm ? The First Come First

Serve (FCFS) is the simplest disk scheduling among all. In this algorithm, the first request is always served first in the disk

queue. ? In Shortest Seek Time First (SSTF) algorithm, the request which has less seek time execute first. ? In the SCAN

disk scheduling algorithm, we move the head either to the smaller value or to the larger value. In the moving path, each

request is addressed. When the disk arm reaches to end, it will move towards reverse and all the requests are addressed.

? In the C-SCAN algorithm, the disk moves in a particular direction serving the requests to the end of the direction, and

then comes back to the reverse direction until the end. From that end, only the arm starts moving with serving the

remaining requests. ? Swapping in memory management means swapping of the process so that the maximum number

of processes sharing the CPU.

300 | P a g e Space for learners: ? Swap space can reside in two ways. o Normal File system o Separate Disk Partition ?

The Redundant Arrays of Independent Disks (RAID) is a technique where multiple disks are combined to form a single

disk that increases the performance of the system along with the data redundancy. ? The RAID has the following levels,

RAID 0, RAID 1, RAID 5, and RAID 10. ? Stable storage means no data loss even if the disk of the computer system fails. It

is a computer data storage technology that guarantees atomicity for any read-write operation. ?

72% MATCHING BLOCK 318/320

Tertiary storage consists of high-capacity data archives using vast numbers of removable media, such as tapes or

optical discs. 6.11

ANSWERS TO CHECK YOUR PROGRESS 1. i) True ii) True iii) False 2. The modern disk structure contains tracks and each

sector contains multiple sectors. The disks are arranged in a 1-D array of blocks. These blocks are the storage unit of the

disk structure which is known as the sector. 3. The data size of a sector is 512 bytes. 4. The storage capacity of a disk is

equal to the number of heads or number of bytes per sector. 5. The First Come First Serve (FCFS) is the simplest disk

scheduling among all. In this algorithm, the first request is always served first in the disk queue. Though there is no

starvation in the algorithm it does not provide the fastest service. 6. 321. 7. i) Cylinder ii) Seek Time 8. The levels of RAID

are RAID 0, RAID 1, RAID 5, and RAID 10. 9. No

301 | P a g e Space for learners: 10. In RAID 10, the blocks are striped and mirrored. This is also called a strip of the mirror.

Minimum 4 blocks are used in RAID 5. Excellent performance and redundancy are observed in RAID 10 due to the

stripped and mirror. 11. RAID 1. 12. 2. 6.12 POSSIBLE QUESTIONS Short answer type questions: 1. What do you mean by

mass storage? 2. What are the characteristics of mass storage? 3. Define the term cylinder and sector of disk structure. 4.

Explain the term seek time and rotational latency. 5. Difference between FCFS and SSTF disk scheduling algorithm. 6.

Consider a disk queue with request for input/output to block on cylinders 98, 183, 37, 122, 14, 124, 65, 67cin that order.

Assume that the disk head is initially positioned at cylinder 53 and moving towards cylinder number 0. What is the total

number of head movements using Shortest Seek Time First (SSTF) and SCAN algorithms? 7. What is swap space? 8. Why

is the necessity of RAID structure? 9. What is stable storage? 10. What is a tertiary storage structure? Long answer type

questions 1. Explain the Disk scheduling algorithms with examples. 2.

100% MATCHING BLOCK 319/320

If the disk head is located initially at 32, find the number of disk moves required with FCFS,

88% MATCHING BLOCK 320/320

If the disk head is located initially at 32, find the number of disk moves required with FCFS,

SSTF, SCAN, and C-SCAN if the disk queue of I/O blocks requests are 98, 37, 14, 124, 65, 67. 3. Explain about different

RAID structure.

302 | P a g e Space for learners: 6.13 REFERENCES & FURTHER READINGS ? Schaum's Outline of Operating Systems. ?

Operating system concept 9E by Silberschatz, Publisher: Wiley.

303 | P a g e Space for learners: UNIT 7: SECURITY Unit Structure: 7.1 Introduction 7.2 Unit Objectives 7.3 Security 7.3.1

Security Goals 7.3.2 Security Issues and Measures 7.4 Threats 7.4.1 Programs Threats 7.4.2 System Threats 7.4.3 Network

Threats 7.4.4 Attack and Its Types 7.5 Cryptography 7.5.1 Types of Cryptography 7.6 User Authentication 7.7 Security

Defense Mechanisms 7.8 Protect Systems and Networks with Firewalling 7.9 Computer Security Classification 7.10

Summing Up 7.11 Sample Questions 7.12 References and Suggested Readings 7.1 INTRODUCTION Security is the state of

being free from threat. One of the major mechanisms of ensuring security is encryption. Basically security is concerned

with the unauthorized access of information. Security ensures safe sharing of software and hardware resources of a

system. Authentication is very important in this regard. Security attacks mainly focus on the illegal use of confidential

resources such as data files. 7.2 UNIT OBJECTIVES After going through this unit, you will be able to • explain the basic

concepts of security, threat, attack • discuss the various security goals

304 | P a g e Space for learners: • explain the concept of user authentication • discuss about cryptography, computer

security classification 7.3 SECURITY Security is a mechanism which provides protection to the system resources. System

resources can be both software and hardware like CPU, disk, memory, data etc. stored in the system. Basically security is

used to prevent unauthorized access of these resources. It deals with the threats that are external to the systems. Some

of the basic incidents which can be termed as security violation are given below: i) Theft of Data: If an unauthorized user

tries to steal information then this can be termed as theft of data. ii) Unauthorized Modification of Data: If an

unauthorized user tries to alter the data then it is termed as unauthorized modification of data. iii) Unauthorized

Destruction of Data: If an unauthorized user tries to delete the data then it is termed as unauthorized destruction of data.

7.3.1 Security Goals Security between intended sender and receiver can be achieved through following major security

goals: i) Confidentiality: It is a service through which only the intended sender and the receiver will know the actual data.

ii) Data Integrity: It is service through which only the authorized user can access or modify the actual data. iii)

Nonrepudiation: It is a service through which no user can refuse the previous commitment after doing so. iv)

Authentication:

305 | P a g e Space for learners: It is a service through which only the authorized user can access the system resources.

v) Availability: The system resources need to be available for the authorized user when needed. 7.3.2 Security Issues and

Measures Security of a system can be violated by threats and attacks. If a system is hacked by unauthorized user then

there will be loss of confidentiality, integrity of the system resources. Some of the important security issues are: i) Loss of

data ii) Modification of data iii) Misuse of data To protect the system from these security issues following measures need

to be taken: i) Protection mechanisms to prevent modification and loss of data. ii) Control system resource sharing

among the users. iii) Authentication of the valid user needs to be done before accessing the system resources. iv)

Cryptographic techniques need to be used to ensure secure communication between sender and receiver. v) Security

policies need to be introduced among the users. vi) The site containing computer system should be physically secured

from attacker. vii) The operating system must protect itself from malicious attacks. viii) Secure network communication

must be established among the systems. ix) Anti-Malware programs need to be used to protect the system.

306 | P a g e Space for learners: x) To protect the system from network threats firewall is used. 7.4 THREATS Threat can

potentially harm the system resources. This means alteration or hiding or destroying the actual content of a message,

occupying hard drive space and illegal use of passwords. Fig. 7.1: Types of Threats 7.4.1 Program Threats When a program

is created by a user is used by another user then misuse of the program may occur. If misuse of the program is happened

then this event is termed as program threat. Some of the examples of program threats are Trojan horse, Trap door, Buffer

overflow and Logic bomb. i) Trojan horse: This program sits ideally and transmits all the information to the attacker.

Suppose if you login to a site using browser and if the Trojan horse is attached with the browser then the user id and

password will be stored by the Trojan horse and it sends the user id and password to the attacker. ii) Trap door: It is a

program which is installed in a system and has some security hole in the code and due to this if the program performs

illegal actions without the knowledge of the user then it is called to have a Trap Door. CHECK YOUR PROGRESS 1. What

are the major security goals? 2. What are the different security issues a system can have? 3. How security can be

achieved? Threats Program Threats Network Threats System Threats

307 | P a g e Space for learners: iii) Buffer overflow: Suppose a program is created by a user and that program is installed

in another system, and this program consumes all the resources of the system where it is being installed. In this situation

Buffer Overflow may occur. iv) Logic Bomb: This situation is very hard to detect. Here, an installed program misbehaves

when certain conditions met otherwise it works as a genuine program. 7.4.2 System Threats The misuse of Operating

System (OS) and user files is termed as system threats. For example, mostly we install OS in C drive. There are many

hidden folders in program files and few of the files we cannot even access. But these files can be accessed by the

attackers by launching worms or viruses. Some of the examples of System Threats are Worms, Virus etc. i) Worms:

Worms create duplicate copies which contain malicious code that simply consume system resources and deny service

of the user. This slows down the system. ii) Virus: This can delete or alter the information available in a system. It contains

small section of code embedded in a program. When this program is accessed by the user, the virus starts getting

embedded in other files. 7.4.3 Network Threats The misuse of user’s confidential information while accessing the

network without the knowledge of the user leads to network threats. Some of the examples of network threats are Port

Scanning, Denial of Service etc. i) Port Scanning: It is a mechanism through which unauthorized user can detect the

system vulnerabilities to attack the system.

308 | P a g e Space for learners: ii) Denial of Service: This prevents authorized access of a user. For example, if denial of

service attacks in the browser’s content setting then user may not be able to use the internet. 7.4.4 Attack Attack is a kind

of threat to a system from malicious users. It is of two types namely Active Attack and Passive Attack. i) Active Attack: In

this attack, the attacker tries to alter the content of the message. This type of attack can be easily detected so proper

cure is needed. Here, attacker uses information to launch attack on the target. Example of active attack: Masquerade,

Replay, Modification of Messages, Denial of Service. ii) Passive Attack: In this attack, the attacker learns and uses

information of the message and listens to the traffic to launch attack on the target. It is difficult to detect so prevention is

better in case of passive attack. Example of passive attack: Release of Message Content, Traffic Analysis. 7.5

CRYPTOGRAPHY It is a technique to hide the actual content from unauthorized user. It is the study and practice of

different mechanisms for secure communication in the presence of unauthorized user in between the intended sender

and receiver. Here we have two basic terminologies, CHECK YOUR PROGRESS 4. State the examples of program threats,

system threats and network threats. 5. Differentiate between active attack and passive attack. STOP TO CONSIDER

Program threat is concerned with the misuse of ones created program. System threat is concerned with OS of the

system and network threat is concerned with the use of internet.

309 | P a g e Space for learners: Encryption and Decryption. Secure communication is done between sender and

receiver with the help of cipher test. Fig. 7.2: Concept of Cryptography Explanation of Fig. 7.2: As we already know that

cryptography ensures secure transmission of data between sender and receiver, so the sender will apply some

encryption technique on the plain text that is the actual content and converts it to the cipher text. This cipher text will be

sent to the receiver and at the receiver side, it will convert the cipher text to the plain text with the help of the encryption

technique that has been used by the sender. The conversion of cipher text to plain text is termed as decryption. Some of

the important terminologies: Cryptanalysis: The art of decoding the cipher text in order to hack without knowing the

encryption technique is referred to as cryptanalysis. Cryptanalyst is the person who is always busy in cryptanalysis.

Cryptology: It is the combination of both cryptography and cryptanalysis. Fig. 7.3: Types of Cryptography i) Symmetric

Key Cryptography: Here the sender and receiver of a message use the same key for both the encryption and decryption

process respectively. Data Cryptography Symmetric Key Cryptography Asymmetric Key Cryptography

310 | P a g e Space for learners: Encryption System (DES) is one of the most popular symmetric key cryptography

techniques. ii) Asymmetric Key Cryptography: Here a pair of public and private key is used for both encryption and

decryption process respectively. RSA algorithm is a good example of asymmetric key cryptography. 7.6 USER

AUTHENTICATION Authentication is a process of identification. User authentication means identifying whether the user

is a valid user or not. Suppose, you login to e-commerce site using the user id and password. The user id and password

are the essential credentials to authenticate your identification. Normally in our personal computer we use to provide

PIN or Fingerprint or Password to protect our system from unauthorized access. User of a system can be authenticated

using the following mechanisms: i) Using password Users normally have their own user id and password to access the

system resources. Password is a combination of special characters, numbers, and alphabets. Now a days, One Time

Password (OTP) is also popularly used to access resources. Normally OTP is sent to the registered mobile number or

email id. ii) Using physical object Users normally use to withdraw cash in Automated Teller Machine (ATM) with the help

of a unique card which is registered with the user only with a secured PIN. iii) Using biometric User authentication using

biometric method is the most safeguard mechanism to protect the resources. Here physical characteristics of user like

fingerprint, voice, and retina are used for authentication purpose as these are very difficult to forge. Now a days, in most

of the offices or organizations punching machine is used to record the employees attendance.

311 | P a g e Space for learners: 7.7 SECURITY DEFENSE MECHANISMS To ensure security of the system different defense

mechanisms need to be followed. Following are some of the efficient defense mechanism normally used to protect the

system against malicious attacks: i) Encryption: Plain text is converted to cipher text (encrypted text) to hide the actual

content of the message to safeguard it from attacker. ii) Digital Signature: User digitally or electronically signs the data

and sends it to the intended receiver. And the receiver verifies the signature before accessing it for security reasons. iii)

Data Integrity: There is a check value embedded with the message and this check value is known by the receiver and

sender. Whenever sender sends message to the receiver this check value is appended with the message before sending it

and after that the receiver matches the check value after receiving the message with the check value that receiver

already has. If the check value matches then receiver accepts the message and if the check value does not match then

receiver assumes that modification has been made so simply discards it. iv) Access Control: This ensures that the user

has the right to access the system resources. v) Authentication: Only the authorized users can establish secure

communication and share resources. vi) Traffic Padding: Here some extra bits are added with the actual content of the

message for encryption. CHECK YOUR PROGRESS 6. Define the process of user authentication. 7. What are the different

ways using which authentication of user is done?

312 | P a g e Space for learners: 7.8 PROTECT SYSTEMS AND NETWORKS WITH FIREWALLING Firewall is a network

security mechanism to protect the system from network threat. Basically it monitors the incoming and outgoing packets

that consists data/information in the network and based on the security rules it accepts or rejects the packets. It creates

an interface between internal network and incoming traffic from the external network to protect the system from

malicious threats. It can be both software and hardware. A software firewall is a program installed in the system. It

regulates traffic through port numbers and applications. On the other hand, hardware firewall is a equipment installed

between the network and gateway. Some features of good firewall: i) All the authorized incoming and outgoing packets

must pass through the firewall. ii) Firewall must be strong enough to reject unauthorized incoming packets. Some

limitations of firewall: i) Inside a network if a malicious user tries to launch attack then firewall cannot protect the

network. ii) There are some applications where we need to disable the firewall. By doing so, there will be no control in

the incoming and outgoing traffic. iii) Firewall does not analyze the content of the packet so if a packet contains

malicious content sent from an authorized user then it cannot discard the packet. This cause a threat to the system.

313 | P a g e Space for learners: There are two types of firewall namely Host based firewall and Network based firewall. i)

Host based firewalls: These are installed on the network, which control incoming and outgoing packets. Host based

firewall is a software application and it comes with the operating system. It provides protection to the internal network.

Host based firewall protects systems from malicious attacks and unauthorized access. ii) Network based firewalls: It

operates on the network. These firewalls filter all the incoming and outgoing traffic across the network. It protects the

internal network from the unauthorized access of the third party. A network based firewall might have two or more

Network Interface Cards (NICs). Working of Firewall: Internet is untrusted network where different computers or systems

are connected together to share resources/ information. Firewall maintains access list where authorized and

unauthorized system’s details are stored. Example 1: Suppose we have 3 users A, B and C. In the access list of the firewall

only user A and B have the access rights but user C does not have the access right. When A wants to access information

through internet from B then B sends the information to A. Though user C hacks the connection and sends another reply

to user A, then A simply discards it as C is not in the access list of the firewall. It method is named as Packet Filtering.

Example 2: Suppose user A is currently visiting a specific site. Firewall of user A has the record of the user name and the

visiting site in a conversation list. If an attacker hacks this connection and sends unwanted data to the user A, then

firewall rejects these data as it already knows the visiting site from the conversation list. This method of protection is

termed as Stateful Inspection. Example 3: Suppose user A is connected to the internet through a different user B. And

user A requests some information from the internet via user B. User B passes the request to the internet. This way user B

is hiding user A from the attackers available in the internet. This method of protection is termed as Proxy Firewall.

314 | P a g e Space for learners: So, if you want to protect your system from malicious threat then never disable the

firewall. 7.9 COMPUTER SECURITY CLASSIFICATION Computer security means protection of system resources from

unauthorized access. It prevents modification and deletion of data from malicious users. It restricts unauthorized users.

Computer security is mainly concerned with three goals i.e. confidentiality, integrity and availability. These points are

already discussed above. Computer security is important to safeguard the system resources from virus and worms. It

protects crucial information of users. According to the U.S. Department of Defense Trusted Computer System's

Evaluation Criteria there are four security classifications available for computer: A, B, C, and D[4]. In the following table

brief description of each classification is given. Table 7.1: Security classes Security Classes Description A (Highest Level)

This classification uses formal design specifications and verification techniques to grant access to user for secure

communication or resource sharing. B This classification provides mandatory protection system. It is of three types. i) B1:

This maintains the security label of objects in the system. Label is used to make decision to control the access. ii) B2: This

extends the sensitivity labels to each system resource. iii) B3: This allows creating user groups for access control to grant

access or restrict CHECK YOUR PROGRESS 8. Define firewall. 9. How does firewall protect system from malicious user?

315 | P a g e Space for learners: access to other object available in the system. C This classification provides protection

and user accountability using audit capabilities. It is of two types. i) C1: This incorporates controls to protect the user’s

resources. Example: UNIX versions are mostly Cl class. ii) C2: This adds an individual-level access control to the

capabilities of a Cl level system. D (Lowest Level) This classification is used for systems that have failed to meet the

requirements of any of the other security classes. For example, MS-DOS and Windows 3.1 are in division D 7.10

SUMMING UP ? Security is concerned with the unauthorized access of the system resources. ? Security mainly focuses

on the confidentiality, integrity and availability of the system resources. ? Threats like virus and worms are used by the

attacker to hack a system. To prevent this hacking we need to use some secure communication strategies like

encryption, digital signature etc. ? Threats are of three types: program threat, system threat and network threat. ? There

are two types of security attack namely active attack and passive attack. ? Cryptography is a mechanism of secret writing.

It is of two types i.e. symmetric key cryptography and asymmetric key cryptography. ? Firewall is one of the major

mechanisms to establish security.

316 | P a g e Space for learners: 7.11 SAMPLE QUESTIONS 1. What do you mean by security? 2. What is packet filtering? 3.

Compare stateful inspection and proxy firewall. 4. What do you mean be cryptography? How it is used to secure

systems? 5. State the difference between virus and worms. 6. What are the classes of computer security? Explain. 7.

Define attack. Explain the different types of attack. 8. Define threat. 9. Give some examples of program, system and

network threats. 10. What are the major security goals? 11. Explain about firewall with a suitable diagram. 12. How firewall

works? 13. Define access control. 14. How Trojan horse works? 7.12 REFERENCES AND SUGGESTED READINGS •

www.geeksforgeeks.org • www.javatpoint.com • www.tutorialspoint.com • www.easyengineeringclasses.com

317 | P a g e Space for learners: UNIT 8: DISTRIBUTED OPERATING SYSTEM Unit Structure: 8.1 Introduction 8.2 Unit

Objectives 8.3 Advantages of Distributed Operating System 8.3.1 Sharing of Resources 8.3.2 Scalability 8.3.3 Computation

Speedup 8.3.4 Reliability 8.3.5 Communication 8.4 Types of Network Based Operating System 8.4.1 Client Server Network

8.4.2 Peer to Peer Network 8.5 Network Structure 8.5.1 Local Area Networks 8.5.2 Wide Area Network (WAN) 8.6

Communication Structure 8.6.1 Name Resolution 8.6.2 Routing Strategies 8.6.3 Packet Strategies 8.6.4 Connection

Strategies 8.6.5 Contention 8.7 Communication Protocols 8.8 Design Issues 8.9 Distributed File System 8.9.1 Naming and

Transparency 8.9.2 Remote File Access 8.9.3 Stateful versus Stateless service 8.9.4 File Replication 8.9.5 Andrew File

System (AFS) 8.9.6 Google File System (GFS) 8.10 Summing Up 8.11 Possible Questions 8.12 References and Suggested

Readings

318 | P a g e Space for learners: 8.1 INTRODUCTION Distributed Operating Systems are the systems where the

processors are interdependent via some communication network in a loosely coupled environment. Processors in a

distributed system have distinct names such as host, site, nodes, computers, system etc. Each of the nodes has their own

resources such as memory, system clock, kernel etc. For a specific processor, the resources of all other processors

appear to be remote. They communicate with each other with the help of different communication media such as

telephone lines or high speed buses. The Structure of a Distributed System is as shown below: Figure 8.1: A Distributed

System 8.2 UNIT OBJECTIVES After going through this unit you will be able to: ? Learn the basics of Distributed

Operating System ? Architecture of the system ? Technologies used for setting up the system ? Protocols used for

communication ? Issues in designing a DS ? A brief description about distributed file system ? Some popular DFS

Communication Network File Server Resources Clients Clients Clients

319 | P a g e Space for learners: 8.3 ADVANTAGES OF DISTRIBUTED OPERATING SYSTEM Different objectives can be

there for using a distributed operating system: Sharing of Resources, Reliability, computation speed up and

communication are some of them. 8.3.1 Sharing of Resources The nodes those are connected to a distributed network

can take the privilege of using resources from other nodes connected to the network. Resource may be either hardware

(such as printer, scanner etc.) or software (such as text, audio or video files).If a node at site A needs a scanner, it can

access it from some other site B. In the same way, a node at site C can access files remotely from some node in site D.

Information processing can also be done remotely with the help of distributed database. 8.3.2 Scalability Scalability of a

system can be measured in different dimensions. It can be in terms of size that means extension of number of users or

resources in the existing network. It can be administratively scalable, where you can expand the number of organizations

of the system. Or the scalability can be in terms of geographical area where the organizations connected to the system

are far apart from one another. A group of users can work on a project by geographical scalability. They can share files of

the project they are working. They can make use of RPC (remote procedural call) and with the help of remote login; they

can edit the code written by some other user. 8.3.3 Computation Speedup If it is possible to split a computation into

smaller parts then each of these parts can be executed parallelly in different nodes of the system and then recombine

the sub-parts at the end of the execution. This can speed up the computation to a great extent. Furthermore, if a site is

heavily loaded with processes, then some of the processes can be transferred to moderately loaded sites in the network.

This technique is called load-sharing.

320 | P a g e Space for learners: 8.3.4 Reliability Reliability indicates the ability of the system being capable of functioning

perfectly even after the failure of one or more components. For example, if a user has booked a railway ticket, and before

the changes are permanently stored in the database, the system crashes, in such a scenario it is expected that changes

made by the user should persist. If the system is build up with multiple general-purpose computers, then working of the

system will not be affected even when any of the computers fails. But in case, each of the machines of a system is

responsible for performing some decisive task, then failure of one machine may lead to shut down of the whole system.

In general, reliability depends upon redundancy. If one node shuts down suddenly, then there should be some other

node which is carrying all the data and information of the previous one. 8.3.5 Communication The sites that are

connected in a distributed system can communicate with one another with the help of message passing. In a standalone

system, message passing is done within the cooperating processes. This idea has been expanded in distributed system to

send messages among users of different sites. Other functionalities such as email, remote procedural calls, file transfer

etc. can also be incorporated in a distributed system. Communication can be of different types such as unicast, multicast

and broadcast. In case of unicast communication one host will communicate with any other host in the system, in case

of multicast, one host communicates with a number of hosts in the system and in broadcast communication, one host

communicates with every single host present in the system at the same time. Corporate sectors are also benefited from

the distributed system. By replacing the mainframe with a distributed system, they can get ample number of resources

from geographically dispersed areas, enhanced functionality in a minimal cost, and better user interface and less

maintenance cost.

321 | P a g e Space for learners: 8.4 TYPES OF NETWORK BASED OPERATING SYSTEM A network based operating system

is a group of computers having individual operating systems connected through a common network. The network works

as a boss for the whole system. It groups the standalone computers and synchronizes their activities. Network operating

system can be broadly divided into two types: Client server network and Peer to Peer network 8.4.1 Client Server

Network These types of networks are considered to be the most common type of network operating system. The client-

server concept changes slightly depending on the context it is using. One of them is the thin client computing, where

the clients are light-weight computers having a small amount of memory. Only the graphical user interface is installed in

the client machine and all other services are accessed STOP TO CONSIDER A distributed operating system is a set of

loosely coupled systems connected via some communication network. Each of the systems has their own memory and

processor. Resource sharing is possible in a distributed system even for geographically separated systems. A distributed

system provides scalability in different aspects like geographical area, size or administrative scalability. Computation can

be performed by dividing a problem into sub-problems. Corporate sectors can replace mainframe with a distributed

system to reduce cost. CHECK YOUR PROGRESS Q1. What can be the reasons for setting up a Distributed Operating

System? Q2. What are the attributes of the Processors of a DOS? Q3. What is Load Sharing?

322 | P a g e Space for learners: from the server. The client machine acts as a terminal to have access on the operating

system which is actually running on the Server. One example of thin client computing is the 80486 system having

windows XP. A wider sense of client server concept is used in Authentication Server Based Network. Each of the

machines in the system has an account through which they authenticate themselves before using the resources from

the server. A server is a powerful computer that is used for storing the information and resources to be accessed by the

systems of the network. There are different security groups for different machines and depending on that, the user is

given the access. The server provides security to the entire network and acts as resource manager. High cost software

needs to be installed in the server in order to ensure smooth performance of the network. This type of network is termed

as domain and the server is termed as domain controller in the Microsoft Network (MSN) Figure 8.2: A client-server

network This architecture is mostly used in Organizations like Universities, colleges, banks and hospitals that need a

dedicated server. It provides the facility of combining different parts of the network and gives concurrency transparency

to its users, which means the same file can be accessed concurrently by different users leaving the database in a

consistent state. These types of networks are useful for large organizations because of centralized security and

management. Authentication server Client 1 Client 2 Client 3 Client 4

323 | P a g e Space for learners: 8.4.2 Peer to Peer Network There is no authentication server present in peer-to-peer

network but, the network may contain other type of servers like file server, fax server, remote access server and so on.

Each of the computers in the network performs the services of both client and server. If any of the systems want to

access data from other system, security is provided either by creating local account for the user or making the resources

password protected. This type of architecture is suitable for small companies or in a home network. But if the network

becomes bigger, managing of resources and creating local account becomes inconvenient. A user has to create

hundreds of local accounts or he may have to remember all the passwords of different resources. On the other hand, in

a client server network, user can access the network just by entering the network password and can avail the resources

based on the permission given to him. The administrator will assign permissions for different resources making the task

of the user much simpler. Because of the absence of a dedicated server, compromised security has become the main

pitfall of this architecture. On the other hand, absence of a server can reduce the cost of setting up a peer to peer

network to a great extent. The workgroups are less expensive as compared to client-server network for the following

reasons: ? The operating system that runs on a server is costly as compared to general operating systems. ? More

complex hardware are required for the server software ? System administrator needs to take extra load for maintenance

of the tasks performed by the server.

324 | P a g e Space for learners: Figure 8.3: Peer to Peer Network 8.5 NETWORK STRUCTURE There are two types of

networks LAN and WAN in a communication network. They differ mainly in the geographical area they cover. LAN (Local

Area Network) as the name says, it covers a small geographical area such as a department, an institution etc. whereas,

WAN(Wide Area Network) covers a large geographical area such as a country. It combines two or more LANs by using

independent processors. 8.5.1 Local Area Networks The Local Area Network has come into light in early 1970s. It has

been developed as a substitute for mainframe computer. Most of the organizations prefer small computers each with its

own application, instead of having a mainframe computer. Such an environment is more reasonable and user friendly as

all the workstations have access to both software and hardware resources. And it is quite obvious that an organization

needs to share a lot of information among the workstations, thus bringing LAN into focus. As the LAN is meant for a

small geographical area, such as in institutions, colleges, University Departments etc., the workstations of a LAN are

adjacent to each other as compared to those of WAN. Because of this, the communication speed and rate of error are

comparatively low. High-priced cables such as coaxial cable or Workstation 1 Workstation 2 Workstation 3 Workstation 4

325 | P a g e Space for learners: fiber optic cables are used to achieve high speed and reliability. But if the LAN is covering

a long distance, the cost of the network may increase with increasing cable length. Additionally, repeaters need to be

added to boost the signal. Most common way to construct a LAN is Ethernet cables, defined by IEEE standard 802.3.

Speed of Ethernet cable ranges from 10mbps to 1gbps. The 802.3 standard defines the physical layer and MAC (Medium

Access Control) sub-layers of OSI protocol. It is available in different versions. 802.3a (10Base2) uses thick coaxial cable

with a bandwidth of 10mbps and maximum possible segment length 200m. Another variation of Ethernet cable IEEE

802.3i (10 Base T) uses Unshielded Twisted Pair Cable as a transmission media with a maximum speed of 10MBPS.

Whereas the IEEE 802.3u (100BaseT) runs at a speed of 100mbps. Another variation called FDDI(Fiber Distributed Data

Interface) is used by the LANs that extend up to 200kms. It uses fiber optics cable and provides a maximum speed of

100MBPS. STOP TO CONSIDER A communication network is built up with two types of networks: LAN and WAN. A LAN

is preferred for small geographical areas. The Characteristics of the transmission Media used to set up a LAN are defined

by IEEE standards. Variations in IEEE standard are available to provide different communication Speed. A LAN can be

either wired or wireless. On the other hand, a WAN is preferred over a large geographical area. Technologies used for

WAN connection are: leased line, dial-up connection, DSL, satellite communication etc.

326 | P a g e Space for learners: Figure 8.4: A LAN Network As shown in Figure 8.4, nodes in a LAN are of different

specifications from mainframe to personal digital assistant (PDA) which are connected to each other by different

topologies. The network contain servers (File Server, Database Server, Application Server, Proxy server), peripheral devices

(Printer, database Files), gateways to connect to different networks and Repeaters to amplify the signal. In addition to

cable connection, Local Area Network comes with wireless facility also. Wireless LANs use radio frequencies instead of

cable. It is based on IEEE standard 802.11 released in the year 1997 with a speed of 2Mbps. Different variations have

evolved over years, 802.11ax being the latest of all with a maximum possible data rate of 1.8 Gpbs. LAN Node4 Node3

Node2 Node1 File Server Database Server Application Server Gateway

327 | P a g e Space for learners: 8.5.2 Wide Area Network (WAN) The Wide Area Network was emerged in late 1960s. Idea

was to connect workstations from a large geographical area, share resources, and perform confidential task in an

economic way. LANs which are situated in different geographical area and are a part of same organization for example

SBI(State Bank of India), can easily connect through WAN. Advanced Research Project Agency Network (ARPANET) was

the first wide area network based on TCP/IP protocol and packet switching scheme. ARPANET initially connected five

educational institutions including University of California and Los Angeles. With time, the researchers assembled the

“network of networks” to give birth to modern day Internet. Internet is the largest WAN in today’s world that establishes

connections between LANs and MANs. Some of the technologies used for setting up a WAN connection are: Leased

Line: These are dedicated lines that provide continuous data flow and can connect two or more LANs and MANs. Leased

lines use fiber optic cable for high speed data and bandwidth. Dial up Connection: Dial up connections use Public Switch

Telephone Network (PSTN) for establishing an Internet connection. The telephone line is connected to a modem that

converts the digital signals of the computer to analog signals used by the telephone lines. With times, this has become

outdated because of its low data transfer rate and dependency on telephone lines to use the internet. That means the

user is unable to use the telephone and the internet service at the same time. Digital Subscriber Line: Digital Subscriber

Line uses twisted pair cable for data transmission. These cables are generally used for telephone lines. By splitting the

frequency, an uninterrupted service is provided to both phone calls and the internet. The technology behind it is as such:

a variation of OFDM (Orthogonal Frequency CHECK YOUR PROGRESS Q4. What are the IEEE standards used in a wired

LAN network? Q5. What is the Job of an authentication server? Q6. Point out the differences between LAN and WAN

328 | P a g e Space for learners: Division Multiplexing) called discrete multitone is used to divide the bandwidth in parallel

paths so that at the same time, both phone calls and data transmission can be carried out. This is operated by the DSL

modem connected to the telephone lines. Satellite Communication: Satellite communication has become popular over

the years for wireless internet accessibility. A satellite communication comes in a range of Low Earth Orbit (LEO) and

Medium Earth Orbit (MEO). LEOs are mainly found in 1800 to 2100 miles above the earth and MEOs are found in 9000 to

10000 miles above the earth. Users can connect their laptops, cell phones and personal digital assistants to wireless

network using the satellite communication. Point to point link is used to connect the WAN with MANs and LANs. The

WAN contains a networking device called packet switch that contains memory, Processor and input/output interfaces to

connect with another packet switch. The message is stored in the memory, before being forwarded. Router is another

networking device that takes the decision on which path; the arrived packet should be forwarded. There are two different

routing mechanisms: static and dynamic. The static protocols take the decision based on the network topology, but it

can’t detect a link failure and modify the pre-defined route. On the other hand, dynamic protocols such as OSPF and RIP

are capable of detecting link failure and accordingly update the route in the routing table dynamically. Figure 8.5: A WAN

network ISP Network 1 DSL Network 3 Satellite communication Network 2 Satellite communication Network 4 Lease

Line

329 | P a g e Space for learners: 8.6 COMMUNICATION STRUCTURE Communication Structure means the internal

working of a distributed system. Here five issues need to be dealt with. 8.6.1 Name Resolution In a distributed system, if a

process in host A wants to communicate with a process in host B, they must know the address of each other. Therefore

every process is recognized by two parameters >host name, id< where the host name is the unique name assigned

to a particular host and id is the process within that host. Here comes the problem of Name resolution. Human beings

communicate with the help of names, whereas computers find it convenient to use numbers for simplicity and better

speed. Therefore, some mechanism needed to be introduced to convert the host names into numbers or ids so that the

networking hardware can identify the receiver. In the early days of Internet, each host used to maintain a data file which

contains the host name and corresponding address of all the computers in the network. Whenever a system is added or

removed from the network, every host needs to update their data file. With the growing number of networks, it has

become cumbersome to update the file every time. Here comes the concept of Domain Name System (DNS). The

protocols like TCP and IP convert the host names to IP addresses using the procedure called name resolution. The DNS

is a distributed database system based on client/server architecture that is used for converting Host Name to IP

addresses. A Domain Name (mostly called as Domain) is a name that is associated with an IP address. There are various

kinds of Domain are available such as com for commercial sites, org for nonprofit organizations, country specific domain

such as .in .uk .un etc. All these come under top level domain name where .org is a Generic Top Level Domain (GTLD)

and .uk .un are Country code Top Level Domain (CcTLD). When a host requests for an IP address, sayYahoo.com, the

query is resolved in reverse order. The operating system will search the IP address in its local cache, in case it is not

found, the query will be sent to resolver server. If the IP is not present in the cache of resolver server, then it will send it to

the next level server i.e. the root server. Root server will send the resolver server to Top Level

330 | P a g e Space for learners: Domain Server for .com domain. The resolver server will then direct the query to

authoritative server for the second level domain i.e. yahoo.com. The authoritative server will provide the resolver with the

IP address. The resolver will provide the host with the IP address of Yahoo.com. The resolver server keeps the address in

its cache so that, next time when the request comes for yahoo.com, it can directly provide with the IP address. 8.6.2

Routing Strategies There may be different routing strategies for sending a message from host A to another host B.

Routing tables are maintained to send packets through the most reliable path. Routing table contain the information like

network id, subnet mask, next hop and minimum number of hops to reach the destination. Based on the network

condition, the best possible route can be updated time to time. Most common routing strategies are: fix routing, virtual

routing and dynamic routing. ? Fixed Routing: Here the optimal path is chosen between two hosts. The path is not

updated later on, unless some hardware failure damages it permanently. Therefore, even if the path has a heavy traffic

compared to the other paths, there is no option to change the path and adopt some lightly loaded path. ? Virtual

Routing: In virtual routing a dedicated path is given for a particular session. Two hosts A and B can use different routes for

different session. ? Dynamic Routing: The route is assigned dynamically before starting a communication between two

sites. Messages may be sent through different paths. Dynamic routing algorithms such as RIP and OSPF permit the

routers to share routing information with nearby routers in order to get the optimal path. Since the path is decided

dynamically; out of order packets may arrive at the destination. Therefore a sequence number is added to each of the

outgoing packets so that at the receiver side, they can be reassembled. Though dynamic routing is complex to set up, it

is suitable for huge networks.

331 | P a g e Space for learners: It is possible to use both fixed and dynamic routing in the same system. The sender may

send a message to the gateway using a fixed routing scheme whereas the gateway uses dynamic routing to transfer the

message to the destination network. 8.6.3 Packet Strategies The data can be of variable length. To simplify the

communication, a message is divided into fixed length unit named as packet, segment, frame etc. The transmission can

be connectionless or connection-oriented. In case of connectionless transmission (such as in case of UDP), sender don’t

get any information whether the packet has reached the destination or not. If a message is divided into multiple packets,

a connection is established to ensure reliability. In a connection oriented transmission, receiver sends an

acknowledgement to the sender for the packets received. An acknowledgement can be either single or cumulative. 8.6.4

Connection Strategies Three main strategies for establishing a connection are: packet switching, message switching and

circuit switching. ? Circuit Switching: If two nodes want to communicate, a dedicated path is assigned to them. The Path

cannot be used by other processes for the entire duration of the communication even if it is idle for some time. One of

the examples of circuit switching is telephone network. Once user A calls another user B, others parties can’t use that

line until they hang up. Because of a dedicated communication channel, data rate is guaranteed in a circuit switching

network but more bandwidth is needed to set up a circuit. STOP TO CONSIDER In order to reduce collision in the

network, routing strategies are introduced. They can help sending a packet from source to destination through an

optimal path. With advancement in technologies, dynamic routing algorithms are introduced that can update the path by

collecting information from nearby routers.

332 | P a g e Space for learners: ? Message Switching: There is no direct connection between sender and receiver in a

message switching network. Instead, the intermediate nodes or switches receives the message and transfers it to the

next hop. Each message contains a header that carries the information like source and destination addresses, Error

Checking code and expiry date. Each hop needs to have sufficient resource to retransmit the message to the next hop in

the network. In case, enough resource is not available the message is stored for an indefinite period. This process is

called store and forward. More than one message from various senders can be sent over the same link. Though message

switching is better than packet switching strategy, it is not suitable for real-time data transfer since the processing takes

place in each of the intermediate nodes, making the overall process slow. Also each of the intermediate nodes should

have a large storage capacity to store the entire message, since the message can be of various lengths. ? Packet

Switching: The message is divided into variable length data units called packets. Each of the packets contains control

information and payload. The packets are free to follow different paths depending on the traffic of the network. On

receiving side, the packets that belong to the same file are reassembled. Some of the advantages of this network are: it

ensures reliability as the receiver can detect the missing packet. If a link is down, the packets can take another link, thus

making it fault tolerant. Transmission latency is minimal. It makes best use of the network bandwidth therefore packet

switching is the most commonly used connection strategy. CHECK YOUR PROGRESS Q7. What is the difference

between fix routing and dynamic routing? Q8. How the conversion of Domain name and IP address is performed?

333 | P a g e Space for learners: 8.6.5 Contention In a communication network, it is possible that more than two sites are

transmitting messages simultaneously over the same link (for example in a mesh topology). If collision happens, there

should be some mechanism to discard the message and inform the sender, so that the message can be retransmitted. If

no mechanism is designed to avoid collision, it may be repeated resulting degradation of the system performance. Some

of the techniques for collision detection are discussed below: ? CSMA/CD (Carrier Sense Multiple Access/Collision

Detection): This is a media-access control (MAC) protocol used mainly in Ethernet LANs. Each of the stations in a

network, sense the channel before starting the transmission. In case, the channel is busy, it will abstain from transmitting

and continues to sense the channel. If the channel is free, the station will start sending. Suppose station A and station B

starts transmitting at the same time, then both the signals will collide. As the stations receive the collision signal, they will

stop transmitting. This is called collision detection. Each of the stations will again try after some random amount of time.

If no collision is detected during the transmission, the sender will complete the transmission. As the number of nodes

increases in a network, possibility of collision also increases, resulting in performance degradation. One solution to this

problem is to limit the number of hosts in a network. Adding more nodes in a congested network may result in bad

throughput. ? Token Passing: This is an access-control protocol implemented in a Ring topology. A token is a small

message that contains a pre-defined bit pattern. The token is passed in the network in either clock-wise or anti-clock

wise direction. When a node wants to transmit, it removes the token from the network and start transmitting. No other

node is allowed to transmit without having the token. Once the node finishes its transmission, it releases the token

allowing other nodes in the network to transmit data. If the token is lost, the system adopts an election algorithm to

select a specific site for generating the token.

334 | P a g e Space for learners: A token-passing protocol can give constant performance. As the number of hops

increase in the network, average waiting time may increase but it will still perform better than that of an Ethernet

network. However, for a small network, LAN is preferable. 8.7 COMMUNICATION PROTOCOLS The communication

network must have some set of rules for establishing connections, transferring packets, error detection, selecting the

shortest path and so on. To deal with all these issues, the whole process is divided into some layers. Each of the

underlying layers performs their assigned duties and sends the message to the upper layer. A message sent by a host,

passes through all of the layers and then enters to the recipients system. Each layer is bound to follow specific protocols

while communicating. The International Standards Organization (ISO) has defined seven layers as described below: ?

Physical Layer: This layer is responsible for transmitting the message in the form of bits. Bit rate (the number of bits

transmitted per second) is also defined by physical layer. The physical and logical structure of the network (known as

network topology) is defined in this layer. Along with that, physical layer also defines the mode of transmission i.e.

duplex, half duplex and full duplex. ? Data-link Layer: Data link layer divides the bit streams sent by the physical layer into

some data units called frames. It is responsible for detecting lost or damaged frames and adds mechanisms for

retransmission of the frames. If two or more devices are connected to the same link, which device will get access of the

link is determined by data link layer. Flow control is also performed in this layer. ? Network Layer: Network layer is

responsible for source to destination delivery of the packets along with assigning logical address and selecting routes for

outgoing packets. ? Transport Layer: Transport layer delivers the packet received from network layer to the correct

process within that host. This is called process-to-process delivery. This layer

335 | P a g e Space for learners: provides connections to the packets, performs end to end flow and error control. ?

Session Layer: This layer is responsible for identifying the mode of communication (half duplex, duplex, full duplex) in a

particular session. This is called network dialog control. The session layer adds check points or synchronization point to a

data stream so that in case of any failure, only the part of the message after the check point can be retransmitted. ?

Presentation Layer: The presentation layer is responsible for translation of the messages from one format to another. As

different computers use different encoding systems, message transferred in one format needs to be translated to some

other format. This task is performed in the presentation layer. It also performs encryption and decryption of data. Another

responsibility of this layer is the compression of data stream which is particularly important for multimedia data such as

video, audio etc. ? Application Layer: This layer is responsible for direct interaction with the user. It allows a user for

remote access to a system, and controlling files in the remote system. It deals with email and the organization of

distributed databases. Figure 8.6 explains the OSI protocol stack. In sender side, the message travels from presentation

layer to the physical layer, each of the layers adding their own header with the message. Once the message is converted

to a bit stream, it is transferred to the receiver; through some transmission media for example fiber optics or twisted pair

cable in case of wired medium and radio wave or microwave in case of wireless media. On the receiving side, the

message travels from physical layer to application layer, removing the corresponding headers in each layer. Logically

each of the layers in sender side communicates with each corresponding layer in the receiver side as the protocols

defined by a particular layer can be understood by that specific layer only. A message needs to cross one or more router

before reaching the intended destination. Each of the routers needs the IP address of that message in order to direct it

into the correct route and thus unpacking the message upto the network layer. For this reason, the physical, data link and

network layers are known as hardware layers.

336 | P a g e Space for learners: Sender Receiver Router 1 Router 2 Presentation Layer Application Layer Session Layer

Transport Layer Network Layer Data link Layer Physical Layer Presentation Layer Application Layer Session Layer

Transport Layer Network Layer Data link Layer Physical Layer Transmission Media Packet Frame Bit Stream

337 | P a g e Space for learners: Figure 8.6: OSI protocol stack The most widely used protocol stack is the TCP/IP

protocol stack. It has fewer layers as that of OSI model. This model is more reliable as compared to OSI model.

Application layer of TCP/IP model which is a combination of session layer, presentation layer and application layer, uses

different protocols like HTTP, FTP, SMTP, SNMP etc. Transport layer has two protocols UDP (User Datagram Protocol)

which is a connection less protocol and TCP (Transmission control protocol) which is a connection-oriented protocol.

Next lower layer is the Internet Layer, the basis of which is the IP (Internet Protocol) which routes the IP packets. There is

no dedicated physical link in TCP/IP model, allowing the data packets to travel in any physical path. 8.8 DESIGN ISSUES

The users of a distributed system should feel like they are working in a traditional centralized system. Transparency is one

of the key design issues in a distributed system. It can be measured in different parameters. Location transparency hides

the details of storage location of the resources. Replication transparency hides the number of copies present for the

same data. Concurrent transparency allows multiple users to access the same file concurrently without their knowledge.

Parallelism transparency allows parallel execution of the activities without user’s knowledge. User mobility is another kind

of transparency where a user is allowed to login to the system from any machine. Fault tolerance is another important

issue. A system should be able to tolerate different kinds of failure like machine failure, crash of storage devices, and link

failure to some extent. However, the performance of the system will reduce because of the failures. A system is not fault

tolerant if it stops working with the breakdown of some of its components. Another important aspect is the scalability.

Scalability means how well the system will work as it grows in terms of resources and number of systems. Scalability can

be measured in three dimensions ? Size scalability

338 | P a g e Space for learners: ? Geographical scalability ? Administrative scalability. A size scalable system should

function properly when the number of components increases. The system may experience high traffic in a specific day.

The existing database may not be able to handle the traffic, which brings the need for adding more databases or more

servers to the system. If the system is truly scalable, adding more resources should not reduce system’s performance and

it should not get slower. If the system is based on centralized data, centralized service and algorithms, size scalability may

have to deal with different issues. In case of centralized server, where a single server is responsible for the

implementation of different services, congestion may result with growing number of users and applications. But it is

unavoidable to use centralized server in some confidential situations like banking, medical, administration etc. where a

single server is used to store all the sensitive information and separating it by special networking devices from the rest of

the network. The problem persists in case of centralized data also. If the Domain Name Service (DNS) is implemented in

a single database, each request over the internet would be forwarded to that particular database causing a severe

congestion on the link. At last, the centralized algorithm is also a bad idea. A large distributed system has tremendous

number of messages routed in different links. The idea here is to collect all the routing information and redirect it to a

single machine and the algorithm computes the best suitable path. The information may create heavy traffic in a part of

the network. To deal with this issue, decentralized idea has come up where no single machine stores all the routing

information and they make decision only based on local information. Stop to Consider Design issues of a distributed

system bring the issue of scalability, fault tolerance and transparency into focus. A scalable system should work perfectly

even it grows in terms of size, geographical area or administrative organization. A fault tolerant system should not be

able to tolerate faults to some extent. The term transparency means the underlying protocols should be hidden from the

end-user.

339 | P a g e Space for learners: Geographical scalability means whatever be the distance between the user and the

resources, the user should be able to access them efficiently. Adding new nodes to the system should not slow down the

transmission rate. The synchronous communication approach is suitable for small geographical area networks such as

LANs. But in case of WAN, where two processes are geographically far apart, successful implementation of inter-process

communication with synchronous communication is not an easy task. Administrative scalability means even if an

organization spans in many administratively independent domains, it should still be easily manageable. Achieving an

administrative scalability is the toughest of all since it includes some non-technical issues such as policies of an

organization and cooperation of humans. Security issues are also involved here. If a new domain is built up, all the other

domains need to protect themselves from the new domain. The new domain may only have the read access to the files

of other domains. Similarly, in order to protect itself from malicious attacks, the new domain may restrict its accessibility

to the foreign code such as java applets in a web browser. 8.9 DISTRIBUTED FILE SYSTEM The nodes of a DFS

(Distributed File System) can have remote access to the files of the system; i.e. the clients and servers are scattered over

the network. Unlike the local file system, a distributed file system has multiple copies of storage over different servers.

The DFS is implemented in a number of ways: in some systems servers run on particular machines, while some machines

work as both client and server. The DFS may be implemented in the Operating System itself or as distinct software that

connects the traditional operating systems with the file system. Features of DFS are: 8.9.1 Naming and Transparency

Check Your Progress Q9. What do you mean by size scalability? Discuss the issues that have to be faced to ensure size

scalability. Q10. Why administrative scalability is hard to achieve?

340 | P a g e Space for learners: The users of a computer system deal with a file with the help of file name which is

actually a logical representation. The operating system then locates the particular data blocks (for the file) stored in the

disk. Once the file is referred by the user with a textual name, that name is converted to some numerical value which in

turn is mapped to the blocks of disk. This mapping hides the storage details of the file from the user. This is called

abstraction. The DFS provide file replication along with abstraction. Multiple copies of files are stored in different systems

in case of a DFS. When a file name is referred, the mapping will come up with a set of the replicas of that file. But the user

is unaware of the existence of multiple copies. 8.9.1.1 Naming Structure Two important aspects related to naming are

location transparency where the physical location of a file is hidden from the user and location independence where the

physical location of a file can be changed without changing its name. Location independence is a dynamic mapping

property as the same file name is mapped into more than one location at different times, whereas location transparency

is a static property. For these systems location migration is not possible i.e the location of a file can’t be changed

automatically. However, manual changing of files within machines is possible. 8.9.1.2Naming Schemes Three naming

schemes are there for a DFS. In the first scheme, a file is identified by its host name and local name which differentiates it

from other files in the system.This scheme does not provide location transparency or location independence. Local and

remote files can be accessed with the help of same file operation. In a DFS each of the traditional file system is treated as

one of its components. In the first approach, some provisions are there for remote access of these component units. In

the second approach; the remote directory can be attached with local directories giving the appearance of a coherent

directory tree. An implementation of this approach is the Network File System (NFS). In the third approach, a global name

structure spans all the independent components. The file structure composed here is same as that of a traditional file

structure. But this approach is difficult to

341 | P a g e Space for learners: implement because of some special machine specific files like device files and binary

directories that exist in UNIX environment. The NFS directory scheme is the most difficult scheme to implement. The

reason being, any remote directory can be attached by any machine in any of the local directories. If the server is facing

some issues, the directories added by some computer may not be available in the global structure. An accreditation

scheme is used to decide which machine will add directories at what time. It may happen so that the same client will be

able to access a directory in one machine while it will be denied access for that in some other machine. 8.9.1.3

Implementation Techniques In order to manage the mapping easily, sets of files are aggregated to some component

units and mapping is done on these components. The textual files are mapped to low level file identifies that helps in

finding the component into which the file belongs. Structured names are used to implement low level identifiers. They

are string of bits containing two parts: first part is for the component unit and second part is for the file within the unit. To

maintain the uniqueness of a file, sufficient bits are used to ensure that the name used for the file is not being used by

any other file. Another way to maintain uniqueness is to add a timestamp with the name. 8.9.2 Remote File Access If a

user wants remote access to a file, the server that is storing the file is identified by the naming scheme. The data transfer

procedure for remote files is similar to that of traditional disk-access method. In case of traditional disk-access method,

caching is used to reduce the input/output of disk, whereas in remote file access, caching helps both in reducing disk

input/output and network traffic. When a request for a disk-access comes, it is first checked in the cache, if it’s not

present then it has to be brought from the server. A cache mapping technique (least recently used) is applied to store the

files in the cache so that next time when an access request comes, there would not be any need to go to the server, thus

reducing the network traffic. One master copy resides in the server and replicas of that copy exists in different caches. As

a file in cache is modified, that

342 | P a g e Space for learners: modification should be reflected in the master copy to maintain the consistency. The

concept of demand paging is also implemented exactly same as that of traditional file systems, except that the backing

store is a remote server rather than a local disk. Consistency is another issue in file access. A client machine may want to

check whether the cached copy of data is same with the master copy. For verifying the data, two approaches are used:

in client-initiated approach, the client will start a validity check by contacting the server and checking whether the replica

of the file is consistent with the master copy. The validity check may be done on every access or on first access of the

file. In server initiated approach, the server reacts to the inconsistencies. The server is notified when the same file is

opened in conflicting mode (Read- write, write-write) by two different clients. It can disable caching for that particular

file to avoid inconsistency. 8.9.3 Stateful Versus Stateless Service Stateful service is a connection-oriented service. Here a

client first gives open () command before accessing the file. The server stores the file in its memory and sends a unique

connection-identifier to the file. The same identifier is used for all the file-access during a particular session. An example

of stateful service is AFS(Andrew File System).In stateless services, each request can recognize the file in the memory

along with the read/write access of the file. There is no need of establishing and terminating a connection here. There is

no concept of session and each file request is considered as individual request. NFS (Network File System) is a stateless

service. Stop to Consider Unlike the conventional file system, a distributed file system has files from different

geographical areas. The storage details of the file are hidden from the end-user by a method called abstraction. The DFS

also ensures the features like location transparency and location independence. For remote access of a file, caching is

used to reduce the network traffic and latency. Consistency is maintained in a DFS with the help two approaches: client

initiated approach and server initiated approach.

343 | P a g e Space for learners: The performance is better in case of a stateful service as it can store the files in its cache

memory thus reducing the disk access which can’t be done by stateless service. Again a server in the stateful service

knows where a file is open, thus it can directly read the next blocks of the file in case of sequential access. In case of a

failure, the server of a stateful protocol losses its states and a recovery protocol is needed to restore the state. A stateless

protocol does not face these problems since all the requests are self-contained. 8.9.4 File Replication Replication is the

process of keeping multiple copies of the same data in different nodes of a distributed system. The reasons behind data

replication are as follows: it provides better availability. The system can work even if one or more nodes fail. Replication

reduces the latency of a file access, as the file is kept in a short distance from the user. Since the file read operation is a

non-conflicting one, the read query request for multiple hops can be performed from different replicas thus increasing

the throughput of the overall system. One main problem associated with replication is consistency. Since file replication

is transparent to the user, changes made in one copy should be reflected to all the other copies. Consistency models are

broadly divided into client centric consistency model and data- centric consistency model. In client-centric consistency,

data may not be updated in all the servers parallelly rather; they are propagated from one server to another. Therefore,

some of the processes may have to work with the old data which results in compromising the consistency. But lower

consistency may give server availability and increased throughput. Some of the models that come under client-centric

consistency are: eventual consistency; where data is updated at the end, leading to inconsistent data in some servers.

This model suffers from lost update problem. Next model is the monotonic read; here, if a process reads a data item x,

the successive processes will get either the same value or the latest value of x. Another model is monotonic write, where

a sequence is maintained for all the write operations of a process and value is updated based on that sequence. Next to

this model is the read your write model, where the write operation performed by a process is reflected in the server

where a read operation is being performed on

344 | P a g e Space for learners: the same file. Next comes the write follow read model where a process reads the value

before performing the write operation. In data-centric consistency models an updated query is immediately reflected in

all the other servers. Therefore many update operation are being performed at the same time. Different models are there

in data-centric consistency model. The strongest of all is the external consistency. Any process that reads the value of a

data-item x, will get the last updated value of the write operation. Google Spanner Distributed Database uses this

consistency model. In situation- dependent consistency, the execution order of two processes is reflected in the same

order into all the servers. Some of the applications of distributed file systems are: 8.9.5 Andrew File System (AFS) AFS was

designed for the operating systems like BSD (Berkeley Software Distribution), UNIX and Mach. An AFS is made up of the

structural elements called cells. Cells consist of servers and client machines. Servers and clients belong to a particular

cell. The users can have accounts in more than one cell. The first cell, that a user logs in, is called home cell and all the

other cells are named as foreign cells. Irrespective of the location of the user, the path of a file in the AFS tree will always

be same. File access permissions such as read, write and update are set by the access control lists. AFS follows stateless

protocol, therefore servers and clients don’t store the file access information. AFS runs on TCP/IP. The Remote

Procedural Call (RPC) that is designed for AFS performs the communication between client and server irrespective of

their geographical area. Caching is applied to reduce the network load. For each file access request, the respective file is

searched in the cache. If the file is not present then it will be accessed from the server. In case there is any modification

in the cached copy of the file, the file is propagated back to the server. The frequently CHECK YOUR PROGRESS Q11.

What are the advantages of DFS over traditional file system? Q12. What are the reasons for replicating a file? Q13. What

do you mean by stateful and stateless service?

345 | P a g e Space for learners: accessed files are stored in “working set” of the cache, thus can be accessed directly

from the cache reducing the latency and network load. Generally the size of cache memory is 100MB. 8.9.6 Google File

System (GFS) It was developed in the year 2003 to meet the growing demand of data processing systems. The system is

scalable and can support a large number of clients without degradation of performance. It supports fault tolerance while

implemented in inexpensive hardware. Like other Distributed File System, GFS ensures reliability transparency and

availability. In addition to these, some specific design goals included in GFS are: a huge amount of data can be stored

redundantly in inexpensive computers. It is capable of processing huge number of requests. GFS is based on cluster

based architecture. A cluster consists of one master node that manages Meta data, a number of chunk-servers that store

the files in chunks and a number of clients. The Meta data includes the information about who can have access to the

file, mapping the files to the memory chunks and determining the current location of the chunks. GFS is a stateful system

therefore it manages the state information of all the clients. The client sends file access request to the master node. In

response to the request, the master node sends Meta data to the clients. The client can then directly contact the chunk

server for the file. Fault tolerance feature is also implemented in the system by keeping three replicas of the same files. If

a chunk server is down, then the master server can redirect the client to one of the replicas. In case the master is down,

any of the chunk servers can act as a master by keeping a Meta data list. 8.10 SUMMING UP ? A Distributed System is a

collection of independent computer systems that have their own memory and processor. ? They may be of different

specifications from single microprocessor to general purpose computers connected through some communication

medium like twisted pair cables, fiber optic cables and satellite communication.

346 | P a g e Space for learners: ? They can be arranged either in client-server architecture or in a peer to peer network. ?

The internal working of a distributed systems deals with different issues like name resolution, routing strategies, collision

avoidance techniques, connection strategies and it should solve contention problem and ensure security. ? Each

message travels through the layers of networking models before reaching the destination. Implementation details of a

distributed system should be transparent to the user. S/he should feel like working in a conventional system having no

difference between a remote file and a local file. ? The system should be scalable in different aspects like size,

administrative organization and geographical area. If some part of the system fails, the performance of overall system

should not degrade. ? A DFS is a file system consisting of geographically dispersed clients and servers. A user of a DFS is

unaware of the location of a file it wants to access. A local and remote file appears same to the user. ? Different DFS have

been designed based on technical needs. Each of which have their own tradeoffs and advantages. Some of them are

useful in small networks while some are designed for large distributed systems. 8.11 POSSIBLE QUESTIONS 1. What do

you mean by a Distributed System? Explain the advantages of a distributed system. 2. Describe the Architecture of Client-

Server system and Peer-to- Peer system 3. Briefly discuss the technologies used in LAN and WAN network 4. Describe

the concept of Domain Name System. How does it help in name resolution? 5. Describe the methods used for collision

resolution 6. How does a Routing strategy help in transmitting a file in a distributed system?

347 | P a g e Space for learners: 7. Discuss some of the fundamental differences between Andrew File System (AFS) and

Google File System (GFS). 8.12 REFERENCES AND SUGGESTED READINGS ? Distributed Systems: Principles and

Paradigms Second Edition Andrew S Tanenbaum, Maarten Van Steen ? Operating System Concepts Seven Edition

SILBERSCHATZ GALVIN GANGE

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/320 SUBMITTED TEXT 14 WORDS

as an interface between the user and the computer

hardware. The goal of

80% MATCHING TEXT 14 WORDS

as an interface between the user and the computer

hardware and controls the execution of

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

2/320 SUBMITTED TEXT 12 WORDS

Operating system is a program that manages the

computer hardware. It

100% MATCHING TEXT 12 WORDS

operating system is a program that manages the

computer hardware. it

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

3/320 SUBMITTED TEXT 13 WORDS

user interface, program execution, I/O operations, file

system manipulation, communication, error detection,

83% MATCHING TEXT 13 WORDS

user program execution, I/O operations, file-system

manipulation, communications, and error detection •

https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf

4/320 SUBMITTED TEXT 13 WORDS

program execution, I/O operations, file system

manipulation, communication, error detection, resource

allocation

100% MATCHING TEXT 13 WORDS

Program execution I/O operations File System

manipulation Communication Error Detection Resource

Allocation

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

5/320 SUBMITTED TEXT 12 WORDS

Operating system is a program that manages the

computer hardware. It

100% MATCHING TEXT 12 WORDS

operating system is a program that manages the

computer hardware. it

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

6/320 SUBMITTED TEXT 14 WORDS

is a program that acts as an interface between a user and

the

76% MATCHING TEXT 14 WORDS

is a program that acts as an intermediary between a user

of a computer and the

https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf

7/320 SUBMITTED TEXT 32 WORDS

A program does nothing unless its instructions are

executed by a CPU. A program in execution is called a

process. In order to accomplish its task, process needs

the computer resources

100% MATCHING TEXT 32 WORDS

A Program does nothing unless its instructions are

executed by a CPU. A program in execution is called a

process. In order to accomplish its task, process needs

the computer resources.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

8/320 SUBMITTED TEXT 117 WORDS

There may exist more than one process in the system

which may require the same resource at the same time.

Therefore, the operating system has to manage all the

processes and the resources in a convenient and efficient

way. Some resources may need to be executed by one

process at one time to maintain the consistency

otherwise the system can become inconsistent and

deadlock may occur. The operating system is responsible

for the following activities in connection with Process

Management ? Scheduling processes and threads on the

CPUs. ? Creating and deleting both user and system

processes. ? Suspending and resuming processes. ?

Providing mechanisms for process synchronization. ?

Providing mechanisms for process communication. A

process

99% MATCHING TEXT 117 WORDS

There may exist more than one process in the system

which may require the same resource at the same time.

Therefore, the operating system has to manage all the

processes and the resources in a convenient and efficient

way. Some resources may need to be executed by one

process at one time to maintain the consistency

otherwise the system can become inconsistent and

deadlock may occur. 150 The operating system is

responsible for the following activities in connection with

Process Management 1. Scheduling processes and

threads on the CPUs. 2. Creating and deleting both user

and system processes. 3. Suspending and resuming

processes. 4. Providing mechanisms for process

synchronization. 5. Providing mechanisms for process

communication. Attributes of a process

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

9/320 SUBMITTED TEXT 32 WORDS

process. The attributes of the process are used by the

Operating System to create the process control block

(PCB) for each of them. This is also called context of the

process.

100% MATCHING TEXT 32 WORDS

process The Attributes of the process are used by the

Operating System to create the process control block

(PCB) for each of them. This is also called context of the

process.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

10/320 SUBMITTED TEXT 22 WORDS

Process State: The Process, from its creation to the

completion, goes through various states which are new,

ready, running and waiting.

100% MATCHING TEXT 22 WORDS

Process State The Process, from its creation to the

completion, goes through various states which are new,

ready, running and waiting.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

11/320 SUBMITTED TEXT 13 WORDS

the address of the next instruction to be executed for this

process.

100% MATCHING TEXT 13 WORDS

the address of the next instruction to be executed for this

process. (

https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/

12/320 SUBMITTED TEXT 19 WORDS

A program counter stores the address of the last

instruction of the process on 59 |

100% MATCHING TEXT 19 WORDS

A program counter stores the address of the last

instruction of the process on

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

13/320 SUBMITTED TEXT 19 WORDS

which the process was suspended. The CPU uses this

address when the execution of this process is resumed.

100% MATCHING TEXT 19 WORDS

which the process was suspended. The CPU uses this

address when the execution of this process is resumed. 3.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

14/320 SUBMITTED TEXT 22 WORDS

the context of the process (Process Control Block) will

also be deleted the process will be terminated by the

Operating system. (

54% MATCHING TEXT 22 WORDS

The Context of the process (PCB) will be deleted and the

process gets terminated by the Operating system. 152

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

15/320 SUBMITTED TEXT 69 WORDS

process: (i) Creation Once the process is created, it will

be ready and come into the ready queue (main memory)

and will be ready for the execution. (ii) Scheduling Out of

the many processes present in the ready queue, the

Operating system chooses one process and start

executing it. Selecting the process which is to be

executed next, is known as scheduling. (iii) Execution 66 |

95% MATCHING TEXT 69 WORDS

Process 1. Creation Once the process is created, it will be

ready and come into the ready queue (main memory) and

will be ready for the execution. 2. Scheduling Out of the

many processes present in the ready queue, the

Operating system chooses one process and start

executing it. Selecting the process which is to be

executed next, is known as scheduling. 3. Execution

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

16/320 SUBMITTED TEXT 74 WORDS

Once the process is scheduled for the execution, the

processor starts executing it. Process may come to the

blocked or wait state during the execution then in that

case the processor starts executing the other processes.

(iv) Deletion/killing Once the purpose of the process gets

over then the OS will kill the process. The Context of the

process (PCB) will be deleted and the process gets

terminated by the Operating system. 4.6.1 Process

97% MATCHING TEXT 74 WORDS

Once the process is scheduled for the execution, the

processor starts executing it. Process may come to the

blocked or wait state during the execution then in that

case the processor starts executing the other processes.

4. Deletion/killing Once the purpose of the process gets

over then the OS will kill the process. The Context of the

process (PCB) will be deleted and the process gets

terminated by the Operating system. 152 Process

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

17/320 SUBMITTED TEXT 17 WORDS

by one of the two processes to replace the process

memory space with a new program.

90% MATCHING TEXT 17 WORDS

by one of the two processes to place the process

memory space with a new program. 17.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

18/320 SUBMITTED TEXT 15 WORDS

to replace the process memory space with a new

program. The execlp system call

71% MATCHING TEXT 15 WORDS

to replace the processes' memory space with a new

program?the exec() system call

https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/

19/320 SUBMITTED TEXT 21 WORDS

the execution of another process is on hold (in waiting

state) due to unavailability of any resource like I/O etc,

100% MATCHING TEXT 21 WORDS

The execution of another process is on hold(in waiting

state) ? Due to unavailability of any resource like I/O etc. ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

20/320 SUBMITTED TEXT 33 WORDS

The selection process is carried out by the short-term

scheduler (or CPU scheduler). The scheduler selects from

among the processes in memory that are ready to

execute and allocates the CPU to

80% MATCHING TEXT 33 WORDS

The selection process is carried out by the short term

scheduler or CPU scheduler. The scheduler selects the

process form the process in memory that is ready to

execute and allocates the CPU to

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

21/320 SUBMITTED TEXT 133 WORDS

Long term scheduler Long term scheduler is also known

as job scheduler. It chooses the processes from the pool

(secondary memory) and keeps them in the ready queue

maintained in the primary memory. Long Term scheduler

mainly controls the degree of Multiprogramming. The

purpose of long term scheduler is to choose a perfect

mix of IO bound and CPU bound processes among the

jobs present in the pool. If the job scheduler chooses

more IO bound processes then all of the jobs may reside

in the blocked state all the time and the CPU will remain

idle most of the time. This will reduce the degree of

Multiprogramming. Therefore, the Job of long term

scheduler is very critical and may affect the system for a

very long time. 71 |

100% MATCHING TEXT 133 WORDS

Long term scheduler Long term scheduler is also known

as job scheduler. It chooses the processes from the pool

(secondary memory) and keeps them in the ready queue

maintained in the primary memory. Long Term scheduler

mainly controls the degree of Multiprogramming. The

purpose of long term scheduler is to choose a perfect

mix of IO bound and CPU bound processes among the

jobs present in the pool. If the job scheduler chooses

more IO bound processes then all of the jobs may reside

in the blocked state all the time and the CPU will remain

idle most of the time. This will reduce the degree of

Multiprogramming. Therefore, the Job of long term

scheduler is very critical and may affect the system for a

very long time. 2.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

22/320 SUBMITTED TEXT 220 WORDS

Short term scheduler Short term scheduler is also known

as CPU scheduler. It selects one of the Jobs from the

ready queue and dispatch to the CPU for the execution. A

scheduling algorithm is used to select which job is going

to be dispatched for the execution. The Job of the short

term scheduler can be very critical in the sense that if it

selects job whose CPU burst time is very high then all the

jobs after that, will have to wait in the ready queue for a

very long time. This problem is called starvation which

may arise if the short term scheduler makes some

mistakes while selecting the job. (iii)Medium term

scheduler Medium term scheduler takes care of the

swapped out processes.If the running state processes

needs some IO time for the completion then there is a

need to change its state from running to waiting. Medium

term scheduler is used for this purpose. It removes the

process from the running state to make room for the

other processes. Such processes are the swapped out

processes and this procedure is called swapping. The

medium term scheduler is responsible for suspending

and resuming the processes. It reduces the degree of

multiprogramming. The swapping is necessary to have a

perfect mix of processes in the ready queue. 4.7.2

99% MATCHING TEXT 220 WORDS

Short term scheduler Short term scheduler is also known

as CPU scheduler. It selects one of the Jobs from the

ready queue and dispatch to the CPU for the execution. A

scheduling algorithm is used to select which job is going

to be dispatched for the execution. The Job of the short

term scheduler can be very critical in the sense that if it

selects job whose CPU burst time is very high then all the

jobs after that, will have to wait in the ready queue for a

very long time. This problem is called starvation which

may arise if the short term scheduler makes some

mistakes while selecting the job. 3. Medium term

scheduler Medium term scheduler takes care of the

swapped out processes. If the running state processes

needs some IO time for the completion then there is a

need to change its state from running to waiting. Medium

term scheduler is used for this purpose. It removes the

process from the running state to make room for the

other processes. Such processes are the swapped out

processes and this procedure is called swapping. The

medium term scheduler is responsible for suspending

and resuming the processes. It reduces the degree of

multiprogramming. The swapping is necessary to have a

perfect mix of processes in the ready queue.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

23/320 SUBMITTED TEXT 186 WORDS

PROCESS QUEUES The Operating system manages

various types of queues for each of the process states.

The PCB related to the process is also stored in the queue

of the same state. If the Process is moved from one state

to another state then its PCB is also unlinked from the

corresponding queue and added to the other state queue

in which the transition is made. There are the following

process queues maintained by the Operating system. (i)

Job Queue In starting, all the processes get stored in the

job queue. It is maintained in the secondary memory. The

long term scheduler (Job scheduler) picks some of the

jobs and put them in the primary memory. (i) Ready

Queue Ready queue is maintained in primary memory.

The short term scheduler picks the job from the ready

queue and dispatch to the CPU for the execution. (ii)

Waiting Queue When the process needs some IO

operation in order to complete its execution, OS changes

the state of the process from running to waiting. The

context (PCB) associated with the process gets stored 73

|

98% MATCHING TEXT 186 WORDS

Process Queues The Operating system manages various

types of queues for each of the process states. The PCB

related to the process is also stored in the queue of the

same state. If the Process is moved from one state to

another state then its PCB is also unlinked from the

corresponding queue and added to the other state queue

in which the transition is made. There are the following

queues maintained by the Operating system. 1. Job

Queue In starting, all the processes get stored in the job

queue. It is maintained in the secondary memory. The

long term scheduler (Job scheduler) picks some of the

jobs and put them in the primary memory. 2. Ready

Queue Ready queue is maintained in primary memory.

The short term scheduler picks the job from the ready

queue and dispatch to the CPU for the execution. 3.

Waiting Queue When the process needs some IO

operation in order to complete its execution, OS changes

the state of the process from running to waiting. The

context (PCB) associated with the process gets stored

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

24/320 SUBMITTED TEXT 19 WORDS

on the waiting queue which will be used by the Processor

when the process finishes the IO. 4.9

100% MATCHING TEXT 19 WORDS

on the waiting queue which will be used by the Processor

when the process finishes the IO. 154

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

25/320 SUBMITTED TEXT 21 WORDS

time at which the process enters into the completion

state or the time at which the process completes its

execution,

50% MATCHING TEXT 21 WORDS

Time at which the process arrives in the ready queue. ?

Time: Time at which process completes its execution. ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

26/320 SUBMITTED TEXT 18 WORDS

the time at which the process completes its execution, is

called completion time. (iv). Turnaround time The

61% MATCHING TEXT 18 WORDS

The time when the process has completed its execution

is called completion time. (d) Turnaround time The

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

27/320 SUBMITTED TEXT 12 WORDS

When a process switches from the running state to the

waiting state(

87% MATCHING TEXT 12 WORDS

When a process switches from the running state to the

ready state

https://quizlet.com/216326436/osg202-flash-cards/

28/320 SUBMITTED TEXT 22 WORDS

four circumstances: 1. When a process switches from the

running state to the waiting state(for I/O request or

invocation of wait

83% MATCHING TEXT 22 WORDS

four When a process switches from the running state to

the waiting state, such for an I/O request or invocation of

the wait ()

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

29/320 SUBMITTED TEXT 31 WORDS

When a process switches from the running state to the

ready state (for example, when an interrupt occurs). 3.

When a process switches from the waiting state to the

ready state(

60% MATCHING TEXT 31 WORDS

When a process goes from the running state to the

waiting state c) When a process switches from the

waiting state to the ready state

https://quizlet.com/216326436/osg202-flash-cards/

30/320 SUBMITTED TEXT 46 WORDS

of the child processes). 2. When a process switches from

the running state to the ready state (for example, when

an interrupt occurs). 3. When a process switches from the

waiting state to the ready state(for example, completion

of I/O). 4. When a process terminates.

69% MATCHING TEXT 46 WORDS

of the wait () When a process switches from the running

state to the ready state, for example in response to an

interrupt. When a process switches from the waiting state

to the ready state, say at completion of I/O or a return

from wait (). When a process terminates. 35.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

31/320 SUBMITTED TEXT 15 WORDS

In non-preemptive scheduling, once the CPU has been

allocated to a process, the process

70% MATCHING TEXT 15 WORDS

In non-preemptive scheduling, once the CPU cycle is

allocated to process, the process

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

32/320 SUBMITTED TEXT 27 WORDS

Non-Preemptive Scheduling In non-preemptive

scheduling, once the CPU has been allocated to a

process, the process keeps the CPU until it releases the

CPU either by

62% MATCHING TEXT 27 WORDS

Non-Preemptive Scheduling In this of scheduling

method, the CPU has been allocated to a specific

process. The process keeps the CPU busy will release the

CPU either by

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

33/320 SUBMITTED TEXT 27 WORDS

once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by

terminating or by switching to

96% MATCHING TEXT 27 WORDS

once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by

terminating process or by switching to

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

34/320 SUBMITTED TEXT 32 WORDS

non-preemptive scheduling, once the CPU has been

allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or by switching to

the waiting state.

95% MATCHING TEXT 32 WORDS

non-preemptive scheduling once the CPU has been

allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or switching to the

waiting state.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

35/320 SUBMITTED TEXT 16 WORDS

It is the only method that can be used on certain

hardware platforms because It

73% MATCHING TEXT 16 WORDS

It is the only method that can be used for various

hardware platforms. That's because it

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

36/320 SUBMITTED TEXT 36 WORDS

a higher priority before another task although it is

running. Therefore, the running task is interrupted for

some time and resumed later when the priority task has

finished its execution. Thus this type of scheduling

35% MATCHING TEXT 36 WORDS

a higher priority before another lower priority task, even if

the lower priority task is still running. The lower priority

task holds for some time and resumes when the higher

priority task finishes its execution. Non-Preemptive

Scheduling In this type of scheduling

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

37/320 SUBMITTED TEXT 18 WORDS

when a process switches either from running state to

ready state or from waiting state to ready

58% MATCHING TEXT 18 WORDS

when a process: 1. Switches from running to waiting state

2. Switches from running to ready state 3. Switches from

waiting to ready 4.

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

38/320 SUBMITTED TEXT 24 WORDS

to the time of completion of the process(Wall clock time).

Waiting Time The sum of the periods spent waiting in the

ready queue

52% MATCHING TEXT 24 WORDS

to the time of completion of a process. It is the sum of

the periods spent waiting to get into memory, waiting in

26 the ready queue,

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

39/320 SUBMITTED TEXT 34 WORDS

The interval from the time of submission of the process

to the time of completion of the process(Wall clock time).

Waiting Time The sum of the periods spent waiting in the

ready queue

52% MATCHING TEXT 34 WORDS

The interval from the time of submission of a process to

the time of completion is the turnaround time. TAT = CT

– WT. (e) Waiting time The amount of time a process

spends waiting in the ready queue.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

40/320 SUBMITTED TEXT 13 WORDS

amount of time a process has been waiting in the ready

queue

100% MATCHING TEXT 13 WORDS

Amount of time a process has been waiting in the ready

queue ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

41/320 SUBMITTED TEXT 20 WORDS

Response Time Amount of time it takes from when a

request was submitted until the first response is

produced.

100% MATCHING TEXT 20 WORDS

Response Time ? Amount of time it takes from when a

request was submitted until the first response is

produced,

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

42/320 SUBMITTED TEXT 16 WORDS

saving the state of the old process and loading the saved

state for the new

90% MATCHING TEXT 16 WORDS

Saving the state of the old process and loading the saved

state of the new

https://qdoc.tips/download/key-os-pdf-free.html

43/320 SUBMITTED TEXT 17 WORDS

saving the state of the old process and loading the saved

state for the new process.

90% MATCHING TEXT 17 WORDS

Saving the state of the old process and loading the saved

state of the new process

https://quizlet.com/143614504/osg-flash-cards/

44/320 SUBMITTED TEXT 24 WORDS

switching the CPU to another process requires saving the

state of the old process and loading the saved state for

the new process.

100% MATCHING TEXT 24 WORDS

Switching the CPU to another process requires saving the

state of the old process and loading the saved state for

the new process.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

45/320 SUBMITTED TEXT 22 WORDS

CPU to another process requires saving the state of the

old process and loading the saved state for the new

process.

59% MATCHING TEXT 22 WORDS

CPU switches to another process, the system save the

state of the old process (to the PCB) and load the saved

state (from PCB) for the new process

https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/

46/320 SUBMITTED TEXT 22 WORDS

CPU to another process requires saving the state of the

old process and loading the saved state for the new

process.

61% MATCHING TEXT 22 WORDS

CPU switches to another process, the system save the

state of the old process (to PCB) and load the saved state

(from PCB) for the new process

https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf

47/320 SUBMITTED TEXT 19 WORDS

PCB) of a process which includes the value of the CPU

registers, the process state and memory- management

information.

68% MATCHING TEXT 19 WORDS

PCB of a process does not contain : a) the value of the

CPU registers b) the process state c) memory-

management information

https://quizlet.com/216326436/osg202-flash-cards/

48/320 SUBMITTED TEXT 20 WORDS

A program in execution is called a process. In order to

accomplish its task, process needs the computer

resources

100% MATCHING TEXT 20 WORDS

A program in execution is called a process. In order to

accomplish its task, process needs the computer

resources.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

49/320 SUBMITTED TEXT 33 WORDS

process. The attributes of the process are used by the

Operating System to create the process control block

(PCB) for each of them. This is also called context of the

process. ?

100% MATCHING TEXT 33 WORDS

process The Attributes of the process are used by the

Operating System to create the process control block

(PCB) for each of them. This is also called context of the

process.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

50/320 SUBMITTED TEXT 35 WORDS

Long term scheduler is also known as job scheduler. It

chooses the processes from the pool (secondary

memory) and keeps them in the ready queue maintained

in the primary memory. ? Short term scheduler

95% MATCHING TEXT 35 WORDS

Long term scheduler is also known as job scheduler. It

chooses the processes from the pool (secondary

memory) and keeps them in the ready queue maintained

in the primary memory. Long Term scheduler

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

51/320 SUBMITTED TEXT 26 WORDS

is also known as CPU scheduler. It selects one of the Jobs

from the ready queue and dispatch to the CPU for the

execution. ?

100% MATCHING TEXT 26 WORDS

is also known as CPU scheduler. It selects one of the Jobs

from the ready queue and dispatch to the CPU for the

execution.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

52/320 SUBMITTED TEXT 37 WORDS

Medium term scheduler takes care of the swapped out

processes. If the running state processes needs some IO

time for the completion then there is a need to change its

state from running to waiting. ?

100% MATCHING TEXT 37 WORDS

Medium term scheduler takes care of the swapped out

processes. If the running state processes needs some IO

time for the completion then there is a need to change its

state from running to waiting.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

53/320 SUBMITTED TEXT 15 WORDS

In non-preemptive scheduling, once the CPU has been

allocated to a process, the process

70% MATCHING TEXT 15 WORDS

In non-preemptive scheduling, once the CPU cycle is

allocated to process, the process

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

54/320 SUBMITTED TEXT 23 WORDS

scheduling, once the CPU has been allocated to a

process, the process keeps the CPU until it releases the

CPU either by

68% MATCHING TEXT 23 WORDS

scheduling method, the CPU has been allocated to a

specific process. The process keeps the CPU busy will

release the CPU either by

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

55/320 SUBMITTED TEXT 27 WORDS

once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by

terminating or by switching to

96% MATCHING TEXT 27 WORDS

once the CPU has been allocated to a process, the

process keeps the CPU until it releases the CPU either by

terminating process or by switching to

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

56/320 SUBMITTED TEXT 33 WORDS

non-preemptive scheduling, once the CPU has been

allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or by switching to

the waiting state. ?

95% MATCHING TEXT 33 WORDS

non-preemptive scheduling once the CPU has been

allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or switching to the

waiting state.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

57/320 SUBMITTED TEXT 16 WORDS

saving the state of the old process and loading the saved

state for the new

90% MATCHING TEXT 16 WORDS

Saving the state of the old process and loading the saved

state of the new

https://qdoc.tips/download/key-os-pdf-free.html

58/320 SUBMITTED TEXT 18 WORDS

saving the state of the old process and loading the saved

state for the new process. ?

90% MATCHING TEXT 18 WORDS

Saving the state of the old process and loading the saved

state of the new process

https://quizlet.com/143614504/osg-flash-cards/

59/320 SUBMITTED TEXT 25 WORDS

switching the CPU to another process requires saving the

state of the old process and loading the saved state for

the new process. ?

100% MATCHING TEXT 25 WORDS

Switching the CPU to another process requires saving the

state of the old process and loading the saved state for

the new process.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

60/320 SUBMITTED TEXT 23 WORDS

CPU to another process requires saving the state of the

old process and loading the saved state for the new

process. ?

59% MATCHING TEXT 23 WORDS

CPU switches to another process, the system save the

state of the old process (to the PCB) and load the saved

state (from PCB) for the new process

https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/

61/320 SUBMITTED TEXT 23 WORDS

CPU to another process requires saving the state of the

old process and loading the saved state for the new

process. ?

61% MATCHING TEXT 23 WORDS

CPU switches to another process, the system save the

state of the old process (to PCB) and load the saved state

(from PCB) for the new process

https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf

62/320 SUBMITTED TEXT 29 WORDS

Scheduling Criteria 6.7.4 First Come First Serve (FCFS)

6.7.5 Shortest Job Next (SJN) or Shortest Job First (SJF)

6.7.6 Shortest Remaining Time

52% MATCHING TEXT 29 WORDS

Scheduling Algorithms .

. 28 7.8.1 First Come First Serve (FCFS)

. 28 7.8.2 Round Robin (RR)

. 28 7.8.3 Shortest Job First

(SJF) . 29 2 7.8.4

Shortest Remaining Time

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

63/320 SUBMITTED TEXT 80 WORDS

CPU Scheduling is a process of determining which

process will own CPU for execution while another

process is on hold. The main task of CPU scheduling is to

make sure that whenever the CPU remains idle, the OS at

least select one of the processes available in the ready

queue for execution. The selection process will be carried

out by the CPU scheduler. It selects one of the processes

in memory that are ready for execution. 6.4 PROCESS

SCHEDULING

98% MATCHING TEXT 80 WORDS

CPU Scheduling is a process of determining which

process will own CPU for execution while another

process is on hold. The main task of CPU scheduling is to

make sure that whenever the CPU remains idle, the OS at

least select one of the processes available in the ready

queue for execution. The selection process will be carried

out by the CPU scheduler. It selects one of the processes

in memory that are ready for execution. • 5. CPU

Scheduling

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

64/320 SUBMITTED TEXT 24 WORDS

process switches from the running state to the ready

state. 3. Specific process switches from the waiting state

to the ready state. 4.

73% MATCHING TEXT 24 WORDS

process switches from the running state to the ready

state, for example in response to an interrupt. When a

process switches from the waiting state to the ready

state,

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

65/320 SUBMITTED TEXT 36 WORDS

A process switches from the running to the waiting state.

2. Specific process switches from the running state to the

ready state. 3. Specific process switches from the waiting

state to the ready state. 4.

68% MATCHING TEXT 36 WORDS

a process switches from the running state to the ready

state b) process goes from the running state to the

waiting state c) When a process switches from the

waiting state to the ready state

https://quizlet.com/216326436/osg202-flash-cards/

66/320 SUBMITTED TEXT 33 WORDS

CPU utilization: CPU utilization is the main task in which

the operating system needs to make sure that CPU

remains as busy as possible. It can range from 0 to 100

percent.

100% MATCHING TEXT 33 WORDS

CPU utilization: CPU utilization is the main task in which

the operating system needs to make sure that CPU

remains as busy as possible. It can range from 0 to 100

percent.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

67/320 SUBMITTED TEXT 43 WORDS

The number of processes that finish their execution per

unit time is known Throughput. So, when the CPU is busy

executing the process, at that time, work is being done,

and the work completed per unit time is called

Throughput. Minimize: Waiting

96% MATCHING TEXT 43 WORDS

The number of processes that finish their execution per

unit time is known Throughput. So, when the CPU is busy

executing the process, at that time, work is being done,

and the work completed per unit time is called

Throughput. Waiting

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

68/320 SUBMITTED TEXT 93 WORDS

Waiting time: Waiting time is an amount that specific

process needs to wait in the ready queue. Response time:

It is an amount to time in which the request was

submitted until the first response is produced.

Turnaround Time: Turnaround time is an amount of time

to execute a specific process. It is the calculation of the

total time spent waiting to get into the memory, waiting

in the queue and, executing on the CPU. The period

between the time of process submission to the

completion time is the turnaround time. 6.7.4

100% MATCHING TEXT 93 WORDS

Waiting time: Waiting time is an amount that specific

process needs to wait in the ready queue. Response time:

It is an amount to time in which the request was

submitted until the first response is produced.

Turnaround Time: Turnaround time is an amount of time

to execute a specific process. It is the calculation of the

total time spent waiting to get into the memory, waiting

in the queue and, executing on the CPU. The period

between the time of process submission to the

completion time is the turnaround time. • 9.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

69/320 SUBMITTED TEXT 23 WORDS

It is the easiest and simplest CPU scheduling algorithm. In

this type of algorithm, processes which request the 107 |

69% MATCHING TEXT 23 WORDS

It is the easiest and most simple CPU scheduling

algorithm. In this type of algorithm, the process which

the

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

70/320 SUBMITTED TEXT 23 WORDS

As the process enters the ready queue, its PCB (Process

Control Block) is linked with the tail of the queue and,

when

93% MATCHING TEXT 23 WORDS

As the process enters the ready queue, its PCB (Process

Control Block) is linked with the tail of the queue. So,

when

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

71/320 SUBMITTED TEXT 25 WORDS

CPU becomes free, it should be assigned to the process

at the beginning of the queue. It supports both non-

preemptive and pre-emptive scheduling algorithm.

80% MATCHING TEXT 25 WORDS

CPU becomes free, it should be assigned to the process

at the beginning of the queue. Characteristics of FCFS

method: • It offers non-preemptive and pre-emptive

scheduling algorithm. •

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

72/320 SUBMITTED TEXT 16 WORDS

Consider the set of 5 processes whose arrival time and

burst time are given below-

100% MATCHING TEXT 16 WORDS

Consider the set of 5 processes whose arrival time and

burst time are given below.

https://quizlet.com/vn/582275437/osg202-flash-cards/

73/320 SUBMITTED TEXT 14 WORDS

set of 5 processes whose arrival time and burst time are

given below-

100% MATCHING TEXT 14 WORDS

set of 5 processes whose arrival time and burst time are

given below- •

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

74/320 SUBMITTED TEXT 41 WORDS

Consider the set of 5 processes whose arrival time and

burst time are given below- Table 6.1 Process Id Arrival

time Burst time P1 3 4 P2 5 3 P3 0 2 P4 5 1 108 | P

51% MATCHING TEXT 41 WORDS

Consider the set of processes, with the arrival times and

the length of the CPU-burst given in Process Arrival time

Burst time ------- ------------ ---------- P1 0 10 P2 2 1

P3 3 2 P4 4 1 P5 6 5

http://cs.joensuu.fi/pages/mhk/harjoitukset/kj/h4/h4.html

75/320 SUBMITTED TEXT 24 WORDS

Process Id Arrival time Burst time P1 3 4 P2 5 3 P3 0 2 P4

5 1 108 | P

100% MATCHING TEXT 24 WORDS

Process Id Arrival time Burst time P1 3 4 P2 5 3 P3 0 2 P4

5 1 P5 4 3

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

76/320 SUBMITTED TEXT 13 WORDS

If the CPU scheduling policy is FCFS, calculate the

average waiting time

87% MATCHING TEXT 13 WORDS

If the CPU scheduling policy is FCFS, the average waiting

time

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

77/320 SUBMITTED TEXT 30 WORDS

Turn Around time = Exit time – Arrival time Waiting time

= Turn Around time – Burst time Table 6.2 Process Id Exit

time Turn Around time Waiting time

50% MATCHING TEXT 30 WORDS

Turn Around Time = Completion Time – Arrival Time ?

Waiting Time(W.T): Time Difference between turn around

and burst time. Waiting Time = Turn Around Time – Burst

Time 9/27/2020

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

78/320 SUBMITTED TEXT 76 WORDS

time – Burst time Table 6.2 Process Id Exit time Turn

Around time Waiting time P1 7 7 – 3 = 4 4 – 4 = 0 P2 13

13 – 5 = 8 8 – 3 = 5 P3 2 2 – 0 = 2 2 – 2 = 0 P4 14 14 – 5

= 9 9 – 1 = 8 P5 10 10 – 4 = 6 6 – 3 = 3

72% MATCHING TEXT 76 WORDS

Time Burst Time 1 0 5 2 1 6 3 2 3 4 3 1 5 4 5 6 6 4 Process

ID Completion Time Turn Around Time Waiting Time 1 17

17 12 2 23 22 16 3 11 9 6 4 12 9 8 5 24 20 15 6 21 15 11

Avg Waiting Time = (12+16+6+8+15+11)/6 = 76/6 P1-P2-

P3-P4-P5-

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

79/320 SUBMITTED TEXT 49 WORDS

Average Turn Around time = (4 + 8 + 2 + 9 + 6) / 5 = 29 /

5 = 5.8 unit Average waiting time = (0 + 5 + 0 + 8 + 3) / 5

= 16 / 5 = 3.2 unit 6.7.5 Shortest Job

100% MATCHING TEXT 49 WORDS

Average Turn Around time = (4 + 15 + 5 + 6 + 10) / 5 =

40 / 5 = 8 unit •Average waiting time = (3 + 11 + 3 + 0 +

7) / 5 = 24 / 5 = 4.8 unit • 20. Shortest Job

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

80/320 SUBMITTED TEXT 22 WORDS

SJF) is an algorithm in which the process having the

smallest execution time is chosen for the next execution.

This scheduling

92% MATCHING TEXT 22 WORDS

SJF is an algorithm in which the process having the

smallest execution time is chosen for the next execution.

? SJF Scheduling

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

81/320 SUBMITTED TEXT 74 WORDS

Job First (SJF) Shortest Job First (SJF) is an algorithm in

which the process having the smallest execution time is

chosen for the next execution. This scheduling method

can be preemptive or non-preemptive. It 109 | P a g e

Space for learners: significantly reduces the average

waiting time for other processes awaiting execution. The

full form of SJF is Shortest Job First. There are basically

two types of

82% MATCHING TEXT 74 WORDS

Job First Scheduling? SJF) is an algorithm in which the

process having the smallest execution time is chosen for

the next execution. This scheduling method can be

preemptive or non-preemptive. It significantly reduces

the average waiting time for other processes awaiting

execution. The full form of SJF is Shortest Job First. There

are basically two types of

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

82/320 SUBMITTED TEXT 14 WORDS

There are basically two types of SJF methods: Non-

Preemptive SJF and Preemptive SJF.

100% MATCHING TEXT 14 WORDS

There are basically two types of SJF methods 1) Non-

Preemptive SJF and 2) Preemptive SJF. ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

83/320 SUBMITTED TEXT 32 WORDS

is associated with each job as a unit of time to complete.

? This algorithm method is helpful for batch-type

processing, where waiting for jobs to complete is not

critical. ?

100% MATCHING TEXT 32 WORDS

is associated with each job as a unit of time to complete.

? This algorithm method is helpful for batch-type

processing, where waiting for jobs to complete is not

critical. ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

84/320 SUBMITTED TEXT 88 WORDS

of SJF methods: Non-Preemptive SJF and Preemptive

SJF. Characteristics of SJF Scheduling ? It is associated

with each job as a unit of time to complete. ? This

algorithm method is helpful for batch-type processing,

where waiting for jobs to complete is not critical. ? It can

improve process throughput by making sure that shorter

jobs are executed first, hence possibly have a short

turnaround time. ? It improves job output by offering

shorter jobs, which should be executed first, which

mostly have a shorter turnaround time.

91% MATCHING TEXT 88 WORDS

of SJF Scheduling • Non-Preemptive SJF • Preemptive

SJF • Advantages of SJF • Disadvantages/Cons of

Characteristics of SJF Scheduling is associated with each

job as a unit of time to complete. • This algorithm

method is helpful for batch-type processing, where

waiting for jobs to complete is not critical. • It can

improve process throughput by making sure that shorter

jobs are executed first, hence possibly have a short

turnaround time. • It improves job output by offering

shorter jobs, which should be executed first, which

mostly have a shorter turnaround time.

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

85/320 SUBMITTED TEXT 75 WORDS

is optimal and guarantees the minimum average waiting

time. ? It provides a standard for other algorithms since

no other algorithm performs better than it.

Disadvantages- It cannot be implemented practically

since burst time of the processes cannot be known in

advance. ? It leads to starvation for processes with larger

burst time. ? Priorities cannot be set for the processes. ?

Processes with larger burst time have poor response

time. 6.7.5.1.

91% MATCHING TEXT 75 WORDS

is optimal and guarantees the minimum average waiting

time. • It provides a standard for other algorithms since

no other algorithm performs better than it.

Disadvantages- • It can not be implemented practically

since burst time of the processes can not be known in

advance. • It leads to starvation for processes with larger

burst time. • Priorities can not be set for the processes. •

Processes with larger burst time have poor response

time. • 21.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

86/320 SUBMITTED TEXT 27 WORDS

Preemptive SJF In non-preemptive SJF scheduling, once

the CPU cycle is allocated to process, the process holds it

till it reaches a waiting state or terminated.

88% MATCHING TEXT 27 WORDS

Preemptive SJF. ? In non-preemptive scheduling, once

the CPU cycle is allocated to process, the process holds it

till it reaches a waiting state or terminated. ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

87/320 SUBMITTED TEXT 53 WORDS

time. 6.7.5.1. Non-Preemptive SJF In non-preemptive SJF

scheduling, once the CPU cycle is allocated to process,

the process holds it till it reaches a waiting state or

terminated. Consider the following five processes each

having its own unique burst time and arrival time. 110 |

96% MATCHING TEXT 53 WORDS

time. Preemptive SJF In non-preemptive scheduling,

once the CPU cycle is allocated to process, the process

holds it till it reaches a waiting state or terminated.

Consider the following five processes each having its

own unique burst time and arrival time.

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

88/320 SUBMITTED TEXT 70 WORDS

Step 0) At time=0, P4 arrives and starts execution. Step 1)

At time= 1, Process P3 arrives. But, P4 still needs 2

execution units to complete. It will continue execution.

Step 2) At time =2, process P1 arrives and is added to the

waiting queue. P4 will continue execution. Step 3) At time

= 3, process P4 will finish its execution. The burst time of

P3 and P1 is

75% MATCHING TEXT 70 WORDS

Step 0: At time= 0, P4 arrives and starts execution.

9/27/2020Salim Shadman Ankur 11 0 Wait... Non Pre-

emptive SJF (Cont..) ? Step 1: At time= 1, Process P3

arrives. But, P4 still needs 2 execution units to complete.

... Non Pre-emptive SJF (Cont..) ? Step 2: At time =2,

process P1 arrives and is added to the waiting queue. P4

will continue ... Non Pre-emptive SJF (Cont..) ? Step 3: At

time = 3, process P4 will finish its execution. The burst

time of P3 and P1 is

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

89/320 SUBMITTED TEXT 15 WORDS

compared. Process P1 is executed because its burst time

is less compared to P3.

100% MATCHING TEXT 15 WORDS

compared. Process P1 is executed because its burst time

is less compared to P3. 9/27/2020

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

90/320 SUBMITTED TEXT 61 WORDS

Step 4) At time = 4, process P5 arrives and is added to the

waiting queue. P1 will continue execution. Step 5) At time

= 5, process P2 arrives and is added to the waiting queue.

P1 will continue execution. Step 6) At time = 9, process P1

will finish its execution. The burst time of P3, P5, and P2

86% MATCHING TEXT 61 WORDS

Step 4: At time = 4, process P5 arrives and is added to the

waiting queue. P1 will continue... Non Pre-emptive SJF

(Cont..) ? Step 5: At time = 5, process P2 arrives and is

added to the waiting queue. P1 will continue... Non Pre-

emptive SJF (Cont..) ? Step 6: At time = 9, process P1 will

finish its execution. The burst time of P3, P5, and P2...

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

91/320 SUBMITTED TEXT 60 WORDS

is compared. Process P2 is executed because its burst

time is the lowest. Step 7) At time=10, P2 is executing and

P3 and P5 are in the waiting queue. Step 8) At time = 11,

process P2 will finish its execution. The burst time of P3

and P5 is compared. Process P5 is executed because its

burst time is

53% MATCHING TEXT 60 WORDS

is compared. Process P5 is executed because its burst

time is lowest. Process P1 is preempted. 9/27/2020Salim

Shadman Ankur 30 0 3 4 Waiting Queue: P3 P5 P4 P1 •

31. Pre-emptive SJF (Cont..) ? Step 5: At time = 5, process

P2 will arrive. The burst time of P1, P2, P3, and P5 is

compared. Process P2 is executed because its burst time

is

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

92/320 SUBMITTED TEXT 25 WORDS

Step 9) At time = 15, process P5 will finish its execution.

Step 10) At time = 23, process P3 will finish its execution.

77% MATCHING TEXT 25 WORDS

Step 9: At time = 15, process P5 will finish its execution.

9/27/2020Salim Shadman Ankur 20... Non Pre-emptive

SJF (Cont..) ? Step 10: At time = 23, process P3 will finish

its execution. 9/27/2020

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

93/320 SUBMITTED TEXT 47 WORDS

jobs are put into the ready queue as they come. A

process with shortest burst time begins execution. Even,

if a process with a shorter burst time arrives, the current

process is removed or preempted from execution, and

the shorter job is allocated CPU cycle.

95% MATCHING TEXT 47 WORDS

Jobs are put into the ready queue as they come ? A

process with shortest burst time begins execution ? If a

process with even a shorter burst time arrives, the current

process is removed or preempted from execution, and

the shorter job is allocated CPU cycle. 9/27/2020

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

94/320 SUBMITTED TEXT 351 WORDS

Process Queue Burst time Arrival time P1 6 2 P2 2 5 P3 8

1 P4 3 0 P5 4 4 Step 0) At time=0, P4 arrives and starts

execution. Step 1) At time= 1, Process P3 arrives. But, P4

still needs 2 execution units to complete. It will continue

execution. Step 2) At time =2, process P1 arrives and is

added to the waiting queue. P4 will continue execution.

Step 3) At time = 3, process P4 will finish its execution.

The burst time of P3 and P1 is compared. Process P1 is

executed because its burst time is less compared to P3.

Step 4) At time = 4, process P5 arrives and is added to the

waiting queue. P1 will continue execution. Step 5) At time

= 5, process P2 arrives and is added to the waiting queue.

P1 will continue execution. Step 6) At time = 9, process P1

will finish its execution. The burst time of P3, P5, and P2 is

compared. Process P2 is executed because its burst time

is the lowest. Step 7) At time=10, P2 is executing and P3

and P5 are in the waiting queue. Step 8) At time = 11,

process P2 will finish its execution. The burst time of P3

and P5 is compared. Process P5 is executed because its

burst time is lower. Step 9) At time = 15, process P5 will

finish its execution. Step 10) At time = 23, process P3 will

finish its execution. Step 11) Let's calculate the average

waiting time for above example. Wait time of, P4= 0-0=0

P1= 3-2=1 P2= 9-5=4 111 | P a g e Space for learners:

P5= 11-4=7 P3= 15-1=14 Average Waiting Time=

0+1+4+7+14/5 = 26/5 = 5.2 6.7.5.2 Preemptive SJF In

Preemptive SJF Scheduling, jobs are put into the ready

queue as they come. A process with shortest burst time

begins execution. Even, if a process with a shorter burst

time arrives, the current process is removed or

preempted from execution, and the shorter job is

allocated CPU cycle. Consider the

95% MATCHING TEXT 351 WORDS

Process Queue Burst time Arrival time P1 6 2 P2 2 5 P3 8

1 P4 3 0 P5 4 4 Step 0) At time=0, P4 arrives and starts

execution. Step 1) At time= 1, Process P3 arrives. But, P4

still needs 2 execution units to complete. It will continue

execution. Step 2) At time =2, process P1 arrives and is

added to the waiting queue. P4 will continue execution.

Step 3) At time = 3, process P4 will finish its execution.

The burst time of P3 and P1 is compared. Process P1 is

executed because its burst time is less compared to P3.

Step 4) At time = 4, process P5 arrives and is added to the

waiting queue. P1 will continue execution. Step 5) At time

= 5, process P2 arrives and is added to the waiting queue.

P1 will continue execution. Step 6) At time = 9, process P1

will finish its execution. The burst time of P3, P5, and P2 is

compared. Process P2 is executed because its burst time

is the lowest. Step 7) At time=10, P2 is executing and P3

and P5 are in the waiting queue. Step 8) At time = 11,

process P2 will finish its execution. The burst time of P3

and P5 is compared. Process P5 is executed because its

burst time is lower. Step 9) At time = 15, process P5 will

finish its execution. Step 10) At time = 23, process P3 will

finish its execution. Step 11) Let's calculate the average

waiting time for above example. Wait time P4= 0-0=0

P1= 3-2=1 P2= 9-5=4 P5= 11-4=7 P3= 15-1=14 Average

Time= 0+1+4+7+14/5 = 26/5 = 5.2 Preemptive SJF In

Preemptive SJF Scheduling, jobs are put into the ready

queue as they come. A process with shortest burst time

begins execution. If a process with even a shorter burst

time arrives, the current process is removed or

preempted from execution, and the shorter job is

allocated CPU cycle. Consider the

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

95/320 SUBMITTED TEXT 80 WORDS

Step 0) At time=0, P4 arrives and starts execution. Step 1)

At time= 1, Process P3 arrives. But, P4 has a shorter burst

time. It will continue execution. Step 2) At time = 2,

process P1 arrives with burst time = 6. The burst time is

more than that of P4. Hence, P4 will continue execution.

Step 3) At time = 3, process P4 will finish its execution.

The burst time of P3 and P1 is

71% MATCHING TEXT 80 WORDS

Step 0: At time=0, P4 arrives and starts execution.

9/27/2020Salim Shadman Ankur 25 0 Waiting Q... Pre-

emptive SJF (Step 1: At time= 1, Process P3 arrives. But,

P4 has a shorter burst time. It will continue exec... Pre-

emptive SJF (Cont..) ? Step 2: At time = 2, process P1

arrives with burst time = 6. The burst time is more than

that o... Pre-emptive SJF (Cont..) ? Step 3: At time = 3,

process P4 will finish its execution. The burst time of P3

and P1 is

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

96/320 SUBMITTED TEXT 13 WORDS

compared. Process P1 is executed because its burst time

is lower.

100% MATCHING TEXT 13 WORDS

compared. Process P5 is executed because its burst time

is lower. 9/27/2020

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

97/320 SUBMITTED TEXT 153 WORDS

Step 1) At time= 1, Process P3 arrives. But, P4 has a

shorter burst time. It will continue execution. Step 2) At

time = 2, process P1 arrives with burst time = 6. The burst

time is more than that of P4. Hence, P4 will continue

execution. Step 3) At time = 3, process P4 will finish its

execution. The burst time of P3 and P1 is compared.

Process P1 is executed because its burst time is lower.

Step 4) At time = 4, process P5 will arrive. The burst time

of P3, P5, and P1 is compared. Process P5 is executed

because its burst time is lowest. Process P1 is preempted.

Step 5) At time = 5, process P2 will arrive. The burst time

of P1, P2, P3, and P5 is compared. Process P2 is executed

because its burst time is least. Process P5 is preempted.

93% MATCHING TEXT 153 WORDS

Step 1) At time= 1, Process P3 arrives. But, P4 has a

shorter burst time. It will continue execution. Step 2) At

time = 2, process P1 arrives with burst time = 6. The burst

time is more than that of P4. Hence, P4 will continue

execution. Step 3) At time = 3, process P4 will finish its

execution. The burst time of P3 and P1 is compared.

Process P1 is executed because its burst time is Step 4) At

time = 4, process P5 will arrive. The burst time of P3, P5,

and P1 is compared. Process P5 is executed because its

burst time is lowest. Process P1 is preempted. Process

Queue Burst time Arrival time P1 5 out of 6 is remaining 2

P2 2 5 P3 8 1 P4 3 0 P5 4 4 Step 5) At time = 5, process

P2 will arrive. The burst time of P1, P2, P3, and P5 is

compared. Process P2 is executed because its burst time

is least. Process P5 is preempted.

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

98/320 SUBMITTED TEXT 72 WORDS

Step 4) At time = 4, process P5 will arrive. The burst time

of P3, P5, and P1 is compared. Process P5 is executed

because its burst time is lowest. Process P1 is preempted.

Step 5) At time = 5, process P2 will arrive. The burst time

of P1, P2, P3, and P5 is compared. Process P2 is executed

because its burst time is least. Process P5 is preempted.

73% MATCHING TEXT 72 WORDS

Step 3: At time = 3, process P4 will finish its execution.

The burst time of P3 and P1 is compared. Process P1 is

executed because its burst time is lower. 9/27/2020Salim

Shadman Ankur 28 0 3 Waiting Queue: P3 P1 P4 • 29.

Pre-emptive SJF (Cont..) ? Step 4: At time = 4, process P5

will arrive. The burst time of P3, P5, and P1 is compared.

Process P5 is executed because its burst time is lowest.

Process P1 is preempted. 9/27/2020

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

99/320 SUBMITTED TEXT 32 WORDS

is executing. Step 7) At time =7, P2 finishes its execution.

The burst time of P1, P3, and P5 is compared. Process P5

is executed because its burst time is

76% MATCHING TEXT 32 WORDS

is Step 4) At time = 4, process P5 will arrive. The burst

time of P3, P5, and P1 is compared. Process P5 is

executed because its burst time is

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

100/320 SUBMITTED TEXT 38 WORDS

Step 6) At time =6, P2 is executing. Step 7) At time =7, P2

finishes its execution. The burst time of P1, P3, and P5 is

compared. Process P5 is executed because its burst time

is

73% MATCHING TEXT 38 WORDS

Step 7) At time=10, P2 is executing and in the waiting

Step 8) At time = 11, process P2 will finish its execution.

The burst time of P3 and P5 is compared. Process P5 is

executed because its burst time is

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

101/320 SUBMITTED TEXT 29 WORDS

Step 7) At time =7, P2 finishes its execution. The burst

time of P1, P3, and P5 is compared. Process P5 is

executed because its burst time is

78% MATCHING TEXT 29 WORDS

Step 5: At time = 5, process P2 will arrive. The burst time

of P1, P2, P3, and P5 is compared. Process P2 is executed

because its burst time is

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

102/320 SUBMITTED TEXT 44 WORDS

Step 6) At time =6, P2 is executing. Step 7) At time =7, P2

finishes its execution. The burst time of P1, P3, and P5 is

compared. Process P5 is executed because its burst time

is lesser. 112 |

100% MATCHING TEXT 44 WORDS

Step 6) At time =6, P2 is executing. Step 7) At time =7, P2

finishes its execution. The burst time of P1, P3, and P5 is

compared. Process P5 is executed because its burst time

is lesser.

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

103/320 SUBMITTED TEXT 27 WORDS

At time =10, P5 will finish its execution. The burst time of

P1 and P3 is compared. Process P1 is executed because

its burst time is

98% MATCHING TEXT 27 WORDS

At time = 3, process P4 will finish its execution. The burst

time of P3 and P1 is compared. Process P1 is executed

because its burst time is

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

104/320 SUBMITTED TEXT 61 WORDS

Step 8) At time =10, P5 will finish its execution. The burst

time of P1 and P3 is compared. Process P1 is executed

because its burst time is less. Step 9) At time =15, P1

finishes its execution. P3 is the only process left. It will

start execution. Step 10) At time =23, P3 finishes its

execution.

63% MATCHING TEXT 61 WORDS

Step 8: At time =10, P5 will finish its execution. The burst

time of P1 and P3 is compared. Pro... Pre-emptive Cont..)

? Step 9: At time =15, P1 finishes its execution. P3 is the

only process left. It will start exec... Pre-emptive SJF

(Cont..) ? Step 10: At time =23, P3 finishes its execution.

9/27/2020

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

105/320 SUBMITTED TEXT 104 WORDS

Step 8) At time =10, P5 will finish its execution. The burst

time of P1 and P3 is compared. Process P1 is executed

because its burst time is less. Step 9) At time =15, P1

finishes its execution. P3 is the only process left. It will

start execution. Step 10) At time =23, P3 finishes its

execution. Step 11) Let's calculate the average waiting

time for above example. Wait time P4= 0-0=0 P1= (3-2)

+ 6 =7 P2= 5-5 = 0 P5= 4-4+2 =2 P3= 15-1 = 14 Average

Waiting Time = 0+7+0+2+14/5 = 23/5 =4.6 6.7.6.

100% MATCHING TEXT 104 WORDS

Step 8) At time =10, P5 will finish its execution. The burst

time of P1 and P3 is compared. Process P1 is executed

because its burst time is less. Step 9) At time =15, P1

finishes its execution. P3 is the only process left. It will

start execution. Step 10) At time =23, P3 finishes its

execution. Step 11) Let's calculate the average waiting

time for above example. Wait time P4= 0-0=0 P1= (3-2)

+ 6 =7 P2= 5-5 = 0 P5= 4-4+2 =2 P3= 15-1 = 14 Average

Waiting Time = 0+7+0+2+14/5 = 23/5 =4.6

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

106/320 SUBMITTED TEXT 12 WORDS

Arrival Time and Burst time for three processes P1, P2, P3

90% MATCHING TEXT 12 WORDS

arrival time and burst time for three processes P o , P 1

and P 2 .

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

107/320 SUBMITTED TEXT 12 WORDS

Arrival Time and Burst time for three processes P1, P2, P3

95% MATCHING TEXT 12 WORDS

arrival time and burst time for three processes P0, P1 and

P2. • 7.

https://www.slideshare.net/JasonMarandi1/cpu-scheduling-qusetions

108/320 SUBMITTED TEXT 17 WORDS

The interval from the time of submission of a process to

the time of completion is

100% MATCHING TEXT 17 WORDS

The interval from the time of submission of a process to

the time of completion is

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

109/320 SUBMITTED TEXT 115 WORDS

a) SJF b) FCFS c) SRTF d) none of the mentioned 2. The

processes that are residing in main memory and are ready

and waiting to execute are kept on a list called

_____________ a) job queue b) ready queue c)

execution queue d) process queue 3. The interval from

the time of submission of a process to the time of

completion is termed as ____________ a) waiting time

b) turnaround time c) response time d) throughput

92% MATCHING TEXT 115 WORDS

a) dispatcher b) interrupt c) scheduler d) none of the

mentioned B The processes that are residing in main

memory and are ready and waiting to execute are kept

on a list called a) job queue b) ready queue c) execution

queue d) process queueThe interval from the time of

submission of a process to the time of completion is

termed as a) waiting time b) turnaround time c) response

time d) throughput

https://quizlet.com/216326436/osg202-flash-cards/

110/320 SUBMITTED TEXT 36 WORDS

Process Arrival Time Burst Time Completion Time Turn

Around Time Waiting Time P1 0 7 14 14-0=14 14-7=7 P2 1

3 5 5-1=4 4-3=1 P3 3 4 8 8-3=5 5-4=1 115 | P

78% MATCHING TEXT 36 WORDS

Process ID Arrival Time Burst Time 1 0 5 2 1 6 3 2 3 4 3 1 5

4 5 6 6 4 Process ID Completion Time Turn Around Time

Waiting Time 1 17 17 12 2 23 22 16 3 11 9 6 4 12 9 8 5 24

20 15 6 21 15 11 Avg Waiting Time =

(12+16+6+8+15+11)/6 = 76/6 P1-P2-P4-

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

111/320 SUBMITTED TEXT 21 WORDS

a) first-come, first-served scheduling b) shortest job

scheduling c) priority scheduling

76% MATCHING TEXT 21 WORDS

a) First come first served scheduling b) Shortest remaining

time first scheduling c) Static priority scheduling

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

112/320 SUBMITTED TEXT 46 WORDS

Which scheduling algorithm allocates the CPU first to the

process that requests the CPU first? a) first-come, first-

served scheduling b) shortest job scheduling c) priority

scheduling d) none of the mentioned 5.

100% MATCHING TEXT 46 WORDS

Which scheduling algorithm allocates the CPU first to the

process that requests the CPU first? a) first-come, first-

served scheduling b) shortest job scheduling c) priority d)

none of the mentioned

https://quizlet.com/216326436/osg202-flash-cards/

113/320 SUBMITTED TEXT 32 WORDS

Scheduling algorithm which allocates the CPU first to the

process which requests the CPU first? a). FCFS scheduling

b). priority scheduling c).

63% MATCHING TEXT 32 WORDS

scheduling algorithm allocates the CPU first to the

process that requests the CPU first? a) first-come, first-

served scheduling b) shortest job scheduling c)

https://quizlet.com/216326436/osg202-flash-cards/

114/320 SUBMITTED TEXT 22 WORDS

CPU scheduling is a process of determining which

process will own CPU for execution while another

process is on hold. 2.

100% MATCHING TEXT 22 WORDS

CPU Scheduling is a process of determining which

process will own CPU for execution while another

process is on hold.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

115/320 SUBMITTED TEXT 11 WORDS

In Preemptive Scheduling, the tasks are mostly assigned

with their

100% MATCHING TEXT 11 WORDS

In Preemptive Scheduling, the tasks are mostly assigned

with their

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

116/320 SUBMITTED TEXT 13 WORDS

scheduling method, the CPU has been allocated to a

specific process. 4.

100% MATCHING TEXT 13 WORDS

scheduling method, the CPU has been allocated to a

specific process.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

117/320 SUBMITTED TEXT 37 WORDS

CPU utilization is the main task in which the operating

system needs to make sure that CPU remains as busy as

possible. 6. The number of processes that finish their

execution per unit time is known

90% MATCHING TEXT 37 WORDS

CPU utilization is the main task in which the operating

system needs to make sure that CPU remains as busy as

possible. It can range from 0 to 100 percent. Throughput:

The number of processes that finish their execution per

unit time is known

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

118/320 SUBMITTED TEXT 23 WORDS

Waiting time is an amount that specific process needs to

wait in the ready queue. 8. Waiting time is an amount to

90% MATCHING TEXT 23 WORDS

Waiting time is an amount that specific process needs to

wait in the ready queue. Response time: It is an amount

to

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

119/320 SUBMITTED TEXT 14 WORDS

Turnaround time is an amount of time to execute a

specific process. 10.

100% MATCHING TEXT 14 WORDS

Turnaround time is an amount of time to execute a

specific process.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

120/320 SUBMITTED TEXT 22 WORDS

CPU scheduling is a process of determining which

process will own CPU for execution while another

process is on hold. ?

100% MATCHING TEXT 22 WORDS

CPU Scheduling is a process of determining which

process will own CPU for execution while another

process is on hold.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

121/320 SUBMITTED TEXT 13 WORDS

In Preemptive Scheduling, the tasks are mostly assigned

with their priorities. ?

100% MATCHING TEXT 13 WORDS

In Preemptive Scheduling, the tasks are mostly assigned

with their priorities.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

122/320 SUBMITTED TEXT 13 WORDS

scheduling method, the CPU has been allocated to a

specific process. ?

100% MATCHING TEXT 13 WORDS

scheduling method, the CPU has been allocated to a

specific process.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

123/320 SUBMITTED TEXT 23 WORDS

Burst time is a time required for the process to complete

execution. It is also called running time. 118 |

55% MATCHING TEXT 23 WORDS

Burst Time The time required for the process to complete

its execution is called Burst Time. (

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

124/320 SUBMITTED TEXT 22 WORDS

time is a time required for the process to complete

execution. It is also called running time. 118 |

88% MATCHING TEXT 22 WORDS

Time: It is a time required by the process to complete

execution. It is also called running time.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

125/320 SUBMITTED TEXT 32 WORDS

utilization is the main task in which the operating system

needs to make sure that CPU remains as busy as possible

? The number of processes that finish their execution per

88% MATCHING TEXT 32 WORDS

utilization is the main task in which the operating system

needs to make sure that CPU remains as busy as possible.

It can range from 0 to 100 percent. Throughput: The

number of processes that finish their execution per

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

126/320 SUBMITTED TEXT 56 WORDS

per unit time is known Throughput. ? Waiting time is an

amount that specific process needs to wait in the ready

queue. ? It is an amount to time in which the request was

submitted until the first response is produced. ?

Turnaround time is an amount of time to execute a

specific process. ?

91% MATCHING TEXT 56 WORDS

per unit time is called Throughput. time: Waiting time is

an amount that specific process needs to wait in the

ready queue. Response time: It is an amount to time in

which the request was submitted until the first response

is produced. Turnaround Time: Turnaround time is an

amount of time to execute a specific process.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

127/320 SUBMITTED TEXT 15 WORDS

dispatcher is a module that provides control of the CPU

to the process. ?

76% MATCHING TEXT 15 WORDS

dispatcher is the module that gives control of the CPU to

the process

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

128/320 SUBMITTED TEXT 13 WORDS

scheduling algorithms are: 1) First Come First Serve

(FCFS), 2) Shortest-Job-First (SJF)

87% MATCHING TEXT 13 WORDS

scheduling algorithms: first-come, first-serve (FCFS),

shortest-job first (SJF),

http://www.eg.bucknell.edu/~cs315/wordpress/wp-content/uploads/2019/10/activity14-02-19.pdf

129/320 SUBMITTED TEXT 19 WORDS

scheduling algorithms are: 1) First Come First Serve

(FCFS), 2) Shortest-Job-First (SJF) Scheduling 3) Shortest

Remaining Time 4)

71% MATCHING TEXT 19 WORDS

Scheduling Algorithms .

. 28 7.8.1 First Come First Serve (FCFS)

. 28 7.8.2 Round Robin (RR)

. 28 7.8.3 Shortest Job First

(SJF) . 29 2 7.8.4

Shortest Remaining Time

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

130/320 SUBMITTED TEXT 17 WORDS

First Come First Serve (FCFS), 2) Shortest-Job-First (SJF)

Scheduling 3) Shortest Remaining Time 4) Priority

Scheduling

100% MATCHING TEXT 17 WORDS

First Come First Serve (FCFS) 2. Shortest-Job-First (SJF)

Scheduling 3. Shortest Remaining Time 4. Priority

Scheduling 5.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

131/320 SUBMITTED TEXT 13 WORDS

the process which requests the CPU gets the CPU

allocation first. ?

100% MATCHING TEXT 13 WORDS

the process which requests the CPU gets the CPU

allocation first.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

132/320 SUBMITTED TEXT 17 WORDS

Consider the set of 5 processes whose arrival time and

burst time are given below:

100% MATCHING TEXT 17 WORDS

Consider the set of 5 processes whose arrival time and

burst time are given below.

https://quizlet.com/vn/582275437/osg202-flash-cards/

133/320 SUBMITTED TEXT 15 WORDS

set of 5 processes whose arrival time and burst time are

given below:

100% MATCHING TEXT 15 WORDS

set of 5 processes whose arrival time and burst time are

given below- •

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

134/320 SUBMITTED TEXT 39 WORDS

Consider the set of 5 processes whose arrival time and

burst time are given below: Process No Arrival Time Burst

Time P1 3 1 P2 1 4 P3 4 2 P4 0 6 P5 2 3

54% MATCHING TEXT 39 WORDS

Consider the set of processes, with the arrival times and

the length of the CPU-burst time given in Process Arrival

time Burst time ------- ------------ ---------- P1 0 10

P2 2 1 P3 3 2 P4 4 1 P5 6 5

http://cs.joensuu.fi/pages/mhk/harjoitukset/kj/h4/h4.html

135/320 SUBMITTED TEXT 39 WORDS

If the CPU scheduling policy is SJF non-preemptive,

calculate the average waiting time and average

turnaround time. 5. Consider the set of 6 processes

whose arrival time and burst time are given below: 120 |

56% MATCHING TEXT 39 WORDS

If the CPU scheduling policy is Round Robin with time

quantum 2 the average waiting time is _____ A. 5.5 B. 6.8

C. 7.6 D. 5.8 set of 5 processes whose arrival time and

burst time are given below.

https://quizlet.com/vn/582275437/osg202-flash-cards/

136/320 SUBMITTED TEXT 19 WORDS

set of 6 processes whose arrival time and burst time are

given below: 120 |

100% MATCHING TEXT 19 WORDS

set of 5 processes whose arrival time and burst time are

given below- •

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

137/320 SUBMITTED TEXT 53 WORDS

the average waiting time and average turnaround time. 5.

Consider the set of 6 processes whose arrival time and

burst time are given below: 120 | P a g e Space for

learners: Process No Arrival Time Burst Time P1 3 4 P2 5 3

P3 0 2

39% MATCHING TEXT 53 WORDS

the average waiting time and average turnaround time for

this scheduling. • Consider the set of processes, with the

arrival times and the length the CPU-burst time given in

milliseconds. Process Arrival time Burst time ------- ----

-------- ---------- P1 0.0 8 P2 0.4 4 P3 1.0 1

http://cs.joensuu.fi/pages/mhk/harjoitukset/kj/h4/h4.html

138/320 SUBMITTED TEXT 23 WORDS

time. When a process must wait, the OS takes the CPU

away from that process and assigns it to another. This

pattern

56% MATCHING TEXT 23 WORDS

time. • When one process has to wait, the operating

system takes the CPU away from that process and gives

the CPU to another process. This pattern

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

139/320 SUBMITTED TEXT 12 WORDS

must wait until the CPU is free and can be rescheduled.

100% MATCHING TEXT 12 WORDS

must wait until the CPU is free and can be rescheduled. •

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

140/320 SUBMITTED TEXT 12 WORDS

a small unit of time called a quantum or time slice.

95% MATCHING TEXT 12 WORDS

A small unit of time, called a time quantum or time slice,

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

141/320 SUBMITTED TEXT 15 WORDS

the ready queue. The ready queue is kept as a FIFO queue

of processes

75% MATCHING TEXT 15 WORDS

the ready queue. The ready queue can be implemented

as a FIFO queue of processes.

https://saf1.net/blog/cpu-scheduling-simulation-algorithms

142/320 SUBMITTED TEXT 43 WORDS

tail. The CPU scheduler selects the first process from the

ready queue, sets the timer to interrupt after one time

quantum, and dispatches it. Then two cases may arise;

the process may have a CPU burst of less than 1 time

quantum,

61% MATCHING TEXT 43 WORDS

tail of the queue. The scheduler picks the first process

from the ready queue, sets a timer to interrupt after 1

time quantum and then dispatches the process. One of

two things will happen: 1- The process may have a CPU

burst of less than 1 time quantum,

https://saf1.net/blog/cpu-scheduling-simulation-algorithms

143/320 SUBMITTED TEXT 34 WORDS

is longer than one time quantum, the timer will go off,

causing an OS interrupt. A context switch is performed,

and the process is pushed to the back of the ready

queue. The

59% MATCHING TEXT 34 WORDS

is longer than one time quantum. In this case, the timer

will go off, cause an interrupt, a context switch is then

executed & the process put at the tail of the ready queue.

The

https://saf1.net/blog/cpu-scheduling-simulation-algorithms

144/320 SUBMITTED TEXT 63 WORDS

P1,P2,P3 and P4 are scheduled by using RR scheduling

Process Burst Time P1 20 P2 2 P3 6 P4 2 124 | P a g e

Space for learners: GANTT chart P1 P2 P3 P4 P1 P3 P1 P1

31% MATCHING TEXT 63 WORDS

P544 P4 2 P3 P1 Described by MEJBAH & PRIZOM 0 61

processBurst timeArrival P162 P225 P381 P430 P544 P4 3

P3P1 03 timeArrival time P162 P225 P381 P430 P544 P4 3

P3P1 03 62

https://slideplayer.com/slide/13412463/

145/320 SUBMITTED TEXT 45 WORDS

P1 20 P2 2 P3 6 P4 2 124 | P a g e Space for learners:

GANTT chart P1 P2 P3 P4 P1 P3 P1 P1 Process

45% MATCHING TEXT 45 WORDS

P3 P4 P5 P1 P2 P3 P4 P5 P1 P3 P4 P1 P3 P Process

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

146/320 SUBMITTED TEXT 26 WORDS

GANTT chart P1 P2 P3 P4 P1 P3 P1 P1 Process P1

87% MATCHING TEXT 26 WORDS

Gantt chart: P 1 P 2 P 3 P 4 P 4 P 6 P 4 P 7 P 5

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

147/320 SUBMITTED TEXT 22 WORDS

Time Turn Around Time = Completion Time – Arrival

Time Waiting Time Waiting Time = Turn Around Time –

Burst Time

79% MATCHING TEXT 22 WORDS

time. Turn Around Time = Completion Time – Arrival

Time Waiting Time(W.T): Time Difference between turn

around time burst time.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

148/320 SUBMITTED TEXT 22 WORDS

Time Turn Around Time = Completion Time – Arrival

Time Waiting Time Waiting Time = Turn Around Time –

Burst Time

79% MATCHING TEXT 22 WORDS

time. Turn Around Time = Completion Time – Arrival

Time ? Waiting Time(W.T): Time Difference between turn

around time burst time.

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

149/320 SUBMITTED TEXT 85 WORDS

Burst Time P1 20 30-0=32 30-20=10 P2 2 7-0=7 7-2=5

P3 6 20-0=21 20-6=14 P4 2 14-0=15 14-2=12 0 5 7 12 14

19 20 25 30 125 | P a g e Space for learners: Average

waiting time= (10+5+14+12)/4 = 44/4= 10.25ms If the

ready queue has n processes and the time quantum is q,

each process receives 1/n of the CPU time in chunks of at

most q time units. Each process must wait (n-1) x q time

units

40% MATCHING TEXT 85 WORDS

Burst Time P1 24 P2 3 P3 3 Process: P2 P3 P1 P1 P1 P1

Time Line: 0 4 7 10 14 18 22 26 30 The average waiting

time is : 17/3 = 5.66 ms. Performance of RR: • If there are

n processes in the ready queue at time quantum q, then

each process gets 1/n of the CPU time in chunks of at

most q time units at once. No process waits more than

(n-1) x q time units

https://saf1.net/blog/cpu-scheduling-simulation-algorithms

150/320 SUBMITTED TEXT 25 WORDS

if the time quantum is extremely big, the RR policy is the

same as FCFS; if the time quantum is extremely tiny, the

RR

52% MATCHING TEXT 25 WORDS

if the time quantum is extremely large, the RR policy. In

contrast, if the time quantum is extremely small (say, 1

millisecond), the RR

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

151/320 SUBMITTED TEXT 12 WORDS

the CPU is allocated to the process with the highest

priority.

100% MATCHING TEXT 12 WORDS

The CPU is allocated to the process with the highest

priority (

https://quizlet.com/143614504/osg-flash-cards/

152/320 SUBMITTED TEXT 12 WORDS

the CPU is allocated to the process with the highest

priority.

100% MATCHING TEXT 12 WORDS

The CPU is allocated to the process with the highest

priority (

https://qdoc.tips/download/key-os-pdf-free.html

153/320 SUBMITTED TEXT 28 WORDS

A priority is associated with each process, and the CPU is

allocated to the process with the highest priority. Equal

priority processes are scheduled in FCFS order.

98% MATCHING TEXT 28 WORDS

A priority is associated with each process, and the CPU is

allocated to the process with the highest priority Equal-

priority processes are scheduled in FCFS order

https://quizlet.com/vn/582275437/osg202-flash-cards/

154/320 SUBMITTED TEXT 21 WORDS

the CPU is allocated to the process with the highest

priority. Equal priority processes are scheduled in FCFS

order. The

87% MATCHING TEXT 21 WORDS

The CPU is allocated to the process with the highest

priority (smallest integer = highest Equal priority

processes are scheduled in FCFS order. The

https://saf1.net/blog/cpu-scheduling-simulation-algorithms

155/320 SUBMITTED TEXT 13 WORDS

A major problem with priority scheduling algorithm is

indefinite blocking or starvation.

87% MATCHING TEXT 13 WORDS

A major problem with priority scheduling algorithms is

indefinite blocking or starvation.

https://saf1.net/blog/cpu-scheduling-simulation-algorithms

156/320 SUBMITTED TEXT 21 WORDS

Problem with Priority Scheduling Algorithm A major

problem with priority scheduling algorithm is indefinite

blocking or starvation. A process is

80% MATCHING TEXT 21 WORDS

problem with priority scheduling? A major problem with

priority scheduling algorithms is indefinite blocking or

starvation. A process that is

https://quizlet.com/vn/582275437/osg202-flash-cards/

157/320 SUBMITTED TEXT 32 WORDS

queue scheduling technique. The processes are assigned

to one queue indefinitely, usually depending on some

property of the process, such as memory size, priority, or

kind. Each queue has its own

67% MATCHING TEXT 32 WORDS

queue scheduling algorithm? A. The processes are

permanently assigned to one queue, generally based on

some property of the process, such as memory size,

process priority, or process type. B. Each queue has its

own

https://quizlet.com/vn/582275437/osg202-flash-cards/

158/320 SUBMITTED TEXT 66 WORDS

as System Processes. ? Interactive Process: The

Interactive Process is one in which all participants should

participate in the same way. ? Batch Processes: Batch

processing is a mechanism in the operating system that

gathers programmes and data into a batch before

processing begins. ? Student Process: The system

process is always given top priority, whereas student

processes are always given lowest priority System

Processes

33% MATCHING TEXT 66 WORDS

as System Process. • Interactive Process The Interactive

Process is a process in which there should be the same

kind of interaction (e.g. online game). • Batch Processes

Batch processing is basically a technique in the Operating

system that collects the programs and data together in

the form of the batch before the processing starts. •

Student Process The system process always gets the

highest priority while the student processes always get

the lowest priority. For System Processes:

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

159/320 SUBMITTED TEXT 25 WORDS

For System Processes: First Come First Serve (FCFS)

Scheduling. For Interactive Processes: Shortest Job First

(SJF) Scheduling. For Batch Processes: Round Robin (RR)

Scheduling

100% MATCHING TEXT 25 WORDS

For System Processes: First Come First Serve(FCFS)

Scheduling. For Interactive Processes: Shortest Job First

(SJF) Scheduling. For Batch Processes: Round Robin(RR)

Scheduling

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

160/320 SUBMITTED TEXT 26 WORDS

A race condition is an undesirable scenario that arises

when a device or system seeks to perform two or more

operations at the same time,

82% MATCHING TEXT 26 WORDS

A race condition is an undesirable situation that occurs

when a device or system attempts to perform two or

more operations at the same time,

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

161/320 SUBMITTED TEXT 51 WORDS

The critical section is given as follows: do { Entry Section

Critical Section Exit Section Remainder Section } while (

64% MATCHING TEXT 51 WORDS

the critical section is an exit section. The General

Structure: do { entry section critical section exit section

remainder section 25 } while(1); 24.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

162/320 SUBMITTED TEXT 24 WORDS

Q5: Pre-emptive scheduling is the strategy of temporarily

suspending a gunning process (A) Before the CPU time

slice expires 137 |

92% MATCHING TEXT 24 WORDS

Q.26 Pre-emptive scheduling, is the strategy of

temporarily suspending a running process a) Before the

CPU time slice expires

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

163/320 SUBMITTED TEXT 14 WORDS

B) To allow starving processes to run (C) When it requests

I/O (D)

100% MATCHING TEXT 14 WORDS

b) To allow starving processes to run c) When it requests

I/O d)

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

164/320 SUBMITTED TEXT 27 WORDS

Q6: In round robin CPU scheduling as time quantum is

increased the average turnaround time (A) Increases (B)

Decreases (C) remains constant (D) Varies irregularly Q7:

98% MATCHING TEXT 27 WORDS

Q.38 In Round Robin CPU scheduling, as the time

quantum is increased, the average turnaround time a)

Increases b) Decreases c) Remains constant d) Varies

irregularly Q.39

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

165/320 SUBMITTED TEXT 11 WORDS

A) First-come, first-served (B)Shortest job first (C) Round

robin (D)

88% MATCHING TEXT 11 WORDS

a) FCFS - First come First served b) SJF - Shortest Job

First c) RR - Round Robin d)

https://quizlet.com/216326436/osg202-flash-cards/

166/320 SUBMITTED TEXT 13 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table.

100% MATCHING TEXT 13 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table.

https://quizlet.com/vn/582275437/osg202-flash-cards/

167/320 SUBMITTED TEXT 194 WORDS

Q9: Consider the 3 processes, P1, P2 and P3 shown in the

table. Process Arrival time Time Units Required P1 0 5 P2

1 7 P3 3 4 The completion order of the 3 processes under

the policies FCFS and RR2 (round robin scheduling with

CPU quantum

100% MATCHING TEXT 194 WORDS

Q.52 Consider the 3 processes, P 1 , P 2 and P 3 shown in

the table: Process Arrival Time Time units required P 1 0 5

P 2 1 7 P 3 3 4 The completion order of the 3 processes

under the policies FCFS and RR2 (Round Robin

scheduling with CPU quantum 2

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

168/320 SUBMITTED TEXT 40 WORDS

time units) are (A) FCFS: P1, P2, P3 RR2: P1, P2, P3 (B)

FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS: P1, P2, P3 RR2:

P1, P3, P2 (

100% MATCHING TEXT 40 WORDS

time units) are a) FCFS : P 1 , P 2 , P 3 RR2 : P 1 , P 2 , P 3

b)FCFS: P 1 , P 3 , P 2 RR2 : P 1 , P 3 , P 2 c)FCFS: P 1 , P 2 ,

P 3 RR2 : P 1 , P 3 , P 2 ©

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

169/320 SUBMITTED TEXT 250 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table. Process Arrival time Time Units Required P1 0 5 P2

1 7 P3 3 4 The completion order of the 3 processes under

the policies FCFS and RR2 (round robin scheduling with

CPU quantum of 2 time units) are (A) FCFS: P1, P2, P3

RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C)

FCFS: P1, P2, P3 RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2:

P1, P2, P3 138 |

96% MATCHING TEXT 250 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table --

Process Arrival time Time unit required -----------------

----------------------------- P1 0 5 P2 1 7 P3 3 4 -----

--- The

completion order of the 3 processes under the policies

FCFS and RRS (round robin scheduling with CPU

quantum of 2 time units) are • A. FCFS: P1, P2, P3 RR2: P1,

P2, P3 • B. FCFS: P1, P3, P2 RR2: P1, P3, C. FCFS: P1, P2,

P3 RR2: P1, P3, P2 • D. FCFS: P1, P3, P2 RR2: P1, P2, P3 •

23.

https://www.proprofs.com/quiz-school/story.php?title=ntmyndu1

170/320 SUBMITTED TEXT 250 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table. Process Arrival time Time Units Required P1 0 5 P2

1 7 P3 3 4 The completion order of the 3 processes under

the policies FCFS and RR2 (round robin scheduling with

CPU quantum of 2 time units) are (A) FCFS: P1, P2, P3

RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C)

FCFS: P1, P2, P3 RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2:

P1, P2, P3 138 |

97% MATCHING TEXT 250 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table. Process Arrival time Time Units Required P1 0 5 P2

1 7 P3 3 4 The completion order of the 3 processes under

the policies FCFS (first come first served) and RR2 (round

robin scheduling with CPU quantum of 2 time units) are:

a. FCFS : P1,P2,P3 & RR2 : P1,P2,P3 b. FCFS : P1,P3,P2 &

RR2 : P1,P3,P2 c. FCFS : P1,P2,P3 & RR2 : P1,P3,P2 d. FCFS

: P1,P3,P2 & RR2 : P1,P2,P3 35.

https://www.slideshare.net/JasonMarandi1/cpu-scheduling-qusetions

171/320 SUBMITTED TEXT 250 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table. Process Arrival time Time Units Required P1 0 5 P2

1 7 P3 3 4 The completion order of the 3 processes under

the policies FCFS and RR2 (round robin scheduling with

CPU quantum of 2 time units) are (A) FCFS: P1, P2, P3

RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C)

FCFS: P1, P2, P3 RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2:

P1, P2, P3 138 |

100%

MATCHING TEXT 250 WORDS

Consider the 3 processes, P1, P2 and P3 shown in the

table. Process Arrival time Time Units Required P1 0 5 P2

1 7 P3 3 4 The completion order of the 3 processes under

the policies FCFS and RR2 (round robin scheduling with

CPU quantum of 2 time units) are (A) P1, P2, RR2: P1, P2,

P3 (B) FCFS: P1, P3, P2 RR2: P1, P3, P2 (C) FCFS: P1, P2, P3

RR2: P1, P3, P2 (D) FCFS: P1, P3, P2 RR2: P1, P2, P3

https://www.geeksforgeeks.org/gate-gate-cs-2012-question-31/

172/320 SUBMITTED TEXT 53 WORDS

FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2:

P1, P3, P2 (C) FCFS: P1, P2, P3 RR2: P1, P3, P2 (D) FCFS:

P1, P3, P2 RR2: P1, P2, P3 138 | P

52% MATCHING TEXT 53 WORDS

FCFS P1 P3 P4 P5 SJF P2 P4 P3 P5 P1 Non-Preemptive

Priority P2 P5 P3 P1 Round Robin P1 P1 P1 P1 P1 P1 P2 P3

P3 P4 P5 P5 P5

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

173/320 SUBMITTED TEXT 213 WORDS

P1 0 5 P2 1 7 P3 3 4 The completion order of the 3

processes under the policies FCFS and RR2 (round robin

scheduling with CPU quantum of 2 time units) are (A)

FCFS: P1, P2, P3 RR2: P1, P2, P3 (B) FCFS: P1, P3, P2 RR2:

P1, P3, P2 (C) FCFS: P1, P2, P3 RR2: P1, P3, P2 (D) FCFS:

P1, P3, P2 RR2: P1, P2, P3 138 | P a

93% MATCHING TEXT 213 WORDS

P1, P2 and P3 shown in the table. The completion order

of the 3 processes under the policies FCFS and RR2

(Round-Robin scheduling with CPU quantum of 2 time

units) are _____ A. FCFS: P1, P2, P3; RR2: P1, P3, P2 B.

FCFS: P1, P2, P3; RR2: P1, P2, P3 C. FCFS: P1, P3, P2; RR2:

P1, P3, P2 D. FCFS: P1, P3, P2; RR2: P1, P2, P3 A

https://quizlet.com/vn/582275437/osg202-flash-cards/

174/320 SUBMITTED TEXT 30 WORDS

Consider the following set of processes, with the length

of the CPU burst given in milliseconds: Process Burst

Time Priority P1 10 3 P2 1 1 P3 2 3

84% MATCHING TEXT 30 WORDS

Consider the following set of processes, the length of the

CPU burst time given in milliseconds : Process Burst time

P1 6 P2 8 P3 7 P4 3

https://quizlet.com/216326436/osg202-flash-cards/

175/320 SUBMITTED TEXT 34 WORDS

Q10: Consider the following set of processes, with the

length of the CPU burst given in milliseconds: Process

Burst Time Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4

74% MATCHING TEXT 34 WORDS

Q.15 Consider the following set of processes with the

arrival times and the CPU Burst times given in millisecond

Arrival Time Burst Time P 1 0 5 P 2 1 3 P 3 2 3 P 4 4 1

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

176/320 SUBMITTED TEXT 45 WORDS

Consider the following set of processes, with the length

of the CPU burst given in milliseconds: Process Burst

Time Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The

processes are assumed to have arrived in

59% MATCHING TEXT 45 WORDS

Consider the following set of processes, with the length

of the CPU burst given in milliseconds: The processes are

assumed to have arrived in

http://www.eg.bucknell.edu/~cs315/wordpress/wp-content/uploads/2019/10/activity14-02-19.pdf

177/320 SUBMITTED TEXT 50 WORDS

Consider the following set of processes, with the length

of the CPU burst given in milliseconds: Process Burst

Time Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The

processes are assumed to have arrived in order P1, P2, P3,

P4,

73% MATCHING TEXT 50 WORDS

Consider the following set of processes, with the length

of the CPU burst time given in Milliseconds: Process Burst

Time Priority P P2 1 1 P3 2 3 P4 1 4 P5 5 2 The processes

are arrived in the P1, P2, P3, P4, P5,

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

178/320 SUBMITTED TEXT 19 WORDS

The processes are assumed to have arrived in order P1,

P2, P3, P4, P5 all at time 0.

97% MATCHING TEXT 19 WORDS

The processes are assumed to have arrived in order P1,

P2, P3, P4, P5, all at time 0.

https://quizlet.com/143614504/osg-flash-cards/

179/320 SUBMITTED TEXT 19 WORDS

The processes are assumed to have arrived in order P1,

P2, P3, P4, P5 all at time 0.

97% MATCHING TEXT 19 WORDS

The processes are assumed to have arrived in order P1,

P2, P3, P4, P5, all at time 0.

https://qdoc.tips/download/key-os-pdf-free.html

180/320 SUBMITTED TEXT 68 WORDS

Consider the following set of processes, with the length

of the CPU burst given in milliseconds: Process Burst

Time Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The

processes are assumed to have arrived in order P1, P2, P3,

P4, P5 all at time 0. a. Draw two Gantt chart that

illustrates the execution of these processes using

84% MATCHING TEXT 68 WORDS

Consider the following set of processes, with the length

of the CPU-burst time given in milliseconds. Process

Burst time ------- ---------- P1 10 P2 1 P3 2 P4 1 P5 5

The processes are assumed to have arrived in order

P1,P2,P3,P4,P5, all at time 0. Draw two Gantt charts

illustrating the execution of these processes using

http://cs.joensuu.fi/pages/mhk/harjoitukset/kj/h4/h4.html

181/320 SUBMITTED TEXT 68 WORDS

Consider the following set of processes, with the length

of the CPU burst given in milliseconds: Process Burst

Time Priority P1 10 3 P2 1 1 P3 2 3 P4 1 4 P5 5 2 The

processes are assumed to have arrived in order P1, P2, P3,

P4, P5 all at time 0. a. Draw two Gantt chart that

illustrates the execution of these processes using

82% MATCHING TEXT 68 WORDS

Consider the following set of processes, with the length

of the CPU burst time given in milliseconds (excluding the

time): Process Burst Time Priority P1 10 3 P2 1 1 P3 2 3 P4

1 4 P5 5 2 The processes are assumed to have arrived in

order P1, P2, P3, P3, P5, all at time 0. (a) Draw four Gantt

charts illustrating the execution of these processes using

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

182/320 SUBMITTED TEXT 14 WORDS

What is the turnaround time of each process for each of

the scheduling

100% MATCHING TEXT 14 WORDS

What is the turnaround time of each process for each of

the scheduling?

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

183/320 SUBMITTED TEXT 14 WORDS

What is the waiting time of each process for each of the

scheduling

88% MATCHING TEXT 14 WORDS

What is the turnaround time of each process for each of

the scheduling?

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

184/320 SUBMITTED TEXT 51 WORDS

non- primitive priority (a smaller priority number implies a

higher priority) and RR (quantum=1). b. What is the

turnaround time of each process for each of the

scheduling algorithms in part a? c. What is the waiting

time of each process for each of the scheduling

algorithm in part a? d.

93% MATCHING TEXT 51 WORDS

non-preemptive priority (a smaller priority number

implies a higher priority) and RR (quantum =1) scheduling.

(What is the turnaround time of each process for each of

the scheduling algorithm in part a? (c) What is the waiting

time of each process for each of the scheduling

algorithm in part a? (d)

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

185/320 SUBMITTED TEXT 45 WORDS

to run a higher priority task before a lower priority task.

The lower priority task is put on hold for a while and then

resumes when the higher priority task is completed. ?

Non-preemptive Scheduling: Once the CPU has been

allocated to a process

44% MATCHING TEXT 45 WORDS

to run a task with a higher priority before another lower

priority task, even if the lower priority task is still running.

The lower priority task holds for some time and resumes

when the higher priority task finishes its execution. Non-

Preemptive Scheduling In this type of scheduling method,

the CPU has been allocated to a specific process.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

186/320 SUBMITTED TEXT 49 WORDS

Non-preemptive Scheduling: Once the CPU has been

allocated to a process in non-preemptive scheduling, the

process holds the CPU until it releases it, either by

terminating or transitioning to the waiting state. It does

not interrupt a process executing on the CPU in the

middle of its execution

35% MATCHING TEXT 49 WORDS

non-preemptive scheduling once the CPU has been

allocated to a process, the process keeps the CPU until it

releases the CPU either by terminating or switching to the

waiting state. Preemptive scheduling can preempt a

process which is utilizing the CPU in between its

execution

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

187/320 SUBMITTED TEXT 15 WORDS

such as memory size, process priority, or process kind.

Each queue has its own

85% MATCHING TEXT 15 WORDS

such as memory size, process priority, or process type. B.

Each queue has its own

https://quizlet.com/vn/582275437/osg202-flash-cards/

188/320 SUBMITTED TEXT 13 WORDS

waiting in the ready queue, executing on the CPU, and

performing I/O

87% MATCHING TEXT 13 WORDS

waiting in 26 the ready queue, executing on the CPU, and

doing I/O. 33.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

189/320 SUBMITTED TEXT 20 WORDS

Aging is a method of gradually raising the priority of

processes that have been waiting for a long time

52% MATCHING TEXT 20 WORDS

Aging is a technique of gradually increasing the priority of

processes that wait in the system a long time. ----------

https://saf1.net/blog/cpu-scheduling-simulation-algorithms

190/320 SUBMITTED TEXT 18 WORDS

In preemptive scheduling tasks are usually assigned with

priorities. At times it is necessary to run a

58% MATCHING TEXT 18 WORDS

In Preemptive Scheduling, the tasks are mostly assigned

with their priorities. Sometimes it is important to run a

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

191/320 SUBMITTED TEXT 31 WORDS

a higher priority before another task although it is

running. Therefore, the running task is interrupted for

some time and resumed later when the priority task has

finished its execution.

35% MATCHING TEXT 31 WORDS

a higher priority before another lower priority task, even if

the lower priority task is still running. The lower priority

task holds for some time and resumes when the higher

priority task finishes its execution.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

192/320 SUBMITTED TEXT 13 WORDS

amount of time a process has been waiting in the ready

queue.

100% MATCHING TEXT 13 WORDS

Amount of time a process has been waiting in the ready

queue ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

193/320 SUBMITTED TEXT 39 WORDS

turnaround time is the interval of time between the

submission of a process and its completion. The wait

time is the amount of time a process has been waiting in

the ready queue. The response time is the

38% MATCHING TEXT 39 WORDS

Turnaround time The interval from the time of submission

of a process to the time of completion is the turnaround

time. TAT = CT – WT. (e) Waiting time amount of time a

process spends waiting in the ready queue. time

Response time, is the

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

194/320 SUBMITTED TEXT 17 WORDS

P1→P2→P3 The GANTT chart for the RR scheduling

algorithm is P1 P2 P1 P3 P2 P1

55% MATCHING TEXT 17 WORDS

P1 , P2 , P3 The Gantt Chart for the schedule is: time for

P1 = 0; P2 = 24; Average waiting time: (0 + 24 + 27)/3 =

17 P P P 1 2 3 0 24 30 27 • 13.

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

195/320 SUBMITTED TEXT 32 WORDS

P1 P2 P3 The completion order for FCFS is P1→P2→P3

The GANTT chart for the RR scheduling algorithm is P1

P2 P1 P3 P2 P1 P2 P3 P1 The

32% MATCHING TEXT 32 WORDS

P1, P3, P2 • C. FCFS: P1, P2, P3 RR2: P3, P2 • D. FCFS: P3,

P2 RR2: P1, P2, P3 • 23. The

https://www.proprofs.com/quiz-school/story.php?title=ntmyndu1

196/320 SUBMITTED TEXT 55 WORDS

P1 P2 P3 The completion order for FCFS is P1→P2→P3

The GANTT chart for the RR scheduling algorithm is P1

P2 P1 P3 P2 P1 P2 P3 P1 The completion order for RR

is:P1→P3→P2 0 5 12 16 0 2 4 6 8 10 11 13 15 16 144 |

25% MATCHING TEXT 55 WORDS

P1, P2, P3 (B) FCFS: P1, P3, P2 RR2: P3, P2 (C) FCFS: P2,

P3 RR2: P1, P3, P2 (D) P1, P3, P2 RR2: P1, P2, P3

https://www.geeksforgeeks.org/gate-gate-cs-2012-question-31/

197/320 SUBMITTED TEXT 39 WORDS

scheduling algorithm is P1 P2 P1 P3 P2 P1 P2 P3 P1 The

completion order for RR is:P1→P3→P2 0 5 12 16 0 2 4 6

8 10 11 13 15 16 144 | P

59% MATCHING TEXT 39 WORDS

scheduling algorithm is P 0 P 1 P 2 P 2 P 2 P 2 P 2 P 1 P 2

P 1 P 2 P 0 P 1

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

198/320 SUBMITTED TEXT 36 WORDS

P1 P2 P1 P3 P2 P1 P2 P3 P1 The completion order for RR

is:P1→P3→P2 0 5 12 16 0 2 4 6 8 10 11 13 15 16 144 | P

52% MATCHING TEXT 36 WORDS

P225 P381 P430 P544 12 P3 P4P1P2 P5 03 911

processBurst timeArrival time P162 P225 P381 P430

https://slideplayer.com/slide/13412463/

199/320 SUBMITTED TEXT 36 WORDS

P1 P2 P1 P3 P2 P1 P2 P3 P1 The completion order for RR

is:P1→P3→P2 0 5 12 16 0 2 4 6 8 10 11 13 15 16 144 | P

52% MATCHING TEXT 36 WORDS

P1 P1 P1 P1 P1 P1 P2 P3 P3 P4 P5 P5 P5

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

200/320 SUBMITTED TEXT 22 WORDS

process. A process is independent if it cannot be affected

by the other processes executing in the system. A

process

95% MATCHING TEXT 22 WORDS

process: A process is independent if it cannot affect or be

affected by the other processes executing in the system.

A process

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

201/320 SUBMITTED TEXT 28 WORDS

is cooperating if it can affect or be affected by the other

processes executing in the systems. Any process that

shares data with other processes is

59% MATCHING TEXT 28 WORDS

is independent if it cannot affect or be affected by the

other processes executing in the system. A process that

does not share data with any other process is

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

202/320 SUBMITTED TEXT 20 WORDS

sure that if one process is using a shared variable or file,

the other processes will be excluded from

100% MATCHING TEXT 20 WORDS

sure that if one process is using a shared variable or file,

the other processes will be excluded from

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

203/320 SUBMITTED TEXT 11 WORDS

part of the program where the shared memory is

accessed

100% MATCHING TEXT 11 WORDS

part of the program where the shared memory is

accessed #

https://quizlet.com/143614504/osg-flash-cards/

204/320 SUBMITTED TEXT 19 WORDS

no two processes were ever in their critical regions at the

same time, we could avoid race conditions.

61% MATCHING TEXT 19 WORDS

no two processes/threads will ever be in their critical

sections at the same time. Requirements to avoid race

conditions:

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

205/320 SUBMITTED TEXT 42 WORDS

That part of the program where the shared memory is

accessed is called the critical region or critical section.

Thus if no two processes were ever in their critical

regions at the same time, we could avoid race conditions.

Although this

89% MATCHING TEXT 42 WORDS

That part of the program where the shared memory is

accessed is called the critical region or critical section. If

we could arrange matters such no two processes were

ever in their critical regions at the same time, we could

avoid race conditions. Although this

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

206/320 SUBMITTED TEXT 17 WORDS

this is not sufficient for having parallel processes

cooperate correctly and efficiently using shared data.

100% MATCHING TEXT 17 WORDS

this is not sufficient for having parallel processes

cooperate correctly and efficiently using shared data. (

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

207/320 SUBMITTED TEXT 14 WORDS

No assumptions may be made about speeds or the

number of CPUs. 3.

83% MATCHING TEXT 14 WORDS

No assumptions may be made about the speed or the

number of CPUs. 7.2

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

208/320 SUBMITTED TEXT 23 WORDS

No process running outside its critical region may block

other processes. 4. No process should have to wait

forever to enter its

73% MATCHING TEXT 23 WORDS

No process/threads running outside its CS may block

other processes/threads. Bounded Waiting: No

process/thread should have to wait forever to enter its

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

209/320 SUBMITTED TEXT 50 WORDS

No two processes may be simultaneously inside their

critical regions. 2. No assumptions may be made about

speeds or the number of CPUs. 3. No process running

outside its critical region may block other processes. 4.

No process should have to wait forever to enter its critical

region. 8.3.3.2

97% MATCHING TEXT 50 WORDS

No two processes may be simultaneously inside their

critical regions. (Mutual No assumptions may be made

about speeds or the number of CPUs. 3. No process

running outside its critical region may block other

processes. 4. No process should have to wait forever to

enter its critical region.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

210/320 SUBMITTED TEXT 64 WORDS

process */ interested[process] = TRUE; turn = process;

while (turn == process && interested[other] == TRUE); }

void leave_region(int process) /* process:

97% MATCHING TEXT 64 WORDS

process; Interested[process] = TRUE; Turn = process;

While(turn ==process && interested[other]==TRUE); }

Void leave_region(int process){ Interested [process] =

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

211/320 SUBMITTED TEXT 20 WORDS

sure that if one process is using a shared variable or file,

the other processes will be excluded from

100% MATCHING TEXT 20 WORDS

sure that if one process is using a shared variable or file,

the other processes will be excluded from

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

212/320 SUBMITTED TEXT 11 WORDS

part of the program where the shared memory is

accessed

100% MATCHING TEXT 11 WORDS

part of the program where the shared memory is

accessed #

https://quizlet.com/143614504/osg-flash-cards/

213/320 SUBMITTED TEXT 20 WORDS

part of the program where the shared memory is

accessed is called the critical region or critical section. ?

100% MATCHING TEXT 20 WORDS

part of the program where the shared memory is

accessed is called the critical region or critical section.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

214/320 SUBMITTED TEXT 19 WORDS

No assumptions may be made about speeds or the

number of CPUs. 3.

83% MATCHING TEXT 19 WORDS

No assumptions may be made about the speed or the

number of CPUs. 7.2

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

215/320 SUBMITTED TEXT 33 WORDS

No process running outside its critical region may block

other processes. 4. No process should have to wait

forever to enter its

73% MATCHING TEXT 33 WORDS

No process/threads running outside its CS may block

other processes/threads. Bounded Waiting: No

process/thread should have to wait forever to enter its

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

216/320 SUBMITTED TEXT 70 WORDS

No two processes may be simultaneously inside their

critical regions. 2. No assumptions may be made about

speeds or the number of CPUs. 3. No process running

outside its critical region may block other processes. 4.

No process should have to wait forever to enter its critical

region. ?

97% MATCHING TEXT 70 WORDS

No two processes may be simultaneously inside their

critical regions. (Mutual No assumptions may be made

about speeds or the number of CPUs. 3. No process

running outside its critical region may block other

processes. 4. No process should have to wait forever to

enter its critical region.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

217/320 SUBMITTED TEXT 45 WORDS

mutual exclusion a) Lock variable b) Strict alternation c)

Peterson’s solution d)

76% MATCHING TEXT 45 WORDS

Mutual exclusion with Busy waiting? A. Lock Variables B.

Strict Alternation C. Peterson's Solution D.

https://quizlet.com/vn/582275437/osg202-flash-cards/

218/320 SUBMITTED TEXT 17 WORDS

A page table is used for mapping between logical

addresses and physical addresses. A page table

65% MATCHING TEXT 17 WORDS

A page table is the data structure used to store the

mapping between virtual addresses and physical

addresses. A page table

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

219/320 SUBMITTED TEXT 11 WORDS

address generated by the CPU is divided into two parts

100% MATCHING TEXT 11 WORDS

address generated by the CPU is divided into two parts : (

https://quizlet.com/216326436/osg202-flash-cards/

220/320 SUBMITTED TEXT 15 WORDS

address generated by the CPU is divided into two parts

namely page number and

85% MATCHING TEXT 15 WORDS

address generated by the CPU is divided into two parts: a

page number (p) and

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

221/320 SUBMITTED TEXT 15 WORDS

address generated by the CPU is divided into two parts

namely page number and

85% MATCHING TEXT 15 WORDS

address generated by the CPU is divided into two parts; A

page number (p) and

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

222/320 SUBMITTED TEXT 36 WORDS

logical address space is 2 m and size of a page is 2 n

bytes/words, then “m-n” bits of a logical address

designate the page number the “n” bits designate the

41% MATCHING TEXT 36 WORDS

logical address space is 2 to the power of m, a page size

is 2 to the power of n addressing units, then the high

order _____ bits of a logical address designate the page

number, and the ____ low order bits designate the

https://quizlet.com/216326436/osg202-flash-cards/

223/320 SUBMITTED TEXT 33 WORDS

a page is 2 n bytes/words, then “m-n” bits of a logical

address designate the page number the “n” bits designate

the displacement or offset. Therefor the logical address

is:

69% MATCHING TEXT 33 WORDS

a page size is 2 n addressing units (bytes or words), then

the high-order m-n bits of a logical address designate the

page number, and the n low-order bits designate the

page offset. Thus, the logical address is

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

224/320 SUBMITTED TEXT 27 WORDS

it takes 25 nanoseconds to search the TLB and 75

nanoseconds to access memory. If the hit ratio is 70%,

calculate effective memory access time.

72% MATCHING TEXT 27 WORDS

It takes 10 milliseconds to search the TLB and 80

milliseconds to access the physical memory. If the TLB hit

ratio is 0.6, the effective memory access time (

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

225/320 SUBMITTED TEXT 17 WORDS

logical address space is a group of segments. Each

segment has a name and a length.

90% MATCHING TEXT 17 WORDS

logical address space is a collection of segments. Each

segment has a name and a length.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

226/320 SUBMITTED TEXT 33 WORDS

the segment table has a segment limit and segment base.

The base represents the starting address of the segment

in the main memory and the limit specifies the length of

the segment.

54% MATCHING TEXT 33 WORDS

the segment table has a segment base and a segment

limit. The segment base contains the starting physical

address where the segment resides in memory, whereas

the segment limit specifies the length of the segment.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

227/320 SUBMITTED TEXT 37 WORDS

Each entry of the segment table has a segment limit and

segment base. The base represents the starting address

of the segment in the main memory and the limit

specifies the length of the segment. The

58% MATCHING TEXT 37 WORDS

Each entry of the segment table has a segment base and

a segment limit. The segment base contains the starting

physical address where the segment resides in memory,

whereas the segment limit specifies the length of the

segment. the

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

228/320 SUBMITTED TEXT 22 WORDS

the segment number. The displacement, d of the logical

address should be between 0 and limit. If the condition is

not

57% MATCHING TEXT 22 WORDS

the segment table. The offset d of the logical address

must be between 0 and the segment limit. If it is not,

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

229/320 SUBMITTED TEXT 21 WORDS

shown in Figure 1.12. There are 5 segments numbered

from 0 through 4. The segments are stored in physical

memory

71% MATCHING TEXT 21 WORDS

shown in the Figure below. We have five segments

numbered from 0 through 4. The segments are stored in

physical memory

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

230/320 SUBMITTED TEXT 21 WORDS

address of the segment mentioned as base and the

length of the segment mentioned as limit. For example,

segment 0

55% MATCHING TEXT 21 WORDS

address of the segment in physical memory (the base)

and the length of that segment (the limit). For example,

segment 2

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

231/320 SUBMITTED TEXT 14 WORDS

the page which has not been used for the longest

duration of time

76% MATCHING TEXT 14 WORDS

the page that has not been used for the longest period of

time.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

232/320 SUBMITTED TEXT 28 WORDS

that will not be utilized for the longest period of time in

the future. The algorithm is difficult to implement

because it requires future knowledge of the

75% MATCHING TEXT 28 WORDS

that will not be used for the longest period of time.

Unfortunately, the optimal page- replacement algorithm

is difficult to implement, because it requires future

knowledge of the

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

233/320 SUBMITTED TEXT 28 WORDS

Increasing the RAM improves performance because of

_______________ a) Increase in Virtual memory b)

Bigger RAMs are faster c) Less page faults occur d) All of

the

50% MATCHING TEXT 28 WORDS

Increasing the RAM of a computer typically improves

performance because: a) Virtual memory increases b)

Larger RAMs are faster c) Fewer page faults occur d)

None of the

https://quizlet.com/216326436/osg202-flash-cards/

234/320 SUBMITTED TEXT 13 WORDS

a) Internal Fragmentation b) External Fragmentation c)

Both a) and b) d)

91% MATCHING TEXT 13 WORDS

a) internal fragmentation occurs b) external

fragmentation c) both a and b d)

https://quizlet.com/216326436/osg202-flash-cards/

235/320 SUBMITTED TEXT 13 WORDS

c) Both a) and b) d) None of the above 9.

100% MATCHING TEXT 13 WORDS

c) Both (a) and (b) d) None of the above

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

236/320 SUBMITTED TEXT 33 WORDS

it takes 10 milliseconds to search the TLB and 80

milliseconds to access the physical memory. If the TLB hit

ratio is 0.6, the effective memory access time (in

milliseconds) is _________.

100% MATCHING TEXT 33 WORDS

It takes 10 milliseconds to search the TLB and 80

milliseconds to access the physical memory. If the TLB hit

ratio is 0.6, the effective memory access time (in

milliseconds) is _______. [

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

237/320 SUBMITTED TEXT 29 WORDS

The displacement ‘d’ in a logical address must be

____________ a) Greater than segment limit b) Greater

than the segment number c) Between 0 and the segment

number

44% MATCHING TEXT 29 WORDS

The offset 'd' of the logical address must be : a) greater

than segment limit b) between 0 and segment limit c)

between 0 and the segment number d) greater than the

segment number

https://quizlet.com/216326436/osg202-flash-cards/

238/320 SUBMITTED TEXT 11 WORDS

address generated by the CPU is divided into two parts

100% MATCHING TEXT 11 WORDS

address generated by the CPU is divided into two parts : (

https://quizlet.com/216326436/osg202-flash-cards/

239/320 SUBMITTED TEXT 15 WORDS

address generated by the CPU is divided into two parts

namely page number and

85% MATCHING TEXT 15 WORDS

address generated by the CPU is divided into two parts: a

page number (p) and

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

240/320 SUBMITTED TEXT 15 WORDS

address generated by the CPU is divided into two parts

namely page number and

85% MATCHING TEXT 15 WORDS

address generated by the CPU is divided into two parts; A

page number (p) and

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

241/320 SUBMITTED TEXT 14 WORDS

Consider a logical address space of 16 pages of 512

words each, mapped

95% MATCHING TEXT 14 WORDS

Consider a logical address space of eight pages of 1024

words each, mapped

https://quizlet.com/143614504/osg-flash-cards/

242/320 SUBMITTED TEXT 14 WORDS

Consider a logical address space of 16 pages of 512

words each, mapped

95% MATCHING TEXT 14 WORDS

Consider a logical address space of eight pages of 1024

words each, mapped

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

243/320 SUBMITTED TEXT 14 WORDS

Consider a logical address space of 16 pages of 512

words each, mapped

95% MATCHING TEXT 14 WORDS

Consider a logical address space of eight pages of 1024

words each, mapped

https://qdoc.tips/download/key-os-pdf-free.html

244/320 SUBMITTED TEXT 16 WORDS

there in the logical address? How many bits are there in

the physical address? 6.

96% MATCHING TEXT 16 WORDS

there in the logical address? b. How many bits are there

in the physical address? (

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

245/320 SUBMITTED TEXT 33 WORDS

in the physical address? 6. If it takes 125 nanoseconds to

search the TLB and 500 nanoseconds to access memory.

If the hit ratio is 90%, calculate effective memory access

time. 7.

66% MATCHING TEXT 33 WORDS

in the physical memory. It takes 10 milliseconds to search

the TLB and 80 milliseconds to access the physical

memory. If the TLB hit ratio is 0.6, the effective memory

access time (

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

246/320 SUBMITTED TEXT 16 WORDS

read a device register, logical-and to extract a status bit,

and branch if not zero

100% MATCHING TEXT 16 WORDS

read a device register, logical-and to extract a status bit,

and branch if not zero.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

247/320 SUBMITTED TEXT 14 WORDS

The hardware mechanism that enables a device to notify

the CPU is called

100% MATCHING TEXT 14 WORDS

The Hardware mechanism that enables a device to notify

the CPU is called |

https://qdoc.tips/download/key-os-pdf-free.html

248/320 SUBMITTED TEXT 14 WORDS

The hardware mechanism that enables a device to notify

the CPU is called

88% MATCHING TEXT 14 WORDS

The hardware mechanism that allows a device to notify

the CPU is called _______.

https://quizlet.com/216326436/osg202-flash-cards/

249/320 SUBMITTED TEXT 17 WORDS

The hardware mechanism that enables a device to notify

the CPU is called an interrupt. 2.6

90% MATCHING TEXT 17 WORDS

The Hardware mechanism that enables a device to notify

the CPU is calledInterrupt #

https://quizlet.com/143614504/osg-flash-cards/

250/320 SUBMITTED TEXT 18 WORDS

The hardware mechanism that enables a device to notify

the CPU is called an interrupt. 2.6 INTERRUPTS

100% MATCHING TEXT 18 WORDS

The hardware mechanism that enables a device to notify

the CPU is called an interrupt. 3.2 INTERRUPTS

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

251/320 SUBMITTED TEXT 20 WORDS

determines the cause of the interrupt, performs the

required operations, and executes the return-from

operation to resume the CPU

57% MATCHING TEXT 20 WORDS

determines the cause of the interrupt, performs the

necessary processing and executes a return from the

interrupt instruction to return the CPU

https://quizlet.com/216326436/osg202-flash-cards/

252/320 SUBMITTED TEXT 20 WORDS

determines the cause of the interrupt, performs the

required operations, and executes the return-from

operation to resume the CPU

60% MATCHING TEXT 20 WORDS

determines the cause of the interrupt, performs the

necessary processing, and executes a return from

interrupt instruction to return the CPU

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

253/320 SUBMITTED TEXT 11 WORDS

block device transfers a block of bytes as a unit

100% MATCHING TEXT 11 WORDS

block device transfers a block of bytes as a unit.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

254/320 SUBMITTED TEXT 25 WORDS

a sequential device data transfer occurred in a fixed order

determined by the device, whereas a random access

device can instruct the device to

75% MATCHING TEXT 25 WORDS

A sequential device transfers data in a fixed order that is

determined by the device, whereas the user of a random-

access device can instruct the device to

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

255/320 SUBMITTED TEXT 17 WORDS

A sharable device can be accessed by several processes

or threads but a dedicated device cannot.

78% MATCHING TEXT 17 WORDS

A sharable device can be used concurrently by several

processes or threads; a dedicated device cannot,

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

256/320 SUBMITTED TEXT 24 WORDS

device. The I/O scheduler may rearrange the contents of

the wait queue to improve the system performance and

average access time experienced by

56% MATCHING TEXT 24 WORDS

device. 3. The I/O scheduler rearranges the order of the

queue to improve the overall system efficiency and the

average response time experienced by

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

257/320 SUBMITTED TEXT 14 WORDS

First Come First Serve (FCFS), Shortest Job First (SJF),

Priority scheduling, Round robin

84% MATCHING TEXT 14 WORDS

First Come First Serve (FCFS) 2. Shortest-Job-First (SJF)

Scheduling 3. Shortest Remaining Time 4. Priority

Scheduling 5. Round Robin

https://www.slideshare.net/DrPankajKumar34/operating-system-sheduling

258/320 SUBMITTED TEXT 118 WORDS

Consider the following table of arrival time and burst time

for three processes P0, P1, and P2. Process Arrival time

Burst Time P0 0 ms 9 ms P1 1 ms 4 ms P2 2 ms 9 ms 7.

The pre-emptive shortest job first scheduling algorithm is

used. Scheduling is carried out only at

98% MATCHING TEXT 118 WORDS

Consider the following table of arrival time and burst time

for three processes P o , P 1 and P 2 . Process Arrival Time

Burst Time P 1 0 ms 9 ms P 2 1 ms 4 ms P 3 2 ms 9 ms

The pre-emptive shortest job first scheduling algorithm is

used. Scheduling is carried out only at

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

259/320 SUBMITTED TEXT 118 WORDS

Consider the following table of arrival time and burst time

for three processes P0, P1, and P2. Process Arrival time

Burst Time P0 0 ms 9 ms P1 1 ms 4 ms P2 2 ms 9 ms 7.

The pre-emptive shortest job first scheduling algorithm is

used. Scheduling is carried out only at

100% MATCHING TEXT 118 WORDS

Consider the following table of arrival time and burst time

for three processes P0, P1 and P2. • 7. Process Arrival time

Burst Time P0 0 ms 9 ms P1 1 ms 4 ms P2 2 ms 9 ms The

pre-emptive shortest job first scheduling algorithm is

used. Scheduling is carried out only at

https://www.slideshare.net/JasonMarandi1/cpu-scheduling-qusetions

260/320 SUBMITTED TEXT 22 WORDS

arrival or completion of processes. What is the average

waiting time for the three processes? A. 5.0 ms B. 4.33 ms

100% MATCHING TEXT 22 WORDS

arrival or completion of processes. What is the average

waiting time for the three processes? a. 5.0 ms b. 4.33 ms

25.

https://www.slideshare.net/JasonMarandi1/cpu-scheduling-qusetions

261/320 SUBMITTED TEXT 30 WORDS

arrival or completion of processes. What is the average

waiting time for the three processes? A. 5.0 ms B. 4.33 ms

C. 6.33 ms D. 7.33 ms 8.

100% MATCHING TEXT 30 WORDS

arrival or completion of processes. What is the average

waiting time for the three processes? a) 5.0 ms b)4.33 ms

c)6.33 ms d) 7.33 ms [

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

262/320 SUBMITTED TEXT 33 WORDS

Let the time taken to switch between user and kernel

modes of execution be t1 while the time taken to switch

between two processes be t2. Which of the following is

TRUE? (

100% MATCHING TEXT 33 WORDS

Let the time taken to switch between user and kernel

modes of execution be t 1 while the time taken to switch

between two processes be t 2 which of the following is

true?

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

263/320 SUBMITTED TEXT 24 WORDS

B. t1 = t2 C. t1 > t2 D. Nothing can be said about the

relation between t1 and t2 9.

100% MATCHING TEXT 24 WORDS

b) t 1 = t 2 c) t 1 > t 2 d) Nothing can be said about the

relation between t 1 and t 2 [

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

264/320 SUBMITTED TEXT 37 WORDS

A set of wires and a rigidly defined protocol that specifies

a set of messages that can be sent on the wires. A. Port B.

Node C. Bus D. None of these 210 |

100% MATCHING TEXT 37 WORDS

a set of wires and a rigidly defined protocol that specifies

a set of messages that can be sent on the wires. a) port b)

node c) bus d) None of these

https://quizlet.com/216326436/osg202-flash-cards/

265/320 SUBMITTED TEXT 38 WORDS

The _________ presents a uniform device-access

interface to the I/O subsystem, much as system calls

provide a standard interface between the application and

the operating system. A. Devices B. Buses C. Device

drivers D. I/O systems 11.

95% MATCHING TEXT 38 WORDS

The _________ present a uniform device-access

interface to the I/O subsystem, much as system calls

provide a standard interface between the application and

the operating system. a) devices b) buses c) device drivers

d) I/O systems

https://quizlet.com/216326436/osg202-flash-cards/

266/320 SUBMITTED TEXT 26 WORDS

The interrupt vector contains A. The interrupts B. the

memory addresses of specialized interrupt handlers C.

the identifiers of interrupts D. the device addresses 2.11

100% MATCHING TEXT 26 WORDS

The interrupt vector contains : a) the interrupts b) the

memory addresses of specialized interrupt handlers c) the

identifiers of interrupts d) the device addresses

https://quizlet.com/216326436/osg202-flash-cards/

267/320 SUBMITTED TEXT 12 WORDS

mode switch. Context switching can occur only in kernel

mode. 8.

100% MATCHING TEXT 12 WORDS

mode switch. Context switching can occur only in kernel

mode.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

268/320 SUBMITTED TEXT 25 WORDS

A set of processes is deadlocked if each process in the set

is waiting for an event that only another process in the set

77% MATCHING TEXT 25 WORDS

A set of processes is deadlocked if: Each process in the

set is waiting for an event (resource becoming available,

mutex, message arriving) That event can be caused only

be another process in the set 9.2

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

269/320 SUBMITTED TEXT 25 WORDS

A set of processes is deadlocked if each process in the set

is waiting for an event that only another process in the set

77% MATCHING TEXT 25 WORDS

A set of processes is deadlocked if: Each process in the

set is waiting for an event (resource becoming available,

mutex, message arriving) That event can be caused only

be another process in the set 9.2

https://brianpho.com/CR4-DL/dc8a280a7531db5060de1eb988af1aa2/cpsc-457.pdf

270/320 SUBMITTED TEXT 36 WORDS

a deadlock is detected, it is easy to see which resources

are needed. To do the recovery, a process that owns a

needed resource is rolled back to a point in time before it

acquired

97% MATCHING TEXT 36 WORDS

a deadlock is detected, it is easy to see which resources

are needed. To do the recovery of deadlock, a process

that owns a needed resource is rolled back to a point in

time before it acquired

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

271/320 SUBMITTED TEXT 22 WORDS

No-Preemption Condition If a process is holding some

resources and requests another resource that cannot be

immediately allocated to it, then

90% MATCHING TEXT 22 WORDS

no preemption, if a process is holding some resources

and requests another resource that cannot be

immediately allocated to it : a) then

https://quizlet.com/216326436/osg202-flash-cards/

272/320 SUBMITTED TEXT 42 WORDS

requests another resource that cannot be immediately

allocated to it, then all resources currently being held are

pre-empted. The pre-empted resources are added to the

list of resources for which the process is waiting. The

process will be restarted only when

72% MATCHING TEXT 42 WORDS

requests another resource that cannot be immediately

allocated to it (that is, the process must wait), all

resources currently being held are preempted. That is,

these resources are implicitly released. The preempted

resources are added to the list of resources for which the

process is waiting. The process will be restarted only

when

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

273/320 SUBMITTED TEXT 83 WORDS

there exists a set {P 0 , P 1 , …, P n } of waiting processes

such that: P 0 is waiting for a resource that is held by P 1 ,

P 1 is waiting for a resource that is held by P 2 , …, P n-1 is

waiting for a resource that is held by P n and P

85% MATCHING TEXT 83 WORDS

there exists a set {P0, P1,, P0} of waiting processes such

that P0 is waiting for a resource that is held by P1, P1 is

waiting for a resource that is held by P2,, Pn 1 is waiting

for a resource that is held by Pn, and P0

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

274/320 SUBMITTED TEXT 19 WORDS

P n is waiting for a resource that is held by P 0 .

87% MATCHING TEXT 19 WORDS

P1 is waiting for a resource that is held by P2,,

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

275/320 SUBMITTED TEXT 76 WORDS

such that: P 0 is waiting for a resource that is held by P 1 ,

P 1 is waiting for a resource that is held by P 2 , …, P n-1 is

waiting for a resource that is held by P n and P n is

waiting for a resource that is held by P 0 .

100% MATCHING TEXT 76 WORDS

such that P 0 is waiting for a resource that is held by P 1 ,

P 1 is waiting for a resource that is held by P 2 , ……,P n- 1

is waiting for a resource that is held by P n , and P n is

waiting for a resource that is held by P 0 .

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

276/320 SUBMITTED TEXT 17 WORDS

The simplest way to break a deadlock is to kill one or

more processes. ? The

70% MATCHING TEXT 17 WORDS

The simplest way to break a deadlock is to Kills one of the

processes #The

https://quizlet.com/143614504/osg-flash-cards/

277/320 SUBMITTED TEXT 17 WORDS

The simplest way to break a deadlock is to kill one or

more processes. ? The

70% MATCHING TEXT 17 WORDS

The simplest way to break a deadlock is to | Kills one of

the processes #The

https://qdoc.tips/download/key-os-pdf-free.html

278/320 SUBMITTED TEXT 20 WORDS

if a process is holding some resources and requests

another resource that cannot be immediately allocated to

it, then

97% MATCHING TEXT 20 WORDS

if a process is holding some resources and requests

another resource that cannot be immediately allocated to

it : a) then

https://quizlet.com/216326436/osg202-flash-cards/

279/320 SUBMITTED TEXT 18 WORDS

requests another resource that cannot be immediately

allocated to it, then all resources currently being held are

82% MATCHING TEXT 18 WORDS

requests another resource that cannot be immediately

allocated to it (that is, the process must wait), all

resources currently being held are

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

280/320 SUBMITTED TEXT 18 WORDS

The objective of multiprogramming is to have some

process running at all times, to maximize CPU utilization

94% MATCHING TEXT 18 WORDS

The objective of multiprogramming is to have some

process running at all times, in order to maximize CPU

utilization.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

281/320 SUBMITTED TEXT 18 WORDS

The objective of multiprogramming is to have some

process running at all times, to maximize CPU utilization

100% MATCHING TEXT 18 WORDS

The objective of multiprogramming is to have some

process running at all times, to maximize CPU utilization.

•

https://www.slideshare.net/mohsinalilarik1/cpu-scheduling-108582483

282/320 SUBMITTED TEXT 26 WORDS

controls the degree of Multiprogramming. It chooses a

perfect mix of IO bound and CPU bound processes

among the jobs present in the pool. If

74% MATCHING TEXT 26 WORDS

controls the degree of Multiprogramming. The purpose

of long term scheduler is to choose a perfect mix of IO

bound and CPU bound processes among the jobs

present in the pool. If

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

283/320 SUBMITTED TEXT 35 WORDS

most of the time. This will decrease the degree of

multiprogramming. So the job of long term scheduler is

very critical and it may affect the system for long time. 2.

Short term scheduler

62% MATCHING TEXT 35 WORDS

most of the time. This will reduce the degree of

Multiprogramming. Therefore, the Job of long term

scheduler is very critical and may affect the system for a

very long time. 2. Short term scheduler

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

284/320 SUBMITTED TEXT 15 WORDS

P1 arrives at 1, P2 arrives at time 2, P3 arrives at time 3

95% MATCHING TEXT 15 WORDS

P 1 arrives at time 0, P 2 arrives at time 8, P 3 arrives at

time 8,

http://www.eg.bucknell.edu/~cs315/wordpress/wp-content/uploads/2019/10/activity14-02-19.pdf

285/320 SUBMITTED TEXT 19 WORDS

P2 and P3 are still in the waiting queue. Step 2) At time

=2, P2

84% MATCHING TEXT 19 WORDS

P3 and P5 are in the waiting queue. Step 8) At time = 11,

process P2

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

286/320 SUBMITTED TEXT 14 WORDS

It is difficult to know the length of the upcoming CPU

request. ?

87% MATCHING TEXT 14 WORDS

It is to know the length of the upcoming CPU request. •

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

287/320 SUBMITTED TEXT 11 WORDS

knowledge of how long a process or job will run.

100% MATCHING TEXT 11 WORDS

knowledge of how long a process or job will run. •

https://www.guru99.com/shortest-job-first-sjf-scheduling.html

288/320 SUBMITTED TEXT 23 WORDS

to know the length of the upcoming CPU request. ?

Requires prior knowledge of how long a process or job

will run.

59% MATCHING TEXT 23 WORDS

to predict the length of the upcoming CPU burst. ? May

cause very long times or starvation. ? knowledge of how

long a process or job will run. ?

https://www.slideshare.net/Ankur_014/shortest-job-firstsjf-scheduling

289/320 SUBMITTED TEXT 17 WORDS

In contiguous memory allocation, each process is

contained in single contiguous section of memory. All

90% MATCHING TEXT 17 WORDS

In contiguous memory allocation : a) each process is

contained in a single contiguous section of memory b) all

https://quizlet.com/216326436/osg202-flash-cards/

290/320 SUBMITTED TEXT 29 WORDS

Main memory must accommodate both operating

system and various user processes. The memory is

divided into two partitions. One for resident operating

system and one for user processes.

91% MATCHING TEXT 29 WORDS

main memory must accommodate both the operating

system and the various user processes. The memory is

usually divided into two partitions. One for the resident

operating system and one for the user processes.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

291/320 SUBMITTED TEXT 16 WORDS

memory is divided into several fixed size partition. Each

partition may contain exactly one process.

76% MATCHING TEXT 16 WORDS

memory is divided into several fixed sized partitions, each

partition may contain ________. a) exactly one process

https://quizlet.com/216326436/osg202-flash-cards/

292/320 SUBMITTED TEXT 20 WORDS

initially all memory is available for user processes and is

considered one large block of available memory, a hole.

97% MATCHING TEXT 20 WORDS

Initially, all memory is available for user processes, and is

considered as one large block of available memory, a

hole.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

293/320 SUBMITTED TEXT 18 WORDS

The operating system keeps a table initially which parts of

memory are available and which are occupied.

91% MATCHING TEXT 18 WORDS

The operating system keeps a table indicating which parts

of memory are available and which are occupied.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

294/320 SUBMITTED TEXT 11 WORDS

First fit: Allocate the first hole that is big enough.

100% MATCHING TEXT 11 WORDS

First-fit: Allocate the first hole that is big enough. (

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

295/320 SUBMITTED TEXT 11 WORDS

First fit: Allocate the first hole that is big enough.

100% MATCHING TEXT 11 WORDS

First-fit Allocate the first hole that is big enough.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

296/320 SUBMITTED TEXT 11 WORDS

First fit: Allocate the first hole that is big enough.

100% MATCHING TEXT 11 WORDS

First fit: allocate the first hole that is big enough,

https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/

297/320 SUBMITTED TEXT 11 WORDS

First fit: Allocate the first hole that is big enough.

100% MATCHING TEXT 11 WORDS

First-fit: allocate the first hole that is big enough ◦

https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf

298/320 SUBMITTED TEXT 11 WORDS

Best fit: Allocate the smallest hole that is big enough

100% MATCHING TEXT 11 WORDS

Best-fit: Allocate the smallest hole that is big enough;

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

299/320 SUBMITTED TEXT 11 WORDS

Best fit: Allocate the smallest hole that is big enough

100% MATCHING TEXT 11 WORDS

Best-fit Allocate the smallest hole that is big enough.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

300/320 SUBMITTED TEXT 11 WORDS

Best fit: Allocate the smallest hole that is big enough

100% MATCHING TEXT 11 WORDS

best-fit: allocate the smallest hole that is big enough (

https://quizlet.com/607633723/cpsc-351-study-guide-flash-cards/

301/320 SUBMITTED TEXT 17 WORDS

Best fit: Allocate the smallest hole that is big enough thus

it produces smallest leftover hole.

68% MATCHING TEXT 17 WORDS

Best-fit: allocate the smallest hole that is big enough

(search entire list) → smallest leftover hole ◦

https://codex.cs.yale.edu/avi/os-book/OS9/study-guide/Study-Guide.pdf

302/320 SUBMITTED TEXT 17 WORDS

generated by CPU is divided into parts page number and

page offset. By using page number

65% MATCHING TEXT 17 WORDS

generated by the CPU is divided into two parts: a page

number (p) and a page offset (d). The page number

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

303/320 SUBMITTED TEXT 12 WORDS

Page table. The page table contains base address of page

in

90% MATCHING TEXT 12 WORDS

page table. The page table contains the base address of

each page in

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

304/320 SUBMITTED TEXT 12 WORDS

Page table. The page table contains base address of page

in

90% MATCHING TEXT 12 WORDS

page table. The page table contains the base address of

each page in

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

305/320 SUBMITTED TEXT 12 WORDS

memory; the free memory space is broken into little

pieces.

100% MATCHING TEXT 12 WORDS

memory, the free memory space is broken into little

pieces.

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

306/320 SUBMITTED TEXT 12 WORDS

memory; the free memory space is broken into little

pieces.

100% MATCHING TEXT 12 WORDS

memory, the free memory space is broken into little

pieces.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

307/320 SUBMITTED TEXT 16 WORDS

Some portion of memory is left unused, as it cannot be

used by another process.

100% MATCHING TEXT 16 WORDS

Some portion of memory is left unused, as it cannot be

used by another process. 157 2

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

308/320 SUBMITTED TEXT 12 WORDS

A file is a named collection of related information

recorded on

90% MATCHING TEXT 12 WORDS

A file is a named collection of related information that is

recorded on

https://docplayer.net/186573333-Cs8493-operating-systems-regulations-2017-iv-semester-department- ...

309/320 SUBMITTED TEXT 14 WORDS

FILE SYSTEM A file is a named collection of related

information recorded on

80% MATCHING TEXT 14 WORDS

FILE A file is a named collection of related information

that is recorded on

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

310/320 SUBMITTED TEXT 22 WORDS

a file- ? Make a system call specifying both the name and

the info to be written to the file. ?

57% MATCHING TEXT 22 WORDS

a file, we make a system call specifying both name of the

file and the information to be written to the file.

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

311/320 SUBMITTED TEXT 29 WORDS

a file- ? Use a system call that specifies the name of the

file and where in memory the next block of the file should

put. ? The

94% MATCHING TEXT 29 WORDS

a file, we use a system call that specifies the name of the

file and where (in memory) the next block of the file

should be put. Again, the

https://d5ofvi41ggben.cloudfront.net/6a427bd5-5950-4c96-acb0-e2d5677e1c2c-1571835796976-os.pdf

312/320 SUBMITTED TEXT 35 WORDS

the disk head is located initially at 32, Find the number of

disk moves required with FCFS if the disk queue of I/O

block requests are 98, 37, 14, 124, 65, 67 . 7.

94% MATCHING TEXT 35 WORDS

the Disk head is located initially at 32, find the number of

disk moves required with FCFS if the disk queue of I/O

blocks requests are 98,37,14,124,65,67 321 #

https://quizlet.com/143614504/osg-flash-cards/

313/320 SUBMITTED TEXT 35 WORDS

the disk head is located initially at 32, Find the number of

disk moves required with FCFS if the disk queue of I/O

block requests are 98, 37, 14, 124, 65, 67 . 7.

86% MATCHING TEXT 35 WORDS

the Disk head is located initially at 32, find the number of

disk moves requ ired with FCFS if the disk queue of I/O

blocks requests are 98,37,14,124,65,67 | 321 #

https://qdoc.tips/download/key-os-pdf-free.html

314/320 SUBMITTED TEXT 15 WORDS

The set of tracks that are at one arm position make up a

___________.

100% MATCHING TEXT 15 WORDS

The set of tracks that are at one arm position make up a

___________.

https://quizlet.com/216326436/osg202-flash-cards/

315/320 SUBMITTED TEXT 21 WORDS

The time taken to move the disk arm to the desired

cylinder is called the ____________ 293 |

100% MATCHING TEXT 21 WORDS

The time taken to move the disk arm to the desired

cylinder is called the :

https://quizlet.com/216326436/osg202-flash-cards/

316/320 SUBMITTED TEXT 20 WORDS

Tertiary storage consists of high-capacity data archives

using vast numbers of removable media, such as tapes or

optical discs.

72% MATCHING TEXT 20 WORDS

Tertiary storage comprises high-capacity data archives

designed to incorporate vast numbers of removable

media, such as tapes or optical discs.

https://www.sciencedirect.com/topics/computer-science/tertiary-storage

317/320 SUBMITTED TEXT 14 WORDS

Figure 6.11: Tertiary storage platforms: (A) Quantum tape

library, (B) BluRay optical jukebox [

100% MATCHING TEXT 14 WORDS

Figure 17.24. Tertiary storage platforms: (A) Quantum tape

library, (B) BluRay optical jukebox.

https://www.sciencedirect.com/topics/computer-science/tertiary-storage

318/320 SUBMITTED TEXT 21 WORDS

Tertiary storage consists of high-capacity data archives

using vast numbers of removable media, such as tapes or

optical discs. 6.11

72% MATCHING TEXT 21 WORDS

Tertiary storage comprises high-capacity data archives

designed to incorporate vast numbers of removable

media, such as tapes or optical discs.

https://www.sciencedirect.com/topics/computer-science/tertiary-storage

319/320 SUBMITTED TEXT 19 WORDS

If the disk head is located initially at 32, find the number

of disk moves required with FCFS,

100% MATCHING TEXT 19 WORDS

If the Disk head is located initially at 32, find the number

of disk moves required with FCFS

https://quizlet.com/143614504/osg-flash-cards/

320/320 SUBMITTED TEXT 19 WORDS

If the disk head is located initially at 32, find the number

of disk moves required with FCFS,

88% MATCHING TEXT 19 WORDS

If the Disk head is located initially at 32, find the number

of disk moves requ ired with FCFS

https://qdoc.tips/download/key-os-pdf-free.html

