
Document Information

Analyzed document INF_2036.pdf (D164968114)

Submitted 4/25/2023 7:43:00 AM

Submitted by Dipankar Saikia

Submitter email dipgu2009@gmail.com

Similarity 9%

Analysis address dipgu2009.gauhati@analysis.urkund.com

Sources included in the report

URL: https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

Fetched: 4/25/2023 7:44:00 AM
4

URL: https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

Fetched: 4/25/2023 7:44:00 AM
10

URL: https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

Fetched: 12/2/2022 8:45:50 AM
20

URL: https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

Fetched: 9/19/2022 3:16:42 PM
61

URL: https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

Fetched: 7/7/2021 12:00:18 PM
73

URL: https://jeppiaarcollege.org/wp-content/uploads/2019/02/II-YEAR-IV-SEM-CS8494-

SOFTWARE-ENGINEER...

Fetched: 9/20/2021 9:20:22 AM

4

URL: https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

Fetched: 11/8/2021 10:27:55 PM
52

URL: https://pdfcoffee.com/software-engineering-notes-pdf-free.html

Fetched: 9/7/2021 12:42:17 AM
6

URL: https://www.professionalqa.com/software-maintenance-models

Fetched: 4/25/2023 7:44:00 AM
16

Entire Document

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf
https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf
https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf
https://jeppiaarcollege.org/wp-content/uploads/2019/02/II-YEAR-IV-SEM-CS8494-SOFTWARE-ENGINEERING.pdf
https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf
https://pdfcoffee.com/software-engineering-notes-pdf-free.html
https://www.professionalqa.com/software-maintenance-models

(1) GAUHATI UNIVERSITY Institute of Distance and Open Learning Second Semester (under CBCS) M.Sc.-IT Paper: INF-

2036 SOFTWARE ENGINEERING Contents: BLOCK I: FUNDAMENTALS OF SOFTWARE ENGINEERING AND SOFTWARE

DESIGN Unit 1 : Introduction to Software Engineering Unit 2 : Software Process Models Unit 3 : Software Requirements

and Analysis Unit 4 : Software Project Planning Unit 5 : Software Decomposition and Cost Estimation Techniques Unit 6 :

Software Design I Unit 7 : Software Design II Unit 8 : Software Design III BLOCK II: SOFTWARE CODING, TESTING AND

MAINTENANCE Unit 1 : Software Coding Unit 2 : Software Testing I Unit 3 : Software Testing II Unit 4 : Software

Maintenance Unit 5 : Software Maintenance Models BLOCK III: SOFTWARE RELIABILITY AND SOFTWARE MANAGEMENT

Unit 1 : Software Reliability Unit 2 : Software Quality Management Unit 3 : Software Configuration Management M.Sc.-IT-

19-II-2036

(2) SLM Development Team: HoD, Department of Computer Science, GU Programme Coordinator, MSc-IT (GUIDOL)

Prof. Shikhar Kr. Sarma, Department of IT, GU Dr. Khurshid Alam Borbora, Assistant Professor, GUIDOL Dr. Swapnanil

Gogoi, Assistant Professor, GUIDOL Mrs. Pallavi Saikia, Assistant Professor, GUIDOL Dr. Rita Chakraborty, Assistant

Professor, GUIDOL Mr. Hemanta Kalita, Assistant Professor, GUIDOL Contributors: Mr. Hem Chandra Das (Block I : Units-

1 & 2) Asstt. Prof., Dept. of Computer Science & Technology Bodoland University Kokrajhar (BTAD), Assam Mrs. Chayanika

Talukdar (Block I: Units- 3 & 4) Asstt. Prof., Dept. of Computer Science NERIM, Guwahati, Assam Mrs. Shilpi Singh (Block I

: Unit- 5, Block II: Units- 1 &2) Asstt. Prof., Dept. of Computer Science LCB College, Guwahati, Assam Dr. Gautam

Chakrabarty (Block I : Units- 6 & 7) Asstt. Prof., Dept. of Computer Science NERIM, Guwahati, Assam Mr. Subrat Chetia

(Block I: Unit- 8) Asstt. Prof., Dept. of Computer Science PDUAM, Dalgaon,Assam Mr. Debashis Dev Misra (Block II: Unit-

3) Asstt. Prof., Dept. of Computer Science and Engineering Royal Global University, Guwahati, Assam Mrs. Pinky Saikia

Dutta (Block II : Unit- 4) Asstt. Prof., Dept. of Computer Science and Engineering GIMT, Guwahati, Assam Dr. Utpal

Barman (Block II: Unit- 5) Asstt. Prof., Dept. of Computer Science and Engineering GIMT, Guwahati, Assam Dr. Aniruddha

Deka (Block III: Unit- 1) Asstt. Prof., Dept. of Computer Science and Engineering Royal Global University, Guwahati,

Assam Mr. Adarsh Pradhan (Block III: Units- 2 & 3) Asstt. Prof., Dept. of Computer Science and Engineering GIMT,

Guwahati, Assam Course Coordination: Director IDOL, Gauhati University Prof. Anjana Kakoti Mahanta Prof., Dept.

Computer Science, G.U. Dipankar Saikia Editor SLM, GUIDOL

BLOCK I: FUNDAMENTALS OF SOFTWARE ENGINEERING AND SOFTWARE DESIGN

1 | P a g e Space for learners: UNIT 1: INTRODUCTION TO SOFTWARE ENGINEERING Unit Structure: 1.1 Introduction 1.2

Unit Objectives 1.3 Software 1.4 Characteristics of Software 1.5 Classification of Software 1.6 Software Crisis 1.6.1 Causes

of Software Crisis 1.6.2 Solution of Software Crisis 1.7 Software Engineering 1.8 Approaches to Software Engineering 1.9

Software Engineering Challenges 1.10 Software Development Life Cycle (SDLC) 1.10.1 What is SDLC? 1.10.2 SDLC Models

1.11 Summing Up 1.12 Answers to Check Your Progress 1.13 Possible Questions 1.14 References and Suggested Readings

1.1 INTRODUCTION

87% MATCHING BLOCK 1/246

Software Engineering is a study and approach to the design, development, operation, and maintenance of software

systems that is

methodical, disciplined, and quantitative. 1.2 UNIT OBJECTIVES Software engineering's main objective is to create

software development processes and procedures that can scale up for large systems and can be utilized consistently to

produce high-quality

2 | P a g e Space for learners: software at a low cost and with a short cycle time. In this chapter we discussed the

characteristics of software, Classification of software, software crisis, about software, software engineering, approach to

software engineering, software engineering challenges and software development life cycle. 1.3 SOFTWARE A

programme or set of programmes containing instructions that offer desired functionality is referred to as software. And

engineering is the process of creating something that fulfils a specific function and solves problems in a cost-effective

manner. 1.4 CHARACTERISTICS

38% MATCHING BLOCK 2/246

OF SOFTWARE ? Maintainability – The programme should be able to evolve to suit changing requirements. ? Efficiency

– Software should not waste computational resources such as memory, CPU cycles,

and so on. ? Correctness –

64% MATCHING BLOCK 3/246

If the various requirements mentioned in the SRS document have been correctly implemented, a software product is

correct. ? Reusability – If the various modules of

a software product can be easily reused to construct other products, the product has strong reusability. ? Testability – In

this case, software aids in the creation of test criteria as well as the evaluation of the software against those requirements.

? Reliability – It's a criterion for software quality. Over an indeterminate time period, the extent to which software may

81% MATCHING BLOCK 4/246

be expected to accomplish its desired function. ? Portability – In this case, the software can be transferred from one

computer system or environment to another. ? Adaptability– In this situation, the

programme supports a variety of system constraints, and the user's needs can be met by altering the software.

3 | P a g e Space for learners: ? Interoperability – The ability of two or more functional units to work together to process

data. 1.5 CLASSIFICATION OF SOFTWARE ? System Software – System software is required to manage computer

resources and facilitate application programme execution. This category includes operating systems, assemblers,

compilers, editors, drivers, linkers and loaders etc. System software is required for the operation of a computer.

Operating systems controls the memory and operations of the computer, as well as all of its software and hardware. The

compiler translates the programmer's source code (high-level language) into a machine-level language (low-level

language). Assembler is a programme that translates assembly code(low- level language) into machine code(target

code). ? Networking and Web Applications Software – Computer networking software offers the necessary functionality

for computers to communicate with one another and with data storage facilities. When software is operating on a

network of computers, networking software is also used (such as World Wide Web). It comprises all network

administration software, server software, security and encryption software, and web- based application development

tools such as HTML, PHP, and XML, etc. ? Embedded Software – This sort of software is embedded in the hardware,

usually in the Read Only Memory (ROM), as part of a larger system, and is used to support specific functions under the

control conditions. Software used in instrumentation and control applications such as washing machines, satellites,

microwaves, and so on. ? Reservation Software – A reservation system is generally used to store and retrieve information

about air travel, vehicle rentals, hotels, and other activities, as well as to conduct transactions. They also provide access

to bus and train reservations; however they aren't always linked to the main system. These are also used in the hotel

business to communicate computerised information to users, such as

4 | P a g e Space for learners: making a reservation and making sure the hotel is not overbooked. ? Business Software –

This type of software is used to support business applications and is the most common type of software. Inventory

management, accounting, banking, hospitals, schools, stock markets, and other software are examples. ? Entertainment

Software – Education and entertainment software is a valuable tool for educational organisations, particularly those who

work with young children. There is a wide range of entertainment software such as computer games, educational games,

translation software, mapping software, etc. ? Artificial Intelligence Software – Expert systems, decision support systems,

pattern recognition software, artificial neural networks, and other types of software are included in this area. Complex

problems are involved, and complex computations using non-numerical algorithms have no impact. ? Scientific Software

– Scientific and engineering software supports a scientific or engineering user's requirements for performing enterprise-

specific tasks. This type of software is created for specific applications using industry-specific principles, techniques, and

formulae. Software such as PYTHON, MATLAB, AUTOCAD, PSPICE, ORCAD, and others are examples. ? Utilities Software

– These programmes execute specific jobs and differ in size, cost, and complexity from other software. Anti-virus

software, speech recognition software, compression programmes, and other programmes are examples. ? Document

Management Software – To reduce paperwork, Document Management Software is used to track, manage, and store

papers. Such systems can maintain track of all the many versions created and edited by different users (history tracking).

Storage, versioning, metadata, security, as well as indexing and retrieval are all typical features. 1.6 SOFTWARE CRISIS The

problem of building meaningful and efficient computer programmes in the time allotted is referred to as a software crisis

in

5 | P a g e Space for learners: computer science. Despite rapidly expanding software demand, complexity of software,

and software issues, the software crisis was caused by the use of the same workforce, methodologies, and tools. With

increase in the complexity of software, many software problems arise because existing methods were insufficient. If we

continue to employ the same workforce, processes, and tools in the face of rapidly expanding software demand,

complexity, and challenges, we will face issues such as software Size and Cost, software budgeting, software efficiency,

software quality, and software managing and delivering, and so on. This is referred to as a "software crisis." 1.6.1 Causes of

Software Crisis ? Software's complexity and expectations are increasing on a daily basis. Software is becoming more

expensive and more complex. ? The cost of owning and maintaining software was equal to the cost of creating it. ? At

the time, Projects were running late. ? Software was inefficient at the time. ? The software's quality was poor. ? Software

frequently failed to fulfil criteria. ? The average software project is half an hour behind schedule. ? Software was never

delivered at the time. Software Crisis Increasing Demand Increasing Complexity Increasing Challenges Same Workspac

Same Methods Same Tools

6 | P a g e Space for learners: 1.6.2 Solution of Software Crisis The crisis does not have a single solution. One possible

solution of software crisis is Software Engineering because software engineering is a systematic, disciplined and

quantifiable approach. There are certain measures to follow in order to avoid a software crisis: ? Software cost overruns

are reduced. ? Software must be of excellent quality. ? Software development takes less time. ? Previous experience as a

member of a software development team. ? Software must be made available. 1.7 SOFTWARE ENGINEERING Software

engineering refers to the application of systematic engineering principles to the creation of software products and

applications. It is a discipline of engineering concerned with the analysis of user requirements, software design,

development, testing, and maintenance. Software engineering results in a product that is both efficient and reliable. 1.8

APPROACHES TO SOFTWARE ENGINEERING The following are some fundamental principles of good software

engineering: ? Better Requirement Analysis is a fundamental software engineering technique that provides a clear picture

of the project. Finally, by producing a good software product that meets user requirements, a thorough understanding of

customer requirements adds value to its consumers. ? The KISS (Keep it Simple, Stupid) philosophy should be followed in

all designs and implementations. It simplifies the code, making debugging and maintenance becomes simple. ? The most

crucial aspect of a software project's success is maintaining the project's vision throughout the development

7 | P a g e Space for learners: process. As a result of having a clear vision for the project, it can be developed properly. ?

Much functionality is included in software projects; all functionalities should be designed using a modular approach to

make development faster and easier. Because of this modularity, functions or system components are self- contained. ?

Abstraction is a specialisation of the idea of separation of concerns for suppressing complex things and offering

simplicity to the customer/user, which means it provides only what the user need and hides the rest. ? Consider this. Act

is a must required principle in software engineering, which says that before beginning to develop functionality, you must

first consider application architecture, as a well-planned project development flow yields superior results. ? When a

developer combines all features, he or she may subsequently discover that they are no longer needed. As a result,

adhering to the Never Add Extra approach is critical because it implements just what is actually required, saving time and

effort. ? When other developers work on another developer's code, they should not be startled and should not waste

their time trying to figure out what's going on. As a result, improving documentation at critical stages is an excellent

method to develop software projects. ? The Law of Demeter should be obeyed since it separates classes based on their

functionality and decreases coupling (connections and interdependence between classes). ? The developers should

design the project in such a way that it satisfies the principle of generality, which means that it should not be limited or

restricted to a specific set of cases/functions, but rather should be free of unnatural constraints and capable of providing

comprehensive service to customers who have specific or general needs. ? The principle of consistency is significant in

coding style and GUI (Graphical User Interface) design because consistent

8 | P a g e Space for learners: coding style makes code easier to read and consistent GUI makes user learning of the

interface and software easier. ? Never waste time if something is needed but it is already out of the way; instead, using

open source to fix it in your own way. ? Continuous validation ensures that a software system meets its requirements and

serves its intended function, resulting in improved software quality control. ? To get out of the current technological

market To meet users' needs in the most up-to-date and progressive method, it's critical to employ modern

programming practises. ? To grow and handle rising demand for software applications, scalability in software engineering

should be maintained. 1.9 SOFTWARE ENGINEERING CHALLENGES The first stage in the Requirement Engineering

process is to collect requirements. It assists the analyst in gaining understanding of the problem domain, which is then

utilised to create a formal software specification. During this procedure, there are a variety of issues and challenges that

must be overcome. The following are a few of them: ? Understanding large and complex system requirements is difficult

–] The term " large" has two meanings: (i) Due to the enormous number of users, there are significant security and other

constraints. (ii) There will be a large number of functions to implement. ? Undefined system boundaries – There might be

no defined set of implementation requirements. The customer may go on to include several unrelated and unnecessary

functions besides the important ones, resulting in an extremely large implementation cost which may exceed the

decided budget. ? Customers/Stakeholders are not clear about their needs – Customers themselves may be unsure

about the comprehensive list of functionalities they want in the software

9 | P a g e Space for learners: at times. This can happen when people have a general notion of what they want but

haven't thought much about how to get it done. ? Conflicting requirements are there –There's a chance that two

different project stakeholders will make demands that are incompatible with each other's implementation. In some

cases, a single stakeholder may articulate two requests that are mutually exclusive. ? Changing requirements is another

issue – If the client communicates a modification in the first set of specified criteria through subsequent interviews or

evaluations, it is possible that the customer will alter their mind. While certain criteria are simple to meet, dealing with

constantly changing requirements can be tough. ? Partitioning the system suitably to reduce complexity – Sometimes

projects are divided down into smaller modules or functionalities, which are subsequently handled by distinct teams.

More division is required for more sophisticated and large projects. It is necessary to guarantee that the divisions are

non-overlapping and self-contained. ? Validating and Tracing requirements – It is critical to double- check the

mentioned requirements before beginning the implementation phase.Also, there should be forward as well as backward

traceability. For eg, all the entity names should be the same everywhere, i.e., There should never be a situation where the

terms "EMLOYEE" and "EMPLOYEES" are used interchangeably to refer to the same entity. ? Identifying critical

requirements – It's critical to identify the set of requirements that must be implemented at all costs. The requirements

should be prioritised so that the most important ones can be implemented first and foremost. ? Resolving the “to be

determined” part of the requirements – Those needs that have yet to be resolved in the future are included in the TBD

set of requirements. It's best to keep the number of such requirements as low as possible. ? Proper documentation,

proper meeting time and budget constraints – Maintaining adequate documentation is a constant problem, especially

when requirements change. Time and budget constraints must also be carefully and methodically managed.

10 | P a g e Space for learners: 1.10 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) The Software Development Life Cycle

(SDLC) is a methodology for producing high-quality software that follows a set of well defined processes. It is

50% MATCHING BLOCK 5/246

a detailed strategy that explains how to build, maintain, replace, and change or improve certain software. The life cycle

is a methodology for improving software quality and the development process

as a whole. 1.10.1 What is SDLC? The Software Development Life Cycle, or SDLC, is a method for producing high-quality,

low-cost software in the least amount of time. SDLC is a well-structured flow of stages that enables a company to swiftly

develop high-quality software that has been thoroughly tested and is ready for production. Within a software

organisation, the SDLC is a process that is followed for a software project The stages of a typical SDLC are depicted

graphically in the following diagram. The steps of a typical Software Development Life Cycle are as follows: ?

Requirement analysis Requirement Analysis Design Software Development Planning Testing Deployment and

Maintenance SDLC

11 | P a g e Space for learners: ? Planning and requirement gathering ? Software design such as architectural design ?

Software development ? Testing ? Deployment and Maintenance Stage 1: Requirement Analysis The most critical and

fundamental level of the SDLC is requirement analysis. It is carried out by

52% MATCHING BLOCK 6/246

the team's top members, with input from the customer, the sales department, market surveys, and industry domain

specialists. This information is then utilised to establish the main project approach and conduct product feasibility

studies in the

areas of economics, operations, and technology. Stage 2: Planning and requirement gathering The planning step also

includes determining the project's quality assurance requirements and identifying the project's risks.

72% MATCHING BLOCK 7/246

The goal of the technical feasibility study is to identify the various technical approaches that can be used to

successfully implement the project with

the least amount of risk. Following the requirement analysis, the product needs must be properly defined and

documented, and they must be approved by the client or market analysts. This is accomplished through the use of

83% MATCHING BLOCK 8/246

an SRS (Software Requirement Specification) document, which contains all of the product requirements that must be

designed and developed throughout the project life cycle. Stage 3: Designing the Product Architecture SRS is the

reference for product architects to come out with the best architecture for the product to be developed.

Typically, many

71% MATCHING BLOCK 9/246

design approaches for the product architecture are presented and documented in a DDS - Design Document

Specification

based on the criteria given in the SRS. This DDS is reviewed by all essential stakeholders, and the optimal design strategy

for the product is chosen based on many parameters such

100% MATCHING BLOCK 10/246

as risk assessment, product robustness, design modularity, budget, and time

restrictions. A design approach identifies all of the product's architectural modules, as well as the product's

communication and data flow

12 | P a g e Space for learners:

63% MATCHING BLOCK 11/246

representation with external and third-party modules (if any). All of the modules of the proposed architecture's internal

design should be

thoroughly documented in DDS, down to the tiniest of details. Stage 4: Software Development The actual development

of the product begins at this stage of the SDLC. During this stage, the programming code is generated according to DDS.

Code generation can be done quickly and easily if the design is done in a precise and organised manner. Developers

must adhere to their organization's coding rules, and programming tools such as compilers, interpreters, and debuggers

are used to develop code. Code is written in a variety of

65% MATCHING BLOCK 12/246

high-level programming languages, including C, C++, Pascal, Java, and PHP. The programming language is chosen

based on the type of software

that is being developed. Stage 5: Testing As testing activities are mainly included in all phases of SDLC in modern SDLC

models, this stage is usually a subset of all stages. This stage, on the other hand, relates to the product's testing stage,

during which faults are reported, tracked, corrected, and retested until the product meets the SRS's quality criteria. Unit,

integration, system, and acceptance testing are all performed during this stage. Stage 6: Deployment and Maintenance

The product is formally released in the appropriate market once it has been thoroughly tested and is ready for

deployment. Product deployment can also be done in stages, depending on the company's

50% MATCHING BLOCK 13/246

business strategy. The product might be released in a limited market first, then tested in a real-world setting (UAT- User

acceptance testing). The product may then be released as is or with proposed enhancements in the intended market

segment

based on the feedback. After a product is launched, it is maintained for existing customers.

13 | P a g e Space for learners: 1.10.2

93% MATCHING BLOCK 14/246

SDLC Models There are various software development life cycle models defined and designed which are followed

during the software development process. These models are also referred as Software Development Process Models.

Each process model follows a Series of steps unique to its type to ensure success in the process of software

development. Following are the most important and popular SDLC models followed in the industry − ? Waterfall Model

? Iterative Model ? Prototyping Model ? Spiral Model ? Incremental Model ? V-Model ? Big Bang Model Other related

methodologies are Agile Model, RAD Model, Rapid Application Development and

Time Boxing Models. CHECK YOUR PROGRESS 1. What is software? (A) Software is a documentation and configuration

of data (B) Software is a set of programs (C) Software is a set of programs, documentation and configuration of data (D)

None of the above 2. SDLC stands for (A) System Development Life Cycle (B) Software Design Life Cycle (C) Software

Development Life Cycle (D) System Design Life Cycle 3. RAD stands for

14 | P a g e Space for learners: (A) Relative Application Development (B) Rapid Application Development (C) Rapid

Application Document (D) None of the mentioned 4. What is the essence of software engineering? (A) Requirements

Definition, Design Representation, Knowledge Capture and Quality Factors (B) Maintaining Configurations, Organizing

Teams, Channeling Creativity and Planning Resource Use (C) Time/Space Tradeoffs, Optimizing Process, Minimizing

Communication and Problem Decomposition (D) Managing Complexity, Managing Personnel Resources, Managing Time

and Money and Producing Useful Products 5. Which of the following is not a description of planning? (A) Planning is used

to find credible ways to produce results with limited resources and limited schedule flexibility (B) Planning is finding new

personnel resources to support labor intensive development (C) Planning is identifying and accommodating the

unforeseen (D) Planning is negotiating compromises in completion dates and resource allocation 6. How does a

software project manager need to act to minimize the risk of software failure? (A) Double the project team size (B)

Request a large budget (C) Form a small software team (D) Track progress 7. Views of quality software would not include

(A) Optimizing price and performance (B) Minimizing the execution errors (C) Conformance to specification (D)

Establishing valid requirement

15 | P a g e Space for learners: 8. Software measurement is useful to (A) Indicate quality of the product (B) Track progress

(C) Assess productivity (D) All of the above 9. Symptoms of the software crisis would include (A) Software delivered

behind schedule (B) Software exceeding cost estimate (C) Difficult to maintain and Unreliable (D) All of the above. 10. A

systematic approach to software development, as epitomized by the various life-cycle models, is useful in (A) Helping us

understand the nature of the software product (B) Convincing the customer that we know what we are doing (C) Filling

texts on software engineering (D) Managing the various activities necessary to get the job done 1.11 SUMMING UP ? A

programme or set of programmes containing instructions that offer desired functionality is referred to as software. ? The

Characteristics of Software are: Maintainability, Efficiency, Correctness, Reusability, Testability, Reliability, Portability,

Adaptability, Interoperability. ? System Software is required to manage computer resources and facilitate application

programme execution. ? Software such as PYTHON, MATLAB, AUTOCAD, PSPICE, ORCAD falls under the category of

Scientific Software. ? The problem of building meaningful and efficient computer programmes in the time allotted is

referred to as a software crisis in computer science. ? Software's complexity and expectations are increasing on a daily

basis. Software is becoming more expensive and more complex. This is one of the major causes of Software Crisis. ?

Software engineering refers to the application of systematic engineering principles to the creation of software products

16 | P a g e Space for learners: and applications. It is a discipline of engineering concerned with the analysis of user

requirements, software design, development, testing, and maintenance. 1.12 ANSWERS TO CHECK YOUR PROGRESS 1.

Ans. (C) 2. Ans. (C) 3. Ans. (B) 4. Ans. (D) 5. Ans. (D) 6. Ans. (D) 7. Ans. (D) Reason: minimizing the execution errors would

not included in views of quality software. 8. Ans. (D) 9. Ans. (D) Reason: When software delivered behind schedule,

software exceeding cost estimate, unreliable and difficult to maintain then it is said that software crisis. 10. Ans. (D)

Reason: A systematic approach to software development, as epitomized by the various life-cycle models, is useful in

managing the various activities necessary to get the job done. 1.13 POSSIBLE QUESTIONS 1. What are the important

categories of software? 2. Describe the software development process in brief. 3. Name two tools which are used for

keeping track of software requirements? 4. What is feasibility study? 5. What are functional and non-functional

requirements?

17 | P a g e Space for learners: 1.14 REFERENCES AND SUGGETSED READINGS ?

https://www.geeksforgeeks.org/software-engineering- introduction-to-software-engineering/ ?

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm ? Fundamentals of Software Engineering, Rajib Mall

18 | P a g e Space for learners: UNIT 2: SOFTWARE PROCESS MODEL Unit Structure: 2.1 Introduction 2.2 Unit objectives

2.3 Software process model 2.3.1 Waterfall Model 2.3.2 Prototyping Model 2.3.3 Spiral Model 2.3.4 Incremental Model

2.3.5 Time Boxing Model 2.4 Verification and Validation 2.4.1 Verification 2.4.2 Validation 2.5 Summing Up 2.6 Answers to

Check Your Progress 2.7 Possible Questions 2.8 References and Suggested Readings 2.1 INTRODUCTION A software

process (also known as software methodology) is a collection of related operations that leads to software production.

These actions could include creating new software or changing an existing one. The following four activities are required

in any software development process: ? Software specification (or requirements engineering): Define the software's main

functions and constraints. ? Software design and implementation: It will be necessary to design and programmed the

software. ? Software verification and validation: The software must meet the customer's requirements and correspond to

its specifications. ? Software evolution (software maintenance): The software is constantly updated to meet changing

customer and market needs.

19 | P a g e Space for learners: 2.2 UNIT OBJECTIVES A Software Process Model gives a roadmap for software

engineering work. It defines the flow of all activities, actions and tasks. The main Objective is to introduce the generic

concept of software engineering process model with the concept of software process and software process models.

Five traditional process models have been discussed with their pros and cons in this chapter. Verification and Validation

also discussed for specifications and standards because software system meets the need. 2.3 SOFTWARE PROCESS

MODEL A software process model is a detailed description of a software process from a certain point of view. A software

process model is an abstraction of the real process that is being represented, as models are by their very nature

simplifications. Activities that are part of the software process, software products, and the roles of persons involved in

software engineering may be included in process models. Types of Software Process Model There are a variety of

process models available to satisfy various requirements. Software development life cycle (SDLC) models are one of the

most fundamental parts of the software development process. There are a variety of software development life cycle

models designed to achieve certain goals. These models are defined at different stages of the process and development

module in which they are implemented. The following are the most commonly used, popular, and important SDLC

models: 1.3.1 Waterfall Model The first Process Model to be introduced was the Waterfall Model.

82% MATCHING BLOCK 18/246

It is also known as a linear-sequential life cycle model. It is very simple to understand and use. In this waterfall model,

each phase must be completed before

moving on to the next, and the phases do not overlap. The waterfall Model illustrates the software development process

in a linear sequential flow.

20 | P a g e Space for learners: The Waterfall model is the earliest SDLC approach that was used for software

development. Design: The Waterfall Approach was the first SDLC Model to be widely utilized in Software Engineering to

ensure project success. The entire software development process is separated into several phases using "The Waterfall"

approach. Typically, the output of one phase acts as the input for the following phases in this Waterfall approach. The

different phases of the Waterfall Model are depicted in the following diagram. Fig 1: Waterfall Model The sequential

phases in Waterfall model are − ? Requirement Gathering and analysis − All possible requirements of the system to be

developed are captured in this phase and documented in a requirement specification document. Business analysts

gather requirements, which are then analyzed by the team. Based on their discussions with the client, business analysts

will document the requirements. ? System Design − this phase examines the requirements specifications from the

previous phase and prepares the system design. This system design helps in designing the overall system architecture as

well as describing hardware and system requirements. Requirement Analysis System Design Implementation Testing

Deployment Maintenance

21 | P a g e Space for learners: ? Implementation − The system is first built as discrete programs called units, which are

then merged in the next phase, using inputs from the system design. Unit testing is the process of developing and testing

each unit for its functioning. ? Integration and Testing − After each unit has been tested, all of the units built during the

implementation phase are integrated into a system. The entire system is then tested for any flaws or failures after it has

been integrated. ? Deployment of system − The product is deployed in the client environment or released into the

market once functional and non-functional testing is completed. ? Maintenance − In the client environment, there are a

few challenges that arise. Patches are released to remedy the issues. In order to improve the product, newer versions

have been produced. Maintenance is carried out in order to bring about these changes in the customer's environment.

Advantages: Waterfall development has the advantage of allowing for departmentalization and control. A schedule can

be created with deadlines for each step of development, and a product can be guided through the various phases of the

development process one by one. The following are some of the key benefits of the Waterfall Model: ? It's simple to

comprehend and utilize. ? Because of the model's rigidity, it's simple to manage. There are specified deliverables and a

review mechanism for each phase. ? One phase at a time is processed and completed. ? For smaller projects with well-

defined needs, this method works effectively. ? Stages that are well defined. ? Milestones that are well understood ? Tasks

are simple to organize. ? Both the process and the outcomes are well documented.

22 | P a g e Space for learners: Disadvantages: Waterfall development has the problem of not allowing for much

reflection or correction. It's quite tough to go back and fix something that wasn't well-documented or considered in the

design stage once an application has reached the testing stage. The following are the key drawbacks of the Waterfall

Model: ? Until late in the life cycle, no working software is developed. ? There is a lot of risk and uncertainty. ? For

sophisticated and object-oriented projects, this is not a good model. ? For long-term projects, this paradigm is

inadequate. ? Not appropriate for projects with a moderate to high risk of change in requirements. As a result, this

process model has a high level of risk and uncertainty. ? Within stages, it's tough to assess development. ? Changes in

requirements cannot be accommodated. ? Changing the scope of a project during its life cycle might lead to its

termination. ? Integration is done as a "big-bang" towards the end, which prevents any technological, or business

bottlenecks or issues from being identified early. 1.3.2 Prototyping Model The prototype model requires that before

carrying out the

87% MATCHING BLOCK 15/246

development of actual software, a working prototype of the system should be

built. The prototyping model can be considered to be an extension of the waterfall model.

100% MATCHING BLOCK 16/246

A prototype is a toy implementation of the system. A prototype usually

turns out to be a very crude version of the actual system, possible exhibiting

limited functional capabilities, low reliability, and inefficient performance as compared to actual

79% MATCHING BLOCK 19/246

software. Prototyping Model is a software development model in which prototype is built, tested, and reworked until an

acceptable prototype is achieved. It also creates base to produce the final system or software. It works best in

scenarios where the project's requirements are not known

in detail. It is an

23 | P a g e Space for learners: iterative, trial and error method which takes place between developer and client. In many

instances, the client only has a general view of what is expected from the software product. In such a scenario where

there is an absence of detailed information regarding the input to the system, the processing needs, and the output

requirement, the prototyping model may be employed. It has limited functional capabilities, low reliability, or inefficient

performance as compared to the actual software. A prototype can be built very quickly by using several shortcuts. The

shortcuts usually involve developing inefficient, inaccurate, or dummy functions. The shortcut implementation of a

function, for example, may produce the desired results by using a table look-up rather than by performing the actual

computations. Normally the term rapid prototyping is used when software tools are used for prototype construction. For

example, tools based on fourth generation languages (4GL) may be used to construct the prototype for the GUI parts.

Necessity of the prototyping model The prototyping model is advantageous to use for specific types of projects. In the

following, we identify three types of projects for which the prototyping model can be followed to advantage: It is

advantageous to use the prototyping model for development of the graphical user interface (GUI) part of an application.

Through the use of a prototype, it becomes easier to illustrate the input data formats, messages, reports, and the

interactive dialogs to the customer. This is a valuable mechanism for gaining better understanding of the customers’

needs. In this regard, the prototype model turns out to be especially useful in developing the graphical user interface

(GUI) part of a system. For the user, it becomes much easier to form an opinion regarding what would be more suitable

by experimenting with a working user interface, rather than trying to imagine the working of a hypothetical user

interface. The GUI part of a software system is almost always developed using the prototyping model. The prototyping

model is especially useful when the exact technical solutions are unclear

73% MATCHING BLOCK 17/246

to the development team. A prototype can help them to critically examine the technical issues associated with product

development.

For example, consider a situation where the development team has to write a command language interpreter as part of a

graphical user interface development. Suppose none of the team members has ever written a

24 | P a g e Space for learners: compiler before. Then, this lack of familiarity with a required development technology is a

technical risk. This risk can be resolved by developing a prototype compiler for a very small language to understand the

issues associated with writing a compiler for a command language. Once they feel confident in writing compiler for the

small language, they can use this knowledge to develop the compiler for the command language. Often, major design

decisions depend on issues such as the response time of a hardware controller, or the efficiency of a sorting algorithm,

etc. In such circumstances, a prototype is often the best way to resolve the technical issues. An important reason for

developing a prototype is that it is impossible to “get it right” the first time. As advocated by Brooks [1975], one must plan

to throw away the software in order to develop a good software later. Thus, the prototyping model can be deployed

when development of highly optimized and efficient software is required. From the above discussions, we can conclude

the following: The prototyping model is considered to be useful for the development of not only the GUI parts of a

software, but also for a software project for which certain technical issues are not clear to the development team.

Software is built in two ways, as depicted in Figure: prototype construction and iterative waterfall-based software

development. Prototype construction: The development of prototyping begins with the gathering of basic requirements.

A prototype is produced after a quick design is completed. The customer is asked to evaluate the prototype that has

been created. Based on the customer feedback, the requirements are refined and the prototype is suitably modified. This

cycle of collecting consumer feedback and making changes to the prototype continues until the customer approves it.

Iterative development: The actual software is produced utilizing an iterative waterfall approach after the customer

approves the prototype. Regardless of whether or not a functioning prototype is available, the SRS document must be

created because it is essential for later phases such as traceability analysis, verification, and test case creation. However,

for GUI parts, the requirements analysis and specification phase becomes redundant since the working prototype that

has been approved by the customer serves as an animated requirements

25 | P a g e Space for learners: specification. The prototype's code is usually discarded. The expertise gained by

constructing the prototype, on the other hand, is invaluable when it comes to developing the genuine system. Despite

the fact that building a throwaway prototype incurs more costs, the overall development cost for systems with unclear

client requirements and systems with unsolved technical challenges is frequently lower than for an analogous system

produced using the iterative waterfall model. Many customer requirements are adequately defined and technological

concerns are overcome by experimenting with the prototype after it is built and submitted for user evaluation. This

reduces the number of client requests for changes in the future, as well as the accompanying redesign expenses. Steps

of Prototype Model 1. Requirement Gathering and Analyst 2. Quick Decision 3. Build a Prototype 4. Assessment or User

Evaluation 5. Prototype Refinement 6. Engineer Product Step 1: Requirements gathering and analysis Requirement

analysis is the first step in a prototype model. The system's requirements are outlined in depth at this phase. The system's

users are interviewed as part of the process to learn what they expect from it.

100% MATCHING BLOCK 24/246

Step 2: Quick design The second phase is a preliminary design or a quick design. In this stage, a simple design of the

system is created. However, it is not a complete design. It gives a brief idea of the system to the user. The quick design

helps in developing the prototype. Step 3: Build a Prototype In this phase, an actual prototype is designed based on the

information gathered from quick design. It is a small working model of the required system. Step 4: Initial user

evaluation 26 |

P a g e Space for learners:

100% MATCHING BLOCK 20/246

In this stage, the proposed system is presented to the client for an initial evaluation. It helps to find out the strength and

weakness of the working model. Comment and suggestion are collected from the customer and provided to the

developer.

Figure 2: Prototyping model of software development.

100% MATCHING BLOCK 21/246

Step 5: Refining prototype If the user is not happy with the current prototype, you need to refine the prototype

according to the user's feedback and suggestions. This phase will not over until all the requirements specified by the

user are met. Once the user is satisfied with the developed prototype, a final system is developed based on the

approved final prototype. Step 6: Implement Product and Maintain Once the final system is developed based on the

final prototype, it is thoroughly tested and deployed to production. The system undergoes

Refine requirement incorporation customer Suggestion Build Prototype Requirement Gathering Quick Decision

Customer Evaluation of prototype Acceptance by customer Design Implementation Testing Maintenance Prototype

Development Iterative Development

27 | P a g e Space for learners: routine maintenance for minimizing downtime and prevents large- scale failures.

Advantages of the Prototyping Model This model is the most appropriate for projects that suffer from technical and

requirements risks. These risks can be mitigated with a well- built prototype.

100% MATCHING BLOCK 22/246

Users are actively involved in development. Therefore, errors can be detected in the initial stage of the software

development process.

Prototyping is also considered a risk reduction activity, so missing functionality can be identified, lowering the risk of

failure. Customers are satisfied because they can feel the product at an early stage. There will be very little probability of

rejection of the software. Improved software development solutions are made possible by faster user feedback.

65% MATCHING BLOCK 23/246

Allows the client to compare if the software code matches the software specification. It helps you to find out the

missing functionality in the system. It also indicates the functions that are complicated or challenging. Because it is a

simple model, it is simple to

comprehend. Building the model does not necessitate the use of professional experts. The prototype aids in the

understanding of the customer's requirements. Changes and even discarding prototypes are possible. Future users of the

software system may benefit from early training provided by prototypes. Disadvantages of the Prototyping Model The

prototype model can increase the cost of development for projects that are routine development work and do not suffer

from any significant risks. Even when a project is susceptible to risks, the prototyping model is effective only for those

projects for which the risks can be identified upfront before the development starts. Since the prototype is constructed

only at the start of the project, the prototyping model is ineffective for risks identified later during the development cycle.

The prototyping model would not be appropriate for projects for which the risks can only be identified after the

development is underway. Prototyping is a time-consuming and slow procedure. The cost of building a prototype is

completely wasted because the prototype is eventually discarded. Excessive modification requests may be encouraged

through prototyping.

87% MATCHING BLOCK 25/246

Customers may not be willing to participate in an iteration cycle for

an extended period of time. When the customer evaluates the prototype each time, there may be much too many

differences in

28 | P a g e Space for learners: software needs. Because the needs of the clients are always changing, there is a lack of

documentation. It is quite tough for software engineers to meet all of the client requests. When a client is unhappy with

the initial prototype, he or she may lose interest in the ultimate product. 1.3.3 Spiral Model The spiral model is one of the

most prominent Software Development Life Cycle models for risk management. It resembles a spiral with several loops

in diagrammatic depiction. The spiral's exact number of loops is unclear, and it varies from project to project. A Phase of

the software development process is defined as each loop of the spiral. Depending on the project risks, the project

manager might change the number of phases required to build the product. The project manager plays an important

role in developing a product utilizing the spiral model since the number of phases is dynamically determined by the

project manager. The spiral's radius at any given moment symbolizes the project's expenses (cost), while the angular

dimension shows the current phase's progress. The phases of the Spiral Model are depicted in the diagram below: – Fig

3: Spiral Model As illustrated in the diagram above, each phase of the Spiral Model is divided into four quadrants. The

following sections go through the functions of these four quadrants: 1. Objectives determination and identify alternative

solutions: At the outset of each step, customers' requirements are gathered,

29 | P a g e Space for learners: and objectives are identified, elaborated, and analyzed. Then, in this quadrant, alternative

solutions for the phase are given. 2. Identify and resolve Risks: All viable solutions are reviewed in the second quadrant in

order to choose the best one. The risks connected with that solution are then identified, and the risks are mitigated using

the best technique possible. The Prototype is constructed at the end of this quadrant for the best possible solution. 3.

Develop next version of the Product: During the third quadrant, the identified features are developed and verified

through testing. The next edition of the software is available at the end of the third quadrant. 4. Review and plan for the

next Phase: In the fourth quadrant, the Customers evaluate the so far developed version of the software. Finally, the

planning for the following phases begins. Risk Handling in Spiral Model A risk is anything that could prevent a software

project from being completed successfully. The spiral model's most essential aspect is how it handles unforeseen

hazards once the project has begun. The development of a prototype makes such risk resolutions easier. The spiral

approach supports risky copying by allowing for the creation of a prototype at each stage of software development. Risk

management is also supported by the Prototyping Model, however risks must be fully identified prior to the

commencement of the project's development activity. However, in real life, project risk may arise after development

work has begun; in this scenario, the Prototyping Model cannot be used. The product's features are evaluated and

examined in each phase of the Spiral Model, and the risks at that moment in time are identified and resolved through

prototyping. As a result, this paradigm is far more adaptable than other SDLC models. Why Spiral Model is called Meta

Model? Because it encompasses all other SDLC models, the Spiral model is referred to as a Meta-Model. The Iterative

Waterfall Model, for example, is represented by a single loop spiral. The Classical Waterfall Model's progressive approach

is included into the spiral model. The spiral model employs the Prototyping Model's risk- handling technique of

developing a prototype at the start of each

30 | P a g e Space for learners: phase. The spiral model can also be thought of as a support for the evolutionary model,

with iterations along the spiral serving as evolutionary layers upon which the entire system is created. Advantages of

Spiral Model: The Spiral Model has a number of advantages. 1. Risk Handling: Due to the risk analysis and risk

management at each phase, the Spiral Model is the best development model to follow for projects with many unknown

risks that arise as the development progresses. 2. Good for large projects: In large and complex undertakings, the Spiral

Model is recommended. 3. Flexibility in Requirements: Using this paradigm, change requests in the Requirements at a

later stage can be accurately implemented. 4. Customer Satisfaction: Customers can observe the product's progress

throughout the early stages of software development, and so become familiar with the system by using it before the final

product is completed. Disadvantages of Spiral Model: The spiral model has several major drawbacks, which are listed

below. 1. Complex: Other SDLC models are substantially more sophisticated than the Spiral Model. 2. Expensive: The

spiral model is not appropriate for small projects due to its high cost. 3. Too much dependability on Risk Analysis: Risk

Analysis plays a critical role in the project's success. The development of a project employing this strategy will be a failure

without a large number of highly experienced professionals. 4. Difficulty in time management: Time estimation is

challenging because the number of phases is unknown at the beginning of the project.

31 | P a g e Space for learners: 1.3.4 Incremental

45% MATCHING BLOCK 26/246

Model This life cycle approach is also known as the incremental or successive version model. In this life cycle

approach, the customer is first

given a simple working system with only a few basic features. Iteratively, until the required system is accomplished,

successive versions are implemented and supplied to the customer. Figure 4 illustrates

the incremental development model. Fig 4: Incremental Model

96% MATCHING BLOCK 27/246

A, B, C are modules of Software Product that are incrementally developed and delivered. The

software requirements are initially broken down into multiple modules or features, which can then be created and

delivered progressively under the incremental life cycle model. At any given time, only the next increment's plans are

made, with no long-term planning. As a result, accommodating client requests for changes becomes less difficult. The

system's core features are developed first by the development team. The core or fundamental features are those that do

not require the use of any other features' services. Non- core features, on the other hand, require services from core

features. Following the development of the first basic features, further functionalities are added in succeeding editions to

refine them into higher degrees of capability. The iterative waterfall model is typically used to produce each incremental

version. Customer feedback on the delivered version is acquired when each succeeding version of the software is built

and delivered to the customer, and these feedbacks are included into the following version. Each version of the software

that is supplied to the customer adds new features and refines those that have already been delivered. Figure 5 depicts

the incremental model in schematic form. After the requirements gathering and specification, the requirements are split

into several versions. The next version is built using an iterative waterfall approach of development and deployed at the

customer site, starting with the core (version 1). The whole software is

32 | P a g e Space for learners: deployed after the last (marked as version n) has been built and deployed at the client site.

Figure 5: Incremental model of software development. Advantages: There are a number of benefits to the incremental

development paradigm. The following are two prominent examples: Error reduction: Because the customer uses the

core modules from the beginning, they are thoroughly tested. This minimizes the likelihood of faults in the final product's

core modules, resulting in increased software reliability. Incremental resource deployment: This paradigm eliminates the

requirement for the customer to commit significant resources to the system's development all at once. It also saves the

growing organization from having to deploy enormous amounts of resources and staff all at once for a project. Error

Reduction (core modules are used by the customer from the beginning of the phase and then these are tested

thoroughly). Uses divide and conquer for breakdown of tasks. Lowers initial delivery cost. Incremental Resource

Deployment. Disadvantages: Requires good planning and design. Total cost is not lower. Well defined module interfaces

are required.

33 | P a g e Space for learners: 1.3.5 Time Boxing Model As with the iterative enhancement approach, development is

done iteratively in the time boxing model. In the time boxing approach, however, each cycle is completed within a

predetermined timeframe. The functionality that has to be built is scaled down to match the timeframe. Furthermore,

each timebox is divided into a set of predefined phases, each of which completes a distinct task (analysis,

implementation, and deployment) that can be completed independently. This approach also requires that each stage's

time duration be roughly equal, so that the pipelining concept can be used to save development time and product

releases. There is a dedicated team for each stage so that the work can be done in pipelining. As a result, stages should

be set so that each step completes a logical unit of work that serves as the input for the following stage. In addition to

the benefits of the iterative model, the time boxing concept has several additional benefits. The time boxing model has a

number of advantages and problems. Figure 6: Time boxing model. The Advantages and Disadvantages of the Time

boxing Model Advantages: Speeds up the development process and shortens the delivery time. Ideally suited to

developing projects with a variety of features in a short amount of time. Disadvantages:

34 | P a g e Space for learners: Project management is becoming more difficult. Not recommended for projects where

the entire development process cannot be broken down into many iterations of almost equal time. 1.4 VERIFICATION

AND VALIDATION Verification and Validation is the process of determining whether or not a software system meets the

needed specifications and standards. Verification and validation, according to Barry Boehm, are: Verification:

88% MATCHING BLOCK 28/246

Are we building the product right? Validation: Are we building the right product?

Validation comes after Verification. 1.4.1 Verification Verification is the process of ensuring that software meets its

objectives without errors. It's the process for determining whether the product being developed is correct or not. It

determines whether the developed product meets our requirements. Verification is Static Testing. Activities involved in

verification: ? Inspections ? Reviews ? Walkthroughs ? Desk-checking 1.4.2 Validation Validation is the process of

determining whether a software product meets the required standards, or in other words, whether it meets the product's

high level requirements. It is the process of verifying product validation, or ensuring that the product we are building is

correct. It is a validation between the actual and desired product. Validation is the Dynamic Testing. Activities involved in

validation: Verification Validation

35 | P a g e Space for learners: ? Black box testing ? White box testing ? Unit testing ? Integration testing Difference

between verification and validation testing Verification Validation We check whether we are developing the right product

or not. We check whether the developed product is right. Verification is also known as static testing. Validation is also

known as dynamic testing. Verification includes different methods like Inspections, Reviews, and Walkthroughs.

Validation includes testing like functional testing, system testing, integration, and User acceptance testing. It is a process

of checking the work-products (not the final product) of a development cycle to decide whether the product meets the

specified requirements. It is a process of checking the software during or at the end of the development cycle to decide

whether the software follow the specified business requirements. Quality assurance comes under verification testing.

Quality control comes under validation testing. The execution of code does not happen in the verification testing. In

validation testing, the execution of code happens. In verification testing, we can find the bugs early in the development

phase of the product. In the validation testing, we can find those bugs, which are not caught in the verification process.

Verification testing is executed by the Quality assurance team to make sure that the product is developed according to

customers' requirements. Validation testing is executed by the testing team to test the application. Verification is done

before the After verification testing,

36 | P a g e Space for learners: validation testing. validation testing takes place. In this type of testing, we can verify that

the inputs follow the outputs or not. In this type of testing, we can validate that the user accepts the product or not.

CHECK YOUR PROGRESS Q.1. In which model the Project risk factor is considered? (A) Spiral model. (B) Waterfall model.

(C) Prototyping model (D) Incremental model Q.2. What is the most important use of the incremental model? (A)

Customers can respond to each increment (B) Easier to test and debug (C) To use it when we need to get a product to

the market early (D) Easier to test and debug & use it when we need to get a product to the market early Q.3. The spiral

model was the first time proposed by (A) IBM (B) Pressman (C) Barry Boehm (D) Royce Q.4. What is the disadvantage of

the Spiral Model. (A) Does n’t work well for smaller projects (B) The high amount of risk analysis (C) Additional

Functionality can be added later (D) Strong approval and documentation control Q.5. Where is the prototyping model of

software development well suited? (A) When requirements are well defined. (B) For projects with large development

teams.

37 | P a g e Space for learners: (C) When a customer cannot define requirements clearly. (D) None of the above. Q.6.

Design phase is followed by ______ . (A) Coding (B) Testing (C) Maintenance (D) None of the above. Q.7 Which of the

following activities of the generic process framework delivers a feedback report? (A) Deployment (B) Planning (C)

Modeling (D) Construction Q.8 Which one of the following activities is not recommended for software processes in

software engineering? (A) Software Evolution (B) Software Verification (C) Software Testing & Validation (D) Software

designing Q.9 The __________ and __________ are the two major dimensions encompassed in the Spiral model. (A)

Diagonal, Perpendicular (B) Perpendicular, Radial (C) Angular, diagonal (D) Radial, Angular Q.10 Which parameters are

essentially used while computing the software development cost? (A) Hardware and Software Costs (B) Effort Costs (C)

Travel and Training Costs (D) All of the above

38 | P a g e Space for learners: 1.5 SUMMING UP ? A Software Process Model gives a roadmap for software engineering

work. It defines the flow of all activities, actions and tasks. ? A software process model is an abstraction of the real

process that is being represented, as models are by their very nature simplifications. Activities that are part of the

software process, software products, and the roles of persons involved in software engineering may be included in

process models. ? The following are the most commonly used, popular, and important SDLC models: ? Waterfall Model ?

Prototyping Model ? Spiral Model ? Incremental Model ? Time Boxing Model ? Verification is the process of ensuring that

software meets its objectives without errors. It's the process for determining whether the product being developed is

correct or not. ? Validation is the process of determining whether a software product meets the required standards, or in

other words, whether it meets the product's high level requirements. It is the process of verifying product validation, or

ensuring that the product we are building is correct. 1.6 ANSWERS TO CHECK YOUR PROGRESS 1. Ans. A 2. Ans. D 3.

Ans. C 4. Ans. A 5. Ans. C 7. Answer: Deployment Explanation: The deployment phase is the last phase of the software

development life cycle in which the software product is delivered to its end-user, who further assesses its performance

and revert back

39 | P a g e Space for learners: with the feedback if anything is required or missing as per the formulated evaluation. 8.

Answer: b) Software Verification Explanation: Software verification is mainly considered for implementing and testing

activities. 9. Answer: D) Radial, Angular Explanation: The cumulative cost is represented by the radial dimension, whereas

the angular dimension represents the progress made in the completion of each consecutive cycle. Each loop in the spiral

model depicts the phase. 10. Answer: D) All of the above Explanation: Estimation cost works out on assessing the

amount of effort required to complete each activity, followed by calculating the total cost of activities. 1.7 POSSIBLE

QUESTIONS 1. Why document a development process? 2. What is a data structure-oriented software design

methodology? How is it different from the data flow-oriented design methodology? 3. What is SDLC? What are different

SDLC models? 4. Describe classical waterfall model and iterative development model of Software development. Draw

appropriate diagrams. Compare the two models. 5. Discuss about prototyping model. Explain its merits and Demerits. 6.

Discuss in detail about Time Boxing model. 7. Describe how incremental process models are better than water fall

model. 8. What process models will you use in various projects? 9. What are perspective process models?

40 | P a g e Space for learners: 1.8 REFERENECS AND SUGGESTED READINGS ?

https://www.geeksforgeeks.org/software-engineering- introduction-to-software-engineering/ ?

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm ? Fundamentals of Software Engineering, Rajib Mall

41 | P a g e Space for learners: UNIT 3: SOFTWARE REQUIREMENTS AND ANALYSIS Unit Structure: 3.1 Introduction 3.2

Unit Objectives 3.3 Software Requirement 3.3.1 Software Requirement Statement 3.4 Types of Requirements 3.4.1

Functional Requirements 3.4.2 Non Functional Requirements 3.4.3 Domain Requirements 3.5 Requirements Engineering

Process 3.5.1

100% MATCHING BLOCK 29/246

Feasibility Study 3.5.2 Requirement Gathering 3.5.3 Software Requirement Specification 3.5.4 Software Requirement

Validation 3.6

Feasibility Study 3.6.1 What is Feasibility Study? 3.6.2 Types of Feasibility Study 3.6.3 The Feasibility Study Process 3.6.4

Outcome of the feasibility study 3.7 Elicitation of Requirements 3.7.1 The Process of Requirement Elicitation 3.7.2 The

Techniques of Requirement Elicitation 3.8 Requirements Analysis 3.8.1 Problem Recognition 3.8.2 Evaluation and

Synthesis 3.8.3 Modeling 3.8.4 Specification 3.8.5 Review 3.9 Software requirement specification 3.9.1 Problem

Recognition 3.9.2 Characteristics of a Good SRS 3.9.2 Important Categories of Customer Requirement 3.9.3. Functional

Requirements

42 | P a g e Space for learners: 3.9.4. Non Functional Requirements 3.9.5 Goals of Implementation 3.9.6 Identify

Functional Requirements 3.9.7 Document Functional Requirements 3.9.8 . Techniques for Representing Complex Logic

3.9.9 Problems without an SRS Document 3.10 Summing Up 3.11 Answers to Check Your Progress 3.12 Possible

Questions 3.13 References and Suggested Readings 3.1 INTRODUCTION The Software

58% MATCHING BLOCK 30/246

requirements and analysis phase starts after the feasibility study phase gets completed and the project is found to be

feasible and technically sound. The primary objective of the

software requirements analysis and specification phase is to have a clear understanding of the customer’s

86% MATCHING BLOCK 31/246

requirements and to organize these requirements systematically in a specification document. This phase consists of

the following two activities: • Requirements Gathering and Analysis • Requirements Specification Identifying the user

requirements properly is quite a tedious job. It combines the processes of describing, analyzing, documenting and

validating the services, requirements and constraints related to the software. All these processes, in combination, are

called Software Requirement engineering or simply, software requirement. STOP TO CONSIDER Requirements may

serve a dual function: ? As the basis of a bid for a contract ? As the basis for the contract itself

43 | P a g e Space for learners: 3.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? Be familiar with

software requirements ? Understand the concepts and significance of Software Requirement Analysis ? Differentiate

between the types of Software Requirements ? Understand the structure of Software Requirement Specification ?

Characteristics of SRS 3.3 SOFTWARE REQUIREMENT The software requirements include a precise description of the

functionalities and features of the target software system. These requirements specify what the users would expect from

the software product. The software requirements can be unknown or known, expected or unexpected and hidden or

obvious from the users’ point of view. The objective of software requirement is to specify the requirements of the

software product in a consistent, unambiguous and concise manner- with the help of appropriate formal notations. The

requirement specification would focus on the ‘What” part of the software rather than on “how”. It starts with the

requirements gathering process.

60% MATCHING BLOCK 32/246

The System analyst starts requirements gathering activity by collecting all information from the customer which could

be used to develop the requirements of the system. Then, he analyses the information collected to get a thorough

understanding of the system to be developed.

The objective is to get rid of all ambiguities and inconsistencies from the initial problem perception by the customer 3.3.1

Software Requirement Statement A software requirement statement is a document that mentions the intended use,

challenges and features of the software application.

44 | P a g e Space for learners: Software system requirements can be broadly classified into three groups- ? User

Requirement Document- It contains natural language statements related to the services provided by the system, along

with the operational constraints. It also includes diagrammatic representations related to the services offered. Such a

document is usually written for the customers. ? System Requirement Document- It is s structured document that

provides detailed descriptions of the services. This document is usually written as a contract between a contractor and a

client. ? Software Specification Document- It contains a detailed description of the software that serves as a foundation

for the implementation or design of the software. Such a document is usually written for the developers. 3.4 TYPES OF

REQUIREMENTS There may be three types of software requirements, namely a) Functional requirements, and b)

Nonfunctional requirements. c) Domain requirements 3.4.1 Functional Requirements The functional requirements of a

software system details the services or functionalities that the user expects it to provide. These requirements will describe

how the software system can react to a specific set of inputs and how it should ideally behave in a particular situation.

The functional requirements focus on the functionalities required by the STOP TO CONSIDER The software requirements

include a precise description of the functionalities and features of the target software system.

45 | P a g e Space for learners: users from the software system. The users or clients expect the software to perform a

specific set of functions. The functional view of a software system is shown in the figure below- Inputs Ii Fig:3.1 Each

function (Fi) of the software system can be thought of as a conversion from a specific set of input data (Ii) to the

corresponding set of output data (Oi). From the user’s perspective, he should be able to accomplish some meaningful

piece of work with the help of the function. 3.4.2 Non-Functional Requirements Constraints are part and parcel of any

software system. The functionalities and services offered by the system come with many constraints. These include

constraints related to the process of development, timing constraints, constraints related to standards etc. The non-

finctional requirements define the constraints associated with a software system. They are not exactly concerned about a

particular function delivered by the software system. Rather, they may be related to system properties like response time,

storage and reliability. They may also define the constraints related to the system such as data representation used in the

interfaces and capabilities of the I/O devices. To be precise, nonfunctional requirements are concerned with the system

characteristics that the functions cannot express. These include - portability, maintainability , usability and so on. It may

also include accuracy of results, reliability issues, implementation issues and issues related to human - computer

interface etc. These requirements primarily deal with issues such as: ? Portability issues (Fi) Outputs Oi

46 | P a g e Space for learners: ? Usability issues ? Maintainability issues ? Security issues ? Scalability issues ? Reliability

issues ? Reusability issues ? Flexibility issues ? Performance issues The differences between Functional and Non-

functional requirements are shown below in a tabular form Functional Requirements Non-Functional Requirements

Defines a software system or its components. Defines the quality attributes related to a software system. Specifies what

the software system should do Describes constraints on how the software should fulfill its functional requirements These

requirements are specified by the user. These requirements are specified by technical people such as software

developers, architects, technical leaders and so on It is a mandatory requirement It is not a mandatory requirement

Captured with regards to use case. Captured as a quality attribute. It is applied at the component level. It is applied to a

system as a whole. Allows to check the functionality of the software. Allows to ascertain the software performance

Carries out functional testing such as integration, System, API Testing, End to End etc Performs Non-Functional Testing

such as Usability, Performance, Security testing, Stress etc Easy to define. Comparatively difficult to define.

47 | P a g e Space for learners: 3.4.3 Domain Requirements These requirements describe system features and

characteristics that specify the domain. These may include constraints on prevailing requirements , new functional

requirements or may even define specific computations. The system may not work properly if the domain requirements

are not fully satisfied. 3.5 REQUIREMENTS ENGINEERING PROCESS The requirement engineering process refers to the

procedure of gathering specific software requirements from the concerned client, analyzing and documenting them for

future reference. The objective of this process is to prepare and maintain a descriptive and comprehensive SRS (System

Requirements Specification) document. The entire requirement engineering process consists of four steps. These are – ?

100% MATCHING BLOCK 33/246

Feasibility Study ? Requirement Gathering ? Software Requirement Specification ? Software Requirement Validation

STOP TO CONSIDER The functional requirements focus on the functionalities required by the users from the software

system. The non-functional requirements define the constraints associated with a software system. The domain

requirements describe system features and characteristics that specify the domain STOP TO CONSIDER Requirements

100% MATCHING BLOCK 34/246

Engineering is the process of establishing the services that the customer requires from the system and the constraints

under which it

is to be developed and operated.

48 | P a g e Space for learners: 3.5.1 Feasibility Study When a client assigns an organization the task of developing the

desired software product, he often provides a rough idea about the expected features from the software or the functions

it must perform. Taking a reference from this raw information, the analysts of the organization makes a complete study

about whether it is feasible to develop the software system, with the desired functions embedded in it. Such a study can

be termed as feasibility study.

58% MATCHING BLOCK 35/246

The output of this study should be a feasibility study report with adequate recommendations and comments for

the management for them to consider whether or not the project should be undertaken. We will discuss it in detail in the

next section 3.5.2 Requirement Gathering If the feasibility study gives a positive report about undertaking the project, the

next phase starts, that is, collecting requirements from the client or user. Analysts and technical staffs of the organisation

communicate with the end-users/client to understand their ideas. Thus, they will try to apprehend what the software

must provide and the features they would like the software to have. Requirements gathering itself is an art. The person

who is entrusted with the responsibility of gathering requirements should have the knowledge of when to gather and

what information to gather and by using what resources. The requirements regarding organisation, which include

information related to its policies, objectives, organisational structure and user staff are gathered. Moreover, it includes

information regarding job function, information about work schedules, work flow and working procedure. Below, we are

going to discuss some of the requirements gathering tools. 1. Record review: A review of all the recorded documents of

the organization such as procedures, manuals, forms and books, are reviewed to understand the format and functions of

the present system. This technique consumes more time. 2. On-site observation: In case there exists such a system, the

actual

49 | P a g e Space for learners: site of the system is visited to get a close view of the system. It enables the analyst to

detect the problems of the existing system. 3. Interview: The system analyst interacts with the staff to identify their

requirements. It requires experience in arranging the interview, avoiding arguments and evaluating the outcome. 4.

Questionnaire: It is an effective means to acquire customer requirements with less effort. This produces a written

document about the requirements. It considers the responses of a large number of participants at the same time and

examines answers to the queries. A) Software Requirement Specification 3.5.3

78% MATCHING BLOCK 36/246

Software Requirement Specification SRS is a document created by a system analyst. After the

user requirements are gathered from different stakeholders, the system analysts of the organization create a document

called the SRS (Software Requirement Specification) document. The SRS will define how the proposed software would

interact with external interfaces, hardware, system response time, operational speed, portability across platforms,

recovery after crashing, security, maintainability, quality, constraints and so on. Please note that the user requirements

are usually received in a natural language format. It is the job of the system analyst to write all these requirements in a

technical language in the SRS document. He should be able to write in a language so that it can be useful for the

development team. CHECK YOUR PROGRESS 1.How will you gathers requirements from the user foe a library

management system

50 | P a g e Space for learners: 3.5.4 Software Requirement Validation After the SRS is developed as per user

specifications, it is again validated with the requirements of the user. It may so happen that the user may ask for some

illegal solutions. The experts may also interpret the user requirements incorrectly. Such issues, if not addressed at the

very beginning, may lead to an exponential increase in cost. Therefore, it is important to check the requirements against

the below-mentioned conditions - ? If it is practical to implement requirements ? If the requirements are valid and

conform to the domain and functionality of the software ? If the requirements are complete ? If the requirements can be

demonstrated ? If any ambiguities exist 3.6 FEASIBILITY STUDY 3.6.1 What is

68% MATCHING BLOCK 37/246

Feasibility Study? The objective of this study is to establish the reasons for developing the software,

in a way to make it conform to agreed standards, acceptable to users and flexible to change. The feasibility study is

aligned with the goal of the organization. It analyzes if it is practicable to materialize the software in terms of cost

constraints, implementation, project contribution to the organization and the perceived objectives and values of the

organization. It mainly looks into the technical aspects of the project, which include productivity, integration ability,

maintainability and usability. STOP TO CONSIDER The process of finding out, analyzing, documenting and checking

these services and constraints is called Requirements Engineering.

51 | P a g e Space for learners: The output of this whole exercise should be in the form of a feasibility study report. It

should include sufficient comments and recommendations so as to help the management decide in favour of or against

undertaking the particular project. The business strategists in the organization analyse the feasibility study report to find

out if the software can fulfill the user requirements and the software can generate profit at the same time. If the project is

found to be feasible technologically, practically and financially- it will be given a go-ahead. Else, it will be discarded. 3.6.2

Feasibility Study: Why it is required The feasibility study is an extremely important stage of the Software Project

Management Process. After the feasibility study gets completed, the organisaton gets a clear idea of whether it is

profitable or practically feasible to continue with the proposed project. The feasibility study also helps the organization to

identify the risk factors associated with developing and deploying the system. Based on the findings of the feasibility

study, the organization can plan for the risk analysis and zero in on the business alternatives. By analyzing various project

parameters mentioned in the feasibility study report, the organization can also enhance the success rate of the proposed

software. 3.6.3 Types of Feasibility Study Three different types of feasibility study may exist, namely 1. Technical Feasibility

– It evaluates the latest technologies that are required to fulfill customer requirements, conforming to the specified time

and budget. It also takes into account the resources at hand (software, hardware etc). The feasibility study will report if

the required technologies and technical resources are available, adequately enough, for developing the software. In

addition, the feasibility study analyses the capabilities and skills of the technical team. It assesses if existing technology

can be employed, if any technology upgradation is required and the cost of

52 | P a g e Space for learners: deployment/maintenance of the upgraded technology. Technical feasibility also performs

the following tasks- • Determines whether relevant technology is established and stable. • Analyzes the technical

capabilities of the software development team. • Ascertains that the technology picked for software development has a

huge number of users, so that in case any problem arises or improvements are required, they can be consulted. 2.

Operational Feasibility – This is a type of feasibility that determines the range within which the software performs a

designated series of levels in order to fulfill customer requirements and resolve business issues. Here, the level of

providing service as per user requirements is analysed. It also studies how easy or tough it will be to operate and maintain

the software after deployment. Other operational scopes such as usability of the product, acceptability of the solutions

provided by the development team, etc are also studied. Operational feasibility carries out the following tasks: •

Determines whether the problems in user requirements can be regarded as of high priority. • Determines whether the

suggested solution forwarded by the software development team is acceptable. • Ascertains whether users are ready to

adapt to new software. • Finds about whether the organization is satisfied by the software development team’s proposed

alternative solutions 3. Economic Feasibility – This type of feasibility determines whether the software will be able to

produce financial profits for an organization. It makes a cost-benefit analysis of the software development project. A

detailed analysis is carried out to assess the total cost of the project, including the cost of design, development,

procurement of resources, operational cost and others. Then, it will be

53 | P a g e Space for learners: analysed if developing the project will be profitable financially or not. The Software is said

to be economically feasible if it highlights the issues listed below. • Cost incurred on the development of the software

will produce long- term gains for an organization. • Cost required to carry out full software investigation such as

requirements elicitation and requirements analysis. • Cost of software, hardware, development team, and training. 3.6.4

The Feasibility Study Process The entire process of a feasibility study involves the following steps - ? Information

assessment ? Collection of Information ? Report writing ? General information Let us briefly study the steps involved in a

feasibility study. • Information assessment: Identifies information regarding whether the system aid in achieving the goals

of the organization. Apart from this, it verifies whether that the system can be implemented by making use of new

technology and within the budget. It also verifies whether the system to be developped can be integrated with the

existing system. • Information collection: It states the sources from where information regarding the software can be

acquired. In general, the users (who will be operating the software), the organisation where the software will be used,

and the software development team (which has a clear understanding of user requirements and knows how to

accomplish them in software) act as the main source of information. • Report writing: The software development team

uses a feasibility report, to mark the conclusion of the feasibility study. The report includes recommendations on whether

the development of the software should be continued. Information about changes regarding software scope, schedule,

and budget and suggestions with respect to any requirements in the system is also included in the report .

54 | P a g e Space for learners: • General information: This describes the purpose along with the scope of the feasibility

study. It also elucidates system overview, acronyms and abbreviations, project references, and points of contact to be

used. Project references give a list of references used for the preparation of the document. System overview gives a

description of the organization responsible for the software development, system category, system name or title,

operational status, and so on. Acronyms and abbreviations describe a list of the terms used in this document

accompanied by their meanings. Points of contact provide a list of organizational contact points with the users for future

information and coordination. For example, users might require assistance for solving a particular problem (such as

troubleshooting) 3.6.5 Outcome of The Feasibility Study Based on the information assessed (about the requirements) ,

information collected and report written, the following list of questions is obtained- a) What will happen if the system is

not implemented? b) What are the present problems related to the project? c) How will the proposed software system

help? d) What will be challenges related to integration? e) Is there any requirement for new technology? f) Is there any

requirement for new skill sets and team members? g) What facilities would the proposed system support? 3.7

ELICITATION OF REQUIREMENTS In the process of requirement elicitation, the requirements of the proposed software

are ascertained by communicating with end-users, system users , clients and other stakeholders.

55 | P a g e Space for learners: 3.7.1 The Process of Requirement Elicitation The process of requirement elicitation can be

described with the help of the following diagram: Fig 3.2 Process of requirement elicitation ? Requirements gathering –

In this process, the developers have a discussion with the end-users or the client to understand what they expect

71% MATCHING BLOCK 38/246

from the software. ? Organizing Requirements – Here, the developers arrange the requirements in the order of priority,

importance and convenience. ? Negotiation & Discussion –

At times, there may exist ambiguities or conflicts in requirements coming from different stakeholders. Such issues are

discussed or negotiated with the stakeholders in this important process, for correctness and clarity. After a consensus

has been received, realistic requirements are prioritised. At the same time, unrealistic requirements are reasonably

compromised . ? Documentation – At this stage, all functional and non- functional , formal & informal, requirements are

duly documented and are made accessible for the next phases of processing. 3.7.2 The Techniques of Requirement

Elicitation Different techniques are used in the process of requirement elicitation to discover the requirements. Some of

these are mentioned below- A . Interviews An interview is a strong and widely used medium to collect user requirements.

Different types of interviews employed by organizations are:

56 | P a g e Space for learners: ? Structured or closed interviews- Here, the interviewer decides about every single piece

of information to gather well in advance. The matter of discussion and the pattern to follow is chalked out firmly. ? Non-

structured or open interviews- Here, the interviewer does not decide on the information to gather in advance. Therefore,

such interviews may be less biased and more flexible. ? Written interviews ? Oral interviews ? One-to-one interviews-

Here, the interview is held between the interviewer and the interviewee, across the table. ? Group interviews - Here, the

interview is held between categories of participants. As a number of people are involved in such interviews, group

interviews have the capacity to unveil any missing requirement. B. Surveys The organization may collect required

information by conducting specially designed surveys among the stakeholders. In the survey, queries are made about the

expectation and requirements of the stakeholders from the proposed software system. C. Questionnaires In this method,

a document is provided to all the stakeholders. It includes a pre-defined set of questions (in objective format, along with

respective options). The response of each stakeholder is then collected and compiled. However, this method has an

important drawback. If a relevant option for a particular issue is not included in the questionnaire, there is every chance

that the issue will be left unaddressed. D. Task analysis This technique may be used by the engineers and developers to

55% MATCHING BLOCK 39/246

analyze the functionality for which the proposed software system is needed. If the client has some similar software

in place already to accomplish

57 | P a g e Space for learners: certain operations, the same is studied and from this, the requirements of the proposed

software system are collected. E. Domain Analysis Every software can be grouped into certain categories of domains.

The experts in this particular domain can be consulted to analyze the general and specific requirements. F. Brainstorming

In this method, an informal discussion cum debate is organized among the various stakeholders . Inputs coming from

the stakeholders are recorded for further analysis by the organization. G. Prototyping Prototyping is all about building a

user interface that is similar to the intended software. However, this interface does not include the detailed functionalities

of the proposed software. But, from this, the user can interpret the proposed features of the software product. It helps

the user to provide a better idea of his requirements. This method becomes very useful if no software is installed at the

client’s end for the reference of the developer and also when the client is not clear about his own requirements. In such

cases, the developer creates the prototype depending on the raw and initial requirements coming from the user. The

prototype is then provided to the client and his feedback is noted down. This feedback is considered as the input for

requirement collection. H. Observation In this technique, an expert team visits the workplace or organization of the

client. They observe and gather ideas about the actual working place where the existing systems are installed. They study

the prevailing workflow at the end of the client end and the way the execution problems are managed. The team would

draw important insights and conclusions which would form the functionalities expected from the proposed software.

58 | P a g e Space for learners: 3.8 REQUIREMENTS ANALYSIS After the process of requirements gathering gets

completed, the system analyst studies the gathered requirements in order to understand the exact requirement of the

customer. This is done with a view to resolving any ambiguity in the customer's requirements. The following basic but

important questions pertaining to the project should be clearly understood by the analyst, in advance: •

71% MATCHING BLOCK 40/246

What is the problem? • Why should we solve the problem? • What are the possible solutions to the problem? • What

precisely are the data input to the system and what exactly are the data outputted by the system? • What are the most

likely complexities that might arise while

trying to solving the problem? • If the developed software needs to interface with any external software or hardware,

then what exactly would be the format of data interchange with the external system? Once the analyst gets a good

understanding of the customers' requirements, he/she proceeds to resolve the following problems that he/she detects in

the requirements. a)Ambiguity Since an unclear or ambiguous requirement can lead to incorrect software development,

hence the analyst tries to resolve it. b)Inconsistency STOP TO CONSIDER A system analyst in an IT organization is a

person, who analyzes the requirement of the proposed system and ensures that requirements are conceived and

documented properly & correctly. STOP TO CONSIDER The main aim of requirement analysis phase is to analyse the

collected information in order to get a clear understanding of the system to be developed.

59 | P a g e Space for learners: The analyst attempts to get the contradicting requirements given by say two customers

resolved as this will hamper the development of precise software by the customer. c)Incompleteness The analyst gets

the incompleteness in requirement solved by incorporating the requirements that have been overlooked by the

customer. Several activities are involved in analyzing the requirements of the proposed software. Some of them are

mentioned below : Fig:3.3 Activities involved in analyzing the requirements 3.8.1 Problem Recognition The primary aim of

the requirement analysis process is to completely understand the objectives of the requirement. It would also look into

why the software is required, what value it will add to the product, what its benefits will be, if it increases the product

quality and if it has any other effects. These points are studied thoroughly so that business problems can be fulfilled.

60 | P a g e Space for learners: 3.8.2 Evaluation and Synthesis Evaluation means judging whether something is worth it or

not. Whereas, synthesis refers to creating or forming something. The following tasks may constitute the process of

evaluation and synthesis: ? To define all the necessary functions of the proposed software. ? To define the external data

objects that are easily observable. ? To evaluate whether the data flow is worth it or not. ? To understand the overall

working or behavior of the system ? To find out the constraints of the system. ? To understand the character of the

system interface in order to thoroughly understand how a system interacts with other components or with other

systems. 3.8.3 Modeling After information gathering is complete with the help of the above tasks, the next step is to

establish behavioral and functional models. Here, the behavior and function of the system are checked with the help of a

domain model, also known as a conceptual model. 3.8.4 Specification Here, an SRS is developed to specify the

requirements and to determine if these are functional or non-functional. The objective of software requirement is to

specify the requirements of the software product in a consistent, unambiguous and concise manner- with the help of

appropriate formal notations. Specifying the software requirements is a critical step in software development. If not done

in a proper manner, it may even lead to a crippled system that may be extremely difficult to rectify later on.

61 | P a g e Space for learners: 3.8.5 Review After the SRS is developed, it should be reviewed. This is to check if the SRS

can be improved or not. If there is scope for improvement, it must be refined to enhance the quality. 3.9 SRS OR

100% MATCHING BLOCK 41/246

SOFTWARE REQUIREMENT SPECIFICATION After the analyst has collected all the required information regarding the

software to be developed, and has removed all

the anomalies, incompleteness and inconsistencies from the specification, he/she starts to organize the requirements, in

systematic order, in the form of an SRS document. The SRS is the official document that contains what is required from

the developers of the system. It comprises detailed user requirements and complete system specifications. According to

Henninger, an SRS must satisfy the following six requirements: ? It should only specify the external system behavior ? It

should specify the constraints related to the implementation. ? It should be adaptable to change. ? It should work as a

reference for those who maintain the system. ? It should record the life cycle of the proposed software system. ? It

should facilitate a standard and predictable response to undesired events. SRS document is supposed to cater to the

needs of a varied class of users some of which are mentioned below- ? Users, customers and marketing personnel ?

Project Managers ? Software Developers ? Test Engineers ? User Documentation writers ? Maintenance Engineers

62 | P a g e Space for learners: 3.9.1 Need for SRS The following points will help you understand the needs for SRS- ? SRS

forms the base of the agreement between the supplier and the user. The user may not understand a single bit about

software but, he needs to be satisfied. The developers will develop the software. But, he may not at all know about the

problems the software must solve. SRS is the very medium that can bridge the communication gap. ? SRS can specify the

needs of the user in a manner both the user and the developer can understand ? SRS can also help the user understand

his needs better. Users may not always be clear about what to expect from the software. The SRS must analyze and

apprehend the potential of the software to add value to the user and must enlighten the user about this. ? SRS provides a

reference point for validating the final software product. It provides a clear understanding of what is expected from the

software at the time of the validation. ? A high-quality SRS reduces the cost of software development 3.9.2

Characteristics of a Good SRS Here are the desired characteristics of a good SRS: 1. Concise: An SRS should be concise.

It should also be devoid of inconsistency and ambiguity. At the same time, it should also include each and every

requirement specified by the user. 2. Structured: An SRS should be well structured so that its style and structure can be

easily modified without disturbing the completeness and consistency. 3. Black-box view: SRS should only define what

the system should do and abstain from stating how to do it. This means that the SRS should not discuss the internal

implementation issues. The SRS report should view the proposed system as a black box.

63 | P a g e Space for learners: It should only define the behavior of the system that is externally visible. This is the reason,

why the SRS document is also termed as the black-box specification of a system. 4. Verifiable: An SRS is considered

verifiable if every single requirement specified by it is verifiable. This means it follows a procedure to verify that the

intended software meets the user requirement. 5. Traceable: An SRS is said to be traceable if each and every requirement

specified by it can be uniquely attributed to a source. 6. Response to undesired events: It should include responses to

exceptional cases. 3.9.2 Important Categories of Customer Requirement While documenting users' requirements, utmost

care should be taken to categorise and document the requirements in a different section of the SRS. The varied user

requirements can be categorised in the following points 3.9.3. Functional Requirements As discussed in 3.4.1 the

functional requirements part discusses the functionalities required from the system. With a high-level function, the user

should be able to accomplish some meaningful part of the work. 3.9.4 Non-Functional Requirements As discussed in

section 3.4.2 Non-functional requirements deal with the STOP TO CONSIDER The important parts of the SRS document

are: • Functional requirements of the system • Non-functional requirements of the system • Goals of implementation

64 | P a g e Space for learners: characteristics of the system which cannot be expressed as functions. 3.9.5 Goals of

Implementation

75% MATCHING BLOCK 42/246

The goals of implementation part of the SRS documents some general suggestions regarding development.

These suggestions guide trade-offs among design goals. This section can document issues with regards to revisions of

the system functionalities that might be required in the near future, reusability issues, new devices to be supported in the

future, etc. These are some of the items which the developers need to keep in their mind during development so that the

developed system may meet these aspects that are not required at present. 3.9.6 Identify Functional Requirements The

functional requirements often need to be identified either from a conceptual understanding of the problem or an

informal problem description document. Each high-level requirement is characterised by how a system is used by some

users to perform certain meaningful jobs. A system can have different types of users and their requirements from the

same system may also be completely different from one another. Hence, it is often necessary to identify the different

levels of users who might use the system. Then it should make an attempt to identify each user's requirements from their

perspective. Here we list all the functions {fi} performed by the system. Each function fi, as shown in the figure below (fig.

3.1), is considered as a conversion of a specified set of input data into the corresponding output data. Example: Consider

the case of a library system, where – F1: Search Book details function (fig. 3.4) Input: Author’s name Output: Details of

the books of the author and their location inside the library

65 | P a g e Space for learners: Fig. 3.4. Book Function Therefore, the function Search Book (F1) accepts an author's name

and converts it into book details. Functional requirements literally describe a set of high-level requirements, with each

high-level requirement taking some data from the user and thereby providing some data to the user as output. Also

,each high-level requirement itself might consist of many other functions. 3.9.7 Document Functional Requirements: For

the documentation of the functional requirements, we have to specify the set of functionalities that the system supports.

A function is specified by identifying the state at which the data is inputted to the system, its input and output data

domain, and the type of processing that is to be carried out on the input data to get the desired output data. Let us try to

document the withdraw-cash function of an Automated Teller Machine(ATM) system. The withdrawal of cash (the

withdraw-cash function) is a high-level requirement. It has a number of sub- requirements corresponding to the

different user interactions. These varied interaction sequences capture the different scenarios for an ATM .An Example:

Automated Teller Machine(ATM) Functional Requirements of an ATM • Withdraw Cash • Deposit Cash • Balance Enquiry •

Passbook Update • Transaction Details • PIN Change We will look at the functional requirements of Withdraw Cash from

an ATM Author Name Book details F1

66 | P a g e Space for learners: Fig:3.5 F1: Withdraw Cash Description: This function first ascertains the type of account

the user has and the account number from which he attempts to withdraw cash . It verifies the balance to check if the

amount requested is available in the account or not. If sufficient balance is available, it sends the required cash amount

as output; else, it generates an error F1.1: Select Withdraw Cash Input: “Withdraw Cash” Option Output: User is Prompted

to fill in the Account Type F1.2: Select Account Type Input: User Option Output: User is Prompted to enter the Amount

F1.3: Read required Amount Input: Amount to be withdrawn in integer values in the range of more than 100 and below

10,000 and in multiples of 100 Output: Processing for “Valid Transaction” with requested cash and printed transaction OR

“Failed Transaction” with a regret message . Select Withdraw Cash Display Account Type Menu Enter Option Prompt

Amount to be withdrawn Enter Amount Check Validity of input Display Current Balance Check Transaction Request

Display Changed Balance

67 | P a g e Space for learners: 3.9.8 Techniques for Representing Complex Logic A good SRS document should be able

to characterize the conditions under which different interaction scenarios take place. Sometimes these conditions may

be complex and many alternative processing and interaction sequences may also exist. Two primary techniques to

analyze and represent complex processing logic are available: decision trees and decision tables. 1. Decision Trees- It

presents a graphic view of the processing logic associated with decision making

79% MATCHING BLOCK 43/246

and the corresponding actions undertaken. The edges of a decision tree denote conditions and the leaf nodes denote

the actions to be

taken on the basis of the outcome of testing the condition. For Example, Consider Library Membership Automation

Software (LMS). Assume that it supports the following 3 options- • New member • Renewal, and • Cancel membership

New member option Decision: When a user selects

66% MATCHING BLOCK 44/246

the 'new member' option, the software asks for member details like the member's name, phone number, address etc.

Action: If

the user enters proper information, the software would create

61% MATCHING BLOCK 45/246

a membership record for the particular member. Also, a bill is printed against the annual membership charge

and the payable

31% MATCHING BLOCK 46/246

security deposit. Renewal option Decision: If the user selects the 'renewal' option, the LMS asks for the membership

number of the member and his name to verify if he is an authorised member. Action: If his membership is

found to be valid, the membership expiry date gets updated and the annual membership bill for the user is printed. Else,

an error message is shown on the screen. Cancel membership option Decision: If the user selects the 'cancel

membership' option, the LMS asks for the membership number of the member and his name to verify if he is an

authorised member. Action:

68 | P a g e Space for learners: The software cancels

77% MATCHING BLOCK 47/246

the membership. Also, a cheque bearing the balance amount due to the member gets printed. Finally, the membership

record gets deleted from the database. Decision tree representation of the above example The tree

shown in the figure below, (fig. 34.3) is a graphical

50% MATCHING BLOCK 48/246

representation of the above- mentioned example. After the software gets the information from the user, it makes a

decision and accordingly, performs the corresponding actions. Fig 3.6 2. Decision

Tables Decision tables are used to represent the otherwise

53% MATCHING BLOCK 49/246

complex processing logic in a matrix or tabular form. The top rows of the table specify the conditions or variables to be

evaluated. The rows at the bottom of the table specify the actions to be performed upon satisfaction of the

corresponding conditions.

Example Consider the LMS example discussed above. The decision table shown in the figure below (fig. 34.4) shows a

way

59% MATCHING BLOCK 50/246

to represent the problem in a tabular form. The table here is divided into 2 parts. The part at the top shows the

conditions and the part

at the bottom shows the actions that have been taken. Each column of the table stands for a rule.

69 | P a g e Space for learners: Conditions Valid selection No Yes Yes Yes New member - Yes No No Renewal - No Yes

No Cancellation - No No Yes Actions Display error message x - - - Ask member's details - x - - Build customer record - -

x - Generate bill - x x - Ask member's details - - x x Update expiry date - - x - Print cheque - - - x Delete record - - - x

Fig. 3.7 Decision table for LMS From the table shown

73% MATCHING BLOCK 51/246

above, you can easily see that, if the valid selection condition becomes false, the action

performed with reference to this condition is 'display error message' and so on. 3.9.9 Problems without an SRS

Document Here are some of the problems an organization will face without an SRS: • If an SRS is not there, the software

system implemented would not be able to address the needs of the customers. • Software developers will not be sure

about whether they have developed the software as per the customer requirements • It will be extremely difficult for

100% MATCHING BLOCK 52/246

the maintenance engineers to understand the functionalities of the system. •

The document writers will find it very difficult to script the user manuals properly.

70 | P a g e Space for learners: CHECK YOUR PROGRESS 1. Mark the following as True or False: a. All software

engineering principles are backed by either scientific basis or theoretical proof. b. Functional requirements address

maintainability, portability, and usability issues. c. The edges of decision tree represent corresponding actions to be

performed according to conditions. d. The upper rows of the decision table specify the corresponding actions to be

taken when an evaluation test is satisfied. e. A column in a decision table is called an attribute. 2. i) How many feasibility

studies is conducted in Requirement Analysis? a) Two b) Three c) Four d) None of the mentioned ii). How many phases

are there in Requirement Analysis ? a) Three b) Four c) Five d) Six iii). Which one of the following is a functional

requirement ? a) Maintainability b) Portability c) Robustness d) None of the mentioned

71 | P a g e Space for learners: 3.10 SUMMING UP This unit discusses various aspects of software requirements analysis,

the significance of the use of engineering approach in software design, various tools for gathering the requirements and

specifications of prototypes. Due to the complexity associated with software development, the engineering approach is

being used in software design. The use of the engineering approach in the area of requirements analysis has evolved the

field of Requirements Engineering. Before the actual system design commences, the system architecture is modelled.

3.11 ANSWERS TO CHECK YOUR PROGRESS Answers for Q1: a)True b)False c)False iv) . An SRS document normally

contains a) Functional requirements of the system b) Module structure c) Non-functional requirements of the system d)

Both a and b v) Consider a system where a heat sensor detects an intrusion and alerts the security company. What kind

of requirement the sysem provides? A). Functional B). Non-Functional C). Known D). None of the mentioned

72 | P a g e Space for learners: d)False e)False Answers for Q2: i) b ii) c iii) d iv) d v) a 3.12 POSSIBLE QUESTIONS 1. Identify

the important parts of an SRS document. Identify the problems an organization might face without developing an SRS

document. 2. Identify the non-functional requirement-issues that are considered for a given problem description. 3.

Discuss the problems that an unstructured specification would create during software development. 4. Why SRS

document is often touted as a “Black Box” document? 5. “SRS document should be a flexible document” - Agree or

disagree the comment 6. How Requirement Engineering is related to process development models? 3.13 REFERENCES

AND SUGGESTED READINGS ? Software Engineering, Sixth Edition, 2001, Ian Sommerville; Pearson ? Education. ?

97% MATCHING BLOCK 53/246

Software Engineering – A Practitioner’s Approach, Roger S. Pressman; ? McGraw-Hill International Edition. ?

Fundamentals Of Software Engineering, 2014 4

Th

Edn. by Rajib Mall, PHI.

73 | P a g e Space for learners: UNIT 4: SOFTWARE PROJECT PLANNING Unit Structure: 4.1 Introduction 4.2 Unit

Objectives 4.3 Responsibilities of a software project manager 4.4 Project Planning 4.5 Sliding Window Planning 4.6

Software Project Management Plan (SPMP) 4.7 Purpose of project planning 4.8 Project Scope 4.9 Principles of Project

Planning 4.10 Process of Project Planning 4.11 Project Plan 4.11.1Quality Assurance Plan 4.11.2 Verification and Validation

Plan 4.11.3 Configuration Management Plan 4.11.4 Maintenance Plan 4.11.5 Staffing Plan 4.12 Project Scheduling 4.13

Project Scheduling Techniques 4.13.1Activity networks 4.13.2 Critical Path Method (CPM) 4.13.3 Gantt chart 4.13.4 PERT

Chart 4.14 Summing Up 4.15 Answers to Check Your Progress 4.16 Possible Questions 4.17 References and Suggested

Readings 4.1 INTRODUCTION Software development is considered as a complex task involving processes, procedures

and people. Therefore, for the successful development of a software an effective software management is required.

Historically, software projects have the dubious distinction of

74 | P a g e Space for learners: exceeding project schedule and cost. Estimating cost and duration is still a weak link in

software project management. The aim of this unit is to give an overview of different project planning techniques and

tools used by modern day software project managers. It is the responsibility of the project manager to make as far as

possible accurate estimations of effort and cost. This is particularly what is desired by the management of an

organization in a competitive world. This is especially true of projects subject to competition in the market where bidding

too high compared with competitors would result in losing the business and a bidding too low could result in financial

loss to the organization. This makes software project estimation crucial for project managers. 4.2 UNIT OBJECTIVES

After reading this unit, the reader will get a grasp of the following: ? Responsibilities of software project manager. ? The

need and purpose of project planning. ? The project planning process. ? A project plan. ? Project scheduling. ?

Techniques for project scheduling include Gantt and PERT chart. ? Project staffing. 4.3 RESPONSIBILITIES OF A

SOFTWARE PROJECT MANAGER Effective project planning is the key to successful completion of the software project

and project manager is the person responsible for it. Software project managers is responsible for steering

70% MATCHING BLOCK 54/246

a project to success. It is difficult to describe the job responsibilities of a project manager. The responsibility of a project

manager spans from invisible activities such as building up team morale to clearly visible

activity like

75 | P a g e Space for learners: customer presentations. Most managers take the responsibility for project proposal

writing, scheduling, project staffing, project cost estimation, software process tailoring, software configuration

management, project monitoring and control, risk management, managerial report writing and presentations, interfacing

with clients, etc. These numerous activities are varied and difficult to enumerate, but it can be broadly classified into

project planning, and project monitoring and control activities. The project planning activity is undertaken before

development starts. While, the project monitoring and control activities are undertaken once the development activities

start. 4.4. Project Planning Before starting a software project, it is important to determine the various tasks to be

performed. The tasks are then properly allocated among individuals involved in the process of software development.

Thus, planning is essential as it results in effective software development. Project planning is an well-structured and

consolidated management process with consistent focus on activities that will lead to successful completion of the

project. It helps in preventing obstacles that crop up in the project, as for example changes in organization’s or project’s

objectives, non-availability of resources etc. Further, project planning also aids in optimal usage of the allotted time for a

project and better utilization of resources. Some of the additional objectives of project planning are listed below. ? To

define the roles and responsibilities of the members in a project management team. ? To determine project constraints. ?

To check whether the user requirements along with schedule are feasible or not. ? To ensure that the works of project

management team is aligned with the business objectives. STOP TO CONSIDER The different activities of a project

manager can be classified into- a) Project planning b) Project monitoring and control activities

76 | P a g e Space for learners: Several individuals work together for planning a project which include senior

management and project management team. The senior management is responsible for employing the team members.

The senior member team also provide resources that are required for the project. The project management team, which

consists of project managers and developers, is generally in charge of planning, determining, and tracking the various

activities of the project. The following essential activities are carried out during project planning: •

79% MATCHING BLOCK 55/246

Estimating the following attributes of the project: Project size: What will be problem complexity, expressed in terms of

the effort and time required to develop the product? Cost: How much cost will be incurred to develop the project?

Duration:

What is the duration for completing the software development? Effort: How much effort would be required? The success

of the subsequent planning activities will depend on the accuracy of these estimations. • Work break down structure •

Risk identification, analysis, and abatement planning •Scheduling manpower and other resources • Miscellaneous plans

such as quality assurance plan, configuration management plan, etc. STOP TO CONSIDER Project planning is undertaken

and completed even before any developmental activity starts. STOP TO CONSIDER A project plan defines the project

goals and objectives, defines tasks and the means to achieve the goals, identifies what resources will be needed and

associated budgets and timelines for completion.

77 | P a g e Space for learners: The effectiveness of the following planning activities relies on the accuracy of those

estimations. ? planning force and alternative resources ? workers organization and staffing plans ? Risk identification,

analysis, and abatement designing Miscellaneous arranges like quality assurance plan, configuration, management

arrange, etc Fig:4.1 Fig. 4.1 shows the order in which different project planning activities may be undertaken. It can be

easily observed that size estimation is the first activity. It is also the most fundamental parameter based on which all other

planning activities are carried out. Other estimations such as estimation of effort, cost, resource, and project duration are

also very important components of project planning. 4.5 SLIDING WINDOW PLANNING Project planning needs due care

and attention as adhering to unrealistic time and resource estimates leads to schedule slippage. Delays in STOP TO

CONSIDER Size is the most fundamental parameter based on which all other parameters are estimated

78 | P a g e Space for learners: schedule can cause customer dissatisfaction and adversely affect the morale of the team.

This may even lead to project failure. But project planning is a very challenging task. Especially it is very difficult to

prepare accurate plan for very large projects. This is partly difficult because of the fact that the scope of the project,

proper parameters,

91% MATCHING BLOCK 56/246

project staff, etc. may change during the span of the project. To overcome this problem, sometimes project managers

undertake project planning in stages.

Planning a project over a number of

95% MATCHING BLOCK 57/246

stages protects managers from making big commitments too early. This technique

of staggered planning

is known as Sliding Window Planning. In the

85% MATCHING BLOCK 58/246

sliding window technique, starting with an initial plan, the project is planned more accurately in successive

development stages. At the start of a project, project managers have incomplete knowledge about the details of the

project. Their information base gradually improves as the project progresses through different phases. After the

completion of every phase, the project managers can plan each subsequent phase more accurately and with

increasing levels of confidence. 4.6 SOFTWARE PROJECT

MANAGEMENT PLAN (SPMP) When project planning reaches its completion, project managers document their plans in

the form of the Software Project Management Plan (SPMP) document. The list of various items that an SPMP document

should discuss are mentioned below. This list can be referred to as a possible organization of the SPMP document.

Organization of the Software Project Management Plan (SPMP) Document 1. Introduction (a) Objectives (b) Major

Functions (c) Performance Issues (d) Management and Technical Constraints 2. Project Estimates

79 | P a g e Space for learners: (a) Historical Data Used (b) Estimation Techniques Used (c) Effort, Resource, Cost, and

Project Duration Estimates 3. Schedule (a) Work Breakdown Structure (b) Task Network Representation (c) Gantt Chart

Representation (d) PERT Chart Representation 4. Project Resources (a) People (b) Hardware and Software (c) Special

Resources 5. Staff Organization (a) Team Structure (b) Management Reporting 6. Risk Management Plan (a) Risk Analysis

(b) Risk Identification (c) Risk Estimation (d) Risk Abatement Procedures 7. Project Tracking and Control Plan 8.

Miscellaneous Plans (a) Process Tailoring (b) Quality Assurance Plan (c) Configuration Management Plan (d) Validation

and Verification (e) System Testing Plan (f) Delivery, Installation, and Maintenance Plan

80 | P a g e Space for learners: 4.7 PURPOSE OF PROJECT PLANNING In order to accomplish a specific purpose,

software project is carried out which can be categorized under two heads namely, project objectives and business

objectives. Some of the most common project objectives are listed below. ? Meet user requirements: Understand the

user requirements and develop the project accordingly. ? Meet scheduled deadlines: Complete the project milestones, as

laid down in the project plan, on time so that the project gets completed according to the schedule. ? Be within budget:

To manage the overall project cost in such a way that the project is completed within the allocated budget. ? Produce

quality deliverables: Ensure that quality, accuracy and overall performance of the project is maintained. Business

Objectives Business objectives plays the role for ensuring that the organizational objectives and requirements are

accomplished in the project. In general, these objectives are related with business process improvements, quality

improvements and customer satisfaction. Some of the most common project objectives are listed below. ? Evaluate

processes: Evaluate the business processes and make changes as and when required during the progress of the project.

? Renew policies and processes: STOP TO CONSIDER The SNMP is the end product of the planning process

81 | P a g e Space for learners: In order to carry out the task effectively, flexibility to renew the policies and processes of

the organization must be provided. ? Keep the project on schedule: Reduce the downtime (period of no work done) by

effectively managing the factors, such as unavailability of resources during software development, that hampers the

development. ? Improve software: Use suitable processes so that the software developed meets the organizational

requirements and the organization gains a competitive advantage. 4.8 PROJECT SCOPE Given the user requirements,

the project management team decides the scope of the project before it begins. This scope furnishes a detailed

description of features, functions, interfaces, and constraints of the software that needs to be considered. Functions

gives a description of the tasks the software is expected to accomplish. Features describe the attributes the software

should have as per the user requirements. Constraints express the limitations that are imposed on software by hardware,

memory etc. Interfaces describe the interactions of modules and functions of software components with each other.

Project scope also takes into account the software performance, which, again depends on its processing capability and

response time required to produce the output. Once the scope of the project is determined, it is crucial to understand it

properly so as to develop the software aligned with the user requirements. After this, cost and duration of the project are

estimated. In case, the project scope is not determined on time, the project may fail to complete within the specified

schedule. Project scope gives details of the following information. STOP TO CONSIDER Purpose of project planning is to

accomplish project and business objectives

82 | P a g e Space for learners: ? The elements included in and excluded from the project ? The processes alone with the

entities ? The functions and features need to be included in the software to meet the user requirements. 4.9 PRINCIPLES

OF PROJECT PLANNING For the project to begin with well-defined tasks, project planning should be effective .An

effective project plan helps to minimize any additional costs incurred on the project while it is in progress. For project

planning to be effective, some principles are followed which are listed below. ? Planning is necessary: Planning should be

carried out before a project begins. For it to be effective, objectives and schedules should be unambiguous and

understandable. ? Risk analysis: Before starting a project, the senior management along with the project management

team must consider the risks therein that may affect the project. As for instance, the user might want some changes in

their requirements while the project is in progress. To tackle such a case, the time and cost estimation should be done

accordingly (to meet the new requirements). ? Tracking of project plan: Once the project plan is ready, it should be

tracked and modified accordingly. ? Meet quality standards and produce quality deliverables: STOP TO CONSIDER The

project management and senior management team should communicate with the users to understand their

requirements and develop software according to those requirements and expected functionalities.

83 | P a g e Space for learners: The project plan should be able to identify processes by means of which the project

management team can ensure desired quality in software. Based on the selected process for ensuring quality, the time

and cost for the project is estimated. ? Description of flexibility to accommodate changes: The final outcome of project

planning is in the form of a project plan, which should be flexible enough to allow changes to be incorporated when the

project is in progress 4.10 PROCESS OF PROJECT PLANNING The project planning process comprises of a series of

interlinked activities followed in an ordered sequence in order to implement user requirements. It includes the

elucidation of a series of project planning activities along with individual(s) responsible for performing these activities.

Furthermore, the project planning process consist of the following. 1. The objectives and scope of the project. 2. Name

of techniques used to perform project planning 3. Effort of individuals (expressed in time) involved in the project. 4.

Resources required for the project 5. Project schedule and milestones 6. Risks associated with the project. The process

of project planning comprises of several activities which are crucial for carrying out a project in a systematic manner.

These activities consist of series of tasks undertaken over a period of time in the process of developing the software.

These activities comprise of estimation of effort, time, and resources required and risks associated with the project. STOP

TO CONSIDER An effective project plan helps to minimize any additional costs incurred on the project

84 | P a g e Space for learners: Fig 4.2 Following activities are performed during the project planning process ? Identifying

the project requirements: Before starting a project, it is important to identify the requirements of the project because it is

the identification of project requirements that will help in performing the project related activities in a systematic manner.

These requirements consist of information such as project scope, data and functionality required in the software, and

roles determined for the project management team members. ? Identifying cost estimates: Along with the effort and

time estimation, it is essential to estimate the cost that the project will incur. The cost of hardware, the cost required for

the maintenance of hardware components and the cost of network connections are included in the cost estimation. In

addition to this, cost for the individuals involved in the project is also estimated. ? Identifying risks: Risks can be defined as

unexpected or undesired events that have an adverse effect on the project. A software project may encounter several

risks (such as technical risks and business risks) that hamper the project schedule and multiply the cost of the project.

85 | P a g e Space for learners: Hence identifying risks before starting a project, helps in understanding their probable

magnitude of impact on the project. ? Identification of critical success factors: For the success of a project, critical

success factors need to be recognised. These factors include the conditions that ensure greater chances of success for a

project. Commonly, these factors include appropriate budget, support from management, proper schedule, and skilled

software engineers. ? Preparation of project charter: A project charter gives a brief description of the project scope, time,

quality, cost, and resource constraints as described during project planning. The management prepares it for approval

from the sponsor of the project. ? Preparation of project plan: A project plan gives a description regarding the resources

that are available for the project, individuals involved in the project, and the schedule according to which the project is to

be carried out. ? Commencement of the project: After the project planning is complete and resources are allocated to

team members, the software project commences. After the determination of project objectives and business objectives,

end date for the project is fixed. The project management team is entrusted with the responsibility of preparing the

project plan and schedule aligned with the end date of the project. After the project plan is analyzed, the project

manager conveys the project plan and its end date to the senior management. From time to time, the progress of the

project is reported to the management. In the same way, the senior management is informed when the project is

complete. In case there is any delay in completing the project, the project plan is re-analyzed and corrective actions are

taken to complete the project. The project is tracked on a regular basis and in case of any modification in the project

plan, the senior management is informed.

86 | P a g e Space for learners: 4.11 PROJECT PLAN A project plan is the outcome of project planning. It provides

information regarding the end date, milestones set, activities and deliverables of the project. Moreover, it also describes

the duties and responsibilities of the project management team. The resources required, including the description of

hardware and software (such as compilers and interfaces) , for the project are also finds place in the project plan. The

description and lists of the methods and standards to be used are also mentioned in the project plan. These methods

and standards include algorithms, tools, review techniques, design language, programming language, and testing

techniques. It helps a project manager to understand, monitor, and control the development of software project. This

plan is acts as a means of communication between the users and project management team. There are a number of

advantages associated with a project plan, some of which are listed below. ? It ensures that the software is developed as

desired by the user (user requirements), objectives set, and scope of the project. ? It helps in identifying the role of each

member of the project management team who are involved in the project. ? It helps to monitor the progress of the

project as laid in the project plan. ? It enables to determine the available resources and the activities to be undertaken

during software development. ? It gives an overview of the costs of the software project, which was estimated during

project planning, to the management, STOP TO CONSIDER It should be noted that depending on the kind of project and

user requirements there are differences in the contents of two project plans. STOP TO CONSIDER Once the project

objectives and business objectives are determined for the project, its end date is fixed.

87 | P a g e Space for learners: Generally, project plan is divided into the following sections. ? Introduction: It describes

the objectives of the project and gives detail about the constraints that might affect the software project. ? Project

organization: Illustrates about the responsibilities assigned to the team members of project management in order to

complete the project. ? Risk analysis: Describes the probable risks involved during software development It also explains

means to assess and reduce the effect of risks. ? Resource requirements: Specifies the software and hardware required to

build the software project. Cost estimation is thus done according to these resource requirements. ? Work break down:

Specifies the activities the project is composed of. It also describes the milestones and deliverables of the different

project activities. ? Project schedule: ? Specifies how the activities are dependent on each other. Based on this, the time

required by the project management team members to complete the project activities is estimated. In addition to the

above sections, there are a number of plans that may be a part of or related to a project plan. Some of these plans

include quality assurance plan, verification and validation plan, configuration management plan, staffing plan, and

maintenance plan. STOP TO CONSIDER Project Plan is the document containing information regarding the end date,

milestones set, activities and deliverables of the project.

88 | P a g e Space for learners: 4.11.1QUALITY ASSURANCE PLAN The quality assurance plan specifies the strategies and

methods that needs to be followed in order to accomplish the following objectives. ? Ensuring that the project is

developed, managed, and implemented in an organized way. ? Ensuring that the deliverables of the project is of

acceptable quality before they can be delivered to the user. 4.11.2 Verification and Validation Plan The verification and

validation plan gives detail about the approach, resources and schedule to be used for system validation. It comprises of

the following sections. 4.11.2.1 General information It provides description of the aim or purpose of the system, scope,

system overview, project references, abbreviations and acronyms, and points of contact. Purpose gives a description of

the procedures to verify and validate the various components of the system. Scope provides information regarding the

procedures to verify and validate as they relate to the project. System overview specifies information about the

organization responsible for the project. Other information such as system name, system category, operational status of

the system, and system environment are also specified by system overview. Project references gives the list of references

used while preparing the verification and validation plan. Acronyms and abbreviations specifies the list of terms used in

the project plan. Points of contact is meant to provide assistance to users, by the organization, as and when they

encounter problems such as troubleshooting and so on. 4.11.2.2 Reviews and Walkthroughs It is meant to provide

information about the schedule and procedures. Schedule describes the end date to achieve the milestones set for the

project. Procedures are the tasks that are associated with reviews and

89 | P a g e Space for learners: walkthroughs. Each team member is responsible for reviewing the documents for errors

and also ensure it is consistent with the project requirements. During walkthroughs, the project management team

checks to see the correctness of the project as laid down in the software requirements specification (SRS). 4.11.2.3

System Test Plan and Procedures Provides information related to the strategy used for testing the system, database

integration, and platform system integration. System test strategy gives an overview of the various components required

in order to integrate of the database and ensure that the application executes on at least two specific platforms.

Database integration describes about how the database is connected to the GUI (Graphical User Interface). Platform

system integration is a procedure which is performed on different operating systems with a view to test the platform.

4.11.2.4 Acceptance Test and Preparation for Delivery It describes the procedure, criteria for acceptance, and installation

procedure. Procedure illustrates on how acceptance testing needs to be performed on the software in order to verify its

usability as it was expected to be. Acceptance criteria specifies the conditions based on which the software will get

accepted. These includes those tests must be on all the components, features and functions and the system integration

test. In addition to this, acceptance criteria also checks whether the software meets user expectations such as its ability

to operate on several platforms. Installation procedure describes the steps on how to install the software in the specific

operating system being used. 4.11.3 Configuration Management Plan The configuration management plan defines the

process, which is to be used while bringing about some changes in the project scope. Generally, it is concerned with

redefining the objectives of the project

90 | P a g e Space for learners: and its deliverables (software products that are delivered to the user after completion of

software development). 4.11.4 Maintenance Plan The maintenance plan lists the resources and processes that is required

for making the software operational after its installation. Sometimes, software development team (or the project

management team) is not entrusted with the responsibility of maintenance of the software. In such cases, a separate

team known as software maintenance team is assigned the task of software maintenance. The maintenance plan,

comprises of the following sections. a) Introduction and background: It describes the services required by the software

and the manner in which the software is to be maintained. It also defines the scope of al the maintenance activities that

needs to be performed. b) Budget: Specifies the budget that will be required for carrying out operational activities and

software maintenance. c) Roles and responsibilities: Defines the roles and responsibilities of the each of the team

members which are associated with software maintenance and operational activities. It also mentions the skills that is

required to perform maintenance and operational activities. Apart from the software maintenance team, software

maintenance also comprises of the user support staff, user training staff, and support staff. d) Performance measures and

reporting: It recognises the performance measures required in order to carrying out software maintenance. Moreover, it

also describes how the different measures, essential for enhancing the performance of services (for the software), are

recorded and reported. e) Management approach: It identifies the methodologies required for demonstrating

maintenance priorities of the project. Because of this purpose, the management either

91 | P a g e Space for learners: identifies new methodologies or refers to the existing methodologies. Apart from this

management approach also describes the various levels at which the users are involved in software maintenance and

operational activities. It also specifies the manner in which the users and the project management team will

communicate with each other. f) Documentation strategies: Describes in detail the documentation prepared for user

reference. Generally, reports, error messages, information about problems occurring in software, and the system

documentation are included in the documentation. g) Training: It provides information regarding the training activities. h)

Acceptance: It defines a point of agreement between the project management team and software maintenance team

after the completion of implementation and transition activities. Once the agreement has been made, the software

maintenance begins. 4.11.5 Staffing Plan The staffing plan specifies the number of individuals required for a project. It

includes selection and assignment of tasks to the members of the project management team. It also specifies the

appropriate skills required to manage the project and to perform tasks so as to produce the project deliverables. In

addition to this, Staffing Plan also provides information about the resources such as tools, equipment, and processes

used by the project management team. A staff planner undertakes the task of staff planning. He is the one who is

responsible for determining the individuals that are available for the project. Moreover, a staff planner has a number of

responsibilities which are listed below. 1) The staff planner identifies the individuals, who can be either from existing staff,

staff on contract, or newly employed staff, that can be employed in the project. It is essential for the staff planner to

know the

92 | P a g e Space for learners: structure of the organization in order to determine the availability of staff. 2) The staff

planner is responsible for determining the skills required to execute the various levels of tasks as mentioned in the project

schedule and task plan. In case where staff with required skills is not available, the staff planner has to inform the project

manager about the requirements. 3)The staff planner must ensure that the required staff with desired skills is available at

the right time. In order to fulfill this requirement, the staff planner plans the availability of staff once the project schedule

is fixed. For instance, the initial stage of a project require only the project manager along with a few software engineers

as the staff whereas during software development phase, the staff will consist of software designers as well as the

software developers. 4) Roles and responsibilities of the project management team members are also defined by the staff

planner, so that, according to the tasks assigned to them, they can communicate and coordinate with each other.

Depending on the size and complexity of the project the project management team can be further broken down into

sub-teams The staffing plan comprises of the following sections. 1) General information: Specifies name of the project

and the project manager, who is responsible for the project. It also specifies the start and end dates of the project. 2)

Skills assessment: Provides information, which is essential for assessment of skills. These information include the

knowledge, skill, and ability of team members who are responsible for achieving the objectives of the project. Moreover,

it specifies the number of members that will comprise a team, for the project. 3) Staffing profile: It describes the staff

profile required for the project. The profile defines the calendar time, the individuals involved, and the level of

commitment. Calendar time specifies the period of time, expressed in

93 | P a g e Space for learners: terms as month or quarter, that the individuals are required to complete the project. All

the individuals involved in the project have specific designations such as project manager and developer. Level of

commitment is the utilization rate of individuals such as work performed on full-time and part-time basis. 4)

Organization chart: It illustrates the organization of team members in the project management team. It also includes

information such as name, designation, and role of each team member. 4.12 PROJECT SCHEDULING Project scheduling

comprise one of the most important part in project planning activity. It gives details regarding the project start date and

termination date, milestones set, and the tasks for a particular project. Moreover, it specifies resources in terms of person

to be engaged, equipments and facilities to be used. A proper project schedule prepared aligned to the project plan not

only aims to complete the project on the scheduled time but also ensures that no additional cost is incurred in the event

of any delay in the project. a software project manager follows the following principles while preparing the project

schedule: 1) Compartmentalization: Modularize the project to form subtasks. The main purpose of compartmentalization

is to make the project manageable. 2) Interdependency: Identify the interdependency among the various tasks. All the

activities may not be interdependent. But there are some activities which cannot be started until the activity on which it is

dependent completes. on interdependent activities can be started simultaneously. STOP TO CONSIDER The staffing plan

specifies the selection and assignment of tasks to the members of the project management team

94 | P a g e Space for learners: 3) Time Allocation: Determine the time required to complete each activity so that it can

be allocated to each of the team members responsible for carrying out that particular job. Moreover, the members of the

project management team should be assigned a start and end date on the based on the manner on which the work will

be conducted (i.e., full- time or part time basis) 4) Effort Validation: Ensure that the number of project team members

allocated to a specific task conforms to the effort required for that particular task. This is specifically because every

project management team has a specified number of members in it and if more or less members are allocated to a

particular activity than required then the project may not complete on time. 5) Defined responsibilities: Demarcate the

roles and responsibilities of each of the members in the project management team. Thus, tasks should be allocated

suited to their skills and abilities. 6) Defined outcomes: The outcome of each and every task should be well defined.

Generally, outcomes are defined in terms of product which are combined together to form the deliverables. 7) Defined

milestones: Set milestones for the completion of the product and its review for quality check. The first and foremost step

in project scheduling is identification of the various tasks essential for completion of the project. The next step in

scheduling is to breakdown a large task into a logical set of small STOP TO CONSIDER Several aspects that are important

in project scheduling are: a) Techniques of project scheduling b)Task Network c)Tracking the schedule

95 | P a g e Space for learners: activities which can be assigned to different developers. After the the tasks has been

broken down to smaller tasks and the work breakdown structure has been created, the dependency among the activities

needs to be identified. Determining

86% MATCHING BLOCK 59/246

the dependency among the different activities determines the order in which the different activities would be carried

out. For instance if an activity A needs the results of another activity B, then activity A must be scheduled after activity B.

Generally, task dependencies define a partial ordering among

the different tasks, i.e. one task may precede a subset of other tasks, but for some tasks there may not exist any

precedence ordering defined between them (called concurrent task). Activity Network is used to represent the

dependency among the activities

96% MATCHING BLOCK 60/246

Once the activity network representation has been worked out, resources are allocated to each activity. Allocation

of

71% MATCHING BLOCK 61/246

resource is generally done using a Gantt chart. After resource allocation is done, a PERT chart representation is

developed

to monitor and control the project. For task scheduling, the project tasks is decomposed into a set of activities. The time

frame for each activity to be performed is determined. The end of each activity is called milestone. The progress of a

project is tracks by the project manager by monitoring the timely completion of these milestones. In case he observes

that the milestones started getting delayed, then he has to carefully control the activities, so that the overall deadline can

still be met. 4.13 TECHNIQUES FOR PROJECT SCHEDULING We need to use scheduling techniques in a project to align

all its aspects so as to work corresponding to each other. A schedule should be proportionate with the time set for the

project and all its resources should be used in an optimum manner. Given the variable nature of the project and its

scope, it is hard to plan it, but the project management team is expected to do it otherwise they will be held responsible

for it. A schedule consists of all the activities included in the implementation and execution of a project within the pre-

determined time frame of the project. A project schedule helps in prioritizing work involved in a project and finish it off in

an orderly manner. It also helps in appointing the right person for the job and in the proper allocation of

96 | P a g e Space for learners: the available resources. Time management and adjustments with the scope of a project is

only possible if there is a proper schedule prepared for the project being worked upon Numerous techniques have been

in use for the purpose of project scheduling. These techniques are applied after every information is gathered from the

project planning activities. The most common techniques used for project scheduling are Activity network and critical

path, Gantt Chart

80% MATCHING BLOCK 62/246

and PERT chart. 4.13.1 Activity Networks Work Breakdown Structure (WBS) representation of a project is transformed

into an activity network by representing the activities identified in WBS along with their interdependencies. An activity

network displays the different activities making up a project, their estimated durations, and interdependencies (

as shown in fig. 4.4).

100% MATCHING BLOCK 63/246

Each activity is represented by a rectangular node and the duration of the activity is shown alongside each task.

The Work Breakdown Structure of an MIS (Management Information System) problem is shown in the fig 4.3 . STOP TO

CONSIDER Work Breakdown Structure (WBS) is the procedure for decomposing a given task set recursively into small

activities. STOP TO CONSIDER Activity Network is used to represent the dependency among the activities

97 | P a g e Space for learners: Fig 4.3 showing the WBS of an MIS problem. The activity network representation of the

same problem as shown in fig 4.3 is shown in fig 4.4 Fig 4.4 showing the Activity Network of the MIS problem. Time

durations for the different tasks can be estimated in several ways. One possible way that project managers use is that

they empirically assign durations to different tasks. However, this is not a good technique for time estimation, as software

engineers often do not agree to this unilateral decision. An alternative to this is to let engineer himself assess the time

required for an activity he could be assigned to. Nevertheless, some managers prefer to estimate the time for various

activities themselves. Many believe that an aggressive schedule could motivate the engineers to carry out his job in a

better and faster way. RAS 15 Design database 45 Code database 60 Design GUI 30 Code GUI 45 Integrate and Test 60

Document 5 User Manual and Documentation 90

98 | P a g e Space for learners: However experiments reveal that unrealistically aggressive schedules not only cause

engineers to compromise on quality aspects, but also can lead to schedule delays. A better way to estimate the durations

of task accurately is to let people involved in the project set their own schedules. 4.13.2 Critical Path Method (CPM) The

Critical Path Method is a technique for determining the activities with least scheduling flexibility known as critical activity.

It should be noted that a delay in these activities will eventually delay the entire project. After the determination of these

activities CPM defines the project schedule aligned to the activities that lie on the

91% MATCHING BLOCK 64/246

critical path method From the activity network representation following analysis can be made. The minimum time (MT)

to complete the project is the maximum of all paths from start to finish. The earliest start (ES) time of a task is the

maximum of all paths from the start to the task. The latest start time is the difference between MT and the maximum of

all paths from this task to the finish. The earliest finish time (EF) of a task is the sum of the earliest start time of the task

and the duration of the task.

84% MATCHING BLOCK 65/246

The latest finish (LF) time of a task can be obtained by subtracting maximum of all paths from this task to finish from

MT. The slack time (ST) is LS – EF and equivalently can be written as LF – EF. The slack time (or float time) is the total

time that a task may be delayed before it will affect the end time of the project. The slack time indicates the “flexibility”

in starting and completion of tasks. A critical task is one with a zero slack time. A path from the

start

91% MATCHING BLOCK 66/246

node to the finish node containing only critical tasks is called a critical path. These parameters for different tasks for the

MIS problem are shown in the following table. 99 |

P a g e Space for learners:

91% MATCHING BLOCK 67/246

Task ES EF LS LF ST Specification 0 15 0 15 0 Design database 15 60 15 60 0 Design GUI part 15 45 90 120 75 Code

database 60 165 60 165 0 Code GUI part 45 90 120 165 75

87% MATCHING BLOCK 68/246

Task ES EF LS LF ST Specification 0 15 0 15 0 Design database 15 60 15 60 0 Design GUI part 15 45 90 120 75 Code

database 60 165 60 165 0 Code GUI part 45 90 120 165 75 The critical paths are all the paths whose duration equals

MT. The critical path in fig. 4.4 is shown with

a thicker arrow. 4.13.3 Gantt Chart

Gantt charts are mainly

100% MATCHING BLOCK 69/246

used to allocate resources to activities. The resources allocated to activities include staff, hardware, and software. Gantt

charts (named after its developer Henry Gantt) are useful for resource planning.

A Gantt chart

100% MATCHING BLOCK 70/246

is a special type of bar chart where each bar represents an activity. The bars are drawn along a time line. The length of

each bar is proportional to the duration of time planned for the corresponding activity.

Gantt

charts are used in software project management are actually an enhanced version of the standard Gantt charts. In the

Gantt charts used for software project management, each

93% MATCHING BLOCK 71/246

bar consists of a white part and a shaded part. The shaded part of the bar shows the length of time each

STOP TO CONSIDER

100% MATCHING BLOCK 72/246

A path from the start node to the finish node containing only critical tasks is called a critical path. 100 |

P a g e Space for learners:

100% MATCHING BLOCK 73/246

task is estimated to take. The white part shows the slack time, that is, the latest time by which a task must be finished.

A Gantt chart representation for the MIS problem of fig. 4.4 is shown in the fig. 4.5. Fig. 4.5: Gantt chart representation of

the MIS problem 4.13.4

91% MATCHING BLOCK 74/246

PERT Chart PERT (Project Evaluation and Review Technique) charts consist of a network of boxes and arrows. The

boxes represent activities and the arrows represent task dependencies. PERT chart represents the statistical variations in

the project estimates

assuming a normal distribution.

98% MATCHING BLOCK 75/246

Thus, in a PERT chart instead of making a single estimate for each task, pessimistic, likely, and optimistic estimates are

made. The boxes of PERT charts are usually annotated with the pessimistic, likely, and optimistic estimates for every

task. Since all possible completion times between the minimum and maximum duration for every task has to be

considered,

there are not one but many critical paths, depending on the permutations of the estimates for each task. This makes

critical path analysis in PERT charts very complex. A STOP TO CONSIDER Gantt charts are used to allocate resources to

activities.

101 | P a g e Space for learners: critical path in a PERT chart is shown by using thicker arrows. The PERT chart

representation of the MIS problem of fig. 4.4 is shown in fig. 4.6. PERT charts are a more sophisticated form of activity

chart. In activity diagrams only the estimated task durations are represented. Since, the actual durations might vary from

the estimated durations, the utility of the activity diagrams are limited. Fig. 4.6: PERT chart representation of the MIS

problem Gantt chart representation of a project schedule is helpful in planning the utilization of resources, while PERT

chart is useful for monitoring the timely progress of activities. Also, it is easier to identify parallel activities in a project

using a PERT chart. Project managers need to identify the parallel activities in a project for assignment to different

engineers. STOP TO CONSIDER PERT chart is used to monitor and control the projects.

102 | P a g e Space for learners: CHECK YOUR PROGRESS A. Choose the correct option from the following: 1. Which of

the following activity is undertaken immediately after feasibility study and before the requirement analysis and

specification phase? a) Project Planning b) Project Monitoring c) Project Control d) Project Scheduling 2. This activity is

undertaken once the development activities start? a) Project Planning b) Project Monitoring and Control c) Project size

estimation d) Project cost estimation 3. In the project planning, which of the following is considered as the most basic

parameter based on which all other estimates are made? a) Project size b) Project effort c) Project duration d) Project

schedule 4.

87% MATCHING BLOCK 76/246

Once project planning is complete, project managers document their plan in a)

SPMP document b) SRS document c) Detailed Design document d) Excel Sheet

103 | P a g e Space for learners: 5. Which of the Following method is not used as project scheduling technique a) Activity

Diagram b) CPM c)Timesheet d) Gantt chart b) Fill in the blanks: 1) The estimation that is carried out first by a project

manager during project planning is __________________. 2) Sliding Window Planning involves __________________

3) Normally software project planning activity is undertaken _________________ 4) ________________ is the process

of dividing the project into tasks and logically ordering them into a sequence. 5)Techniques used for project scheduling

include ____________, ___________ and CPM diagram. 4.14 SUMMING UP This unit discussed the about Project

planning which is an well organized process which aims at successful completion of the software project. The main

purpose of project planning is to accomplish business and project objectives. Fulfillment of user requirement,

completion of the project within the scheduled timeframe and with the allocated budget and incorporation of quality in

the software constitute the project objectives. Business objectives include evaluation of processes and also renewal and

evaluation of policies and processes. Project scope highlights on the limitations of the project. The process of project

planning consists of a set of related activities carried out in an orderly manner with a view to implement user

requirements in the software. It also mentions the individuals responsible for each activity. The end product of project

planning is the project plan which contains the end date, activities, milestones and deliverables. Project scheduling

determines the time limit required for completing the project. Different

104 | P a g e Space for learners: techniques such as CPM, Gantt Chart and PERT chart are used at different levels for the

purpose of project scheduling. 4.15 ANSWERS TO CHECK YOUR PROGRESS A) Multiple choice questions 1.(a) 2.(b) 3.(a)

4.(a) 5.(c) B) Fill in the blanks 1. Size estimation 2. Planning progressively as development proceeds. 3. Before the

development starts to plan the activities to be undertaken during development 4.Work Breakdown Structure 5.Gantt

chart, PERT chart. 4.16 POSSIBLE QUESTIONS 1) List the important items that a Software Project Management Plan

(SPMP) document should discuss 2) What do you understand by Sliding Window Planning? Explain using a few examples

the types of projects for which this form of planning is especially suitable. What are its advantages over conventional

planning? 3) Planning and Scheduling consume a lot of time. What will happen if software project commences without

planning and scheduling. 4) List the important items that a Software Project Management Plan (SPMP) document should

discuss.

105 | P a g e Space for learners: 5) When does the software planning activity start and end in software life cycle? List

some important activities that a software project manager performs during software project planning. 4.17 REFERENCES

AND SUGGESTED READINGS ? Software Engineering Principles and Practices, Second Edition, 2011, Rohit Khurana;

Vikash Publication. ?

97% MATCHING BLOCK 77/246

Software Engineering – A Practitioner’s Approach, Roger S. Pressman; McGraw-Hill International Edition. ?

Fundamentals Of Software Engineering, 2014 4

th Edition

by Rajib Mall, PHI

106 | P a g e Space for learners: UNIT 5: SOFTWARE DECOMPOSITION AND COST ESTIMATION TECHNIQUES Unit

Structure: 5.1 Introduction 5.2 Unit Objectives 5.3 Software Resources 5.3.1 Types of Software Resources 5.4 Software

Decomposition 5.5 Project Planning 5.6 Metrics for Project Size Estimation 5.6.1 Lines of Code (LOC) 5.6.2 Function Point

Metric 5.6.3 Number of Entities In Er Diagram 5.6.4 Total Number of Processes in Detailed Data Flow Diagram 5.7 Project

Estimation Techniques 5.7.1 Empirical Estimation Technique 5.7.2 Heuristic Technique 5.7.3 Analytical Estimation

Technique 5.8 COCOMO 5.8.1 Basic COCOMO Model 5.8.2 Intermediate Model 5.8.3 Complete COCOMO Model 5.9

Summing Up 5.10 Answers to Check Your Progress 5.11 Possible Questions 5.12 References and Suggested Readings 5.1

INTRODUCTION In this unit we will learn about the software decomposition and its importance in project size

estimation. The project resources plays an important role for successful development and completion of project.

107 | P a g e Space for learners: We will also learn that the effective software project management is crucial to the

success of any software project. In this unit we will learn that for the accurate estimation of the problem size is

fundamental to satisfactory estimation of other project parameters such as effort, time duration for completing the

project and the total cost for developing the software. The unit covers the empirical, Heuristics and Analytical size

estimation techniques. The COCOMO model is discussed in detail. 5.2 UNIT OBJECTIVES After completing the unit, you

will be able to: ? The software resources, its type and Importance. ? Understand the importance of decomposition in

software development. ? The concept of project planning and software project management techniques. ? The stages in

the project planning and the different cost estimation techniques. ? The different size estimation techniques like Expert

Judgement and Delphi Cost estimation Technique. ? Understand the COCOMO Model postulated by Boehm. 5.3

SOFTWARE RESOURCES The software resources or the project resources are required for successful development and

completion of project. These resources can be capital, people, material, tool or supplies that are helpful to carry out

certain task in project. Without these resources it is impossible to complete project. In project planning phase

identification of resources that are required for completion of project and they will be allocated is key element and very

important task to do. There are mainly three types of resources that are considered and are very essential for execution

of project and completion for project on time and budget. These resources can be represented by a pyramid called

Resource Pyramid.

108 | P a g e Space for learners: When software planner wants to specify resources, they specify resources, they specify it

using four characteristics ? Description of resource ? Resource Availability ? Time of Resource when it will be available ?

Duration of resource availability People Reusable software Components Hardware and Software Tools RESOURCE

PYRAMID 5.3.1 Types of Software Resources There are mainly three types of resources: a) Human Resource: People or

Human resource playa an important role in software development process. No matter what size is and how much

complexity is there in the project, if you want to perform project task in an effective an effective manner, then human

resources are very essential. In software industry the people are performed some organizational positions such as

manager, software developer, software developer, and test engineers and so on that depends on their skills and specialty.

For small project a single individual can perform all these activities, but for large project a big team of people are needed.

b) Reusable Components: In order to accelerate and bring ease to the software development process the industry

prefers to use some

109 | P a g e Space for learners: ready components of software. It can be defined as the software building blocks that can

be created and reused in software development process. Managing budget is one of the most important task that all

project managers have to do. The reusable resources helps in reducing the overall cost of software development. The

use of component emphasizes reusability and is termed as Component based Software Engineering. c) Hardware and

Software Tools: These are the actual material resources that are part of project. This type of resources should be planned

before starting development of project otherwise it may cause problems for the project. 5.4 SOFTWARE

DECOMPOSITION Decomposition Technique uses the concept of “Divide and conquer” method for the cost estimation

of a project. By decomposing the projects into major functions and related engineering activities the cost and size

estimation can be performed in stepwise fashion. In the complete software development, the system is divided into

major modules or the functional requirement of the system and then is further decomposed into simpler forms until the

problem is solved using an algorithm. Decomposition in computer science, also known as factoring, is breaking a

complex problem or system into parts that are easier to conceive, understand, program, and maintain. The Empirical

estimation models can be used to complement decomposition techniques and offer a potentially valuable estimation

approach in their own right. A model is based on experience (Historical Data) and takes the form : d = f(V i),where d is

one of the estimated values ie effort , cost and project duration. V i are selected as independent Line of code (LOC) or

Function Point (FP). Software project estimation is a form of problem solving and in most cases the problem to be solved

ie.(developing an cost and effort estimate for software project) is too complex to be considered in one piece. For this

reason we decompose the problem, re characterize it as a set smaller and hopefully more manageable problems.

110 | P a g e Space for learners: Line of code (LOC) and Function point (FP) are described as measures form which

productivity metrics can be computed LOC and FP data are used in two ways during software project estimation: a) As an

estimation variable to “size” each element of the software. b) As baseline metrics collected from past projects and used in

conjunction with estimation variable to develop cost and effort projections. LOC and FP are distinct cost estimation

techniques but they have lot of properties in common. CHECK YOUR PROGRESS: 1. Decomposition in computer

science, also known as ………., is breaking a complex problem or system into parts that are easier to conceive, understand,

program, and maintain. 2. ……….and …… are measures of cost estimation. 3. The ………… models can be used to

complement decomposition techniques and offer a potentially valuable estimation approach in their own right. 4. ……… ,

…… and ……. are the main components of resource pyramid. 5. What are the four characteristics based on which the

software planner specifies resources? 6. Define component based software Engineering. 5.5

100% MATCHING BLOCK 78/246

PROJECT PLANNING Once a project is found to be feasible, software project managers undertake project planning.

Project planning is undertaken and completed

even before any development activity starts. It involves estimating several characteristics of the project and then planning

the project activities based on estimates made. Project planning is taken immediately after the feasibility study phase and

before the requirement analysis and specification. It consists of following essential activities:

111 | P a g e Space for learners: a) Estimation- The following project attributes have to be estimated: Cost – How much it

64% MATCHING BLOCK 79/246

is going to cost to develop the software? Duration – How long it is going to take to develop the product? Effort – How

much effort would be required

to develop the product? b) Scheduling – After the estimations are made the schedules for manpower and other

resources have to be developed. c) Staffing – Staff organizations and staffing plans have to be made. d) Risk

management – Risk identification, analysis and abatement planning have to be done. e) Miscellaneous plans – Several

other plans such as quality assurance, configuration management plan, etc have to be done. Project planning requires

utmost care and attention since commitment to unrealistic time and resource estimates result in schedule slippage.

Schedule delays can cause customer dissatisfaction and adversely affect team morale. It can even cause project failure.

For this reason, project planning is considered to be a very important activity. For large projects it is very difficult to make

accurate plans due to the fact that the project parameters, scope of the project, project staff and project managers

undertake project planning in stages. In order to deal with these issues the project managers plan the projects in stages

that protects the managers to make big commitments too early. This technique of staggered planning is called as

82% MATCHING BLOCK 80/246

Sliding Window Protocol. In this technique starting with an initial plan the project is planned more accurately in

successive development stages. After the completion of

every phase the project managers can plan each subsequent

stages. In addition to the knowledge of the various estimation techniques, past experience is crucial. CHECK YOUR

PROGRESS 7. State True or False a. Project planning is taken immediately after the feasibility study phase and before the

requirement analysis and specification. b. The past experience is not required to plan the different stages of a project.

112 | P a g e Space for learners: 5.6 METRICS FOR PROJECT SIZE ESTIMATION Estimation of the size of software is an

essential part of Software Project Management. It helps the project manager to further predict the effort and time which

will be needed to build the project. The accurate estimation of the problem size is fundamental to satisfactory estimation

of the other parameters such as effort, time, duration for completing the project and the total cost of developing the

software. It is important to understand that the size of the project is very important to estimate to accurately calculate

the exact cost of the software development. Various measures are used in project size estimation. Some of these are: ?

Lines of Code ? Number of entities in ER diagram ? Total number of processes in detailed data flow diagram ? Function

points

94% MATCHING BLOCK 81/246

The project size is a measure of the problem complexity in terms of the effort and time required to develop the

product. Currently, two metrics (

LOC and FP)

95% MATCHING BLOCK 82/246

are popularly being used to estimate size: 5.6.1 Lines of Code (LOC)

The LOC is the simplest among all the metrics available to estimate the project size. As the name suggest, LOC count the

total number of lines of source code in a project. The lines used for commenting and the header lines are ignored.

Determining the exact line of code at the beginning of the project is difficult. In order to do that one would have to do a

systematic guess. The

83% MATCHING BLOCK 83/246

project managers usually divide the problem into modules and each modules into sub modules and so on, until the

size of the leaf module can be approximately predicted.

In order to predict the LOC count for various leaves past c. Cost, Duration and effort are the project attributes which are

not required to be estimated. 8. Define sliding window protocol.

113 | P a g e Space for learners: experience in developing the similar kind of product plays an important role. The units of

LOC are: ? KLOC- Thousand lines of code ? NLOC- Non comment lines of code ? KDSI- Thousands of delivered source

instruction The size is estimated by comparing it with the existing systems of same kind. The experts use it to predict the

required size of various components of software and then add them to get the total size. Advantages: ? Universally

accepted and is used in many models like COCOMO. ? Estimation is closer to developer’s perspective. ? Simple to use.

Disadvantages: ? Different programming languages contains different number of lines. ? No proper industry standard

exists for this technique. ? It is difficult to estimate the size using this technique in early stages of project. ? It also

depends on the individual coding style of programmers. ? It only considers the coding effort but other factors like design,

test etc. need to be considered in order to calculate the exact effort. ? It is very difficult to calculate the exact size

estimate at the beginning of the project and

85% MATCHING BLOCK 84/246

LOC count can only be accurately computed after the code has been fully developed. ?

LOC metric measures the lexical complexity of a program and does not address the more important but subtle issues of

logical or structural complexities. 5.6.2 Function Point Metric In this method, the number and type of functions

supported by the software are utilized to find FPC (function point count). This metric

114 | P a g e Space for learners: overcomes many of the shortcomings of LOC metric.

The main advantage of this metric is that it

65% MATCHING BLOCK 85/246

can estimate the size of the project directly from the problem specification. This is completely in contrast with the LOC

metric. The

main idea behind Function point metric is that

57% MATCHING BLOCK 86/246

the size of the software product mainly depends on the number of different functions or features it supports. A

software product

with less features is certainly smaller that the product with more features. Each function in a system when invoked reads

some input and transforms it into some output. Thus computation of

57% MATCHING BLOCK 87/246

number of input and output to a system gives some idea about the number of functions supported by the

system. Albrecht postulated that in addition to the number of basic functions that a software performs, the size is also

dependent on the number of files and the number of interfaces. Interfaces refer to the different mechanism that need to

be supported for data transfer with other external systems. The steps in the function point is computed in three stages.

The first is to compute the unadjusted function point. In the next step the UFP is refined to reflect the differences in the

complexities of the different parameters of the expression for UFP computation. In the final step the FP is computed by

further refining UFP for account for the specific characteristics of the project that can influence the development effort.

100% MATCHING BLOCK 88/246

UFP = (Number of Inputs)*4 + (Number of Outputs)*5 + (Number of Inquiries) * 4 + (Number of files) *10 + (Number of

Interfaces)*10

The expression shows the computation of the Unadjusted Function Point as weighted sum of these five problem

characteristics. It was validated by Albrecht empirically and was validated through data gathered from many projects. The

meaning of different parameters of this expression is as follows: 1)

100% MATCHING BLOCK 89/246

Number of inputs: Each data item input by the user is counted

and it should be distinguished from the user inquiries. The inquiries are the user command that are counted separately.

The group of related inputs are considered as a single input and the individual

54% MATCHING BLOCK 90/246

data input items inputted by the user is not counted. 2) Number of outputs: The output considered refer to reports

printed, screen outputs, error messages produced etc. While computing the number of

outputs the individual data items within a

115 | P a g e Space for learners: report are considered, but a set of related data items is counted as one output. 3)

80% MATCHING BLOCK 91/246

Number of Inquiries: It is the number of distinctive interactive queries made by the users.

These are the use command which require specific action

60% MATCHING BLOCK 92/246

by the system. 4) Number of files: Each logical file is counted. It implies a group of logically related data. Thus, logical

files include data structures

and physical files. 5)

80% MATCHING BLOCK 93/246

Number of Interfaces: The interfaces are used to exchange information with other systems. Examples of such

interfaces are files on tapes, disks, communication links with other systems etc.

Advantages: ? It can be easily used in the early stages of project planning. ? It is in depending on the programming

language. ? It can be used to compare different projects even if they use different technologies (database, language etc).

Disadvantages: ? It is not good for real time systems and embedded systems. ? Many cost estimation models like

COCOMO uses LOC and hence FPC must be converted to LOC. ? The major shortcoming is that it does not take into

account the algorithmic complexity of a software. It means it assumes that the design and effort required to develop any

two functionalities of the system is same. But normally it is not true. 5.6.3 Number of Entities in ER Diagram ER model

provides a static view of the project. It describes the entities and its relationships. The number of entities in ER model can

be used to measure the estimation of size of project. Number of entities depends on the size of the project. This is

because more entities needed more classes/structures thus leading to more coding. Advantages: ? Size estimation can

be done during initial stages of planning.

116 | P a g e Space for learners: ? Number of entities is independent of programming technologies used. Disadvantages:

? No fixed standards exist. Some entities contribute more project size than others. ? Just like FPA, it is less used in cost

estimation model. Hence, it must be converted to LOC. 5.6.4 Total Number of Processes in Detailed Data Flow Diagram

Data Flow Diagram (DFD) represents the functional view of a software. The model depicts the main processes/functions

involved in software and flow of data between them. Utilization of number of functions in DFD to predict software size.

Already existing processes of similar type are studied and used to estimate the size of the process. Sum of the estimated

size of each process gives the final estimated size. Advantages: ? It is independent of programming language. ? Each

major processes can be decomposed into smaller processes. This will increase the accuracy of estimation

Disadvantages: ? Studying similar kind of processes to estimate size takes additional time and effort. ? All software

projects are not required to construction of DFD.

117 | P a g e Space for learners: CHECK YOUR PROGRESS 9. The function point metric can estimate the size of the

project directly from the … 10. UFP stands for ….. 11. The …. is the most fundamental parameter based on which all other

estimates are made. 12. State true or false. a.

100% MATCHING BLOCK 94/246

The project size is a measure of the problem complexity in terms of the effort and time required to develop the

product.

b. It is very easy to calculate the accurate estimation of project before actual development process starts. 5.7 PROJECT

ESTIMATION TECHNIQUES For an effective management accurate estimation of various measures is a must. With

correct estimation managers can manage and control the project more efficiently and effectively. Software size may be

estimated either in terms of KLOC (Kilo Line of Code) or by calculating number of function points in the software. Lines

of code depend upon coding practices and Function points vary according to the user or software requirement. The

managers estimate efforts in terms of personnel requirement and man-hour required to produce the software. For effort

estimation software size should be known. This can either be derived by managers’ experience, organization’s historical

data or software size can be converted into efforts by using some standard formulae. Once size and efforts are

estimated, the time required to produce the software can be estimated. Efforts required is segregated into sub categories

as per the requirement specifications and interdependency of various components of software. Software tasks are

divided into smaller tasks, activities or events by Work Breakthrough Structure (WBS). The tasks are scheduled on day-to-

day basis or in calendar months. The sum of time required to complete all tasks in hours or days is the total time invested

to complete the project. This might be considered as the most difficult of all because it depends on more elements than

any of the previous ones. For estimating project cost, it is required to consider - ? Size of software

118 | P a g e Space for learners: ? Software quality ? Hardware ? Additional software or tools, licenses etc. ? Skilled

personnel with task-specific skills ? Travel involved ? Communication ? Training

77% MATCHING BLOCK 95/246

and support There are three broad categories of estimation techniques: 1. Empirical Estimation Techniques 2. Heuristic

Technique 3. Analytical Estimation Technique 5.7.1 Empirical Estimation

Technique It is based on the

90% MATCHING BLOCK 96/246

educated guess of the project parameters. While using this technique, prior experience with similar products is helpful.

Although, empirical estimation

technique is based on common sense but different activities are formalized over years. The empirical cost estimation

techniques are based on pure guess work and have over the years formalized to some extent. Two popular methods are:

a)

50% MATCHING BLOCK 97/246

Expert Judgement Technique – It is one of the most widely used technique. In this an expert makes an educated guess

of the problem analyzing the problem thoroughly. Usually the expert calculate the cost of different components (

modules and subsystems) that would make up the system and then combines the estimates for the individual modules

to arrive at the overall

estimates. However, this technique is subject to human errors and individual bias.

Sometimes the experts overlook some of the factors inadvertently. b)

75% MATCHING BLOCK 98/246

Delphi Cost Estimation Technique – It tries to overcome the shortcomings of expert judgment technique. It is carried

out by a team comprising of a group of experts and coordinators. The coordinator provides

the copy of Software Requirement Specification (SRS) document to every member of the team. Estimators analyses the

problem domain and after estimating the cost they submit it to the coordinator. The coordinator prepares the summary

of the responses of the estimators. The prepared summary is again distributes among

119 | P a g e Space for learners: the estimators for further refinement and the process is iterated for several rounds. 5.7.2

Heuristic Technique The Heuristic

78% MATCHING BLOCK 99/246

technique assumes that the relationship among the different project parameters can be modelled using suitable

mathematical expression. Once the independent parameters are known the dependent parameters

are calculated using the dependent parameters by substituting the value of basics parameters in the mathematical

expression. The COCOMO Model is the heuristic approach of cost estimation technique that we will discuss later. 5.7.3

71% MATCHING BLOCK 100/246

Analytical Estimation Technique It derives the required results staring with certain basic assumptions regarding the

project. Thus, unlike empirical and heuristic

technique the analytical technique does not have certain scientific basis. 5.8

98% MATCHING BLOCK 101/246

COCOMO Boehm proposed COCOMO (Constructive Cost Estimation Model) in 1981.COCOMO is one of the most

generally used software estimation models in the world. COCOMO predicts the efforts and schedule of a software

product based on the size of the software.

In order to classify a product into the identified categories, Bohem requires us to consider not only the characteristics of

the product but also those pf development team and development environment. In COCOMO, projects are categorized

into three types: CHECK YOUR PROGRESS 13. ……….. cost estimation techniques tries to overcome the shortcomings of

expert judgement approach. 14. COCOMO is a ……………. Estimation technique. 15. State true or false. a. The heuristic

technique makes an educated guess of the project parameters. b. The analytical technique of cost estimation have

scientific basis.

120 | P a g e Space for learners: 1) Organic: A development project can be treated of

the

91% MATCHING BLOCK 102/246

organic type, if the project deals with developing a well-understood application program, the size of the development

team is reasonably small, and the team members are experienced in developing similar methods of projects.

Examples of this type of projects are simple business systems, simple inventory management systems, and data

processing systems. 2)

83% MATCHING BLOCK 103/246

Semidetached: A development project can be treated with semidetached type if the development consists of a mixture

of experienced and inexperienced staff. Team members may have finite experience

in

89% MATCHING BLOCK 104/246

related systems but may be unfamiliar with some aspects of the order being developed.

Example of Semidetached system includes developing a new operating system (OS), a Database Management System

(DBMS), and complex inventory management system. 3) Embedded: A development project is treated to be of an

100% MATCHING BLOCK 105/246

embedded type, if the software being developed is strongly coupled to complex hardware,

or if the stringent regulations on the operational method exist. For Example: ATM, Air Traffic control. For three product

categories, Bohem provides a different set of expression to predict effort (in a unit of person month)and development

time from the size of estimation in KLOC (Kilo Line of code) efforts estimation takes into account the productivity loss

due to holidays, weekly off, coffee breaks, etc.

According to

Boehm, software cost estimation should be

58% MATCHING BLOCK 106/246

done through three stages: 5.8.1 Basic COCOMO Model The basic COCOMO model provides an approximate estimate

of the of the project parameters. The following expressions give the basic COCOMO estimation model: Effort=a1*

(KLOC) a2 PM T dev =b1*(efforts) b2 Months where, a) KLOC is the estimated size of the software product indicate in

Kilo Lines of Code b) a1, a2, b1, b2 are constants for each group of software products. 121 |

P a g e Space for learners: c)

93% MATCHING BLOCK 107/246

T dev is the estimated time to develop the software, expressed in months. d) Effort is the total effort required to

develop the software product, expressed in person months (PMs). For the three classes of software products, the

formulas for estimating the effort based on the code size are shown below:

Estimation of development effort:

100% MATCHING BLOCK 108/246

Organic: Effort = 2.4(KLOC) 1.05 PM Semi-detached: Effort = 3.0(KLOC) 1.12 PM Embedded: Effort = 3.6(KLOC) 1.20

PM Estimation of development time: For the three classes of software products, the formulas for estimating the

development time based on the effort are given below: Organic: T dev = 2.5(Effort) 0.38 Months Semi-detached: T dev

= 2.5(Effort) 0.35 Months Embedded: T dev = 2.5(Effort) 0.32

Month

100% MATCHING BLOCK 109/246

The effort required to develop a product increases very rapidly with project size.

97% MATCHING BLOCK 110/246

The size of the product increases by two times, the time to develop the product does not double but rises moderately.

This can be explained by the fact that for larger products, a larger number of activities which can be carried out

concurrently can be identified. The parallel activities can be carried out simultaneously by the engineers. This reduces

the time to complete the project. The development time is roughly the same for all three categories of products. For

example, a 60 KLOC program can be developed in approximately 18 months, regardless of whether it is of organic,

semidetached, or embedded type. From the effort estimation, the project cost can be obtained by multiplying the

required effort by the manpower cost per month. But, implicit in this project cost computation is the assumption that

the entire project cost is incurred on account of the manpower cost alone. In addition to manpower cost, a project

would incur costs due to hardware and software required for the project and the company overheads for

administration, office space etc. It is important to note that the effort and the duration estimations obtained using the

COCOMO model are called a nominal effort estimate and nominal duration estimate. The term nominal implies that if

anyone tries to 122 |

P a g e Space for learners:

100% MATCHING BLOCK 111/246

complete the project in a time shorter than the estimated duration, then the cost will increase drastically. But, if anyone

completes the project over a longer period of time than the estimated, then there is almost no decrease in the

estimated cost value.

The effort and duration values computed by COCOMO are the values for doing the work in the shortest time without

unduly increasing the manpower.

93% MATCHING BLOCK 112/246

It is important to note that effort and duration estimations obtained using the COCOMO Model

imply

85% MATCHING BLOCK 113/246

that if we try to complete the project in a time shorter than the estimated duration the cost will increase drastically. But

if we complete the project over a longer period of time than the estimated, then there is almost no decrease in the

estimated cost. 5.8.2

100% MATCHING BLOCK 114/246

Intermediate Model The basic COCOMO model considers that the effort is only a function of the number of lines of

code and some constants calculated according to the various software systems. The intermediate COCOMO model

recognizes these facts and refines the initial estimates obtained through the basic COCOMO model by using a set of 15

cost drivers based on various attributes of software engineering. Classification of Cost Drivers and their attributes:

Product –

The characteristics of the products that are considered include the inherent complexity of the product, reliability

requirements of the product and size of the application database etc. Hardware - The characteristics of the computer

that are considered include the execution speed required, storage space required etc. The

other factors include: ?

88% MATCHING BLOCK 115/246

Run-time performance constraints ? Memory constraints ? The volatility of the virtual machine environment ? Required

turnabout time ? Personnel attributes - ? Analyst capability ? Software engineering capability ? Applications experience

123 |

P a g e Space for learners: ? Virtual machine experience ? Programming language experience Personal -

53% MATCHING BLOCK 116/246

The characteristics of the development personal that are considered include the experience of personal , programming

capability , analysis capability etc. Development Environment: It captures the development facilities available to the

developers.

It also includes: ?

76% MATCHING BLOCK 117/246

Use of software tools ? Application of software engineering methods ? Required development schedule 5.8.3

Complete COCOMO Model

The

94% MATCHING BLOCK 118/246

major limitation of both the basic and intermediate COCOMO models is that they consider a software product as a

single homogeneous entity. However, most large

software systems are made up of smaller subsystems and they have widely different characteristics. For example some

have organic type and others may be of semidetached or embedded type. It

100% MATCHING BLOCK 119/246

incorporates all qualities of the standard version with an assessment of the cost driver’s effect on each method of the

software engineering process.

94% MATCHING BLOCK 120/246

In complete COCOMO the whole software is differentiated into multiple modules, and then we apply COCOMO in

various modules to estimate effort and then sum the effort. The

cost of each subsystem

100% MATCHING BLOCK 121/246

is estimated separately. This approach reduces the margin of error in the final estimate.

100% MATCHING BLOCK 122/246

The Six phases of detailed COCOMO are: 1. Planning and requirements 2. System structure 3. Complete structure 4.

Module code and test 5. Integration and test 6. Cost Constructive model

To improve the accuracy of their result, the differentiate parameter values of the model can be fine – tuned and validated

against an

124 | P a g e Space for learners: organization’s historical project database to obtain more accurate estimations.

Estimations models such COCOMO are not accurate and lack a full of scientific justification. But still software cost

estimation model like COCOMO are required for an engineering approach to software project management. Although,

these estimates are gross approximations – without such models, one has only subjective judgements to rely on. 5.9

SUMMING UP ? The software resources or the project resources are required for successful development and

completion of project. These resources can be capital, people, material, tool or supplies that are helpful to carry out

certain task in project. Without these resources it is impossible to complete project. ? In project planning phase

identification of resources that are required for completion of project and they will allocated is key element and very

important task to do. ? Decomposition Technique uses the concept of “Divide and conquer” method for the cost

estimation of a project. By decomposing the projects into major functions and related engineering activities the cost and

size estimation can be performed in stepwise fashion. ? Estimation of the size of software is an essential part of Software

Project Management. It helps the project manager to further predict the effort and time which will be needed to build

the project. The accurate estimation of the problem size is CHECK YOUR PROGRESS 16. State true or false a. According

to COCOMO model, cost is the most fundamental attribute of a software product, based on which size and effort are

estimated. b. Estimations models such COCOMO are not accurate and lack a full of scientific justification. 17. Give the

order in which the following are estimated while using the COCOMO estimation technique: cost, effort, duration, size.

125 | P a g e Space for learners: fundamental to satisfactory estimation of the other parameters such as effort, time,

duration for completing the project and the total cost of developing the software. ?

100% MATCHING BLOCK 123/246

Boehm proposed COCOMO (Constructive Cost Estimation Model) in 1981.COCOMO is one of the most generally used

software estimation models in the world. COCOMO predicts the efforts and schedule of a software product based on

the size of the software. 5.10

ANSWERS TO CHECK YOUR PROGRESS 1. Factoring 2. Line of code and Function Point 3. Empirical Estimation model 4.

People, Reusable software components and Hardware & Software components. 5. The characteristics based on which

the software planner specifies resources are a. Description of resource b. Resource Availability c. Time of Resource when

it will be available d. Duration of resource availability 6. Component Based Software Engineering - In order to accelerate

and bring ease to the software development process the industry prefers to use some ready components of software

and this technique is called as Component Based Software Engineering. 7. a. True , b. False , c. False 8. Sliding Window

Protocol – 9. Problem Domain 10. Unadjusted Function point 11. Cost 12. a. True , b. False 13. Delphi

126 | P a g e Space for learners: 14. Cost 15. a. True , b. False 16. a. False , b. True 17. Size , Effort , Duration , Cost 5.11

POSSIBLE QUESTIONS Short Answer type Questions: 1) Define software decomposition. 2) What are the three main

categories of projects in COCOMO Model? 3) What is the difference between Expert judgement and Delphi cost

estimation technique? 4) Define LOC and Function Point Metrics. 5) What do you mean by software resources? What are

the major types of software resources? Long Answer type Questions: 1) What is meant by the size of software project?

Why does a project manager need to estimate the size of the project? 2) What is project planning and why it is

important? What are the different stages of project planning? 3) What are the different categories of software

development projects according to COCOMO estimation model? 4) Why is accurate estimation of the effort required for

completing a project is difficult? Briefly explain the different effort estimation methods that are available. 5) What are the

relative advantage of using either the LOC or the function point metric to measure the size of software product? 6) List

the important shortcomings of LOC for use as a software size metric for carrying out project estimations. 7) Explain the

Basic COCOMO model briefly. Discuss about its limitations. 8) What is complete COCOMO Model? Explain briefly.

127 | P a g e Space for learners: 9) What do you mean by Intermediate COCOMO? What are the major cost drivers that

are considered in Intermediate COCOMO? 10) Explain why adding more man power to an already late project makes it

later. 5.12 REFERENCES AND SUGGESTED READINGS ? “Fundamentals of Software Engineering”, Rajib Mall, Prentice-

Hall of India. ? “An Integrated Approach to Software Engineering”, Pankaj Jalote , Narosa Publishing House ?

http://www.tutorialspoint.com ? http://www.geeksforgeeks.com

128 | P a g e Space for learners: UNIT 6: SOFTWARE DESIGN I Unit Structure: 6.1 Introduction 6.2 Unit Objectives 6.3

Definitions of Software Design 6.4 Qualities of a Good Design 6.5 Design Constraints 6.6 Fundamental Design Concepts

6.6.1 Abstraction 6.6.2 Information Hiding 6.6.3 Modularity 6.7 Software Design Levels 6.8 Modularization criteria 6.8.1

Coupling 6.8.2 Cohesion 6.9 Summing Up 6.10 Answers to Check Your Progress 6.11 Possible Questions 6.12 References

and Suggested Readings 6.1 INTRODUCTION Software design is an important phase in software engineering, in which a

blueprint is designed to serve as a base for constructing the software system. The design process comprises a set of

principles, concepts and practices, which permit the software designer to model the system or product which is to be

built. It is a process

100% MATCHING BLOCK 124/246

to transform user requirements into some suitable form, which helps the programmer in

writing software coding and implementation. The design phase in Software Development Life Cycle (SDLC) plays a

crucial role in obtaining a quality software product. Here, the system is designed to satisfy the identified requirements in

the previous phases and then they are transformed into a System design document that

129 | P a g e Space for learners: accurately describes the system design. This chapter will focus on the design concepts

and elements that are required to develop a software design model. 6.2 UNIT OBJECTIVES After completion of this unit,

you will be able to learn -- ? The standard definition of software design. ? The factors behind the qualities of a good

design. ? The constraints behind the software design. ? The key design concepts like abstraction, modularity, information

hiding, functional independence, cohesion and coupling. 6.3 DEFINITION OF SOFTWARE DESIGN The design activity

begins when the requirements document for the software to be developed becomes ready. The design of a software is

essentially a plan or blueprint to serve as a foundation for constructing the software system. According to IEEE, software

design can be defined as ‘both a process of defining, the architecture, components, interfaces, and other characteristics

of a system or component and the result of that process.’ Viewed as a process, software design can be considered an

activity within the software development life cycle, where software requirements are analyzed in order to produce a

description of the internal structure and organization of the system that will serve as the basis for its construction. More

precisely, a software design must describe the architecture of the system, that is, how the system is decomposed and

organized into components and must describe the interfaces between these components. It must also describe these

components into a level of detail suitable for allowing their construction.

130 | P a g e Space for learners: 6.4 QUALITIES OF A GOOD SOFTWARE DESIGN For developing a good quality software,

the software design must also be of good quality. Now, the matter of concern is how the quality of a good software

design is measured? This is done by observing certain factors in software design. The definition of a good software

design may vary based on the exact application being designed because the criteria used to judge a design solution

depend on the application being designed. However, some deserving factors which are associated with a good software

design for general applications may be listed in the following way: ? Correctness ? Understandability ? Efficiency ?

Maintainability Now, let us define each of them in detail. ? Correctness The design of any software is assessed for its

correctness first. The evaluators check the software for every kind of input and action, and observe the results that the

software produces according to the proposed design. If the outputs are correct for every input, the design is accepted

and considered that the software produced according to this design will function correctly. ? Understandability The

software design should be understandable so that the developers do not find any difficulty to understand it. Good

software design should be self- explanatory. The reason is that there are hundreds and thousands of developers that

develop different modules of the software, and it would be very time consuming to explain each design to each

developer. Therefore, the developers find easy to implement and build the same software that is represented in the

design if the design is easy and self- explanatory. ? Efficiency

131 | P a g e Space for learners: The software design must be efficient. The efficiency of the software can be evaluated

from the design phase itself, because if the design describing the software is not found efficient and useful, then the

developed software would also stand on the same level of efficiency. Hence, for efficient and good quality software to be

developed, care must be taken in the designing phase itself. ? Maintainability The software design must be in such a way

that modifications can be easily made in it. This is because every software needs time to time updating and maintenance.

So, the design of the software must also be able to handle such changes. It should not be the case that after making

some modifications, the other features of the software start nonfunctioning. Any change made in the software design

must not affect the other available features, and if the features are getting affected, then they must be handled properly.

6.5 DESIGN CONSTRAINTS A constraint is anything that slows a system down or prevents it from achieving its goal.

Design constraints are some challenges that force people for considering more methodical analysis of design and their

problems. Because resources are not inexhaustible and criteria must be met. Software designers are to be more strategic

about the processes they employ and energies they spend. In order to address design constraints, a straightforward

approach is required to categorize the type of constraints (e.g., hardware, software, procedure, algorithm), identify the

specific constraints for each category, and capture them as system requirements. Types of constraint The following kind

of constraints might encounter in the theory of design constraints. ? Policy Policy constraints are those caused by the

company procedures and policies. A policy constraint in the process of developing a software

132 | P a g e Space for learners: might relate to security / compliance requirements. On the other hand, it could be an

issue with interchanging the code between team members. ? Equipment Equipment constraints refer to delays caused

by faulty, slow, or outdated equipment or a lack of sufficient space. In software development, this might be faulty

keyboards or slow computers. It might also be a lack of devices through which cross-platform tests are to be run. ?

People A people constraint is a common challenge caused by the number of people involved in a project. Often, people

constraints are caused by unavailability of skilled people for a project. On the other hand, in software development,

having too many skilled people on a project can also cause a people constraint. ? Paradigm A paradigm constraint is a

constraint caused by opinions. The view like, for example, ‘lines of code’ is considered a good metric for productivity,

when the opposite can often be true. ? Market A market constraint is related to the constraint which lies in delivering a

software to consumers. In software, this would look like overengineering and feature creep. 6.6 FUNDAMENTAL DESIGN

CONCEPTS Every software process is characterized by basic concepts along with certain practices or methods. Methods

represent the manner through which the concepts are applied. As new technology replaces older technology, many

changes occur in the methods that are used to apply the concepts for the development of software. However, the

fundamental concepts underlying the software design process remain the same, some of which are described in the

following.

133 | P a g e Space for learners: 6.6.1 Abstraction As a powerful design tool, abstraction is meant for allowing software

designers to define components at an abstract level by ignoring the implementation details of the components. IEEE

defines abstraction as ‘a view of a problem that extracts the essential information relevant to a particular purpose and

ignores the remainder of the information.’ The concept of abstraction can be visualized in two ways: as a process and as

an entity. As a process, it refers to a mechanism of hiding irrelevant details and representing only the essential features of

an item and thereby one can concentrate on important things. In terms of an entity, it refers to a model or view of an

item. Every step in the software process is realized through various levels of abstraction. At the highest level, a framework

of the solution to the problem is presented whereas at the lower levels, the detail solution to the problem is outlined. For

example, in the requirements analysis phase, a solution to the problem is presented using the language of problem

environment and as we proceed through the software process, the abstraction level reduces and at the lowest level,

source code of the software is produced. There are three commonly used abstraction mechanisms in software design,

namely, functional abstraction, data abstraction and control abstraction. All these mechanisms allow us to control the

complexity of the design process by proceeding from the abstract design model to concrete design model in a

systematic manner. ? Functional abstraction: This involves the use of parameterized subprograms. Functional abstraction

can be generalized as collections of subprograms referred to as ‘groups’. Within these groups, there exist routines which

may be visible or hidden. Visible routines can be used within the containing groups as well as within other groups,

whereas hidden routines are hidden from other groups. These can be used within the containing group only. ? Data

abstraction: This process concentrates on specifying data that describes a data object. For example, the data object

window encompasses a set of attributes (window type, window dimension) that describe the window object clearly. In

this

134 | P a g e Space for learners: abstraction mechanism, representation and manipulation details are ignored. ? Control

abstraction: This abstraction provides the programmer the ability to hide procedural data. It refers to the software part of

abstraction wherein the program is simplified and unnecessary execution details are removed. For example, if and while

statements in programming languages (like C and C++) are abstractions of machine code implementations, which

involve conditional instructions. In the architectural design level, this abstraction mechanism permits specifications of

sequential subprogram and exception handling without the concern for exact details of implementation. 6.6.2

Information Hiding Information hiding states that each module should hide a design decision from the rest of the

modules. In particular, the designer should choose to hide within a module an aspect of the system that is likely to

change as the program evolves. Modules should be specified and designed in such a way that the data structures and

processing details of one module are not accessible to other modules. They pass only that much information to each

other, which is required to accomplish the software functions. The way of hiding unnecessary details is referred to as

information hiding. IEEE defines information hiding as ‘the technique of encapsulating software design decisions in

modules in such a way that the module’s interfaces reveal as little as possible about the module’s inner workings; thus,

each module is a ‘black box’ to the other modules in the system.’ 6.6.3 Modularity Modularity is attained by splitting the

software into uniquely named and addressable components, which are also known as modules. A modular system can

be characterized by functional partitioning into these type of discrete scalable and reusable modules, rigorous use of

well-defined modular interfaces and making use of industry standards for interfaces. A complex system (large program)

is partitioned into a

135 | P a g e Space for learners: set of discrete modules in such a way that each module can be developed independent

of other modules. After designing all the modules, they are combined together to meet the software requirements as

specified in SRS document. It is to be noted that larger the number of modules a system is divided into, greater will be

the effort required to integrate the modules. Figure 6.1 depicts the modularity concepts of a software system. This

graphical design of modularity clearly states that a program can be intellectually manageable if its activities are

modularized. The desirable characteristics of modular design can be listed as: ?

93% MATCHING BLOCK 125/246

Each module is well defined system that can be used with other applications. ? Each module has

a single specific job. ? Modules can be separately compiled and stored in a library. ? A module can employ other

modules. ? Modules are easier to use than to build. ? Each module is simpler from outside than inside. Thus, modularity

enhances the clarity of design which in turn simplifies coding, testing, debugging, documenting and maintenance of a

software system. Modular design usually follows the rules of ‘divide and conquer’ problem-solving strategy because

there are many other benefits attached with the modular design of a software. Advantage of modularization: ? Smaller

components are easier to maintain. ? Program can be divided based on functional aspects. ? Desired level of abstraction

can be brought in the program. ? Components with high cohesion can be re-used again. ? Concurrent execution can be

made possible. ? Desired from security aspect.

136 | P a g e Space for learners: Figure 6.1 Modularity concepts of a software system With the introduction of modular

design, complexity of software design has considerably reduced. It facilitates the change in the program which in turn

encourages parallel development of systems. Modularizing a design helps to plan the development in a more effective

manner, accommodates any changes easily and also helps to conduct testing and debugging effectively and efficiently.

Also, conducting maintenance work without adversely affecting the functioning of the software is another attractive

advantage of modularity. 6.7 SOFTWARE DESIGN LEVELS Software design yields three levels of results: ? Architectural

Design - The architectural design is the highest abstract version of the system. It identifies the software as a system with

many components interacting with each other. At this level, the designers get the idea of proposed solution domain. ?

High-level Design – It is related to identification of different modules and the their control relationships and the

definition of the interfaces among these modules. The outcome of the

74% MATCHING BLOCK 126/246

high- level design is called software architecture or the program structure. Many different types of notations have been

used to represent a high-level design.

High-level design focuses on how the system along with all of its components can be implemented

137 | P a g e Space for learners: in forms of modules. It recognizes modular structure of each sub-system and their

relation and interaction among each other. ? Detailed Design- Detailed design deals with the implementation part of

what is seen as a system and its sub-systems in the previous two designs. It is more detailed towards modules and their

implementations.

100% MATCHING BLOCK 127/246

During detailed design, the data structure and the algorithms of the different modules are designed.

Moreover, it defines logical structure of each module and their interfaces to communicate with other modules. 6.8

MODULARIZATION CRITERIA When a software program is modularized, its tasks are divided into several modules based

on some characteristics. As explained in earlier section, it is clear that the concept of modularity can reduce the

complexity by breaking a system into varying degrees of interdependence and independence across, and hide the

complexity of each part behind an abstraction and interface. A module is a set of instructions put together in order to

achieve some specific tasks. They are though, considered as single entity but may refer to each other to work together.

There are some procedures by which the quality of modular design and interaction among them can be measured.

These measures are called coupling and cohesion. Conceptually, coupling and cohesion are two qualitative criteria of

functional independence. Functional independence is the refined form of the design concepts of modularity, abstraction

and information hiding as described in earlier sections. It is achieved by designing a module in such a way that it

independently performs given set of functions without interacting with other parts of the system. 6.8.1 Coupling

Coupling is a measure that defines the level of inter-dependability among the modules of a program. It tells at what level

the modules interfere and interact with each other. The lower the coupling, the better the program. Various factors such

as type of data that pass

138 | P a g e Space for learners: across the interface, interface complexity, number of interfaces per module, etc. impact

on the strength of coupling between two modules. There are five levels of coupling, namely - ? Data coupling: Data

coupling is the one when two modules interact with each other by means of passing data (as parameter). If a module

passes data structure as parameter, then the receiving module should use all its components. This way, communication

between two modules is achieved. In data coupling, the components are independent to each other and

communicating through data. Data coupling is considered the best coupling among all. ? Stamp coupling: When

multiple modules share common data structure and work on different part of it, it is called stamp coupling. In this

coupling, the complete data structure is passed from one module to another module. ? Control coupling: Two modules

are called control-coupled if one of them decides the function of the other module or changes its flow of execution. In

this coupling, modules communicate by passing control information. It is considered bad if parameters indicate

completely different behavior and good if parameters allow factoring and reuse of functionality. ? Common coupling:

When multiple modules have read and write access to some global data, it is called common or global coupling. The

modules have shared data such as global data structures. The changes in global data mean tracing back to all modules

which access that data to evaluate the effect of the change. ? Content coupling: When a module can directly access or

modify or refer to the content of another module, it is called content coupling. Here, control flow can also be passed

from one module to the other module. This is the worst form of coupling and should be avoided.

139 | P a g e Space for learners: 6.8.2 Cohesion Cohesion is a measure that defines the degree of intra-dependability

within elements of a module. The tighter the elements are bound to each other, the higher is the cohesion of a module.

The greater the cohesion, the better is the program design. Low coupling results in high cohesion and vice versa. Hence,

designers should maintain a high- level cohesion while designing a module. There are seven types of cohesion, namely

– ? Functional cohesion - It is considered to be the highest degree of cohesion, and it is highly expected. Elements

within modules in this cohesion are grouped because they all contribute to a single well-defined function. It can also be

reused. ? Sequential cohesion - When elements within a module are grouped and involved in activities in such a way that

the output of one element serves as input to another and so on, it is called sequential cohesion. ? Communicational

cohesion - When elements of different modules are grouped together, to perform different functions and work on same

data (information), it is called communicational cohesion. ? Logical cohesion - When logically categorized elements are

put together into a module, it is called logical cohesion. ? Temporal Cohesion - When elements within modules are

organized in such a way that they are processed at a similar point in time, it is called temporal cohesion. ? Procedural

cohesion – In this cohesion, elements of within modules are involved in different and possibly unrelated activities which

are executed sequentially in order to perform a task. ? Co-incidental cohesion - It is unplanned and random cohesion,

which might be the result of breaking the program into smaller modules for the sake of modularization. Because it is

unplanned, it may serve confusion to the programmers and is generally not- accepted.

140 | P a g e Space for learners: From the above discussion on coupling and cohesion, it can be summarized the

difference between them in the following way. Coupling Cohesion Coupling is also called Inter- Module Binding.

Cohesion is also called Intra- Module Binding. It conceptualizes the relationships between modules. It shows the

relationship within the module. It shows the relative independence between the modules. It defines the relative

functional strength of a module. In coupling, modules are linked to the other modules by passing either data structure or

control information. In cohesion, the module focuses on a single thing. CHECK YOUR PROGRESS A. Choose the correct

options from the following: 1. __________ refers to a powerful design tool, which allows software designers to consider

components at an abstract level ignoring the implementation details of the components. A. Information hiding B.

Functional decomposition C. Abstraction D. None of these 2. Software design yields ______ levels of results. A. 2 B. 3 C.

4 D. 5 3. Which of the following is not an advantage of modularization?

141 | P a g e Space for learners: A. Smaller components are easier to maintain B. Concurrent execution can be made

possible C. Program cannot be divided based on functional aspects D. Desired level of abstraction can be brought in the

program 4. Which of the following defines the degree of intra-dependability within elements of a module? A. Cohesion

B. Coupling C. Design Verification D. None of the above 5. When multiple modules share common data structure and

work on different part of it, it is called ___________. A. Common coupling B. Share coupling C. Data coupling D. Stamp

coupling 6. In Design phase, which is the primary area of concern? A. Architecture B. Data C. Interface D. All of the above

7. Which of the following is the best type of module cohesion? A. Functional Cohesion B. Temporal Cohesion C. Co-

incidental Cohesion D. Sequential Cohesion 8. Which of the following is the worst type of module coupling? A. Control

Coupling B. Stamp Coupling C. Data Coupling D. Content Coupling 9. How many types of cohesion are there in software

design? A. 5 B. 6

142 | P a g e Space for learners: C. 7 D. 8 10. Which design identifies the software as a system with many components

interacting with each other? A. High-level design B. Architectural Design C. Detailed design D. Both A & C B. State True or

False: 1. Modules should be specified and designed in such a way that the data structures and processing details of one

module are accessible to other modules. 2. Stepwise refinement is a top-down design strategy used for decomposing a

system from high-level abstraction to more detailed form of abstraction. 3. Information hiding makes program

maintenance easier by hiding data and procedure from the unaffected parts of a system. 4. Since modularity is an

important design goal, it is not possible to have too many modules in a proposed design. 5. Keeping low cohesion and

high coupling is good practice for a software designer. 6.9 SUMMING UP o Software design is a stage in software

development life cycle in which a blueprint is developed to serve as base for constructing the software system. o There

are various software design concepts which lay the foundation for the software design process. o Abstraction refers to

the process which allows software designers to consider components at an abstract level, ignoring the implementation

details of the components. o Modularity is the process of decomposing the software into uniquely named and

addressable components called modules.

143 | P a g e Space for learners: o Modules should be designed in such a way that the data structures and processing

details of one module are not accessible to other modules. Only the required information is passed among ? the

modules to accomplish the software functions. This is called information hiding. o Functional independence refers to the

use of parameterized subprograms or groups and within these groups there exist routines which may be accessible or

hidden. o Data abstraction involves how to specify data that describes a data object. Again, control abstraction hides the

procedural data stating only the desired effect. o Functional independence is the refined form of the design concepts of

modularity, information hiding and abstraction. Each module is developed independently so that it uniquely performs

given set of functions without interacting with other sections of the system. o Coupling and Cohesion are two qualitative

criteria for measuring functional independence. o Coupling measures the degree of interdependence among the

modules whereas cohesion is the measurement of the relative functional strength of a module. 6.10 ANSWERS TO

CHECK YOUR PROGRESS Answers to A: 1. C 2. B 3. C 4. A 5. A 6. D 7.A 8. D 9. C 10.B Answers to B: 1. True 2. True 3. True

4. False 5. False 6.11 POSSIBLE QUESTIONS ? What are the common features a good software design must possess?

144 | P a g e Space for learners: ? How do you explain the terms cohesion and coupling in the context of software

design? ? Discuss the different types of cohesion that a module might exist with proper example. ? Enumerate the

various types of coupling that might exist between two modules with example of each. ? Differentiate coupling with

cohesion. ? What do you understand by the term functional independence? What are the advantages of functional

independence?

145 | P a g e Space for learners: UNIT 7: SOFTWARE DESIGN II Unit Structure: 7.1 Introduction 7.2 Unit Objectives 7.3

Software Design Method 7.3.1 Structured design 7.3.2 Function Oriented design 7.3.3 Object Oriented design 7.4 Software

Design Notation 7.4.1 Flow chart 7.4.2 Data Flow Diagram 7.4.3 Pseudocodes 7.4.4 Structure Chart 7.4.5 HIPO Diagram

7.4.6 Decision Table 7.5 Summing Up 7.6 Answers to Check Your Progress 7.7 Possible Questions 7.8 References and

Suggested Readings 7.1 INTRODUCTION As discussed in Unit 6, Software design can be defined as a plan for converting

a specification into executable code i.e., problem description turned into problem solution. Software design involves two

major categories of design methodologies: structural design and algorithmic design. Structural design further involves

many levels of system decomposition followed by algorithmic design. All software systems are called information-

processing systems because they accept data as input, process the input and finally provide the data in result form.

Therefore, software design must concentrate on three basic issues: ? definition of the data to be held by the system;

146 | P a g e Space for learners: ? definition of the process by which inputs are manipulated; ? formulation of states that

the system can assume and what transformations are required between states. 7.2 UNIT OBJECTIVES After completion

of this unit, you will be able to learn -- 1. Various methods of software design such as function oriented design and

object-oriented design. 2. Several kinds of design notations including Flow chart, Data flow diagram, HIPO diagram,

Decision table, Pseudocode. 7.3 SOFTWARE DESIGN METHOD A design method provides a way of indicating how to

create a design. It needs to impart the procedures for verifying that the design is correct. Software design takes the user

requirements as challenges and tries to find out optimum solution. While the software is being conceptualized, a plan is

chalked out to find the best possible design for implementing the intended solution. There are mainly three variants of

software design methods which are described in the following. ? Structured Design Structured design is a

conceptualization of problem into several well- organized elements of solution. It is basically concerned with the

solution design. The benefit of structured design is that it gives better understanding of how the problem is being solved.

Structured design also makes it simpler for designer to concentrate on the problem more accurately. Structured design

follows ‘divide and conquer’ technique where a problem is decomposed into several small problems and each small

problem is individually solved until the whole problem is solved. The small pieces of problem are solved by means of

solution modules which have been well organized in order to achieve precise solution. These

147 | P a g e Space for learners: modules are arranged in hierarchy where top level module communicates with

descendant modules. A good structured design follows some rules for communication among multiple modules by the

virtue of cohesion and coupling as discussed in previous unit. Cohesion refers to grouping of all functionally related

elements within a module whereas Coupling measures the inter dependency among different modules. A good

structured design has high cohesion and low coupling arrangements. ? Function Oriented Design In function-oriented

design, the system is considered a group of many smaller sub-systems known as functions and hence, system is known

as top view of all functions. These functions are capable of performing significant task in the system. Function oriented

design inherits some properties of structured design where divide and conquer methodology is used. This design

mechanism divides the whole system into smaller functions, which provides means of abstraction by concealing the

information and their operation. These functional modules can share information among themselves by means of

information passing. Another characteristic of functions is that when a program calls a function, the function changes

the state of the program, which sometimes is not acceptable by other modules. Function oriented design works well

where the system state does not matter and program/functions work on input rather than on a state. Design Process: ?

The whole system is seen as how data flows in the system by means of data flow diagram. ? Data flow diagram depicts

how functions changes data and state of entire system. ? The entire system is logically broken down into smaller units

known as processes on the basis of their operation in the system. ? Each function is further described at large by

decomposing the same into multiple sub functions.

148 | P a g e Space for learners: ? Object Oriented Design Object oriented design (OOD) works around the entities and

their characteristics instead of functions involved in the software system. This design strategies mainly concentrates on

entities and its characteristics. The whole concept of software solution revolves around the engaged entities. Some

important concepts behind Object Oriented Design are: ?

89% MATCHING BLOCK 128/246

Objects - All entities involved in the solution design are known as objects. For example, person, banks, company and

customers are treated as objects. Every entity has some attributes associated

to it with specified values and those values are processed by

78% MATCHING BLOCK 129/246

some methods to perform respective operation. ? Classes - A class is a generalized description of an object (

or a class can be called a template for defining object(s)). An object, on the other hand, is a runtime instance of a class.

All the attributes associated with an object along with methods, which defines the functionality of the object are declared

within a class. In the solution design, attributes are stored as variables and functionalities are defined by means of

methods or procedures. ? Encapsulation - In OOD, the binding of attributes (data variables) and methods (operation on

the data) in a single platform is referred to as encapsulation.

89% MATCHING BLOCK 130/246

Encapsulation not only bundles important information of an object together, but also restricts access

of the data and methods from the outside world. This is called information hiding. ?

66% MATCHING BLOCK 131/246

Inheritance - OOD permits similar classes to stack up in hierarchical manner where the lower or sub-classes can

inherit, re-use and implement allowed variables and methods from their immediate

parent class (or classes). This property

75% MATCHING BLOCK 132/246

of OOD is known as inheritance. This makes it easier to define specific class

or classes known as base

90% MATCHING BLOCK 133/246

class and to construct generalized classes from specific ones. ? Polymorphism - OOD languages provide a mechanism

to define more than one method (vary in arguments) having same name performing multiple tasks.

71% MATCHING BLOCK 134/246

This is called polymorphism, which allows a single interface performing tasks for different types. 149 |

P a g e Space for learners:

78% MATCHING BLOCK 135/246

Depending upon how the function is invoked, respective portion of the code gets executed. 7.4 SOFTWARE DESIGN

NOTATION It can be stated that software analysis and design stage comprise of the activities which help in transforming

of requirement specification document into implementation. Requirement specifications specify all functional and non-

functional necessities for the software to be developed. These requirement specifications come in the shape of human

readable and understandable formats to which a computer has nothing to do. Design notations refers to some

techniques which are used to represent a system in software design. These notations help software designers to get an

overview of various aspects of software design like modules, abstraction, information hiding, concurrency, etc. in a

comprehensive manner. A design notation in well-formed helps to clarify the relationships and interactions among

various modules that exist in the design, while a poor design form generally complicates the design process. It is to be

noted that software design notations may be in the form of graphical, textual, or symbolic. Various design notations

which are widely used by software designers as analysis and design tools include Flow Charts, Structure Charts, Data

Flow Diagram, HIPO diagram, Pseudocodes, Decision Table, etc. 7.4.1 Flow Charts A flowchart is a design representation

in graphical form which shows the sequence of operations to be carried out to solve a given problem. It helps to

determine the major elements of a process by creating boundaries between the end of one process and beginning of

another process. The logic of a problem can be clearly understood by the programmer from the flow chart of the

problem. It makes use of set of symbols which are CHECK YOUR PROGRESS 1. What is design method? Name different

types of design methods. 2. Differentiate between function-oriented design and object oriented design.

150 | P a g e Space for learners: connected among them to indicate the flow of information and processing. Frank

Gilberth introduced flowcharts in 1921, and they were called “Process Flow Charts” at the beginning. Symbols used in the

Flowcharts: Some standard symbols and rules are prescribed by American National Standard Institute (ANSI) for drawing

flowcharts. Table 1 presents some standard symbols which are frequently used in flowcharts. Table 1. Some standard

symbols and their purposes used in flowcharts Symbol Symbol Name Purpose Start/Stop It is used to denote start and

end of a logic/program. Process It specifies how to process mathematical operations. Input/ Output Used for accepting

inputs for the program and producing outputs by the program. Decision box It stands for decision making statements in

a program, where any decision results either Yes or No. Flow line It represents the flow of the sequence and direction of

a process. On-page Connector It connects two or more parts of a flowchart, which are on the same page. Off-page

Connector It is used to connect two parts of a flowchart which are spread over different pages. Benefits of Flowcharts:

The sequential steps in an algorithm are pictorially represented by the flowchart and therefore, flowchart is considered a

step next to an algorithm. It helps to clarify the actions to be taken. It also allows to improve the currently working things.

The misplaced steps or

151 | P a g e Space for learners: unnecessarily included steps are clearly come into picture for the software designers with

the help of flowchart. Some benefits of using flowchart in problem solving are described in the following. ? Logic

understanding Since the flow chart pictorially represents the actions to be performed, the logic used for solving the

problem can be understood easily. The flow chart symbols used to perform various functions denote the actions and

their flow. Thus, the control flow in a program can be easily visualized with the help of flowchart. ? Communication A

common understanding about the process is established among the members of designer team with the help of flow

chart. It is a better way of communicating the logic of a system to all concerned. The flowchart makes the

communication easier to all the involved people as compared to actual program code. ? Effective analysis Although it is

the duty of the programmer to analyse the problem, but it can be handed over to other persons who may or may not be

aware of the programming techniques because of flowchart which gives broad idea about the logic. The testing and

analysis of the logic is performed in an unbiased manner by these people. Thus, the analysis of the problem becomes

effective and easier because of flowchart. ? Useful in coding When the flowchart becomes ready, the start and end of a

problem solution become fixed along with all the necessary sequential steps. It acts as a guide to the programmer in

planning the coding process effectively. Thus, the flowcharts allow the programmer to develop error free programs in

high-level languages at a faster rate. ? Proper testing and debugging The errors in the program can be easily detected by

going through the flowchart. The logic used for solving the problem is exactly known to the developer. The developer

can test a program by fetching various data and thereby, flow chart allows the testing of program in every contingency. ?

Appropriate documentation

152 | P a g e Space for learners: Flowcharts can serve as good documentation tool for beginners which may not have any

programming idea. They can understand what the program actually does and how to use the program with the help of

documentation. To understand the basic concept of flowchart, few examples are discussed in the following. Example 1. A

flow chart is presented in the figure 7.1 which describes to find out the largest of the given three numbers stored in A, B &

C. Figure 7.1 Flow chart for finding out the greatest number among three integers Example 2. A flow chart to generate

Fibonacci series upto n which is presented in figure 7.2.

153 | P a g e Space for learners: Figure 7.2 Flow chart to generate Fibonacci series upto n. 7.4.2 Data Flow Diagrams A

Data flow diagram (DFD) is a graphical representation of flow of data in an information system. It can depict incoming

data flow, outgoing data flow and stored data throughout the system. The objective of DFD (DFD is also known as

bubble chart) is to provide an overview of the transformations in the input data within the system in order to produce the

output. A DFD is defined by IEEE as ‘a diagram that depicts data sources, data sinks, data storage and processes

performed on data as nodes and logical flow of data as links between the nodes.’ Since graphical representations are

easier to interpret compared to the technical descriptions, the non-technical users can also able to understand the

system details easily and clearly. There is a prominent difference between DFD and Flowchart. The flowchart presents

flow of control in program modules whereas DFDs

154 | P a g e Space for learners: depict flow of data in the system at various levels. DFD does not have any control or

branch elements. Data Flow Diagrams may be either Logical or Physical. ? Logical DFD - This type of DFD concentrates

on the system process, and flow of data in the system. It presents the theoretical process of moving information through

a system, like where the data comes from, where it goes, how it changes, and where it ends up. ? Physical DFD - This

type of DFD shows how the data flow is actually implemented in the system. It is more specific and closer to the

implementation. DFD notations: To construct DFD for a system, a set of symbols are used which are standardized

notations like rectangle, circle, arrows, etc. There are four common methods of notation used in DFDs: Yourdon & De

Marco, Gene & Sarson, SSADM and Unified. All methods use the same labels with different shapes to represent the four

main elements of a DFD - external entity, process, data store, and data flow. Figure 7.3 presents these elements. The

notations belonging to Yourdon & De Marco method are widely used to construct DFDs. Unified modelling notations are

used for defining a system in object-oriented design.

155 | P a g e Space for learners: Figure 7.3 Four fundamental notations used in DFDs External Entity An external entity,

which are also known as terminators, sources, sinks, or actors, represents an external user that sends or receives data to

and from the system. They are used either the sources or destinations of information and accordingly, they are usually

placed on the diagram’s edges. Entities are represented by rectangles with specific names. Process Process refers to an

operation that manipulates the data and its flow by taking incoming data, changing it, and producing an output with it. A

process can do this by performing computations and using logic to sort the data, or change its flow of direction.

Activities and action taken on the data by processes are represented by Circles. Data Store Data stores hold information

for later use, like a file of documents from which necessary data can be retrieved for processing. Data inputs flow from

the external entity to a data store through a process while data outputs flow out of a data store to the entity through a

process. It is to be noted that data flow can never be possible in between entity and the data store. There are two

variants of data storage - it can either be represented as a rectangle with absence of both smaller sides or as an open-

sided rectangle with only one side missing. Data Flow Data flow is the path by which the system’s information passes

from external entities through processes and data stores. With arrows along with brief labels, the DFD presents the

direction of the data flow. In general, data flow is not shown in between two processes. Data movement is shown from

the base of arrow as its source towards head of the arrow as destination. Certain standard guidelines are to be followed

while creating a DFD. These include the following: a) DFD notations should be given meaningful names with proper parts

of speech. For example, a process name should be a verb whereas

156 | P a g e Space for learners: nouns should be used for naming external entities, data store and data flow. b) Each

process should be numbered uniquely and numbering should be consistent. c) Abbreviations should be avoided in DFD

notations. d) Looping concept should not be used in DFD. e) A DFD refinement should be continued in a series of levels

of DFDs until each process performs a simple operation. f) The data store should not be depicted in Context diagram or

Level 0 DFD, but all the data stores required for a system must be included in next level DFDs. g) Each process should

have at least one input and one output. h) Each data store should have at least one data flow in and data flow out. Levels

of Data Flow Diagrams There are various levels of DFD ranging from simple overviews to complex, granular

representations of a system or process with deeper levels, starting with level 0. These provide details about the input,

processes and outputs of a system. The most common and intuitive DFDs are level 0 DFDs, which are also known as

context diagrams. Level 0 DFD or Context Diagram This DFD level focuses on high-level system processes or functions

and the data sources that flow to or from them. All the external entities must be shown in Level 0 data flow diagram.

They are designed to be simple, straightforward overviews of a process or system. It is to be mentioned that no data

store should be included in context diagram.

157 | P a g e Space for learners: Level 1 DFD Level 1 DFD elaborates level 0 DFD by splitting the system’s single process

into more detailed form showing all the broad level functions of the system. It depicts basic modules in the system and

flow of data among various modules. It also includes all the data stores required for the system. However, external

entities may not be a part of level 1 DFD or other deeper level DFDs. Level 2 DFD The level 2 DFDs present more

elaboration by breaking down each level 1 process into granular subprocesses. Level 3 DFD Level 3 and higher-

numbered DFDs are usually not to be defined. This is mainly due to the requirements of large amount of detail which

increases the complexity of the system. Higher level DFDs can be transformed into more specific lower level DFDs with

deeper level of understanding unless the desired level of specification is achieved. Let us take an example to explain DFD

for a system “Online Shopping System”. Online Shopping System is an e-commerce application which allows customer

to buy goods or services from a seller over the Internet. This system is handled by two types of users: buyer(customer)

and seller(Administrator). Hence, two external entities are involved in this system. The context diagram of this system is

presented in the figure 7.4. Figure 7.4 Context diagram of Online Shopping System

158 | P a g e Space for learners: Further, the process(system) in context diagram is decomposed into various

subprocesses which are presented in Level 1 DFD. Figure 7.5 depicts the Level 1 DFD. Figure 7.5 Level 1 DFD for Online

Shopping system

159 | P a g e Space for learners: 7.4.3 Pseudo-Code Pseudocode is a "text-based" detail (algorithmic) design tool. It

describes a piece of code or an algorithm. As the name suggests, it does not refer to the actual code. The term is widely

used in algorithm-based fields. It is written closer to programming language and therefore it is considered as augmented

programming language, full of comments and descriptions. Pseudo code is an implementation of the algorithm in

English. It has no syntax like any other programming language, hence it cannot be compiled or interpreted by a

computer. How to write Pseudo code? Arrange the sequence of tasks before writing the pseudo code. 1. Start with the

statement which establishes the main goal or the aim. 2. Use if-else like statement, for, and while loops wherever

required and indent the statements. 3. Make use of appropriate conventions. If the programmer goes through a pseudo

code, the naming must be simple and distinct. 4. Use appropriate sentence casings such as Proper Case for functions or

methods, Upper case for constants and Lower case of variables. 5. Elaborate on everything that is going to happen in the

actual code. 6. Check whether all the sections of a pseudo-code are complete, finite and clear. 7. It is not advisable to

write the code in a complete programming manner. 8. Avoid variable declaration in Pseudo code. Why use Pseudo

code? The pseudo code improves the readability of any approach. It is the best approaches to start the implementation

of an algorithm. This kind of practice helps in bridging the potential gaps between the program, algorithm, or flowchart.

It also acts as a rough document. The rules of Pseudocode are reasonably straightforward. All statements showing

"dependency" are to be indented. These include while, do, for, if, switch. Examples below will illustrate this notion.

Pseudo code

160 | P a g e Space for learners: contains more programming details than other design notations. It provides a method to

perform the task, as if a computer is executing the code. Few examples of Pseudocode are mentioned below. ? To print

the result of a student as “passed” if he/she obtains average marks equal to or more than 60 otherwise “failed”. Input the

student’s grade If student's grade is greater than or equal to 60 Print "passed" else Print "failed" ? To compute the average

grade mark of 10 students of a class. Set total to zero Set grade counter to one While grade counter is less than or equal

to ten Input the next grade Add the grade into the total Set the class average to the total divided by ten Print the class

average. ? Finding the sum of n natural numbers. Declare variables n, i and sum as integer; Read number n ; Initialize i to

1 for i upto n increment i by 1 { sum=sum+i; } Print sum;

161 | P a g e Space for learners: ? Program to print Fibonacci up to n numbers. void function Fibonacci Get value of n; Set

value of a to 1; Set value of b to 1; Initialize i to 0 for (i=0; i> n; i++) { if a greater than b { Increase b by a; Print b; } Else

if b greater than a { Increase a by b; print a; } } 7.4.4 Structure Charts Structure chart is a chart derived from Data Flow

Diagram (DFD). It represents the system in more detail than DFD. It breaks down the entire system into lowest functional

modules describing functions and sub- functions of each module of the system to a greater detail than DFD. Structure

charts are also the graphical representation of the high-level design which presents the hierarchical structure of

modules. At each layer, a specific task is performed. As a design notation, structure charts

162 | P a g e Space for learners: show both control and data flow between modules. Here are the symbols used in

construction of structure charts. ? Module - It represents process or subroutine or task. A control module branches to

more than one sub-module. Library Modules are re-usable and invokable from any module. ? Condition - It is

represented by small diamond at the base of module. It depicts that control module can select any of sub-routine based

on some condition. ? Jump - An arrow is shown pointing inside the module to depict that the control will jump in the

middle of the sub-module. ? Loop - A curved arrow represents loop in the module. All sub- modules covered by loop

repeat execution of module.

163 | P a g e Space for learners: ? Data flow - A directed arrow with empty circle at the end represents data flow. ?

Control flow - A directed arrow with filled circle at the end represents control flow. ? Developing a Structure Chart: To

build a structure chart, the steps given below are to be followed. a. Maintain the relations of modules from top to

bottom. b. Arrange the major activities of the problem in a hierarchical manner in such a way that the activities are

represented by the nodes below the root node and connection between the root and the nodes is depicted by drawing

lines. c. Conceptualize each activity separately to determine how it can be divided into smaller subtasks.

164 | P a g e Space for learners: A sample structure chart is presented in figure 7.6 in which top- level module

“process_sales” communicates with three sub modules namely “validate_order”, “do_classify_order” and “put_invoice”

respectively. Figure 7.6 A sample structure chart 7.4.5 HIPO Diagram HIPO (Hierarchical Input Process Output) diagram is

a combination of two organized method to analyze the system and provide the means of documentation. HIPO model

was developed by IBM in year 1970. A HIPO diagram generally consists of the following elements. ? A collection of top-

level diagrams. ? A collection of detailed diagrams. ? A visual table of contents (VTOC) which consists of a tree or graph

structured directory, summary of contents in each overview diagram, and a legend of symbol definitions.

165 | P a g e Space for learners: Similar to an organization chart, HIPO diagram represents the hierarchy of modules in

the software system. Analyst uses HIPO diagram in order to obtain high-level view of system functions. It decomposes

functions into sub-functions in a hierarchical manner. It depicts the functions performed by system. HIPO diagrams are

good for documentation purpose. Their graphical representation makes it easier for designers and managers to get the

pictorial idea of the system structure. Hence, HIPO diagrams can be used as a modelling tool in some environments.

Using the HIPO technique, designers can evaluate and refine a program’s design, and correct flaws prior to

implementation. Given the graphic nature of HIPO, users and managers can easily follow a program’s structure. A

completed HIPO package has two parts: A hierarchy chart is used to represent the top-down structure of the program.

The hierarchy chart serves as a useful planning and visualization document for managing the program development

process. A sample hierarchy chart is shown in the following figure 7.6 where a rectangular box represents a function

which can further call its subfunctions. Figure 7.6 A Sample Structure chart For each module depicted on the hierarchy

chart, an IPO (Input-Process- Output) chart is used to describe the inputs to, the outputs from, and the process

performed by the module. The IPO charts define for the programmer each module’s inputs, outputs, and algorithms. For

166 | P a g e Space for learners: example, IPO chart for Authentication function is presented in the figure 7.7. Figure 7.7

IPO chart for authentication function 7.4.6 Decision Tables A decision table is a tabular representation of the logic of a

problem. It specifies the possible conditions and the resulting actions to be taken to address them, in a structured tabular

format. It is a powerful tool to debug and prevent errors. It helps group similar information into a single table and then by

combining tables it delivers easy and convenient decision-making. A decision table consists of three parts: Condition

stubs which lists condition relevant to decision, Action stubs specify actions that result from a given set of conditions and

Rules specify which actions are to be followed for a given set of conditions. Creating Decision Table: To create a decision

table, the designer must follow basic four steps: ? Identify all possible conditions to be addressed, ? Determine actions

for all identified conditions, ? Create Maximum possible rules, ? Define action for each rule. Decision Tables should be

verified by end-users and can lately be simplified by eliminating duplicate rules and actions.

167 | P a g e Space for learners: Constructing a Decision Table: PART 1. FRAME THE PROBLEM. ? Identify the conditions

(decision criteria). These are the factors that will influence the decision. ? Identify the range of values for each condition

or criteria. ? Identify all possible actions that can occur. PART 2. CREATE THE TABLE. ? Create a table with 4 quadrants.

(Put the conditions in upper left quadrant and place the actions in lower left quadrant) ? List all possible rules. Put the

rules in the upper right quadrant. ? Enter actions for each rule. (In the lower right quadrant, determine what, if any,

appropriate actions should be taken for each rule) Example: Let us take an example of day-to-day problem with our

Internet connectivity. We begin by identifying all problems that can arise while connecting to internet and their

respective possible challenges. We include all possible problems under column conditions and the prospective actions

under column Actions. Table 2 presents the decision table explaining in house internet connectivity problem. Table 2:

Decision Table – In-house Internet Troubleshooting Conditions/Actions Rules Conditions Shows Connected N N N N Y Y

Y Y Ping is Working

63% MATCHING BLOCK 136/246

N N Y Y N N Y Y Opens Website Y N Y N Y N Y N

Actions Check network cable X Check internet router X X X X Restart Web Browser X Contact Service provider X X X X X X

Do no action

168 | P a g e Space for learners: CHECK YOUR PROGRESS A. Choose the correct options from the followings: 1. Which

of the following is not a component in DFD? A. Entities B. Attributes C. Process D. Data Flow 2. A data flow can A) Only

emanate from an external entity B) Only terminate in an external entity C) May emanate and terminate in an external

entity D) May either emanate or terminate in an external entity but not both 3. HIPO stand for A) Hierarchy input process

output B) Hierarchy input plus output C) Hierarchy plus input process output D) Hierarchy input output Process 4. In a

DFD external entities are represented by a A) Rectangle B) Ellipse C) Diamond shaped box D) Circle 5. After the design

phase the document prepared is known as……………… A) system specification B) performance specification C) design

specification D) None of these 6. What is level 2 in DFD means? A) Highest abstraction level DFD is known as Level 2. B)

Level 2 DFD depicts basic modules in the system and flow of data among various modules. C) Level 2 DFD shows how

data flows inside the modules mentioned in Level 1. D) All of the above

169 | P a g e Space for learners: 7.5 SUMMING UP ? In function-oriented design, the system is considered a group of

many smaller sub-systems known as functions and hence, system is known as top view of all functions. These functions

are capable of performing significant task in the system. ? Object Oriented design gives a detailed description of how the

system can be built using objects. ? Design notations are used by the designers to represent software design. Various

notations that are commonly used include flow charts, DFDs, HIPO diagram, Decision table, Structure chart, etc. ? A flow

chart is a graphical design tool that depicts the sequence of operations to be carried out to solve a problem. 7. The

context diagram is also known as _____________. A) Level-0 DFD B) Level-1 DFD C) Level-2 DFD D) All of the above 8.

....... is a tabular method for describing the logic of the decisions to be taken. A) Decision tables B) Decision tree C)

Decision Method D) Decision Data 9. gives defining the flow of the data through an organization or a company or

series of tasks that may not represent computerized processing. A) System flowchart B) Decision Tables C) System Trees

D) Organization chart 10. The structure chart is A) a document of what has to be accomplished B) a statement of

information processing requirement C) a hierarchical partitioning of the program D) All of the above

170 | P a g e Space for learners: ? As a graphical notation, DFD presents data sources, data sinks, data storage and

processes performed on data as nodes, and logical flow of data as links between the nodes. ? A decision table is defined

as a table that contains all the possible conditions for a problem and the corresponding results based on condition rules

that connect condition with results. It is composed of rows and columns in the form of a matrix and matrix is formed in

four quadrants. ? Structure Chart represent hierarchical structure of modules. It breaks down the entire system into

lowest functional modules, describe functions and sub-functions of each module of a system to a greater detail.

Structure Chart partitions the system into black boxes (functionality of the system is known to the users but inner details

are unknown). ? A HIPO diagram comprises of a hierarchy chart that pictorially represents control structure of a program

and a set of IPO (Input- Process-Output) charts that describe the inputs to, the outputs from, and the functions (or

processes) performed by each module on the hierarchy chart. 7.6 ANSWERS TO CHECK YOUR PROGRESS 1. B 2. C 3. A

4. A 5. C 6. C 7. A 8. A 9. A 10.C 7.7 POSSIBLE QUESTIONS 1. Compare relative advantages of the object-oriented and

function- oriented approaches to software design. 2. How do you describe the term top-down decomposition in the

context of function-oriented design? 3. Mention the differences between a structure chart and a flow chart. 4. Explain

how the DFD model can help to understand the working of a software system.

171 | P a g e Space for learners: 5. Draw the context diagram and level 1 DFD for Students’ academic record management

system. 6. Write the main advantages of using decision table in designing a problem.

172 | P a g e Space for learners: UNIT 8: SOFTWARE DESIGN III Unit Structure: 8.1 Introduction 8.2 Unit Objectives 8.3

Structured Design Methodology 8.3.1 Building Blocks of Structured Chart 8.3.2 Transform Analysis 8.3.2 Transaction

Analysis 8.4 Object-Oriented Modelling 8.4.1 Concept of Object-Oriented Modelling 8.4.2 Object-Oriented Analysis vs

Object-Oriented Design 8.5 Object Modelling Using UML 8.5.1 Things in UML 8.5.2 Relationship 8.5.3 UML Diagrams

8.5.3.1 Structural Diagrams 8.5.3.2 Behavioural Diagrams 8.6 Summing Up 8.7 Answer to Check Your Progress 8.8

Possible Questions 8.9 Reference and Suggested Readings 8.1 INTRODUCTION Software design is a method to abstract

the software requirements into software implementation. It takes the user requirements as challenges and tries to find an

optimal solution. There are several alternatives of software design methodology. In this chapter, we will discuss two of

them i.e., Structured Design Methodology and Object-Oriented Design methodology 8.2 UNIT OBJECTIVES At the end

of this lesson the student will be able to

173 | P a g e Space for learners: ? Identify the aim of structured design. ? Explain what a structure chart is. ? Differentiate

between a structure chart and a flow chart. ? Identify the activities carried out during transform analysis with examples. ?

Explain what is meant by transaction analysis. ? Identify the basic difference between object-oriented analysis (OOA) and

object-oriented design (OOD). ? Explain what a model and how models are useful. ? Explain what UML means. ? Identify

different types of views captured by UML diagrams. ? Explain the utility of different types UML diagrams. 8.3

STRUCTURED DESIGN METHODOLOGY Structured design transforms the results of the structured analysis into a

structure chart. Structured analysis is a well-organized development process that uses graphical tools to analyse

80% MATCHING BLOCK 137/246

and improve the objectives of an existing system and to develop a new system specification.

It allows understanding the system and its activities in a logical way. Data Flow Diagrams (DFD), Data Dictionary, Decision

Trees, Decision Tables, Pseudocode, etc. are some examples of tools available for structured analysis. On the other hand,

a structure chart represents the architecture of the software i.e., the dependency and the parameters passed among the

various modules of the software system. There are two strategies to converts the results of the structured analysis into a

structure chart. ? Transform analysis and ? Transaction analysis At each level of conversion, it is very important to

determine whether the transform analysis or the transaction analysis is suitable for a particular structured analysis or not.

8.3.1 Building Blocks for Structure Chart The basic building blocks that are used to design structure charts are the

following:

174 | P a g e Space for learners: ? Rectangular boxes: Used to represents the process or task of the system. It is of three

types - Control Module, Sub Module and Library Module. A control module branches to more than one sub-module.

Library modules are reusable and invokable from any module. Fig 8.1 Representation of Modules ? Module invocation

arrows: These are module connecting arrows. The direction of the arrow indicates that control is passed from one

module to another module. Fig 8.2 Module invocation arrows ? Data flow arrows: It represents data passes from one

module to another module in the direction of the arrow. It is represented by a directed arrow with an empty circle at the

end. Fig 8.3 Data flow arrows ? Control flow arrows: It represents the flow of control between the modules. It is

represented by a directed arrow with a filled circle at the end.

175 | P a g e Space for learners: Fig 8.4 Control flow arrows ? Selection or Condition: Denoted by a diamond symbol. It

represents that the control module can select any of the submodules on the basis of some condition. Fig 8.5 Selection ?

Repetition or Loop: It signifies the repetitive execution of a module by the submodule. A curved arrow is used to

represents a loop in the module. Fig 8.6 Loop ? Physical Storage: Physical Storage is that where all the information is to

be stored. Fig 8.7 Physical Storage The following figure shows a layout of structure chart

176 | P a g e Space for learners: Fig 8.8 Physical Storage We are used to flow chart representation of a program. Though

looks similar, a structure chart differs from a flow chart. It is typically difficult to recognize the

82% MATCHING BLOCK 138/246

different modules of the software from its flow chart representation. Besides, data interchange among different

modules is not represented in a flow chart. 8.3.2

72% MATCHING BLOCK 139/246

Transform Analysis Transform analysis distinguishes the key functional modules and the high-level inputs and outputs

for these

modules. Steps of Transform Analysis are given below Step 1:

100% MATCHING BLOCK 140/246

The first step in transform analysis is to divide the

structured analysis

65% MATCHING BLOCK 141/246

into 3 types of parts: ? Input ? Logical processing ? Output The input portion comprises procedures that convert input

data from physical

form (e.g. character from

terminal) to logical forms (e.g. internal data lists, tables etc.). Each input portion is known as

71% MATCHING BLOCK 142/246

an afferent branch. The output portion of transform analysis alters output data from logical to physical form. Each

output portion is termed an efferent branch. The remaining portion of transform analysis is called

the central transform.

177 | P a g e Space for learners: Step 2:

83% MATCHING BLOCK 143/246

In the next step, the structure chart is derived by drawing one functional component for the central transform, and the

afferent and efferent branches. Each input and output

unit

100% MATCHING BLOCK 144/246

are represented as boxes in the first level structure chart.

Processes that perform logical processing like sorting or filtering input data are part of central transforms. Each central

transform is depicted as a single box. Processes like input validation or adding information to input are not central

transforms. Step 3: In this step, sub-components or sub-functions are added to each of the high-level functional

components (if required). It makes a structured chart more refined. This process of breaking high-level functional

components into sub-components is called factoring. Many levels of subcomponents may be added. The factoring

process is continued until all components of structured analysis are represented in the structure chart. Example:

Structure Chart of a simple email server We can see that three basic functions that the email server needs to perform –

accept the login details from the user, validate users, then login to the mailbox. The level 1 DFD of this system may be as

follows Fig 8.9 Level 1 DFD of email server From this DFD, we can get the structure chart shown in the following figure by

applying all 3 steps of transform analysis mentioned above. Fig 8.10 Structure chart of email server

178 | P a g e Space for learners: 8.3.3 Transaction Analysis Transaction analysis is an alternative structured design strategy

for developing structure charts. It is useful while designing transaction processing programs. One of several possible

paths through the data flow diagram is pass through

85% MATCHING BLOCK 145/246

depending upon the input data item. Each different way in which input data is handled is considered a transaction. The

input data is traced to the output for each identified transaction. All the traversed bubbles of data flow diagram belong to

the transaction and these bubbles should be mapped to the same module on the structure chart. Initially we draw a root

module in the structured chart and each identified transaction will be drawn below this root module. Every transaction is

associated with a tag, which identifies its type. This tag is used to divide the system into transaction modules and a

transaction center module during transaction analysis. It is also possible that some transactions may not require any

input data. Such kind of transactions can be identified by practicing a large number of examples. CHECK YOUR

PROGRESS 1. Differentiate between a structure chart and a flow chart 2. Which documents are produced at the end of

structured analysis activity? 3. For the following, mark all options which are true a. The purpose of structured analysis is i.

to capture the detailed structure of the system as perceived by the user ii. to define the structure of the solution that is

suitable for implementation in some programming language STOP TO CONSIDER A DFD model of a system graphically

portrays the conversion

73% MATCHING BLOCK 146/246

of the data input to the system to the final result through a hierarchy of levels. It starts with the most abstract definition

of the system (context diagram) and at each higher level DFD,

more details are successively introduced.

100% MATCHING BLOCK 147/246

To develop a higher-level DFD model, processes are decomposed into their sub-processes and the data flow among

these sub-processes is identified. 179 |

P a g e Space for learners: iii. all of the above b. Structured analysis technique is based on i. top-down decomposition

approach ii. bottom-up approach iii. divide and conquer principle iv. none of the above c. In a structure chart, a module

represented by a rectangle with double edges is called i. root module ii. library module iii. primary module iv. none of the

above d. Which of the following types of bubbles in DFD may belong to the central transform ? i. input validation ii.

adding information to the input iii. sorting input iv. filtering data e.

85% MATCHING BLOCK 148/246

The input portion in the DFD that transform input data from physical to logical form is called

i. central transform ii. efferent branch iii. afferent branch iv. none of the above 8.4 OBJECT-ORIENTED MODELLING 8.4.1

Concept of Object-Oriented Modelling Object-Oriented (OO) Modelling is a way of thinking about problems using

models organized around real-world concepts. In this

100% MATCHING BLOCK 149/246

approach, the system is viewed as a collection of objects.

Object have their own data which defines their states and functions or operations to work on

180 | P a g e Space for learners: these

data.

76% MATCHING BLOCK 150/246

For example, in a Banking Software, each account may be a separate object with its own data

like account holder’s name, balance amount, and functions like suspend(), deposit(), withdraw(), update() to operate on

these data. Each object is said to be an instance of some class. A class can be assumed as generalized description of an

object. Class can be termed as the blueprint from which individual objects are created. Classes may inherit data and

functions from other classes. But functions defined for one object cannot refer to or change the data of other objects.

However, the same function may behave differently in different classes. 8.4.2 Object-Oriented Analysis vs Object-

Oriented Design The first technical activity performed as part of object-oriented modelling is Object-Oriented Analysis

(OOA). It is used to develop an initial analysis model of the system from the requirements specification. This analysis

model is then transformed by Object- Oriented Design (OOD) into a design model that works as a plan for software

development. Object-Oriented Design (OOD) techniques not only identify objects but also identify the internal details of

the objects and the relationships existing among these objects. 8.5 OBJECT MODELLING USING UML Designers build

different kinds of models for various purposes before constructing things. The main reason for constructing models is to

deal with systems that are too complex to understand directly. Models helps to reduce complexity by separating out a

small number of important things to deal with at a time. Once models of a system have been developed, it can be used

for a variety of purposes during software development, including the following: ? Analysing and Specification ? Reduction

of Complexity ? Designing and testing the system ? Better understanding of the problem

181 | P a g e Space for learners: Since a model can be used for a variety of purposes the model may

76% MATCHING BLOCK 151/246

vary depending on the purpose for which it is being created. For example,

a model constructed for initial analysis and specification will be different from the model constructed for design. UML

(Unified Modelling Language) is a standard language for specifying, visualizing, constructing, and documenting software

systems. It was created by the Object Management Group (OMG). UML 1.0 specification draft was proposed to the

Object Management Group (OMG) in 1997. Initially it was started to capture the behavior of complex software and non-

software system and now it has become an OMG standard. UML has its own syntax and semantics to create a visual

model of the system. UML is not a programming language. It is basically used to document object-oriented and analysis

results obtained using some methodology. There are many tools which can be used to produce code in different

programming languages using UML diagrams. The conceptual model of UML can be mastered by learning the following

three major elements ? UML building blocks ? Rules to connect the building blocks ? Common mechanisms of UML The

building blocks of UML can be defined as – Things, Relationships and Diagrams 8.5.1 Things in UML Things are the most

vital building blocks of UML. It can be – Structural, Behavioral, Grouping and Annotation . A) Structural Things: Structural

things represent the physical and conceptual elements of a system. Brief descriptions of various structural things are

given below. ? Class: Class denotes a set of objects having similar characteristics.

182 | P a g e Space for learners: Fig 8.11 : Representation of Class ? Interface: Interface defines a set of operations, which

specify the properties of a class. Fig 8.12 : Representation of Interface ? Collaboration: Collaboration describes

interactions between elements. Fig 8.13 : Representation of Collaboration ? Component: Component defines the

physical part of a system. Fig 8.14 : Representation of Component ? Node: Physical elements that exists at run time are

termed as node Fig 8.15 : Representation of Node B) Behavioral things : A behavioral thing consists of the dynamic parts

of UML models. Following are the behavioral things −

183 | P a g e Space for learners: ? Interaction : Interaction is defined as a behavior that involves a group of messages

exchanged among elements to complete a specific job. Fig 8.16: Representation of Interaction ? State machine : It

defines the sequence of states an object goes through in response to external factors responsible for a state change. Fig

8.17 : Representation of State C) Grouping Things : Grouping things can be defined as a technique to group elements of

a UML model together. There is only one grouping thing available i.e. package which gathers structural and behavioral

things. Fig 8.18 : Representation of Package D) Annotational Things : Annotational things is a mechanism to capture

remarks, descriptions, and comments of UML model elements. Note is the only one Annotational thing available in UML

Modelling. Fig 8.19 : Representation of Note 8.5.2 Relationship Relationship demonstrates how the elements of a system

are associated with each other. This association between elements describes the functionality of a system. There are four

types of relationships – Dependency, Association, Generalization and Realization.

184 | P a g e Space for learners: ? Dependency defines a relationship between two things in which any alteration in one

element also affects the other element. Fig 8.20 : Representation of Dependency ? Association describes how many

objects are taking part in a relationship. It is basically a set of links that attaches the elements of a UML model. Fig 8.21 :

Representation of Association ? Generalization can be defined as a relationship that links a specialized element with a

generalized element. It generally describes the inheritance relationship between objects. Fig 8.22 : Representation of

Generalization ? Realization can be viewed as a relationship in which two elements are connected. One element defines

some characteristics which are not implemented and the other element implements them. This kind of relationship

exists in the case of interfaces. Fig 8.23 : Representation of Realization 8.5.3 UML Diagrams All the elements, relationships

can be associated in different ways to make a complete UML picture, which is known as diagram. UML diagrams helps us

to understand the system in a better and simple way. Usually diagrams are made in an incremental and iterative way. A

single diagram is not adequate to cover all the characteristics of the system. There are two broad categories of diagrams

i.e. Structural Diagrams and Behavioral Diagrams. They are again divided into subcategories.

185 | P a g e Space for learners: Fig 8.24: Categories of UML Diagram Different UML diagrams provide different

perspectives of the software system to be designed and developed. They facilitate a comprehensive understanding of the

system. The UML diagrams can capture the following five views of a system: ? User’s view: This view defines the

functionalities (facilities) made available by the system to its users. The users’ view captures the external users’ view of the

system in terms of the functionalities offered by the system. ? Structural view: The structural view describes the classes of

objects important to the understanding of the working and implementation of the system. It also defines the

relationships among the objects. ? Behavioral view: The behavioral view captures how objects interact with each other to

realize time dependant or dynamic behavior of the system. ? Implementation view: Implementation view captures the

important components of the system and their dependencies. ? Environmental view: Environmental view models how

the different components are implemented on different pieces of hardware.

186 | P a g e Space for learners: 8.5.3.1 Structural Diagrams The structural diagrams depict the main structure of a system

represented by classes, interfaces, objects, components, and nodes. The four structural diagrams are − ? Class diagram ?

Object diagram ? Component diagram ? Deployment diagram A) Class Diagram Class diagrams are the most common

diagrams used in UML. A class diagram consists of classes, interfaces, associations, and collaboration. Class diagrams

basically represent the object-oriented view of a system Class diagrams have a lot of properties to consider while

drawing. The following points should be remembered while drawing a class diagram − ? Name of the class diagram

should be meaningful to describe the aspect of the system. ? Each element and its relationships should be identified

properly in advance. ? Attributes and methods of each class should be clearly identified ? Unnecessary properties should

be avoided, otherwise they will make the diagram complicated. ? Use notes whenever required to describe some aspect

of the diagram so that it becomes easily understandable to the developer/coder.

187 | P a g e Space for learners: Fig 8.25 : Class Diagram UML diagrams are not directly mapped with any object-oriented

programming languages but the class diagram is an exception. As it clearly shows the mapping with object-oriented

languages. B) Object Diagrams Object diagrams are derived from class diagrams. Object diagrams help to render a set of

objects and their relationships as an instance. Objects and links are the two essential elements used to construct an

object diagram. The object diagram should have a meaningful name to indicate its purpose and association among

various objects should be clarified. Fig 8.26 : Object Diagram

188 | P a g e Space for learners: C) Component Diagram The purpose of the component diagram is different from a class

diagram or object diagram. It describes the components used to make functionalities of the system rather than

describing those functionalities. Component diagrams are used to model the physical aspects such as executables,

libraries, files, documents, etc. of a system Fig 8.27 : Component Diagram D) Deployment Diagram Deployment

diagrams are a set of nodes and their relationships. These nodes are nothing but physical hardware used to deploy the

application. Fig 8.28 : Deployment Diagram

189 | P a g e Space for learners: 8.5.3.2 Behavioral Diagrams Behavioral diagrams basically capture the dynamic aspect

i.e. the behavior of the system when it is in operational or running state. UML has the following five types of behavioral

diagrams ? Use case diagram ? Interaction diagram ? State chart diagram ? Activity diagram A) Use case diagrams A use

case basically represents a sequence of interactions between the system and users. Use case diagrams are used to

gather the requirements of a system including internal and external effects. These requirements are typically design

requirements. Hence, when a system is analyzed to gather its functionalities, use cases are prepared and actors are

identified. Actors are nothing but an entity that interacts with the system. It can be a human user, some internal

applications, or maybe some external applications. While planning to draw a use case diagram, the following items

should be identified in advanced ? Functionalities to be represented as a use case ? Actors and ? Relationships among the

use cases and actors Use case diagrams are drawn to capture the functional requirements of a system. After identifying

the above items, the following guidelines need to be followed to draw an efficient use case diagram ? The name should

be chosen in such a way so that it can identify the functionalities performed. ? Give a appropriate name for actors. ?

Relationships and dependencies should be clearly visible in the diagram. ? Use notes (if required) to clarify important

points.

190 | P a g e Space for learners: Fig 8.29: Use Case Diagram B) Interaction Diagrams Interaction diagrams visualize the

interactive behavior of a system. Visualizing the interaction is not an easy task. Hence, different types of models are used

to capture the various aspects of the interaction. This interaction is a part of the dynamic behavior of the system and it is

represented in UML by two diagrams known as Sequence diagram and Collaboration diagram. The basic purpose of both

the diagrams is similar. A sequence diagram shows the message sequence of various objects The message flow is

nothing but a method call of an object. Fig 8.30 : Sequence Diagram

191 | P a g e Space for learners: In the collaboration diagram, some numbering technique is used to indicate the method

call sequence. The number specifies how the methods are called one after another. Fig 8.31 : Collaboration Diagram C)

Statechart Diagram Statechart diagram is another type of UML diagrams which is used to model the dynamic nature of a

system. Statechart diagrams define different states of an object throughout its lifetime and these states are changed by

events. Statechart diagrams are convenient to model systems that respond to external or internal events. Fig 8.32 :

Statechart Diagram D) Activity Diagram Activity diagram is fundamentally a flowchart to represent the flow from one

activity to another. The activity can be defined as an operation of the system. The control flow is drawn from one

operation to another. This flow can be sequential, branched, or concurrent.

192 | P a g e Space for learners: Activity diagram has more impact on understanding the system rather than on

implementation details. Fig 8.33 : Activity Diagram CHECK YOUR PROGRESS 4. Explain why is it necessary to create a

model in the context of good software development. 5. Which diagrams in UML capture the behavioral view of the

system? 6. Which UML diagrams capture the structural aspects of a system? 7. Which UML diagrams capture the

important components of the system and their dependencies? 8. Mark the following as either True or False. Justify your

answer. a. State chart diagrams in UML are normally used to model how some behavior of a system is realized through

the co-operative actions of several objects. b. Normally, you use an interaction diagram to represent how the behavior of

an object change over its life time. c. Class diagrams developed using UML can serve as the functional specification of a

system. 9. Mark all options which are true. a. UML is a i. a language to model syntax

193 | P a g e Space for learners: ii. an object-oriented development methodology iii. an automatic code generation tool

iv. none of the above b. In the context of use case diagram, the stick person icon is used to represent i. human users ii.

external systems iii. internal systems iv. none of the above c. Which of the following view captured by UML diagrams can

be considered as black box model of a system? i. structural view ii. behavioral view iii. user’s view iv. implementation view

8.6 SUMMING UP Software design is a process

91% MATCHING BLOCK 152/246

to convert user requirements into some suitable form, which helps the programmer in software coding and

implementation.

Structured design methodology is typically based on ‘divide and conquer’ approach where a problem is fragmented into

several small problems and each small problem is separately solved until the whole problem is solved. A good structured

design has high cohesion and low coupling arrangements. Object oriented design works around the entities and their

features instead of functions involved in the software system. UML is a modelling language used to model software and

non-software systems. Although UML is used for non-software systems if we look into UML diagrams all would basically

be designed based on the objects. Hence, the relation between Object - Oriented design and UML is very important to

understand. Before understanding the UML in detail, the Object - Oriented concept should be learned properly.

194 | P a g e Space for learners: 8.7 ANSWERS TO CHECK YOUR PROGRESS 1.

88% MATCHING BLOCK 153/246

A structure chart differs from a flow chart in following ways: ? It is usually difficult to identify

the

86% MATCHING BLOCK 154/246

different modules of the software from its flow chart representation. ? Data interchange among different modules is

not represented in a flow chart. 2.

Graphical representation of structured analysis results Data Flow Diagrams. 3. a. i b. i, ii c. ii d. iii, iv e. iii 4. An important

reason behind constructing a model is that it helps manage complexity. Once models of a system have been

constructed, these can be used for a variety of purposes during software development, including the following: ?

Analysing and Specification ? Reduction of Complexity ? Designing and testing the system ? Better understanding of the

problem Since a model can be used for a variety of purposes, it is reasonable to expect that the model would

76% MATCHING BLOCK 155/246

vary depending on the purpose for which it is being constructed. For example,

a model developed for initial analysis and specification should be very different from the one used for design. A model

that is being used for analysis and specification would not show any of the design decisions that would be made later on

during the design stage. On the other hand, a model used for design purposes should capture all the design decisions.

Therefore, it is a good idea to explicitly mention the purpose for which a model has been developed, along with the

model. 5. The behavioral view is captured by the following UML diagrams: ? Sequence diagrams

195 | P a g e Space for learners: ? Collaboration diagrams ? State chart diagrams ? Activity diagrams 6. Structural aspects

of a system are captured by the following UML diagrams: ? Class diagrams ? Object diagrams 7. Implementation view

captures the important components of the system and their dependencies. 8. a. False. A state chart diagram is normally

used to model how the state of an object changes in its life time. State chart diagrams are good at describing how the

behavior of an object changes across several use case executions. b. False. Interaction diagrams are models that describe

how groups of objects team up to realize some behavior. Typically, each interaction diagram comprehends the behavior

of a single use case. An interaction diagram shows a number of example objects and the messages that are passed

between the objects within the use case. c. False. A class diagram describes the static structure of a system. It shows how

a system is structured rather than how it behaves. The static structure of a system comprises of a number of class

diagrams and their dependencies. 9. a. iv b. i c. iii 8.8 POSSIBLE QUESTIONS 1. Identify different types of views of a

system captured by UML diagrams. 2. What is the basic difference between object-oriented analysis (OOA) and object-

oriented design (OOD) ? 3. What is the need for developing use case diagram?

196 | P a g e Space for learners: 4. Differentiate Activity diagram and State chart diagram. 5. What do you understand by

relationships in UML? 6. What are the advantages of creating a Model ? 8.9 REFERENCES AND SUGGESTED READINGS ?

70% MATCHING BLOCK 156/246

Fundamentals of Software Engineering, Fifth Edition, 2018, Rajib Mall; PHI ? Software Engineering – A Practitioner’s

Approach, Roger S. Pressman; McGraw-Hill International Edition

BLOCK II: SOFTWARE CODING, TESTING AND MAINTENANCE

197 | P a g e Space for learners: UNIT 1: SOFTWARE CODING Unit Structure: 1.1 Coding standards and Guidelines 1.1.1

Representative coding standards 1.1.2 Representative coding guidelines 1.2 Coding Methodologies 1.2.1 Code Review

1.2.2 Code Verification 1.2.3 Static and Dynamic Techniques 1.3 Coding Tools 1.4 Coding Documentation 1.4.1 Internal

Documentation 1.4.2 External Documentation 1.5 Summing up 1.6 Answers to Check Your Progress 1.7 Possible

Questions 1.8 References and Suggested Readings 1.0 INTRODUCTION In this unit, you will learn the coding phase of

software development life cycle. This unit covers the basic understanding of the coding activities involved during

software development. The goal of the coding activity is to implement the design in the best possible manner. It affects

both the testing and the maintenance process profoundly. As we know, the time spent in the coding activity is the small

percentage of the total software development cost and the testing and the maintenance consumes the major

percentage. Thus, it is very much clear that the purpose of coding phase is not to reduce the implementation cost but to

reduce the cost of the later phase. In other words, the goal during this phase is not to simplify the programmers job

rather the goal should be to simplify the job of tester and the maintainer. It is very important to understand that while

coding it must be kept in mind that the program should not be

198 | P a g e Space for learners: constructed so that they are easy to write, but so that they are easy to write and

understand. 1.2 UNIT OBJECTIVES After going through the unit you will be able: ? To understand the coding phase of

software development life cycle. ? The importance of coding standards and guidelines followed by organizations. ? The

difference between coding standards and guidelines. ? The different coding methodologies followed in the software

industries. ? The concept of coding verification and the also discusses about the importance of code documentation. 1.3

CODING STANDARDS AND GUIDELINES Writing an efficient software code requires a thorough knowledge of

programming. This knowledge can be implemented by following a coding style which comprises several guidelines that

help in writing the software code efficiently and with minimum errors. These guidelines, known as coding guidelines, are

used to implement individual programming language constructs, comments, formatting, and so on. These guidelines, if

followed, help in preventing errors, controlling the complexity of the program, and increasing the readability and

understandability of the program. A set of comprehensive coding guidelines encompasses all aspects of code

development. To ensure that all developers work in a harmonized manner (the source code should reflect a harmonized

style as a single developer had written the entire code in one session), the developers should be aware of the coding

guidelines before starting a software project.

199 | P a g e Space for learners: Moreover, coding guidelines should state how to deal with the existing code when the

software incorporates it or when maintenance is performed. Since there are numerous programming languages for

writing software codes, each having different features and capabilities, coding style guidelines differ from one language

to another. However, there are some basic guidelines, which are followed in all programming languages. These include

naming conventions, commenting conventions, and formatting conventions.

100% MATCHING BLOCK 157/246

Good software development organizations usually develop their own coding standards and guidelines

depending on what suits

there organization best and based on the specific type of product they develop. In the following section, we shall only list

some general coding standards and guidelines, which are commonly adopted by much software development

organization, rather than trying to provide an exhaustive list. A coding standard lists several rules to be followed during

coding such as the way variables are to be named, the way the code is to be laid out, the error return conventions etc.

Besides the coding standards, several coding guideline are to be prescribed by software companies. But what is the

difference between coding standard and coding guidelines? Coding standards have to be mandatorily followed by the

programmers, and compliance to coding standards is verified before the testing phase can start. In contrast , coding

guidelines provide some general suggestions regarding the coding style to be followed but leave the actual

implementation of these guidelines to the discretion of the individual developers. 1.3.1 Representative Coding Standards

a)

86% MATCHING BLOCK 158/246

Rules for limiting the scope of global variables: These rules list what types of data can be declared global and what

cannot,

with a view to limit the data that needs to be defined with the global scope. b) Standard headers to precede the code of

different modules: The information contained in the headers of the of different modules should be standard for an

organization and exact format of the header must be

200 | P a g e Space for learners: specified. The following is an example of some of the header format adopted by the

companies: ?

79% MATCHING BLOCK 159/246

Name of the module ? Date on which the module was created ? Authors name ? Modification history ? Synopsis of the

module ? Different functions supported

in the module,

95% MATCHING BLOCK 160/246

along with their input/output parameters ? Global variables accessed / modified by the

module c)

100% MATCHING BLOCK 161/246

Naming conventions for global variables, local variables and constant identifiers:

The variables are named using mixed case lettering. Global variable names should always start with a capital letter (e.g

GlobalData) and local variable name would start with small letters (e.g localData). Constant names should be formed

using capital letters only (e.g CONSTDATA). d) Conventions regarding

72% MATCHING BLOCK 162/246

error return values and exception handling mechanism: The way error conditions are reported by different functions in

a program should be standard within an organization.

For example all functions while encountering an error condition should either return 0 or 1 consistently, independent of

which the program has written a code. 1.3.2 Representative Coding Guidelines The following are some representatives

coding guidelines that are recommended by many software development organizations: a)

100% MATCHING BLOCK 163/246

Do not use a coding style that is too clever or too difficult to understand:

Code should be easy to understand. Many inexperienced engineers actually take pride in writing cryptic and

incomprehensible code. Clever coding can obscure meaning of the code and hamper understanding. As a result, it can

make maintenance and debugging difficult and expensive.

201 | P a g e Space for learners: b) Avoid obscure side effects: The side effect of a function call include modifications to

the parameters passed by reference, modifications of global variables and I/O operations. An obscure side effect is one

that is not obvious from a casual examination of the code. Obscure side effects make it difficult to understand a piece of

code. For example , if a global variable is changed or some file I/O performed obscurely in a called module, it becomes

difficult to infer from the functions name and the header information, making it difficult to understand the code. c) Do

not use an identifier for multiple purposes: Programmers often use the same identifier to denote several temporary

entities. For example, some programmers use a temporary loop variable for also computing and storing the final result.

The reason for doing so is that if same variable is used for multiple purpose it can save memory since they are using the

same memory location and if we used three different variables then it will take three different memory locations.

However, there is several things wrong with this approach and hence should be avoided. Some of the problems caused

by use of variable for multiple purpose are as follows : ? Each variable should be given a descriptive name indicating its

purpose. Use of single variable for multipole purpose may lead to confusion and reduces the understandability of the

code. ? Use of single variable for multiple purpose usually makes future enhancement more difficult. For example, while

changing the final computed result from integer to float type, the programmer might subsequently notice that it has

been used as a temporary loop variable that cannot be float type. d) The code should be well documented: As a rule of

thumb, there should be at least one comment line on the average for every three-source lines of code. e)

100% MATCHING BLOCK 164/246

The length of any function should not exceed 10 source lines:

A lengthy function is usually very difficult to understand as it probably has a large number of variables and carries out

many different types of computations. It may carry large number of bugs. f) Do not use GO TO statements: Use of GO

TO statement makes the program unstructured, thereby making it difficult to understand, debug and maintain the

program.

202 | P a g e Space for learners: 1.4 CODING METHODOLOGIES 1.4.1 Code Review It in undertaken after the modules is

successfully compile, it means all the syntax error have been eliminated from the module. The code reviews are cost

effective strategies for eliminating coding errors and for producing high quality code. The reason behind why code

review is much more cost effective strategy to eliminate errors from code compare to testing since it directly detect

errors. On the other hand testing only detect failures and significant effort need to be given in debugging to locate the

error. Normally there are

85% MATCHING BLOCK 165/246

two types of reviews carried out on the code of a module. a) Code

Walkthrough Code Walkthrough is a form of peer review in which a programmer leads the review process and the other

team members ask questions and spot possible errors against development standards and other issues. ? The meeting is

usually led by the author of the document under review and attended by other members of the team. ? Review sessions

may be formal or informal. ? Before the walkthrough meeting, the preparation by reviewers and then a review report with

a list of findings. CHECK YOUR PROGRESS 1. Coding instruction in computer language is known as ………………… 2. Coding

guidelines helps in ….. and helps to detect ….. easily. 3. Code should be well documented. 4. The coding standards

decreases the efficiency of the programmers.

203 | P a g e Space for learners: ? The scribe, who is not the author, marks the minutes of meeting and note down all the

defects/issues so that it can be tracked to closure. ? The main purpose of walkthrough is to enable learning about the

content of the document under review to help team members gain an understanding of the content of the document

and also to find defects. b) Code Inspection Code Inspection is the most formal type of review, which is a kind of static

testing to avoid the defect multiplication at a later stage. ? The main purpose of code inspection is to find defects and it

can also spot any process improvement if any. ? An inspection report lists the findings, which include metrics that can be

used to aid improvements to the process as well as correcting defects in the document under review. ? Preparation

before the meeting is essential, which includes reading of any source documents to ensure consistency. ? A trained

moderator, who is not the author of the code, often leads inspections. ? The inspection process is the most formal type

of review based on rules and checklists and makes use of entry and exit criteria. ? It usually involves peer examination of

the code and each one has a defined set of roles. ? After the meeting, a formal follow-up process is used to ensure that

corrective action is completed in a timely manner. Common programming errors that can be checked during code

Inspection. The following is the list of classical programming errors that needs to

90% MATCHING BLOCK 166/246

be considered during code inspection: ? Use of uninitialized variables ? Jumps into loops ? Non – terminating loops

204 |

P a g e Space for learners: ? Incompatible assignments ? Array indices out of bounds ? Improper storage allocation and

deallocation. ? Mismatches between actual and formal parameter in procedure calls ? Use of incorrect logical operators

or incorrect precedence among

100% MATCHING BLOCK 167/246

operators ? Improper modification of loop variables ? Comparison of equality of floating point values ,

etc 1.4.2 Code Verification Code verification is the process used for checking the software code for errors introduced in

the coding phase. The objective of code verification process is to check the software code in all aspects. This process

includes checking the consistency of user requirements with the design phase. Note that code verification process does

not concentrate on proving the correctness of programs. Instead, it verifies whether the software code has been

translated according to the requirements of the user. Verification is the process of confirming if the software is meeting

the business requirements, and is developed adhering to the proper specifications and methodologies. ? Verification

ensures the product being developed is according to design specifications. ? Verification answers the question– "Are we

developing this product by firmly following all design specifications?” ? Verifications concentrates on the design and

system specifications. Target of the test are - ? Errors - These are actual coding mistakes made by developers. In

addition, there is a difference in output of software and desired output, is considered as an error.

205 | P a g e Space for learners: ?

91% MATCHING BLOCK 168/246

Fault - When error exists fault occurs. A fault, also known as a bug, is a result of an error which can cause system to fail.

? Failure - failure is

said to be the inability of the system to perform the desired task. Failure occurs when fault exists in the system. 1.4.2.1

Static and Dynamic Techniques The code verification techniques are classified into two categories, namely, dynamic and

static. The dynamic technique is performed by executing some test data. The outputs of the program are tested to find

errors in the software code. This technique follows the conventional approach for testing the software code. In the static

technique, the program is executed conceptually and without any data. In other words, the static technique does not use

any traditional approach as used in the dynamic technique. Some of the commonly used static techniques are code

reading, static analysis, symbolic execution, and code inspection and reviews. a) Code Reading: Code reading is a

technique that concentrates on how to read and understand a computer program. It is essential for a software developer

to know code reading. The process of reading a software program in order to understand it is known as code reading or

program reading. In this process, attempts are made to understand the documents, software specifications, or software

designs. The purpose of reading programs is to determine the correctness and consistency of the code. In addition, code

reading is performed to enhance the software code without entirely changing the program or with minimal disruption in

the current functionality of’ the program. Code reading also aims at inspecting the code and removing (fixing) errors

from it.Code reading is a passive process and needs concentration. An effective code reading activity primarily focuses

on reviewing ‘what is important’. The general conventions that can be followed while reading the software code are

listed below. ? Figure out what is important: While reading the code, emphasis should be on finding graphical techniques

(bold, italics) or positions (beginning or end of the section). Important comments may be highlighted in the introduction

or at the end of the software code. The

206 | P a g e Space for learners: level of details should be according to the requirements of the software code. ? Read

what is important: Code reading should be done with the intent to check syntax and structure such as brackets, nested

loops, and functions rather than the non-essentials such as name of the software developer who has written the

software code. b) Static Analysis: Static analysis comprises a set of methods used to analyze the source code or object

code of the software to understand how the software functions and to set up criteria to check its correctness. Static

analysis studies the source code without executing it and gives information about the structure of model used, data and

control flows, syntactical accuracy, and much more. Due to this, there are several kinds of static analysis methods, which

are listed below. Control flow analysis: This examines the control structures (sequence, selection, and repetition) used in

the code. It identifies incorrect and inefficient constructs and also reports unreachable code, that is, the code to which

the control never reaches. Data analysis: This ensures that-proper operations are applied to data objects (for example,

data structures and linked lists). In addition, this method also ensures that the defined data is properly used. Data analysis

comprises two methods, namely, data dependency and data-flow analysis. Data dependency (which determines the

dependency of one variable on another) is essential for assessing the accuracy of synchronization across multiple

processors. Dataflow analysis checks the definition and references of variables. Fault/failure analysis: This analyzes the

fault (incorrect model component) and failure (incorrect behaviour of a model component) in the model. This method

uses input-output transformation descriptions to identify the conditions that are the cause for the failure. To determine

the failures in certain conditions, the model design specification is checked. Interface analysis: This verifies and validates

the interactive and distributive simulations to check the software code. There are two basic techniques for the interface

analysis, namely, model interface analysis and user interface analysis. Model interface analysis examines the sub- model

interfaces and determines the accuracy of the interface

207 | P a g e Space for learners: structure. User interface analysis examines the user interface model and checks for

precautionary steps taken to prevent errors during the user’s interaction with the model’. c) Symbolic Executor: Symbolic

execution concentrates on assessing the accuracy of the model by using symbolic values instead of actual data values

for input. Symbolic execution, also known as symbolic evaluation, is performed by providing symbolic inputs, which

produce expressions for the output. Symbolic execution uses a standard mathematical technique for representing the

arbitrary program inputs (variables) in the form of symbols. To perform the calculation, a machine is employed to

perform algebraic manipulation on the symbolic expressions. These expressions include symbolic data meant for

execution. The symbolic execution is represented as a symbolic state symbol consisting of variable symbolic values, path,

and the path conditions. The symbolic state for each step in the arbitrary input is updated. The steps that are commonly

followed for updating the symbolic state considering all possible paths are listed below. ? The read or the input symbol is

created. ? The assignment creates a symbolic value expression. ? The conditions in symbolic state add constraints to the

path condition. The output of symbolic execution is represented in the form of a symbolic execution tree. The branches

of the tree represent the paths of the model. There is a decision point to represent the nodes of the tree. This node is

labeled with the symbolic values of the data at that junction. The leaves of the tree are complete paths through the

model and they represent the output of symbolic execution. Symbolic execution helps in showing the correctness of the

paths for all computations. Note that in this method the symbolic execution tree increases in size and creates complexity

with growth in the model. d) Code Inspection and Reviews: This technique is a formal and systematic examination of the

source code to detect errors. During this process, the software is presented to the project managers and the users for a

comment of approval. Before providing any comment, the

208 | P a g e Space for learners: inspection team checks the source code for errors. Generally, this team consists of the

following. ? Moderator: Conducts inspection meetings, checks errors-, and ensures that the inspection process is

followed. ? Reader: Paraphrases the operation of the software code. ? Recorder: Keeps record of each error in the

software code. This frees the task of other team members to think deeply about the software code. ? Author: Observes

the code inspection process silently and helps only when explicitly required. The role of the author is to understand the

errors found in the software code. As mentioned above, the reader paraphrases the meaning of small sections of code

during the code inspection process. In other words, the reader translates the sections of code from a computer

language to a commonly spoken language (such as English). The inspection process is carried out to check whether the

implementation of the software code is done according to the user requirements. Generally, to conduct code

inspections the following steps are performed. a) Planning: After the code is compiled and there are no more errors and

warning messages in the software code, the author submits the findings to the moderator who is responsible for forming

the inspection team. After the inspection team is formed, the moderator distributes the listings as well as other related

documents like design documentation to each team member. The moderator plans the inspection meetings and

coordinates with the team members. b) Overview: This is an optional step and is required only when the inspection team

members are not aware of the functioning of the project. To familiarize the team members, the author provides details to

make them understand the code. c) Preparation: Each inspection team member individually examines the code and its

related materials. They use a checklist to ensure that each problem area is checked. Each inspection team member

keeps a copy of this checklist, in which all the problematic areas are mentioned.

209 | P a g e Space for learners: d) Inspection meeting: This is carried out with all team members to review the software

code. The moderator discusses the code under review with the inspection team members. There are two checklists for

recording the result of the code inspection, namely, code inspection checklist and inspection error list. The code

inspection checklist contains a summary of all the errors of different types found in the software code. This checklist is

used to understand the effectiveness of inspection process. The inspection error list provides the details of each error

that requires rework. Note that this list contains details only of those errors that require the whole coding process to be

repeated. All errors in the checklist are classified as major or minor. An error is said to be major if it results in problems

and later comes to the knowledge of the user. On the other hand, minor errors are spelling errors and non- compliance

with standards. The classification of errors is useful when the software is to be delivered to the user and there is little time

to review all the errors present in the software code. At the conclusion of the inspection meeting, it is decided whether

the code should be accepted in the current form or sent back for rework. In case the software code needs reworking,

the author makes all the suggested corrections and then compiles the code. When the code becomes error-free, it is

sent back to the moderator. The moderator checks the code that has been reworked. If the moderator is completely

satisfied with the software code, inspection becomes formally complete and the process of testing the software code

begins. CHECK YOUR PROGRESS 5. State true or false a. The main purpose of code inspection is to find defects and it

can also spot process improvement if any. b. Inspection is an indiscipline practice for correcting defects in software

artifacts. c. Code Walkthrough is a form of peer review in which a programmer leads the review process and the other

team members ask

210 | P a g e Space for learners: 1.5 CODING TOOLS While writing software code, several coding tools are used along

with the programming language to simplify the tasks of writing the software code. Note that coding tools vary from one

programming language to another as they are developed according to a particular programming language. However,

sometimes a single coding tool can be used in more than one programming language. Generally, coding tools

comprises text editors, supporting tools for a specific programming language, and the framework required to run the

software code .In addition to the programming language and coding tools, there are some software programs that are

essential to run the software code. For instance, a debugger is used to detect the source of program errors by

performing a step-by-step execution of the software code. A debugger breaks program execution at various levels in the

application program. It supports features such as breakpoints, displaying or changing memory, and so on. Similarly,

compilers are used to translate programs written in a high- level language into their machine language equivalents. 1.6

CODING DOCUMENTATION Code documentation is a manual-cum-guide that helps in understanding and correctly

utilizing the software code. The coding standards and naming conventions written in a commonly spoken language in

code documentation provide enhanced clarity for the designer. Moreover, they act as a guide for the software

maintenance team (this team focuses on maintaining software by improving and enhancing the software after it has

been delivered to the end user) while the software maintenance process is carried out. In this way, code documentation

facilitates code reusability. While writing a software code, the developer needs proper documentation for reference

purposes. Programming is an ongoing questions and spot possible errors against development standards and other

issues.

211 | P a g e Space for learners: process and requires modifications from time to time. When a number of software

developers are writing the code for the same software, complexity increases. With the help of documentation, software

developers can reduce the complexity by referencing the code documentation. Some of the documenting techniques

are comments, visual appearances of codes, and programming tools. Comments are used to make the reader

understand the logic of a particular code segment. The visual appearance of a code is the way in which the program

should be formatted to increase readability. The programming tools in code documentation are algorithms, flowcharts,

and pseudo- codes. Code documentation contains source code, which is useful for the software developers in writing

the software code. The code documents can be created with the help of various coding tools that are used to auto-

generate the code documents. In other words, these documents extract comments from the source code and create a

reference manual in the form of text or HTML file. The auto-generated code helps the software developers to extract the

source code from the comments. This documentation also contains application programming interfaces, data structures,

and algorithms. There are two kinds of code documentation, namely, internal documentation and external

documentation. 1.6.1 Internal Documentation Documentation which focuses on the information that is used to

determine the software code is known as internal documentation. It describes the data structures, algorithms, and

control flow in the programs. There are various guidelines for making the documentation easily understandable to the

reader. Some of the general conventions to be used at the time of internal documentation are header comment blocks,

program comments, and formatting. Header comment blocks are useful in identifying the purpose of the code along

with details such as how the c0ge functions and how each segment of code is used in the program. Since software code

is updated and revised several times, it is important to keep a record of the code information so that internal

documentation reflects the changes made to the software code. Internal documentation

212 | P a g e Space for learners: should explain how each code section relates to user requirements in the software.

Generally, internal documentation comprises the following information. ? Name, type, and purpose of each variable and

data structure used in the code ? Brief description of algorithms, logic, and error-handling techniques ? Information

about the required input and expected output of the program ? Assistance on how to test the software ? Information on

the upgradations and enhancements in the program. 1.6.2 External Documentation Documentation which focuses on

general description of the software code and is not concerned with its detail is known as external documentation. It

includes information such as function of code, name of the software developer who has written the code, algorithms

used in the software code, dependency of code on programs and libraries, and format of the output produced by the

software code. Generally, external documentation includes structure charts for providing an outline of the program and

describing the design of the program. External documentation is useful for software developers as it consists of

information such as description of the problem along with the program written to solve it. In addition, it describes the

approach used to solve the problem, operational requirements of the program, and user interface components. For the

purpose of readability and proper understanding, the detailed description is accompanied by figures and illustrations that

show how one component is related to another. External documentation explains why a particular solution is chosen

and implemented in the software. It also includes formulas, conditions, and references from where the algorithms or

documentation are derived. External documentation makes the user aware of the errors that occur while running the

software code. For example, if an array of five

213 | P a g e Space for learners: numbers is used, it should be mentioned in the external documentation that the limit of

the array is five. CHECK YOUR PROGRESS 6. Code documentation contains …………… which is useful for the software

developers in writing the software code. 7. The coding standards and naming conventions written in a commonly spoken

language in code documentation provide …….. for the designer. 8. The ……………. contains a summary of all the errors of

different types found in the software code. 9. Define a debugger. 10. Define a compiler. 1.7 SUMMING UP ? The most

software industries have their own coding standards and they expect that there engineers to adhere to them. On the

other hand, coding guidelines serve as general suggestions to programmers regarding good programming styles, but the

implementation is left the software engineers. ? Code review is an efficient method of removing errors because of its

capability to identify errors. The two main approach of code review are code walkthrough and code inspection. ? Both of

these methods are used to identify error at an early stage. ? The important basic programming errors are also discussed

and identified in the unit. Code verification is the process used for checking the software code for errors introduced in

the coding phase. ? The objective of code verification process is to check the software code in all aspects. This process

includes checking the consistency of user requirements with the design phase.

214 | P a g e Space for learners: ? The code verification techniques are classified into two categories, namely, dynamic

and static. The dynamic technique is performed by executing some test data. The outputs of the program are tested to

find errors in the software code. This technique follows the conventional approach for testing the software code. In the

static technique, the program is executed conceptually and without any data. ? While writing software code, several

coding tools are used along with the programming language to simplify the tasks of writing the software code. Note that

coding tools vary from one programming language to another as they are developed according to a particular

programming language. ? Code documentation is a manual-cum-guide that helps in understanding and correctly

utilizing the software code. The coding standards and naming conventions written in a commonly spoken language in

code documentation provide enhanced clarity for the designer. The internal and external documentation have its own

merits and limitations. 1.8 ANSWERS TO CHECK YOUR PROGRESS 1. Programming 2. Code reuse, errors 3. True 4. False

5. a. True, b. False, c. True 6. Source code 7. Enhance clarity 8. Code inspection list 9. It is a debugging tool is a computer

program that is used to test and debug other programs.

215 | P a g e Space for learners: 10. A compiler is a computer program that converts the program written in one

programing language (source language) into another programming language (target language) 1.9 POSSIBLE

QUESTIONS Short answer type questions. 1) What are some of the important errors checked during the code

walkthrough? 2) Define code walkthrough. 3) Define code inspection. 4) What is internal and external documentation? 5)

State some of the important coding Guidelines. Long answer type questions. 1) When during the development process is

the compliance with coding standard is checked? 2) List two coding standards each for: i) Enhancing readability of the

code. ii) Reuse of the code 3) Briefly highlight the difference between code inspection and code walkthrough. Compare

the relative merits of code inspection and code walkthrough. 4) What do you understand by static and dynamic analysis

of programs? How are static and dynamic program analysis results useful? 5) What is a coding standard? What problems

may arise if the engineers of an organization do no adhere to any coding standard? 6) What is the difference between

coding standard and coding guideline?

216 | P a g e Space for learners: 7) Discuss different types of code reviews. Why it is considered to be the most efficient

way to remove errors from the code? 8) What is meant by code walkthrough? What are some of the important errors

that can be checked during code walkthrough? 9) Define control flow and data analysis. 10) What are the major steps to

conduct code Inspection? 1.10 REFERENCES AND SUGGESTED READINGS ? “Fundamentals of Software Engineering”,

Rajib Mall, Prentice- Hall of India. ? “An Integrated Approach to Software Engineering”, Pankaj Jalote, Narosa Publishing

House ? http://www.tutorialspoint.com ? http://www.geeksforgeeks.com

217 | P a g e Space for learners: UNIT 2: SOFTWARE TESTING I 2.1 Introduction 2.2 Unit Objectives 2.3 Testing

Fundamentals 2.3.1 Basic Concepts and Terminologies 2.3.2 Test Plan Activities During Testing 2.4 Test Cases and Test

Criteria 2.4.1 Why Design Test Cases? 2.4.2 Approaches to Design Test Cases 2.5 Strategic Issues in Testing 2.6 Unit

Testing 2.7 Integration Testing 2.8 Acceptance Testing 2.9 Summing Up 2.10 Answers to Check Your Progress 2.11

Possible Questions 2.12 References and Suggested Readings 2.1 INTRODUCTION The aim of program testing is to

identify all defects in a program. However, in practice even after satisfactory completion of the testing phase, it is not

possible to guarantee that a program is error free. This is because the input data domain for most of the program is very

large and it is not practically possible to test all possible to test all the data exhaustively with respect to each value that a

input can assume. Even with this obvious limitation of the testing process, we should not estimate the importance of

testing. It is very important to understand that by careful testing we can eliminate or reduce the major defects form the

system. Why to Learn Software Testing? In the IT industry, large companies have a team with responsibilities to evaluate

the developed software in context of the given requirements. Moreover, developers also conduct testing which is called

Unit Testing.

218 | P a g e Space for learners: In most cases, the following professionals are involved in testing a system within their

respective capacities − ? Software Tester ? Software Developer ? Project Lead/Manager ? End User Different companies

have different designations for people who test the software on the basis of their experience and knowledge such as

Software Tester, Software Quality Assurance Engineer, QA Analyst, etc. Applications of Software Testing ? Cost Effective

Development - Early testing saves both time and cost in many aspects, however reducing the cost without testing may

result in improper design of a software application rendering the product useless. ? Product Improvement - During the

SDLC phases, testing is never a time-consuming process. However diagnosing and fixing the errors identified during

proper testing is a time-consuming but productive activity. ? Test Automation - Test Automation reduces the testing

time, but it is not possible to start test automation at any time during software development. Test automaton should be

started when the software has been manually tested and is stable to some extent. Moreover, test automation can never

be used if requirements keep changing. ? Quality Check - Software testing helps in determining following set of

properties of any software such as ? Functionality ? Reliability ? Usability ? Efficiency ? Maintainability ? Portability

219 | P a g e Space for learners: 2.2 UNIT OBJECTIVES After going through the unit you will be able: ? The importance of

testing and its applications. ? The basic concepts and terminologies used in the process of testing. ? Designing of test

cases and test suites and why we design test cases? ? The main strategic issues related to the testing. ? The different type

of testing like unit testing, Integration testing and system testing. 2.3 TESTING FUNDAMENTALS In this section we will

define some of the terms that are commonly used when we discuss about testing. Then we will discuss about some of

the basic issues related to how testing can be performed and some desirable properties for the criteria used for testing.

2.3.1 Basic Concepts and Terminologies The term error and failure used to refer to problems in requirements, design or

code. Sometimes error, fault and failure are used interchangeably and sometimes they refer to different concepts. The

following are some of the commonly used terms associated with testing: a) Error: It is the mistake committed by

development team during any of the development phase. The mistake might have been committed in the requirements,

design or code. It is sometimes referred as fault, bug or defect. b) Failure: It is a manifestation of an error. In other words

a failure is the symptom

73% MATCHING BLOCK 169/246

of an error. But mere presence of an error may not necessarily lead to failure. 220 |

P a g e Space for learners: c) Test Case: It

94% MATCHING BLOCK 170/246

is the triplet [I , S, O], where I is the data input to the system, S is the state of the system at which the data is input and O

is the expected output of the system. d) Test Suite: It is the set of all test cases with which a given software product is

tested. e) Verification and Validation: Verification is a process of determining whether the output of one phase of

software development conforms to that of its previous phase, whereas validation is the process of determining whether a

fully developed system conforms to its requirement specification. Thus the main difference between is that the

verification is concerned with phase containment of error and the aim of validation is to make the final product error

free. 2.3.2 Test Plan Activities During Testing Testing involves performing the following main activities: a) Test suite design:

Test suite is a container that has a set of tests which helps testers in executing and reporting the test execution status. It

can take any of the three states namely active, in progress and completed. A Test case can be added to multiple test

suites and test plans. After creating a test plan, test suites are created which in turn can have any number of tests. b)

Running test cases and checking the results to detect failure: Each test case is run and the results are compared with the

expected results. A mismatch between the actual and expected result indicates a failure. A test cases for which the

system fails are noted down for later debugging. c) Debugging: Debugging is the process of finding and resolving defects

or problems within a computer program that prevent correct operation of computer software or a system. For each

activity observed during the previous activity, debugging is carried out to identify statements that are in error. Here, the

symptoms are analyzed to locate the error.

221 | P a g e Space for learners: d) Error Correction: After the error is located in the previous activity the code is

appropriately changed to correct the errors. 2.4 TEST CASES AND TEST CRITERIA Test criteria help the tester to organize

the test process. They should be chosen in accordance with the available test effort. Test coverage measures are defined

as a ratio between the test cases required for satisfying the criteria and those of these which have been executed. A good

test should have the following criteria’s (1) Validity, (2) Reliability, (3) Level of difficulty, (4) Discrimination Power, and (5)

The Quality of Options. 2.4.1 Why Design Test Cases? It is not necessary that if we design test cases then it would not be

sufficient to test software using large number of random inputs values? But this technique would be very costly and very

ineffective way of testing. In other words, testing a system using a large collection of test cases that are selected at

random does not guarantee that all (or even most) of the errors in the system will be uncovered. Consider one example,

let there is code segment that determines the greater of two integer values x and y. The code segment gives the simple

programming error: if (x<y) max = x; else max = x; In this segment of code if put values like {(x =3, y=2); (x=2,y=3)} can

detect error, whereas a large test suite { (x =3 , y =2), (x = 4 , y =3), (x=5 , y =1)}does not detect the errors. It means that

for effective testing we need to design the test suite carefully rather than taking large number of input values. 2.4.2

Approaches to Design Test Cases A minimal test suite is a carefully designed set of test cases such that each test case

helps in detecting different errors. This is in contrast to testing

222 | P a g e Space for learners: using some random input values. There are essentially two main approaches to

systematically design test cases. a) Black Box Approach: Black-box testing is a method of software testing that examines

the functionality of an application based on the specifications. It is also known as Specifications based testing.

Independent Testing Team usually performs this type of testing during the software testing life cycle. This method of test

can be applied to each and every level of software testing such as unit, integration, system and acceptance testing. There

are different techniques involved in Black Box testing but the following are the two main approaches. Equivalence Class

partitioning: It divides input domain into classes of data, and with the help of these classes of data, test cases can be

derived. An ideal test case identifies class of error that might require many arbitrary test cases to be executed before

general error is observed. The strategy for black box testing is intuitive and simple and the most important test is the

identification of equivalence class. In equivalence portioning, equivalence classes are evaluated for given input

conditions. Whenever any input is given, then type of input condition is checked, then for this input conditions,

Equivalence class represents or describes set of valid or invalid states. Guidelines for Equivalence Partitioning: ? If the

range condition is given as an input,

100% MATCHING BLOCK 171/246

then one valid and two invalid equivalence classes are defined. ? If

a specific value is given as input,

83% MATCHING BLOCK 172/246

then one valid and two invalid equivalence classes are defined. ? If a member of set

is given as an input, then one valid and one invalid equivalence class is defined. ? If Boolean no. is given as

90% MATCHING BLOCK 173/246

an input condition, then one valid and one invalid equivalence class

is defined.

93% MATCHING BLOCK 174/246

Summary of the Black Box Test Suite Design Approach ? Examine the input and output values of the program. ? Identify

the equivalence classes. 223 |

P a g e Space for learners: ? Design equivalence class test cases by picking one representative value form each

equivalence class. ? Design the boundary values test cases as follows. Examine if any equivalence class is a range of

values. Include the values at the boundaries of such equivalence classes in the test suite. Boundary Value Analysis:

Boundary value analysis is a type of black box or specification based testing technique in which tests are performed using

the boundary values. Boundary values are validated against both the valid boundaries and invalid boundaries. The

79% MATCHING BLOCK 175/246

boundary value analysis involves designing test cases using the values at the boundaries of different equivalence

classes.

b) White Box Approach: White box testing techniques analyse the internal structures the used data structures, internal

design, code structure and the working of the software rather than just the functionality as in black box testing. It is also

called glass box testing or clear box testing or structural testing. It examines the program structure and derives test data

from the program logic/code. The other names of glass box testing are clear box testing, open box testing, logic driven

testing or path driven testing or structural testing. Testing Techniques: a) Statement Coverage - This technique is aimed

at exercising all programming statements with minimal tests. It aims to design test cases so as to execute

74% MATCHING BLOCK 176/246

every statement in a program at least once. The principal idea gfis that unless a statement is executed there is no way

to determine whether an error exists in that statement.

The statement coverage is a very intuitive and appealing testing technique. b) Branch Coverage - This technique is

running a series of tests to ensure that all branches are tested at least once. The test cases are designed so as to make

each branch condition in the program to assume true or false values in turn. It is also known as edge testing since in this

testing scheme each edge of the program’s control graph is traversed at least once. It is obviously stronger than

statement coverage based testing. c) Path Coverage - This technique corresponds to testing all possible paths which

means that each statement and branch is covered. It requires designing test cases such as all linearly independent paths

in the program

224 | P a g e Space for learners: are executed at least once. A linearly independent path is

82% MATCHING BLOCK 177/246

defined in terms of control flow graph (CFG) of a program. Control flow graph: It describes the sequence in which the

different instructions of a program gets executed. In other words

we can also describe how the control flows through the program. Advantages of White Box Testing: ? Forces test

developer to reason carefully about implementation. ? Reveals errors in "hidden" code. ? Spots the Dead Code or other

issues with respect to best programming practices. Disadvantages of White Box Testing: ? Expensive as one has to spend

both time and money to perform white box testing. ? Every possibility that few lines of code are missed accidentally. ? In-

depth knowledge about the programming language is necessary to perform white box testing. CHECK YOUR PROGRESS

1. State true and false. a. Error and failure are synonymous in software testing terminologies. b. The main purpose of

integration testing is to find design errors. 2. The ….

100% MATCHING BLOCK 178/246

is the set of all test cases with which a given software product is

tested. 3. ………….and ………… are the two main approaches to systematically design test cases. 2.5 STRATEGIC ISSUES IN

TESTING Testing is the process of evaluating a system or its component(s) with the intent to find whether it satisfies the

specified requirements or not. Testing is executing a system in order to identify any gaps, errors, or missing requirements

in contrary to the actual requirements.

225 | P a g e Space for learners: Following are the issues considered to implement software testing strategies. ? Specify

the requirement before testing starts in a quantifiable manner. ? According to the categories of the user generate profiles

for each category of user. ? Produce a robust software and it's designed to test itself. ? Should use the Formal Technical

Reviews (FTR) for the effective testing. ? To access the test strategy and test cases FTR should be conducted. ? To

improve the quality level of testing generate test plans from the user’s feedback. 2.6 UNIT TESTING This type of testing is

performed by developers before the setup is handed over to the testing team to formally execute the test cases. Unit

testing is performed by the respective developers on the individual units of source code assigned areas. The developers

use test data that is different from the test data of the quality assurance team. The goal of unit testing is to isolate each

part of the program and show that individual parts are correct in terms of requirements and functionality. Before carrying

out unit test cases have to be designed and the test environment for the unit under test has to be developed. In the next

section we will discuss the environment needed to perform unit testing.

100% MATCHING BLOCK 179/246

Driver and Stub Modules: In order to test a single module, we need a complete environment to provide all

relevant code

59% MATCHING BLOCK 180/246

that is necessary for execution of the module. Other than the module under test the following are needed to test the

module: ? The procedures belonging to other modules that the module under test calls. 226 |

P a g e Space for learners: ? Non local

89% MATCHING BLOCK 181/246

data structures that the module accesses. ? A procedure to call the functions of the module under test with appropriate

parameters.

The

100% MATCHING BLOCK 182/246

stubs and drivers are designed to provide the complete environment for a module

so that testing can be carried out. ? Stubs: Stubs are developed by software developers to use them in place of modules,

if the respective modules aren’t developed, missing in developing stage, or are unavailable currently while Top-down

testing of modules. A Stub simulates module which has all the capabilities of the unavailable module. Stubs are used

when the lower- level modules are needed but are unavailable currently. ? Drivers: Drivers serve the same purpose as

stubs, but drivers are used in Bottom-up integration testing and are also more complex than stubs. Drivers are also used

when some modules are missing and unavailable at time of testing of a specific module because of some unavoidable

reasons, to act in absence of required module. Drivers are used when high-level modules are missing and can also be

used when lower-level modules are missing. Limitations of Unit Testing Testing cannot catch each and every bug in an

application. It is impossible to evaluate every execution path in every software application. The same is the case with unit

testing. There is a limit to the number of scenarios and test data that a developer can use to verify a source code. After

having exhausted all the options, there is no choice but to stop unit testing and merge the code segment with other

units. Difference between Stubs and Drivers: S.No. Stubs Drivers 1. Stubs are used in Top-Down Integration Testing.

Drivers are used in Bottom- Up Integration Testing.

227 | P a g e Space for learners: S.No. Stubs Drivers 2. Stubs are basically known as a “called programs” and are used in

the Top-down integration testing. While, drivers are the “calling program” and are used in bottom-up integration testing.

3. Stubs are similar to the modules of the software that are under development process. While drivers are used to

invoking the component that needs to be tested. 4. Stubs are basically used in the unavailability of low-level modules.

While drivers are mainly used in place of high-level modules and in some situation as well as for low- level modules. 5.

Stubs are taken into use to test the feature and functionality of the modules. Whereas the drivers are used if the main

module of the software isn’t developed for testing. 6. The stubs are taken into concern if testing of upper- levels of the

modules are done and the lower-levels of the modules are under developing process. The drivers are taken into concern

if testing of lower- levels of the modules are done and the upper-levels of the modules are under developing process.

Stubs are used when lower- level of modules are missing or in a partially developed phase, and we want to test the main

module. Drivers are used when higher-level of modules are missing or in a partially developed phase, and we want to

test the lower (sub) - module.

228 | P a g e Space for learners: CHECK YOUR PPROGRESS 4. State true or false: a. The goal of unit testing is to isolate

each part of the program and show that individual parts are correct in terms of requirements and functionality. b. The

stubs and drivers are not designed to provide the complete environment for a module so that testing can be carried out.

5. The ……… strategy aims to design test cases so as to execute every statement in a program at least once. 6. The …………

100% MATCHING BLOCK 183/246

describes the sequence in which the different instructions of a program get executed. 2.7

INTEGRATION TESTING Integration testing is defined as the testing of combined parts of an application to determine if

they function correctly. Integration testing can be done in two ways: Bottom-up integration testing and Top-down

integration testing. S.No. Integration Testing Method 1 Bottom-up integration This testing begins with unit testing,

followed by tests of progressively higher-level combinations of units called modules or builds. 2 Top-down integration In

this testing,

78% MATCHING BLOCK 184/246

the highest-level modules are tested first and progressively, lower-level modules are tested

thereafter. In a comprehensive software development environment, bottom-up testing is usually done first, followed by

top-down testing. The process concludes with multiple tests of the complete application, preferably in scenarios

designed to mimic actual situations.

229 | P a g e Space for learners: Integration test approaches – There are four types of integration testing approaches.

Those approaches are the following: a) Big-Bang Integration Testing – It is the simplest integration testing approach,

where all the modules are combining and verifying the functionality after the completion of individual module testing. In

simple words,

100% MATCHING BLOCK 185/246

all the modules of the system are simply put together and tested. This

approach is practicable only for very small systems. If

96% MATCHING BLOCK 186/246

once an error is found during the integration testing, it is very difficult to localize the error as the error may potentially

belong to any of the modules being integrated. So, debugging errors reported during big bang integration testing are

very expensive

to fix. Advantages: ? It is convenient for small systems. Disadvantages: ? There will be quite a lot of delay because you

would have to wait for all the modules to be integrated. ? High risk critical modules are not isolated and tested on priority

since all modules are tested at once. b) Bottom up Integration Testing: In bottom-up testing, each module at lower levels

is tested with higher modules until all modules are tested. The primary purpose of this integration testing is,

89% MATCHING BLOCK 187/246

each subsystem is to test the interfaces among various modules making up the subsystem.

This integration testing uses test drivers to drive and pass appropriate data to the lower level modules. Advantages: ? In

bottom-up testing, no stubs are required. ? A principle advantage of this

100% MATCHING BLOCK 188/246

integration testing is that several disjoint subsystems can be tested simultaneously.

Disadvantages: ? Driver modules must be produced.

230 | P a g e Space for learners: ? In this testing, the complexity that

100% MATCHING BLOCK 189/246

occurs when the system is made up of a large number of small

subsystem. c) Top-Down Integration Testing – Top-down integration testing technique used in order to simulate the

behaviour of the lower-level modules that are not yet integrated. In this integration testing, testing takes place from top

to bottom. First high-level modules are tested and then low-level modules and finally integrating the low-level modules

to a high level to ensure the system is working as intended. Advantages: ? Separately debugged module. ? Few or no

drivers needed. ? It is more stable and accurate at the aggregate level. Disadvantages: ? Needs many Stubs. ? Modules at

lower level are tested inadequately. 2.8 ACCEPTANCE TESTING This is arguably the most important type of testing, as it is

conducted by the Quality Assurance Team who will gauge whether the application meets the intended specifications

and satisfies the client’s requirement. The QA team will have a set of pre-written scenarios and test cases that will be

used to test the application. More ideas will be shared about the application and more tests can be performed on it to

gauge its accuracy and the reasons why the project was initiated. Acceptance tests are not only intended to point out

simple spelling mistakes, cosmetic errors, or interface gaps, but also to point out any bugs in the application that will

result in system crashes or major errors in the application. By performing acceptance tests on an application, the testing

team will reduce how the application will perform in production. There are also legal and contractual requirements for

acceptance of the system.

231 | P a g e Space for learners: a) Alpha Testing: Alpha testing is used to determine the product in the development

testing environment by a specialized tester’s team usually called alpha testers. b) Beta Testing: Beta testing is used to

assess the product by exposing it to the real end-users, usually called beta testers in their environment. Feedback is

collected from the users and the defects are fixed. Also, this helps in enhancing the product to give a rich user

experience. Use of Acceptance Testing: ? To find the defects missed during the functional testing phase. ? How well the

product is developed. ? A product is what actually the customers need. ? Feedbacks help in improving the product

performance and user experience. ? Minimize or eliminate the issues arising from the production. CHECK YOUR

PROGRESS 7. State true or false a. The big bang approach is preferred for integration testing of large programs. b.

Equivalence class partitioning is a white box testing strategy. c. Testing cannot catch each and every bug in an

application 8. Integration testing can be done in two ways ………….. and ………… 9. The …..

95% MATCHING BLOCK 190/246

and …. are designed to provide the complete environment for a module

so that testing can be carried out. 10. A linearly independent path is defined in terms of …………. of a program. 2.9

SUMMING UP ? In this unit we mainly discussed about the concept and different approaches to testing.

232 | P a g e Space for learners: ? Exhaustive testing of almost any system is almost impractical. Also random selection of

test cases is inefficient since many test cases become redundant as they detect the same type of errors. ? There are

mainly two main approaches to testing: Black box testing and white box testing. Designing test cases for black box

testing does not require any knowledge about how the function have been designed and implemented. On the other

hand white box testing requires knowledge about internals of the software. ? Testing is the process of evaluating a

system or its component(s) with the intent to find whether it satisfies the specified requirements or not. Testing is

executing a system in order to identify any gaps, errors, or missing requirements in contrary to the actual requirements. ?

Unit testing is performed by the respective developers on the individual units of source code assigned areas. The

developers use test data that is different from the test data of the quality assurance team. The goal of unit testing is to

isolate each part of the program and show that individual parts are correct in terms of requirements and functionality. ?

Integration testing is defined as the testing of combined parts of an application to determine if they function correctly.

Integration testing can be done in two ways: Bottom-up integration testing and Top-down integration testing. 2.10

ANSWERS TO CHECK YOUR PROGRESS 1. a. True, b. True 2. Test suites 3. Black box and white box 4. a. True, b. False 5.

Statement coverage based 6. Control flow graph 7. a. True, b. False, c. True

233 | P a g e Space for learners: 8. Bottom – up and top down 9. Stubs and drivers 10. Control flow graph 2.11 POSSIBLE

QUESTIONS Short answer type questions. 1) What are driver and stub modules? Why are they required? 2) Distinguish

between error and failure in the context of program testing. 3) Distinguish between software verification and validation.

4) Define acceptance testing. 5) Define control flow graph. 6) List any three differences between drivers and stubs? 7)

What is Big Bang Integration testing? 8) What are the advantages of top down integration testing? 9) Define statement

and branch coverage in testing. Which testing approach is stronger? 10) List the main activities to perform testing in

software development. Long answer type questions. 1) What are different approaches of integration testing? Which

approach is more preferred for the large projects? 2) What is difference between white box and black box testing? 3)

What do you mean by equivalence class partitioning and boundary value analysis? 4) Prove that the branch coverage

based testing is a stronger testing technique compared to a statement coverage based testing. 5) What do you mean by

big bang integration testing? How it is performed?

234 | P a g e Space for learners: 6) Explain the difference between testing in large and testing in small. What is the

purpose of each? 7) What are alpha, beta and acceptance testing? What are the differences among these different types

of software product? 8) Define test cases and test suites. Why do we need to design test cases? 9) What are drivers and

stubs? Why they are important? What are the major factors that are required to test the module? 10) What do you

understand by the unit testing? Discuss in brief about the statement and branch coverage testing strategy. 2.12

REFERENCES AND SUGGESTED READINGS ? “Fundamentals of Software Engineering”, Rajib Mall, Prentice- Hall of India.

? “An Integrated Approach to Software Engineering”, Pankaj Jalote, Narosa Publishing House ?

http://www.tutorialspoint.com ? http://www.geeksforgeeks.com

235 | P a g e Space for learners: UNIT 3: SOFTWARE TESTING II Unit Structure: 3.1 Introduction 3.2 Unit Objectives 3.3

52% MATCHING BLOCK 191/246

White-Box Testing 3.3.1 White Box Testing Tools 3.3.2 White box testing examples 3.3.3 Advantage of White box testing

3.3.4 Disadvantage of White box testing 3.4 Code Coverage 3.5

Data Flow Testing 3.6 Loop Testing 3.7 Black Box Testing 3.7.1 Types of Black Box Testing 3.7.2 Black Box Testing

Techniques 3.7.3 Cause Effect Graphing 3.8 Comparison of White Box Testing and Black box testing 3.9 Mutation Testing

3.9.1 Mutation Testing Benefits 3.9.2 Mutation Testing Types: 3.10 Summing Up 3.11 Answers to Check Your Progress 3.12

Possible Questions 3.13 References and Suggested Readings 3.1 INTRODUCTION The goal of testing is to find errors, and

a good test is one that has a high probability of finding an error. In this unit, different software testing techniques has

been discussed.

236 | P a g e Space for learners: 3.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? Understand

various concepts of white box testing, black box testing, their advantages and disadvantages. ? Understand the difference

white box testing vs black box testing. ? Understand the different techniques used in black box and white box techniques

? Understand the need of Cause Effect Graphing their benefits of Cause Effect 3.3 WHITE BOX TESTING White-box

testing is a testing technique which checks the internal functioning of the system. In this method, testing is based on

coverage of code statements, branches, paths or conditions. White- Box testing is considered as low-level testing. It is

also called glass box, transparent box, clear box or code base testing. The white-box Testing method assumes that the

path of the logic in a unit or program is known. In this technique, the internal structure and implementation of how an

application works are known to the tester. Let’s assume that there is a car which is not working and therefore you take it

to a mechanic to get it fixed. Now the mechanic will examine why the car is not working. Similarly, a tester studies the

code of an application and determines all the inputs, and verifies the outputs against desired outcomes. We need White

box testing for the following two reasons 1) To systematically derive tests from source code. 2) To know when to stop

testing. As a tester, when performing white box testing, your goal was clear: to derive classes out of the requirement

specifications, and then to derive test cases for each of the classes. You were satisfied once all the classes and

boundaries were systematically exercised. First, it gives us a systematic way to devise tests. As we will see, a tester might

focus on testing all the lines of a program; or focus on the branches and conditions of the program. Different criteria

produce

237 | P a g e Space for learners: different test cases. Second, to know when to stop. It is easy to imagine that the number

of possible paths in a mildly complex piece of code is just too large, and exhaustive testing is impossible. Therefore,

having clear criteria on when to stop helps testers in understanding the costs of their testing. Following are the steps that

are taken into consideration while performing white box testing: ? Verification of security holes in source code ? Testing

of any broken or incomplete path ? To verify the flow of structure as mentioned in the software requirement document ?

To check the conditionality of all loops and the overall functionality of the software ? To check if all the expected

outcomes are met ? Line by line verification of code The main aim of white box testing is to verify the proper flow and

functionality of the application. The test cases are executed and the output is compared to the desired outcome, if any of

the output does not match with the expected outcome, it means that a bug is encountered. 3.3.1 White Box Testing

Tools Some of the common white box testing tools used is given below ? Veracode ? RCUNIT ? cfix ? Googletest ?

EMMA ? NUnit 3.3.2 White Box Testing Example For understanding how to create test cases in white box testing, let’s

consider the pseudo code given below:

238 | P a g e Space for learners: INPUT A & B C = A + B IF C<100 PRINT “ITS DONE” ELSE PRINT “ITS PENDING” Since

the goal of white box testing is to verify and cross check all the different loops, branches and decision statements, so to

exercise white box testing in the code given above, the two test cases would be – A= 33, B=45 A=40, B=70 For the first

test case, A=33, B=45; C becomes 78, due to which it will skip the 4th line in the pseudo code, since C > 100 and will

directly print the 6th line, i.e. ITS PENDING. Now, for the second test case, A=40, B=70; C becomes 110, which means

that C < 100 and therefore it will print the 4th line and the program will be stopped. These test cases will ensure that

each line of the code is traversed at least once and will verify for both true and false conditions. 3.3.3 Advantages of

White Box Testing ? Optimization of code by revelation of hidden faults. ? Transparency of the internal code structure

that helps to derive the type of input data needed to adequately test an application. ? This incorporates all conceivable

code paths, enabling a software engineering team to carry out comprehensive application testing. 3.3.4 Disadvantages of

White Box Testing ? A complicated and expensive process that involves the skill of an experienced professional,

programming ability and knowledge of the underlying code structure.

239 | P a g e Space for learners: ? A new test script is necessary when the execution changes too frequently. ? Detailed

testing with the white box testing approach is significantly more demanding if the application covers many different

areas, such as the Gojek Super App. 3.4 CODE COVERAGE Code coverage is a measure which describes the degree of

which the source code of the program has been tested. It is one form of white box testing which finds the

74% MATCHING BLOCK 192/246

areas of the program not exercised by a set of test cases. It also creates some test cases to increase coverage and

determining a quantitative measure of code coverage.

In most cases, code coverage system gathers information about the running program. It also combines that with source

code information to generate a report about the test suite’s code coverage. Following are the code coverage methods: 1.

Statement Coverage One of the main objectives of white box testing is to cover as much of the source code as possible.

Code coverage is a measure that indicates how much of an application’s code contains unit tests that validate its

functioning. Using concepts such as statement coverage, branch coverage, and path coverage, it is possible to check

how much of an application’s logic is really executed and verified by the unit test suite. These different white box testing

techniques are explained below. 2. Branch Coverage In programming, “branch” is equivalent to, say, an “IF statement”

where True and False are the two branches of an IF statement. As a result, in Branch coverage, we check if each branch is

processed at least once. There will be two test conditions in the event of an “IF statement”:

240 | P a g e Space for learners: One is used to validate the “true” branch, while the other is used to validate the “false”

branch. 3. Path Coverage Path coverage examines all the paths in a given program. This is a thorough strategy that

assures that all program paths are explored at least once. Path coverage is more effective than branch coverage. This

method is handy for testing complicated applications. 4. Decision Coverage Decision Coverage is a white box testing

methodology that reports the true or false results of each boolean expression present in the source code. The purpose

of decision coverage testing is to cover and validate all available source code by guaranteeing that each branch of each

potential decision point is traversed at least once. A decision point is a point when there is a possibility of occurrence of

two or more outcomes from control flow statements such as if statement, do while statement or a switch case

statement. Expressions in this coverage can become difficult at times. As a result, achieving 100% coverage is quite

difficult. 5. Condition Coverage Condition coverage, also known as

48% MATCHING BLOCK 193/246

expression coverage, is a testing method for testing and evaluating the variables or sub-expressions in a conditional

statement. The purpose of condition coverage is to

examine the outcome of each logical condition. Only expressions with logical operands (an operand is considered as a

logical operand if it has its output as either TRUE or FALSE) are examined in this coverage. Condition coverage does not

ensure complete decision coverage. 6. Multiple Condition Coverage

241 | P a g e Space for learners: In this testing technique, all the different combinations of conditions for each decision

are evaluated. For example, we have the following expression, if (A||B) then Print C So, in this case, the test cases would

be as given below

100% MATCHING BLOCK 194/246

TEST CASE1: A=TRUE, B=TRUE TEST CASE2: A=TRUE, B=FALSE TEST CASE3: A=FALSE, B=TRUE TEST CASE4:

A=FALSE, B=FALSE

The point to be noted here is that in this example we have 2 expressions A and B, and as result we have 4 test cases. So,

similarly, for 3 conditions we will have 8 test cases. So, the general formula for Multiple Condition Coverage is that for n

conditions, there will be 2n test cases. 7. Finite State Machine Coverage Finite state machine coverage is one of the most

difficult forms of code coverage approach. This is due to the fact that it works on the design’s functionality. This

coverage approach requires you to count the number of times a state is visited or transited. It also determines how many

sequences are contained within a finite state system. A sequence in a Finite State Machine is a sorted list of inputs or

outputs. 3.5 DATA FLOW TESTING Data Flow Testing is the test technique that focuses on data variables and their values,

which are utilized by using the control flow diagram for the programming logic of the software product. In data flow

testing every data variable is tracked and verified. The primary principle behind this test is to identify coding problems

that might result in incorrect implementation and use of data variables or data values, i.e. data anomalies like variables

declared but not used in the code later, in the software code. There are two types of data flow testing:

242 | P a g e Space for learners: Static data flow testing: The declaration, usage, and deletion of the variables are

examined without executing the code. A control flow graph is helpful in this. Dynamic data flow testing: The variables

and data flow are examined with the execution of the code. Advantages of data flow testing Data flow testing helps

catch different kinds of anomalies in the code. These anomalies include: ? Using a variable without declaration ? Deleting

a variable without declaration ? Defining a variable two times ? Deleting a variable without using it in the code ? Deleting

a variable twice ? Using a variable after deleting it ? Not using a variable after defining it Disadvantages of data flow

testing A few disadvantages of data flow testing are: ? Good knowledge of programming is required for proper testing ?

Expensive ? Time consuming Techniques of data flow testing Data flow testing can be done using one of the following

two techniques: ? Control flow graph ? Making associations between data definition and usages Control flow graph: A

control flow graph is a graphical representation of the flow of control, i.e., the order of statements in which they will be

executed. Making associations: In this technique, we make associations between two kinds of statements: ? Where

variables are defined

243 | P a g e Space for learners: ? Where those variables are used 3.6 LOOP TESTING Loop Testing is a kind of software

testing that focuses exclusively on the correctness of loop constructions. It is a component of Control Structure Testing

(path testing, data validation testing, condition testing). Loop testing is an example of white-box testing. This approach is

used to test software loops. The following are some examples of loop tests − ? Simple loop ? Nested loop ?

Concatenated loop ? Unstructured loop Need of Loop Testing: Following are some of the reasons why loop testing is

performed − ? Testing can help to resolve loop recurrence concerns. ? Loop testing can indicate constraints in efficiency

and operations. ? The loop's uninitialized variables can be identified by testing loops. ? It aids in the identification of loop

initiation issues. Complete Methodology of Loop Testing: It must be tested at three separate stages within the testing

loop − ? When the loop is activated. ? When the loop is executed. ? When the loop is terminated. The following is the

testing technique for all of these loops − Simple Loop The following is how a simple loop is tested − ? Ignore the entire

loop. ? Make a single pass across the loop.

244 | P a g e Space for learners: ? Make a number of

53% MATCHING BLOCK 195/246

passes through the loop where a>b, n is the maximum limit of passes. ? Make b, b-1; b+1 passes through the loop,

where "b" is the highest amount of passes through the loop

allowed. 1. Nested Loop Following steps must be performing to create a nested loop − ? Adjust all the other loops to

their smallest value and begin with the innermost loop. ? Initiate a simple loop test on the innermost loop and keep the

outside loops at their smallest iteration parameter value. ? Conduct the test for the following loop and make your way

outwards. ? Keep testing till the outermost loop is reached. 2. Concatenated Loops If two loops in a chained loop are

free of one other, they are checked as simple loops; otherwise, they are tested as nested loops. However, if the loop

counter for one loop is utilized as the starting value for the others, the loops are no longer considered separate. 3.

Unstructured Loops For unstructured loops, the architecture must be restructured to represent the use of structured

programming techniques. Limitation in Loop testing ? Loop issues are especially common in low-level applications. ?

The flaws discovered during loop testing are not significant. ? Numerous defects may be identified by the operating

system, resulting in storage boundary breaches, identifiable pointer failures, and so on. 3.7 BLACK BOX TESTING Black

Box Testing is a software testing method in which the internal structure/ design/ implementation of the item being tested

is not known to the tester. Black box testing involves testing a system with no prior knowledge of its internal workings. A

tester provides an

245 | P a g e Space for learners: input, and observes the output generated by the system under test.

100% MATCHING BLOCK 196/246

This makes it possible to identify how the system responds to expected and unexpected user actions,

its response time, usability issues and reliability issues. 3.7.1 Types of Black Box Testing Black box testing can be applied to

three main types of tests: functional, non-functional, and regression testing. 1. Functional Testing Black box testing can

test specific functions or features of the software under test. For example, checking that it is possible to log in using

correct user credentials, and not possible to log in using wrong credentials. Functional testing can focus on the most

critical aspects of the software (smoke testing/sanity testing), on integration between key components (integration

testing), or on the system as a whole (system testing). 2. Non-Functional Testing Black box testing can check additional

aspects of the software, beyond features and functionality. A non-functional test does not check “if” the software can

perform a specific action but “how” it performs that action. Black box tests can uncover if software is: ? Usable and easy

to understand for its users ? Performant under expected or peak loads ? Compatible with relevant devices, screen sizes,

browsers or operating systems ? Exposed to security vulnerabilities or common security threats 3. Regression Testing

Black box testing can be used to check if a new version of the software exhibits a regression, or degradation in

capabilities, from one version to the next. Regression testing can be applied to functional aspects of the software (for

example, a specific feature no longer works as expected in the new version), or non-functional

246 | P a g e Space for learners: aspects (for example, an operation that performed well is very slow in the new version).

3.7.2 Black Box Testing Techniques 1. Equivalence Partitioning Equivalence Partitioning or Equivalence Class Partitioning

is type of black box testing technique which can be applied to all levels of software testing like unit, integration, system,

etc. In this technique, input data units are divided into equivalent partitions that can be used to derive test cases which

reduce time required for testing because of small number of test cases. It divides the input data of software into different

equivalence data classes. Testers can divide possible inputs into groups or “partitions”, and test only one example input

from each group. For example, if a system requires a user’s birth date and provides the same response for all users under

the age of 18, and a different response for users over 18, it is sufficient for testers to check one birth date in the “under

18” group and one date in the “over 18” group. EQUIVALENCE PARTITIONING has been categorized into two parts: ?

Pressman Rule. ? Practice Method. a. Pressman Rule: Rule 1: If input

76% MATCHING BLOCK 197/246

is a range of values, then design test cases for one valid and two invalid

values.

247 | P a g e Space for learners: Rule 2: If input is a set of values, then design test cases for all valid value sets and two

invalid values. For example: Consider any online shopping website, where every product should have a specific product

ID and name. Users can search either by using name of the product or by the product ID. Here, you can consider a set of

products with product IDs and you want to check for Laptops (valid value). Rule 3: If input is Boolean, then design test

cases for both true and false values. For example:

248 | P a g e Space for learners: Consider a sample web page which consists of first name, last name, and email text

fields with radio buttons for gender which use Boolean inputs. If the user clicks on any of the radio buttons, the

corresponding value should be set as the input. If the user clicks on a different option, the value of input needs to be

updated with the new one (and the previously selected option should be deselected). Here, the instance of a radio

button option being clicked can be treated as TRUE and the instance where none are clicked, as FALSE. Also, two radio

buttons should not get selected simultaneously; if so, and then it is considered as a bug. b. Practice Method: If the input

is a range of values, then divide the range into equivalent parts. Then test for all the valid values and ensure that 2 invalid

values are being tested for.

249 | P a g e Space for learners: Note: ? If there is deviation in between the range of values, then use Practice Method. ? If

there is no deviation between the ranges of values, then use Pressman Rule. 2. Boundary Value Analysis BVA is another

Black Box Test Design Technique, which is used to find the errors at boundaries of input domain (tests the behavior of a

program at the input boundaries) rather than finding those errors in the centre of input. So, the basic idea in boundary

value testing is to select input variable values at their: minimum, just above the minimum, just below the minimum, a

nominal value, just below the maximum, maximum and just above the maximum. That is, for each range, there are two

boundaries, the lower boundary (start of the range) and the upper boundary (end of the range) and the boundaries are

the beginning and end of each valid partition. We should design test cases which exercise the program functionality at

the boundaries, and with values just inside and outside the boundaries. Boundary value analysis is also a part of stress and

negative testing. Testers can identify that a system has a special response around a specific boundary value. For example,

a specific field may accept only values between 0 and 99. Testers can focus on the boundary values (-1, 0, 99 and 100),

to see if the system is accepting and rejecting inputs correctly. Suppose, if the input is a set of values between A and B,

then design test cases for A, A+1, A-1 and B, B+1, B-1. Example: Age: *Accepts any value from 18 to 56

100% MATCHING BLOCK 198/246

Boundary Value Analysis Invalid (min -1) Valid (min, +min, - max, max) Invalid (max+1) 17 18,19,55,56 57

Boundary value analysis Vs. Equivalence partitioning: Enter Age

250 | P a g e Space for learners: S.N. Boundary value analysis Equivalence partitioning 1. It is a technique where we

identify the errors at the boundaries of input data to discover those errors in the input center.

100% MATCHING BLOCK 199/246

It is a technique where the input data is divided into partitions of valid and invalid values. 2.

100% MATCHING BLOCK 200/246

Boundary values are those that contain the upper and lower limit of a variable.

In this, the inputs to the software or the application are separated into groups expected to show similar behavior. 3.

Boundary value analysis is testing the boundaries between partitions. It allows us to divide a set of test conditions into a

partition that should be considered the same. 4.

100% MATCHING BLOCK 201/246

It will help decrease testing time due to a lesser number of test cases

from infinite to finite.

100% MATCHING BLOCK 202/246

The Equivalence partitioning will reduce the number of test cases

to a finite list of testable test cases covering maximum possibilities. 5.

100% MATCHING BLOCK 203/246

The Boundary Value Analysis is often called a part of the Stress and Negative Testing. The Equivalence partitioning can

be suitable for all the software testing levels such as unit, integration, system. 6.

Sometimes the boundary value analysis is also known as Range Checking. Equivalence partitioning is also known as

Equivalence class partitioning. 3.7.3 Cause Effect Graphing Cause Effect Graphing is a technique in which a graph is used

to represent the situations of combinations of input conditions. The

251 | P a g e Space for learners: graph is then converted to a decision table to obtain the test cases. Cause-effect

graphing technique is used because boundary value analysis and equivalence class partitioning methods do not consider

the

80% MATCHING BLOCK 204/246

combinations of input conditions. But since there may be some critical behavior to be tested when some combinations

of input conditions are considered,

that is why cause-effect graphing technique is used. Steps used in deriving test cases using this technique are: 1. Division

of specification: Since it is difficult to work with cause-effect graphs of large specifications as they are complex, the

specifications are divided into small workable pieces and then converted into cause-effect graphs separately. 2.

Identification of cause and effects: This involves identifying the causes(distinct input conditions) and effects(output

conditions) in the specification. 3. Transforming the specifications into a cause-effect graph: The causes and effects are

linked together using Boolean expressions to obtain a cause-effect graph. Constraints are also added between causes

and effects if possible. 4. Conversion into decision table: The cause-effect graph is then converted into a limited entry

decision table. 5. Deriving test cases: Each column of the decision-table is converted into a test case. Basic Notations

used in Cause-effect graph: Here c represents cause and e represents effect. The following notations are always used

between a cause and an effect: 1. Identity Function: if c is 1, then e is 1. Else e is 0. 2. NOT Function: if c is 1, then e is 0.

Else e is 1

252 | P a g e Space for learners: 3. OR Function: if c1 or c2 or c3 is 1, then e is 1. Else e is 0. 4. AND Function: if both c1

and c2 and c3 is 1, then e is 1. Else e is 0 To represent some impossible combinations of causes or impossible

combinations of effects, constraints are used. The following constraints are used in cause-effect graphs: a. Exclusive

constraint or E-constraint: This constraint exists between causes. It states that either c1 or c2 can be 1, i.e., c1 and c2

cannot be 1 simultaneously.

253 | P a g e Space for learners: b. Inclusive constraint or I-constraint: This constraint exists between causes. It states that

atleast one of c1, c2 and c3 must always be 1, i.e., c1, c2 and c3 cannot be 0 simultaneously. c. One and Only One

constraint or O-constraint: This constraint exists between causes. It states that one and only one of c1 and c2 must be 1.

d. Requires constraint or R-constraint: This constraint exists between causes. It states that for c1 to be 1, c2 must be 1. It

is impossible for c1 to be 1 and c2 to be 0. e. Mask constraint or M-constraint: This constraint exists between effects. It

states that if effect e1 is 1, the effect e2 is forced to be 0.

254 | P a g e Space for learners: Benefits of Cause Effect Graph Technique ? It helps us to determine the root causes of a

problem or quality using a structured approach. ? It uses an orderly, easy-to-read format to diagram cause-and- effect

relationships. ? It indicates possible causes of variation in a process. ? It Identifies areas, where data should be collected

for further study. ? It Encourages team participation and utilizes the team knowledge of the process. ? It Increases

knowledge of the process by helping everyone to learn more about the factors at work and how they relate. 3.8

COMPARISON OF WHITE BOX TESTING AND BLACK BOX TESTING Black Box Testing White Box Testing It is a way of

software testing in which the internal structure or the program or the code is hidden and nothing is known about it. It is a

way of testing the software in which the tester has knowledge about the internal structure or the code or the program of

the software. It is mostly done by software testers. It is mostly done by software developers. No knowledge of

implementation is needed. Knowledge of implementation is required.

255 | P a g e Space for learners: It can be referred as outer or external software testing. It is the inner or the internal

software testing. It is functional test of the software. It is structural test of the software. This testing can be initiated on

the basis of requirement specifications document. This type of testing of software is started after detail design document.

No knowledge of programming is required. It is mandatory to have knowledge of programming. It is the behavior testing

of the software. It is the logic testing of the software. It is applicable to the higher levels of testing of software. It is

generally applicable to the lower levels of software testing. It is also called closed testing. It is also called as clear box

testing. It is least time consuming. It is most time consuming. It is not suitable or preferred for algorithm testing. It is

suitable for algorithm testing. Can be done by trial and error ways and methods. Data domains along with inner or

internal boundaries can be better tested. Example: search something on google by using keywords Example: by input to

check and verify loops

256 | P a g e Space for learners: 3.9 MUTATION TESTING Mutation testing is a structural testing technique, which uses

the structure of the code to guide the testing process. On a very high level, it is the process of rewriting the source code

in small ways in order to remove the redundancies in the source code These ambiguities might cause failures in the

software if not fixed and can easily pass-through testing phase undetected. 3.9.1 Mutation Testing Benefits Following

benefits are experienced, if mutation testing is adopted: ? It brings a whole new kind of errors to the developer's

attention. ? It is the most powerful method to detect hidden defects, which might be impossible to identify using the

conventional testing techniques. ? Tools such as Insure++ help us to find defects in the code using the state-of-the-art.

? Increased customer satisfaction index as the product would be less buggy. ? Debugging and maintaining the product

would be easier than ever. 3.9.2 Mutation Testing Types ? Value Mutations: An attempt to change the values to detect

errors in the programs. We usually change one value to a much larger value or one value to a much smaller value. The

most common strategy is to change the constants. ? Decision Mutations: The decisions/conditions are changed to

check for the design errors. Typically, one changes the arithmetic operators to locate the defects and also we can

consider mutating all relational operators and logical operators (AND, OR , NOT)

257 | P a g e Space for learners: ? Statement Mutations: Changes done to the statements by deleting or duplicating the

line which might arise when a developer is copy pasting the code from somewhere else. 3.10 SUMMUING UP ? White

box testing can be quite complex. The complexity involved has a lot to do with the application being tested. A small

application that performs a single simple operation could be white box tested in few minutes, while larger programming

applications take days, weeks and even longer to fully test. ? White box testing in software testing should be done on a

software application as it is being developed after it is written and again after each modification ? Boundary value analysis

is testing at the boundaries between partitions. ? Equivalent Class Partitioning allows you to divide set of test condition

into a partition which should be considered the same. ? Boundary Value Analysis is better than Equivalence Partitioning

as it considers both positive and negative values along with maximum and minimum value. So, when compared with

Equivalence Partitioning, Boundary Value Analysis proves to be a better choice in assuring the quality. ? Black Box testing,

also known as Behavioral Testing is a software testing method in which the internal structure/design/implementation of

the item being tested is not known to the tester. These tests can be functional or non- functional, though usually

functional CHECK YOUR PROGRESS 1. Why we need white box testing? 2. What are steps considered during white box

testing? 3. Write the advantage and disadvantage of white box testing? 4. What is code coverage? Explain the different

code coverage methods?

258 | P a g e Space for learners: 3.11 ANSWERS TO CHECK YOUR PROGRESS 1. Equivalence Partitioning: It is a software

test design technique that involves dividing input values into valid and invalid partitions and selecting representative

values from each partition as test data. 2. Boundary Value Analysis: It is a software test design technique that involves the

determination of boundaries for input values and selecting values that are at the boundaries and just inside/ outside of

the boundaries as test data. 3. Cause-Effect Graphing: It is a software test design technique that involves identifying the

cases (input conditions) and effects (output conditions), producing a Cause-Effect Graph, and generating test cases

accordingly. 4. Mutation testing is a white box method in software testing where we insert errors purposely into a

program (under test) to verify whether the existing test case can detect the error or not. In this testing, the mutant of the

program is created by making some modifications to the original program. 3.12 POSSIBLE QUESTIONS Short answer

type questions: 1. What is data flow testing? Explain their advantages and disadvantages? 2. What is loop testing? Explain

its needs? 3. What is black box testing? Explain its different types? Long answer type questions: 1. Explain different black

box testing techniques? 2. Explain the black box testing techniques? 3. Explain Cause Effect Graphing? 4. Explain

Mutation testing? 3.13 REFERENCES AND SUGGESTED READINGS ? Mall Rajib, Fundamentals of Software Engineering,

PHI. ? Pressman, Software Engineering Practitioner’s Approach, TMH.

259 | P a g e Space for learners: UNIT 4: SOFTWARE MAINTENANCE Unit Structure: 4.1 Introduction 4.2 Unit Objectives

4.3 Basic Concept and Importance of Software Maintenance 4.4 Types of Software Maintenance 4.5 Software

Maintenance Life Cycle 4.6 Techniques of Software Maintenance 4.7 Summing Up 4.8 Answers to Check Your Progress

4.9 Possible Questions 4.10 References and Suggested Readings 4.1 INTRODUCTION Whenever a software is delivered,

there might be some need to make a change. There is always a scope for improvement and that improvement brings

change in picture. Changes may be requiring for modify or update any existing solution to create a new solution to a

problem. This comes under software maintenance part. Similar to software development, a maintenance request often

goes through a lifecycle. At first the request is analysed, what will be its impact on the system is determined, then any

required modifications are designed, coded, tested and finally implemented. Training is a corecomponents of the

software maintenance phase. Maintainer need to understand the existing code carefully. Simple code and good

documentation at the development stage is more helpful at development stage especially of developer is not available or

if there's been a long gap since development .

260 | P a g e Space for learners: 4.2 UNIT OBJECTIVES After going through this unit student will be able to learn ? Basic

concept of Software maintenance ? Importance of Software maintenance. ? Different types of Software Maintenance. ?

Software Maintenance Process. ? Different techniques involve in Software Maintenance. ? Layer Structure of Software

Maintenance. 4.3 BASIC CONCEPT AND IMPORTANCE OF SOFTWARE MAINTENANCE Software maintenance is changes

to a product maintenance or service while maintaining its integrity after software has been promoted to production.

Software maintenance is a part of software engineering. Software maintenance is also software evaluation based on

user’s feedback. Software maintenance last longer than software development. For example, Software development may

last from one year but software maintenance may last for 5 to 10 years. This is because organization want to get most

return on investment in software development. For the same reason there are jobs in Software management then in

software development. 4.3.1 Why Software Maintenance ss Required? The reason for software maintenance is 1. To fix

bugs also called corrective maintenance. 2. To implement enhancements requirement by users or new regulations.

Different sources say this is the largest percentage of work in software maintenance.

261 | P a g e Space for learners: 3. To increase non-functionalities qualities like performance, security, design ,usability of

the software. 4. To decrease software complexity . For example by code refactoring or data refactoring. 5. Software

maintenance is also required to make it work in a new environment, upgraded hardware for upgraded operating system,

new database management system or other software, making the software run in a new environment is also called

adaptive maintenance. 6. Finally software maintenance is required to delete retired functionalities. 4.3.2 Software

Management Agreement This agreement states the scope of the Software maintenance. It also states transition, service

level management and incident management. Transition means training from the software developers, in setting up

esteemed help desk. Service level agreements and incident management means receives request ,log the request,

prioritize the request and send them the responsible role and track them until they are closed. Software level agreement

also mention software management process. 4.4 TYPES OF SOFTWARE MAINTENANCE In a software lifetime, types of

maintenance may vary based on its nature. Based on types of software maintenance is different.

94% MATCHING BLOCK 205/246

It may be just a routine maintenance task as some bug discovered by some user or it may be a large event in itself

based on maintenance size or nature. Following are 4 types of

software maintenance based on characteristics: STOP TO CONSIDER Maintenance of the product, after deploying of the

product is known is Software Maintenance. It is a process of modifying a software system or a component after delivery

to correct faults, improve other attributes.

262 | P a g e Space for learners: 1. Corrective maintenance 2. Adaptive maintenance 3. Perfective maintenance 4.

Preventive maintenance Let’s discuss each one of them. 1. Corrective maintenance: This include modification done in

order to fix the problems. If after delivered if any bug is reported by user that bug need to corrected. So that type of

maintenance comes under corrective maintenance. It deals with the repair of defects found in day-to-day system

functions. 2. Adaptive maintenance: The major concept is if we have made some modification in some part of software

and because of that change ,there is a need to maintain all the part of the software .This include modifications applied to

keep the software product upto date. It is the implementation of changes in a part of the system, which has been

affected by a change that occurred in some other part of the system. 3. Perfective maintenance:

100% MATCHING BLOCK 206/246

To keep the software usable over long period of time,

whatever modification required that comes under perfective maintenance. To improve its reliability and performance,

100% MATCHING BLOCK 207/246

it includes new features, new user requirements for refining the software .

This includes changing the functionalities of as per users changing needs. 4. Preventive maintenance: To prevent future

problems of software ,whatever modification need to do that comes under preventive maintenance. The problem

90% MATCHING BLOCK 208/246

which are not significant at this moment but they may cause serious issues in future,

those kind of problem comes under this. It comprises documentation updating, code optimization and code

reconstructing.

263 | P a g e Space for learners: 4.5 SOFTWARE MAINTENANCE LIFE CYCLE Depending on types of the software being

maintained, the maintenance process vary. If it is small means little effort requires and if it is big then more effort

required. The most expensive part of software life cycle is software maintenance process. Software maintenance process

is done by software maintainer. It performs various task like analyze change request, confirm the request or denied

request based on analysis. After that it designs one or more possible solutions. Then user approved one of the solution.

After that maintenance developers implement the STOP TO CONSIDER In short, corrective maintenance is taking the

existing code and correcting the faults that deviates from document requirement. Adaptive maintenance is adding new

features to existing code. Perfective maintenance is typically made to improve maintainability of the code. Preventive

maintenance is usually made as a result of code inspection to reduce likelihood of a failure. CHECK YOUR PROGRESS 1.

Software maintenance is categorized into how many categories?

264 | P a g e Space for learners: solution and then the maintenance tester test the solution and finally is accepted by the

user. If solution is not accepted by the user then the process is repeated right from the analyzing change request. 4.6

TECHNIQUES OF SOFTWARE MAINTENANCE It involves the following techniques: 1. Software Configuration

Management 2. Impact Analysis 3. Software Rejuvenation 4.6.1 Software Configuration Management While developing

the software, various documents ,image files,core files, databases, script and different types of entities need to manage

during entire software development life cycle. So in general words ,

81% MATCHING BLOCK 209/246

software configuration management is to systematically manage, organize and control the changes in the document,

codes and other entities.

So whatever activities carried out to manage those changes are Software management configuration. Four primary

objectives: ? To find out all items that collectively define the software configuration. Items may be class file, script file,

may be project file etc. ? To manage changes to one or more of these items that are obtained during first step. ? To

facilitate the construction of different versions of an application. Software engineering is a continuous process. At a time,

software is not going to develop. At first, initial version is developed, next the second version and so on. So the CHECK

YOUR PROGRESS 2. How are software maintenance tasks triggered?

265 | P a g e Space for learners: development of the version step by step-l is the main objective of this step. ? To make

sure that software quality is maintained as the configuration evolves over time. Changes which are made during different

versions are to be such that quality of the software should be maintained. 4.6.1.1 Layers Structure of SCM Process STOP

TO CONSIDER

88% MATCHING BLOCK 210/246

Software Configuration management is a process to systematically manage, organize and control the changes in the

documents, code and other entities during software development life cycle.

The primary goal of SCM is to increase productivity with minimal mistakes. In other words, it is a set of activities that have

been developed to manage change throughout the software life cycle. CHECK YOUR PROGRESS 3. Which are the typical

software maintenance tasks to be performed ?

266 | P a g e Space for learners: Inner layer is Software configuration items. Each and every item has specific version. So

the first layer is the identification of these items. All the code files, project files, any document which is part of the

software development is identified in this layer. After identification of various items, it organizes the items in SCM

repository using an object-oriented approach. Objects starts as basic objects and then grouped together into aggregate

objects. Each objects has features like name which should be unambiguous to all other objects, a description that

contains the SCI types, a project identifier and version information, list of resources needed by the objects, the object

realization (i.e., the document, the file, the model etc). The next layer is the change control. It is a procedural activity that

confirms quality and consistency as changes are made to an object. A change request is submitted to a configuration

control authority named Change Control Board (CCB).The request is evaluated for technical merit, potential side effects,

overall impact on other configuration objects and system functions and projected cost in terms of money, time and

resources. An engineering order ECO) is issued for each approved change request. It describes the change to be made,

the constraints to follow and the criteria for review and audit. After that we have version control. Version control is a set

of procedure and tools that are required for managing the creation and use of multiple occurrences of objects in the

SCM repository. Version control capabilities are: ? All relevant configuration objects are store in SCM repository. ? A

version management capability that stores all version of a configuration object. ? The software engineer collects all

relevant configuration objects and constructs a specific version of the software via make facility. ? Issues or bug tracking

capability is also available which enables the team to record and track the status of all outstanding issues associated with

each configuration object. The next higher layer is Configuration Audit. It is an SQA activity that helps to ensure that

quality is maintained as changes are made. It

267 | P a g e Space for learners: complements the formal technical review and is conducted by the SQA group. It

addresses the following questions: ? Whether a technical review conducted to assess technical correctness? ? Whether

the software process been followed and software engineering standard been properly maintained? ? Whether the

changed been highlighted and documented in the SCI? Have the changed author and change data been specified? ?

Whether the change, recording it and reporting it been followed for SCIs item? ? Whether all SCIs been properly

updated? A configuration audit ensures that ? The correct SCIs (by version) have been incorporated into a specific build.

? Documentation is maintained or up to date for the version that has been built. Next layer we have is Status Reporting

also called Status accounting. It provides information about each change to the personnel in an organization with a need

to know. Answers what happened, who did it, when did it happen and what else will be affected? The configuration

status report ? Placed in an on-line database or on a website for software developers and maintainers to read. ? Given to

management and practitioners to keep them appraised of important changes to the project SCIs. 4.6.2 IMPACT ANALYSIS

STOP TO CONSIDER SCM repository maintains a change set. It serves as a collection of all changes made to a baseline

configuration. Also used to create a specific version of the software and captures all changes to all files in the

configuration along with the reason for changes and details of who made the changes and when.

268 | P a g e Space for learners: A meeting is organize for impact analysis and is called Impact Analysis meeting. Meeting

is to be done whenever a developer modifies in his code or he is trying to fix a bug or trying to add a new feature into the

application or trying to remove features that are already present. Project developer, project tester, project manager are

the member of this meeting. By this meeting software tester will know what all areas in the application they need to test.

This meeting is usually done by developer or tester. If developer makes any changes to the code, he will call tester to

inform in what areas he need to test. Tester can also call this meeting whenever they feel that developers have made

changes and they really feel that can get impacted just because of developers tried to add or delete new features. Project

manager is a domain expert so he needs to be a part of this meeting. 4.6.3 Software Rejuvenation Preventive

maintenance in the context of software systems has an exciting name called Software rejuvenation. In software

engineering, software Rejuvenation is an approach to help prevent performance degradation and other associated values

related to aging. It deals software reliability/availability in the operational phase. It includes methods of deciding key

performance variables to monitor.It have been adopted as a good practice for many systems. It can reduce costs of

sudden aging related failures. Also it can be applied at the discretion of the user/administrator or can be automated.

CHECK YOUR PROGRESS 4.What is the purpose of an impact analysis? 5.What is the purpose of maintenance auditing?

6. How are changes to the code validated?

269 | P a g e Space for learners: 4.7 SUMMING UP In short Software Maintenance is widely accepted as a part of System

development life cycle. All the modification and updation done after the delivery of software product is Software

maintenance. There are number of reasons, why modifications are required. Reasons may be Market conditions such as

92% MATCHING BLOCK 211/246

Policies which changes over time, taxation and newly introduced constraints like how to maintain bookkeeping, may

trigger need for modification.

Modification may be client requirements such as

84% MATCHING BLOCK 212/246

over time customer may ask for new features or function in the software.

Other modification like host modification which include

82% MATCHING BLOCK 213/246

any of the hardware or platform of target host changes. Software changes are needed to keep adaptability. 4.8

ANSWERS TO CHECK YOUR PROGRESS 1. Software maintenance is divided into four categories. 2. Maintenance task is

triggered by a maintenance request (change request or error report) 3. Software maintenance task are: ? changing

functions and data of existing code ? adding new functions and data ? Reengineering tasks (improving the changeability

of the code and data) ? Optimization tasks (improving the performance of the code 4. Impact analysis is performed to

determine which source code members, which documents and which test cases are affected by the change? 5.

Maintenance auditing is to ensure that the quality of the software product does not regress as a result of the

maintenance tasks. 6. By testing the new code against the data of the old code and comparing the new results with the

previous results.

270 | P a g e Space for learners: 4.9 POSSIBLE QUESTIONS 1. How you can define Software Maintenance? 2. What are

the four types of software maintenance according to Lientz and Swanson? 3. What distinguishes adaptive maintenance

from corrective maintenance? 4. What distinguishes adaptive maintenance from functional enhancement? 5. What is the

purpose of perfective maintenance? 6. What does a Software Maintenance Engineer need to know? List out five items 7.

What is the main problem seen in Software maintenance? 8. What does software maintenance include? 9. Describe

layers structure of software configuration process. 10. What is impact analysis? How it is different from software

rejuvenation? 4.10 REFERENCES AND SUGGESTED READING ? Software Maintenance: Concepts and Practice

September 2003. Authors: Penny, Grubb, Armstrong, A. Takang ? Software Rejuvenation: Analysis, Module and

Applications, Y. Huang, N. Kolettis and N. Fulton, Proc. FTCS-25,1995 ? Software Engineering By Jibitesh Mishra, Ashok

Mohanty ? Advances in Software Maintenance Management: Technologies and Solutions Mario Gerardo Piattini Velthuis,

Macario Polo, Francisco Ruiz ? Fundamentals of Software Engineering, By Rajib Mall

271 | P a g e Space for learners: UNIT 5: SOFTWARE MAINTENANCE MODELS Unit Structure: 5.1 Introduction 5.2 Unit

Objectives 5.3 Importance of Software Maintenance 5.4 Process of Software Maintenance 5.5 Software Maintenance

Model 5.6 Challenges of Software Maintenance 5.7 Summing Up 5.8 Answers to Check Your Progress 5.9 Possible

Questions 5.10 References and Suggested Readings 5.1 INTRODUCTION A software might need to make change and

update in due for its best performance. The changes may be requiring for modify or update any existing solution to

create a new solution to a problem in the software. This comes under software maintenance part. This unit reports the

need of software maintenance. A training process is a core component of the software maintenance phase. A maintainer

should understand the existing code carefully and provide the recent solution for the problem. Different software

maintenance model along with its advantages and disadvantages are discussed in this unit along with the challenges of

software maintenance. 5.2 UNIT OBJECTIVES After going through this unit, you will be able to know ? About need of

software maintenance. ? About the different software maintenance model. ? About challenges of software maintenance.

272 | P a g e Space for learners: 5.3 IMPORTANCE OF SOFTWARE MAINTENANCE Software might need to make change

and update in due for its best performance. The reasons for software maintenance are 1. To fix bugs and error of the

software and that is called corrective maintenance. 2. To implement the enhancements, require by users. 3. To increase

non-functionalities qualities like performance, security, design, usability of the software. 4. To decrease software

complexity. 5. To work in a new environment, upgraded hardware for upgraded operating system, new database

management system or other software.

50% MATCHING BLOCK 214/246

The purpose of software maintenance is to perform the following: ? Expanding the customer requirements and base. ?

Enhancing software’s capabilities,

so that it works in a new environment, hardware, and software. ? Omitting obsolete capabilities by employing newer

technology. 5.4

89% MATCHING BLOCK 215/246

PROCESS OF SOFTWARE MAINTENANCE Software Maintenance phase of Software Development Life Cycle (SDLC), is

implemented through a proper software maintenance process, known as Software Maintenance Life Cycle (SMLC). This

life cycle consists of seven different phases, each of which

are presented below: 1. Identification Phase: The software modifications requests are identified, collected, and analysed.

Based on the requests, the maintenance activities are scheduled and classified. It is done either by using system or by

using log file or error message of the software. 2. Analysis Phase:

273 | P a g e Space for learners: In this phase, collected software modification requests are analysed for feasibility and

scope.

76% MATCHING BLOCK 216/246

A plan is prepared to incorporate the changes in the software. The input attribute, initial estimate of resources, project

documentation, cost of modification and maintenance is also estimated in this phase 3. Design Phase: The new

modules

of the software that

40% MATCHING BLOCK 217/246

need to be replaced or modified are designed based on the requirements received from the different sources. The test

cases along with the safety and security issues

45% MATCHING BLOCK 218/246

are also developed for the new design. These test cases are created for the validation and verification of the system. 4.

Implementation Phase: In this phase, the modification of the new modules is made in the coding level. New features

that demand modification are added, and the modified software along with the new modules

is installed. 5. System Testing Phase: Here, the regression testing is performed on the modified modules along with

96% MATCHING BLOCK 219/246

the system to ensure that no defect, error or bug is left undetected.

The integration testing is also applied to validate that

100% MATCHING BLOCK 220/246

no new faults are introduced in the software as a result of maintenance activity. 6.

50% MATCHING BLOCK 221/246

Acceptance Testing Phase: Acceptance testing is applied on the system after modifications by the user or by the third

party specified by the end user. The testing is used to verify thenewly added features of the software are according to

the requirements or not. 7. Delivery Phase: After the successful accomplishing of acceptance testing, the new

integrated system is delivered to the

user along with the new manual and help files.

274 | P a g e Space for learners: 5.5

100% MATCHING BLOCK 222/246

SOFTWARE MAINTENANCE MODELS To overcome internal as well as external problems of the software, Software

maintenance models are

used to overcome the different error or issues of a software that are generated though external OR internal sources of a

software.

83% MATCHING BLOCK 223/246

These models use techniques to simplify the process of maintenance as well as to make are cost effective. 1.

Quick-Fix Model: Quick-Fix software maintenance model is an ad hoc model. This is used to identify the issues of

software and trying to solve the issues as soon as possible. It performs very quickly and makes the necessary changes in

the software to fix the problem as quickly as possible at a low cost. Simple changes of codes are considered in this

model to make the impact of changes in the software. Fig. 5.1 Quick and Fix Model [1] CHECK YOUR PROGRESS-I 1.

What do you mean by software maintenance? 2. Why do you need to maintain software? 3. Software Maintenance is

classified into how many categories? 4. What type of software testing is generally used in Software Maintenance? 5.

Which regression test selection technique exposes faults caused by modifications?

275 | P a g e Space for learners: 2.

87% MATCHING BLOCK 224/246

Iterative Enhancement Model: Iterative enhancement model considers the changes made to software are iterative in

nature.

The change of the current

59% MATCHING BLOCK 225/246

software depends on the analysis of the existing software system after completing the documents preparation of the

existing system at the beginning. Moreover, it attempts to control complexity and tries to maintain good

design.Iterative Enhancement Model is divided into three stages:

a. Analysis of existing software system. b. Classification of required modifications. c. Implementation of required

modifications. Fig. 5.2 Iterative enhancement Model [1] 3. The Re-use Oriented Model: In this maintenance model, the

necessary part and codes of the existing software system are indentified and reuse for further modification based on the

requests.

75% MATCHING BLOCK 226/246

These codes are then going through modification and enhancement for the specified new requirements. The final step

of this model is the integration of modified parts into the new system. 276 |

P a g e Space for learners: Fig. 5.3 Reuse oriented Model [1] 4. Boehm's Model: Based on the economic models and

principles; the Boehm’s Model performs the software maintenance and analysis. A closed loop cycle maintenance steps

are used to perform the maintenance of the system wherein the changes are suggested and approved at first. The

managements of the software approve the changes, and based on it the necessary changes and maintenance are

applied in the system. Fig. 5.4 Boehm’s

70% MATCHING BLOCK 227/246

Model [1] 5. Taute Maintenance Model: In 1983, the Taute’s model is a maintenance model that developed by Taute

which consists of eight phases in cycle fashion. The process of maintenance begins by requesting the change and ends

with its operation.

It is very easy to understand and undemanding to implement. The phases of Taute’s Maintenance Model are:

277 | P a g e Space for learners: 1. Change request Phase: In this phase, the software user makes request in prescribed

format to software management team to apply change to software. 2. Estimate Phase: The maintenance team or

software management team estimatethe time and effort required to apply requested change. 3. Schedule Phase: In this

phase, management or maintenance team identifies change requests and make schedule for its release and may also

prepare documents that are required for planning. 4. Programming Phase: The maintenance team ask the programmer

to modifies source code of existing software to implement requested change by user and updates all relevant

documents like design document, manuals, etc. accordingly. 5. Documentation Phase: In this phase, maintenance team

ensures the correct changes of the software based on the request received from the user. 6. Release Phase: The

modified software system along with its documents are delivered to customer. 7. Operation Phase: After successful

completion of release phase, the software is placed under normal operation and also tried to find the new bugs or issues

in the system.A customer may again initiate ‘Change request’ process in this step.

278 | P a g e Space for learners: Fig. 5.5Taute’s Model [1] 5.6 CHALLENGES OF SOFTWARE MAINTENANCE The

challenges of software maintenance are as follows: 1. Lack of Traceability o Codes are hardly traceable to the

requirements and design specifications. o It is very hard for a programmer to identified and correct a serious defect

affecting customer operations. 2. Lack of Code Comments o Codes of a software modules are developed by an

individual coder. So, most of the codes are lack of adequate comments. Lesser comments my not help another

programmer to understand the codes and its effects. 3. Obsolete Legacy Systems o The legacy system of a software that

provides the backbone of the nation's critical industries, were not designed with maintenance in mind.

279 | P a g e Space for learners: o As a consequence, the code supporting these systems is devoid of traceability to the

requirements, compliance to design and programming standards. 5.7 SUMMING UP ? Software might need to make

change and update in due for its best performance. ? To fix bugs and error of the software and that is called corrective

maintenance. ? To increase non-functionalities qualities like performance, security, design, usability of the software,

maintenance is required. ? To decrease software complexity, software maintenance is required. ? To work in a new

environment, upgraded hardware for upgraded operating system, new database management system or other

64% MATCHING BLOCK 228/246

software, software maintenance is required. ? Software Maintenance phase of Software Development Life Cycle

(SDLC), is implemented through a proper software maintenance process, known as Software Maintenance Life Cycle

(SMLC). ? SMLC has seven different phases. ?

100% MATCHING BLOCK 229/246

To overcome internal as well as external problems of the software, Software maintenance models are

used to overcome the different error or issues of a software that are generated though external OR internal sources of a

software. CHECK YOUR PROGRESS-II 6. How many phases are there in Taute Maintenance Model? 7. The modification

of the software to match changes in the ever changing environment, falls under which category of software

maintenance? 8. How many types of software maintenance models are found? 9. What is lack traceability of software

maintenance?

280 | P a g e Space for learners: ? Five different software maintenance models are there to perform software

maintenance. ? The challenges of software maintenance are as follows a. Lack of Traceability b. Lack of Code Comments

c. Obsolete Legacy Systems 5.8 ANSWERS TO CHECK YOUR PROGRESS 1. Software might need to make change and

update in due for its best performance. The changes may be requiring for modify or update any existing solution to

create a new solution to a problem in the software. This is called as software maintenance. 2. The reasons for software

maintenance are a. To fix bugs and error of the software and that is called corrective maintenance. b. To implement the

enhancements, require by users. c. To increase non-functionalities qualities like performance, security, design, usability

of the software. d. To decrease software complexity. e. To work in a new environment, upgraded hardware for upgraded

operating system, new database management system or other software. 3. Four 4. Regression Testing 5. Inclusiveness 6.

Seven 7. Adaptive 8. Five 9. Lack of Traceability means the following a. Codes are hardly traceable to the requirements

and design specifications.

281 | P a g e Space for learners: b. It is very hard for a programmer to identified and correct a serious defect affecting

customer operations 5.9 POSSIBLE QUESTIONS Short answer type questions: i) What is software maintenance and why

does is it important? ii) What does software maintainer perform? iii) What are the challenges of software maintenance? iv)

What is the disadvantages of quick and fix software maintenance model? v) State the difference between identification

and analysis phase of software maintenance. Long answer type questions: i) Explain the different process of software

maintenance. ii) Explain the different models of software maintenance. iii) Explain about Taute’s software maintenance

model. 5.10 REFERENCES AND SUGGESTED READINGS ? https://www.professionalqa.com/software-maintenance-

models ? Software Maintenance: Concepts and Practice by Penny Grub

BLOCK III: SOFTWARE RELIABILITY AND SOFTWARE MANAGEMENT

282 | P a g e Space for learners: UNIT 1: SOFTWARE RELIABILITY Unit Structure: 1.1 Introduction 1.2 Unit Objectives 1.3

Concepts of Software Reliability 1.4 Software Failure Mechanisms 1.5 Software Reliability Metrics 1.6 Software Reliability

Measurement Techniques 1.6.1 Project Metrics 1.6.2 Project Management Metrics 1.6.3 Process Metrics 1.6.4 Fault and

Failure Metrics 1.7 Software Reliability Improvement Techniques 1.8 Software Fault Tolerance 1.9 Software Fault tolerance

techniques 1.9.1 N-version Programming 1.9.2 Recovery Blocks 1.9.3 Check-pointing and Rollback Recovery 1.10

Software Reliability Models 1.11 Summing Up 1.12 Answers to Check Your Progress 1.13 Possible Questions 1.14

References and Suggested Readings 1.1 INTRODUCTION Software reliability is

66% MATCHING BLOCK 230/246

the probability that the software will work without failure for a specified period of time.

Failure means the program in its functionality has no met user requirements in some way. Software reliability concerns

itself with how well the software functions to meet the requirements of the customer.

283 | P a g e Space for learners: -Reliability represents a user-oriented view of software quality. Initially, Software quality

was measured by counting the faults in the program and so this approach is developer oriented whereas reliability is user

oriented, because, it relates to operation rather than design. 1.2 UNIT OBJECTIVES After going through this unit, you will

be able to: ? To differentiate the failure and faults. ? To highlight the importance of execution and calendar time ? To

understand Time interval between failures. ? To understand on the user perception of reliability. 1.3 CONCEPT OF

SOFTWARE RELIABILITY Software reliability is one of the most important elements of the overall quality of any software

even after the accomplishment of software work. If it fails to meet its actual performance after its deployment, then the

software is considered as unreliable software. We cannot expect better performance from such software. Software

reliability is defined in statistical terms as the probability of failure free operation of a computer program in a specific

environment for a specific time for software to be reliable; it must perform operation based upon its analysis and design,

available resources, reusability and so on. If the design standards are not available or the supply is not at proper times,

then there is a high probability of software failure or there is degradation in the quality of performance. Therefore, in

order to make software reliable, we should take some measures or earlier stages as follows: ? Designing a software

project based on available resources. ? Develop software that best fits the current environmental conditions. ? Estimating

costs that might be required even after items implementation.

284 | P a g e Space for learners: ? Estimating the actual performance upon using reusable resources. The IEEE defines

reliability as “The ability of a system or component to perform its required functions under stated conditions for a

specified period of time.” So it is necessary that software reliability should be measured and evaluated. Though it is hard

to achieve software reliability as we don’t have a good understanding of the software, it is always tempting to measure

something related to reliability to reflect the characteristics. Reliability is a by-product of quality, and software quality can

be measured. 1.4 SOFTWARE FAILURE MECHANISMS Software failures may be due to errors, ambiguities, oversights or

misinterpretation of the specification that the software is supposed to satisfy, carelessness or incompetence in writing

code, inadequate testing, incorrect or unexpected usage of the software or other unforeseen problems. There are five

different types’ software failures. Those are as follows: ?

97% MATCHING BLOCK 231/246

Transient- Transient failures occur only for certain input values while invoking a function of the system. ? Permanent-

Permanent failures occur for all input values while invoking a function of the system. ? Recoverable- When recoverable

failures occur, the system recovers with or without operator intervention. ? Unrecoverable- In unrecoverable failures,

the system may need to be restarted. ? Cosmetic- These classes of failures cause only minor irritations, and do not lead

to incorrect results.

An example of a cosmetic failure is the case where the mouse button has to be clicked twice instead of once to invoke a

given function through the graphical user interface. While it is tempting to draw an analogy between Software Reliability

and Hardware Reliability, software and hardware have basic differences that make them different in failure mechanisms.

Hardware faults are mostly physical faults, while software faults are design faults, which are harder to visualize, classify,

detect, and

285 | P a g e Space for learners: correct. Design faults are closely related to fuzzy human factors and the design process,

which we don't have a solid understanding. A partial list of the distinct characteristics of software compared to hardware

is listed below: ? Failure cause: Software defects are mainly design defects. ? Wear-out: Software does not have energy

related wear-out phase. Errors can occur without warning. ? Repairable system concept: Periodic restarts can help fix

software problems. ? Time dependency and life cycle: Software reliability is not a function of operational time. ?

Environmental factors: Do not affect Software reliability, except it might affect program inputs. ? Reliability prediction:

Software reliability cannot be predicted from any physical basis, since it depends completely on human factors in design.

? Redundancy: Can not improve Software reliability if identical software components are used. ? Interfaces: Software

interfaces are purely conceptual other than visual. ? Failure rate motivators: Usually not predictable from analyses of

separate statements. ? Built with standard components: Well-understood and extensively-tested standard parts will help

improve maintainability and reliability. But in software industry, we have not observed this trend. Code reuse has been

around for some time, but to a very limited extent. Strictly speaking there are no standard parts for software, except

some standardized logic structures. 1.5 SOFTWARE RELIABILITY METRICS Reliability metrics are used to quantitatively

express the reliability of the software product. The option of which metric is to be used depends upon the type of system

to which it applies & the requirements of the application domain.

100% MATCHING BLOCK 232/246

The reliability requirements for different categories of software products may be different. For 286 |

P a g e Space for learners:

100% MATCHING BLOCK 233/246

this reason, it is necessary that the level of reliability required for a software product should be specified in the SRS

(software requirements specification) document.

In order to be able to do this, some metrics are needed to quantitatively express the reliability of a software product. A

good reliability measure should be observer- dependent, so that different people can agree on the degree of reliability a

system has. For example, there are precise techniques for measuring performance, which would result in obtaining the

same performance value irrespective of who is carrying out the performance measurement. However, in practice, it is

very difficult to formulate a precise reliability measurement technique. The next base case is to have measures that

correlate with reliability.

There are six

92% MATCHING BLOCK 234/246

reliability metrics which can be used to quantify the reliability of software products. a. Rate of occurrence of failure

(ROCOF) - ROCOF measures the frequency of occurrence of unexpected behaviour (i.e. failures). ROCOF measure of a

software product can be obtained by observing the behaviour of a software product in operation over a specified time

interval and then recording the total number of failures

occurring during the interval. b.

100% MATCHING BLOCK 235/246

Mean Time To Failure (MTTF) - MTTF is the average time between two successive failures, observed over a large

number of failures. To measure MTTF, we can record the failure data for n failures.

Let the failures occur at the time instants t 1, t 2, t n. Then, MTTF can be calculated as It is important to note that only run

time is considered in the time measurements, i.e. the time for which the system is down to fix the error, the boot time,

etc. are not taken into account in the time measurements and the clock is stopped at these times. c.

93% MATCHING BLOCK 236/246

Mean Time To Repair (MTTR) - Once failure occurs, sometime is required to fix the error. MTTR measures the average

time it takes to track the errors causing the failure and to fix them. d. Mean Time Between Failure (MTBR) - MTTF and

MTTR can be combined to get the MTBR metric: MTBF = MTTF + MTTR. Thus, MTBF of 300 hours indicates that once

a failure occurs, 287 |

P a g e Space for learners:

89% MATCHING BLOCK 237/246

the next failure is expected after 300 hours. In this case, time measurements are real time and not the execution

time as in MTTF. e. Probability of Failure on Demand (POFOD) - Unlike the other metrics discussed, this metric does not

explicitly involve time measurements.

92% MATCHING BLOCK 238/246

POFOD measures the likelihood of the system failing when a service request is made. For example, a POFOD of 0.001

would mean that 1 out of every 1000 service requests would result in a failure. f. Availability- Availability of a system is a

measure of how likely shall the system is available for use over a given period of time. This metric not only considers

the number of failures occurring during a time interval, but also takes into account the repair time (

down time) of a system when a failure occurs. This metric is important for systems

such as telecommunication systems, and operating systems, which are supposed to be never down and where repair

and restart time, are significant and loss of service during that time is important. 1.6 SOFTWARE RELIABILITY

MEASUREMENT TECHNIQUES Reliability metrics are used to quantitatively express the reliability of the software product.

The option of which parameter is to be used depends upon the type of system to which it applies & the requirement of

the application domain. Measuring software reliability is a severe problem because we don’t have a good understanding

of the nature of software. It is difficult to find a suitable method to measure software reliability and most of the aspects

connected to software reliability. Even the software estimates have no uniform definition. If we cannot measure the

reliability directly, something can be measured that reflects the features related to reliability. Software reliability

techniques can be divided into four categories: 1.6.1 Product Metrics Product metrics are those which are used to build

the artefacts, i.e. requirement specification documents, system design documents, etc.

288 | P a g e Space for learners: These metrics help in the assessment if the product is right sufficient through records on

attributes like usability, reliability, maintainability & portability. In these measurements are taken from the actual body of

the source code. 1.6.2 Project Management Metrics Project management metrics define project characteristics and

execution. If there is proper management of the project by the programmer, then this helps us to achieve better

products. A relationship exists between the development process and the ability to complete projects on time and within

the desired quality objectives. Cost increase when developers use inadequate methods. Higher reliability can be achieved

by using a better development process, risk management process, configuration management process. These metrics

are: ? Number of software developers. ? Staffing pattern over the life-cycle of the software ? Cost and schedule ?

Productivity 1.6.3 Process Metrics Process metrics quantify useful attributes of the software development process & its

environment. They tell if the process is functioning optimally as they report on characteristics like cycle time & rework

time. The goal of process metric is to do the right job on the first time through the process. The quality of the product is

a direct function of the process. So process metrics can be used to estimate, monitor and improve the reliability and

quality of software. Process metrics describe the effectiveness and quality of the processes that produce the software

product. Examples: The effort required in the process ? Time to produce the product ? Effectiveness of defect removal

during development ? Number of defects found during testing ? Maturity of the process

289 | P a g e Space for learners: 1.6.4 Fault and Failure Metrics A fault is a defect in a program which appears when the

programmer makes an error and cause failure when executed under particular conditions. These metrics are used to

determine the failure-free execution software. To achieve this objective, a number of faults found during testing and the

failures or other problems which are reported by the used after delivery are collected, summarized and analysed. Failure

metrics are based upon customer information regarding faults found after release of the software. The failure data

collected is therefor used to calculate failure density, Mean Time between Failures (MTBF), or other parameters to

measure or predict software reliability. 1.7 SOFTWARE RELIABILTY IMPROVEMENT TECHNIQUES Good engineering

methods can largely improve software reliability. In real situations, it is not possible to eliminate all the bugs in the

software; however, by applying sound software engineering principles software reliability can be improved to a great

extent. Three approaches are used to improve reliability of the software. These approaches are: i. Fault avoidance: The

design and implementation phase of the software development uses the process that minimizes the probability of faults

before the software is delivered to the user. ii. Fault detection and removal: Verification and validation techniques are

used to detect and remove faults. In addition, testing and debugging can also remove faults. iii. Fault tolerance: The

designed software manages faults in such a way that software failure does not occur. There are three aspects of fault

tolerance. These are : a. Damage assessment : This detects parts of software affected due to the occurrence of faults

290 | P a g e Space for learners: b. Fault recovery: This restores the software to the last known safe state. Safe state can

be defined as the state where the software functions as desired c. Fault repair: This involves modifying the software in

such a way that faults does not occur. 1.8 SOFTWARE FAULT TOLERENCE Software fault tolerance is the ability for

software to detect and recover from a fault that is happening or has already happened in either the software or hardware

in the system in which the software is running to provide service by the specification. Software fault tolerance is a

necessary component to construct the next generation of highly available and reliable computing systems from

embedded systems to data warehouse systems. To adequately understand software fault tolerance, it is important to

understand the nature of the problem that software fault tolerance is supposed to solve. Software faults are all design

faults. Software manufacturing, the reproduction of software, is considered to be perfect. The source of the problem

being solely designed faults is very different than almost any other system in which fault tolerance is the desired property

1.9 SOFTWARE FAULT TOLERENCE TECHNIQUES Software fault-tolerance techniques are used to make the software

reliable in the condition of fault occurrence and failure. There are three techniques used in software fault-tolerance. First

two techniques are common and are basically an adaptation of hardware fault-tolerance techniques. 1.9.1 N-version

Programming In this technique, n versions of a program are developed by n developers. All these copies are run

simultaneously, and the one with the most fault tolerance is selected. This is a fault-detection technique used at the

developing stage of the software. In N-version programming; N versions of software are developed by N

291 | P a g e Space for learners: individuals or groups of developers. N-version programming is just like TMR in hardware

fault-tolerance technique. In N-version programming, all the redundant copies are run concurrently and result obtained

is different from each processing. The idea of n- version programming is basically to get the all errors during

development only. 1.9.2 Recovery Blocks This technique is somewhat the same as above, except for the redundant

copies are not run simultaneously. They are run one by one and are generated with a different set of algorithms. This

technique is used where task deadlines are more than the computation time. Recovery blocks technique is also kike the

n- version programming but in recovery blocks technique, redundant copies are generated using different algorithms

only. In recovery block, all the redundant copies are not run concurrently and these copies are run one by one. Recovery

block technique can only be used where the task deadlines are more than task computation time. 1.9.3 Check-pointing

and Rollback Recovery This technique is different from above two techniques of software fault-tolerance. In this

technique, system is tested each time when we perform some computation. This technique is basically useful when

there is processor failure or data corruption. 1.10

96% MATCHING BLOCK 239/246

SOFTWARE RELIABILTY MODELS A software reliability model indicates the form of a random process that defines the

behavior of software failures to time. Software reliability models have appeared as people try to understand the features

of how and why software fails, and attempt to quantify software reliability.

Over 200 models have been established since the early 1970s, but how to quantify software reliability remains mostly

unsolved.

100% MATCHING BLOCK 240/246

There is no individual model that can be used in all situations. No model is complete or even representative. Most

software models contain the following parts: 292 |

P a g e Space for learners: ? Assumptions ? Factors

100% MATCHING BLOCK 241/246

A reliability growth model is a numerical model of software reliability, which predicts how software reliability should

improve over time as errors are discovered and repaired.

Although there are different reliability models, three simple ones are discussed in this section. 1.10.1 Jelinski-Moranda

Model This model is credited with being the first reliability model. It belongs to a class of exponential order statistic

model that assumes that fault detection and correction begins when a program contains N faults and all the faults have

the same rate φ. The basic assumptions of the model are: 1. The program contains N initial faults which are an unknown

but fixed constant. 2. Each fault in the program is independent and equally likely to cause a failure during a test. 3. Time

intervals between occurrences of failure are independent of each other. 4. Whenever a failure occurs, a corresponding

fault is removed with certainty. 5. The fault that causes a failure is assumed to be instantaneously removed, and no new

faults are inserted during the removal of the detected fault. 6. The software failure rate during a failure interval is constant

and is proportional to the number of faults remaining in the program. The program failure rate at the ith failure interval is

given by, Where = a proportional constant, the contribution any one fault makes to the overall program

293 | P a g e Space for learners: N = the number of initial faults in the program = the time between the and the failures.

For example, the initial failure intensity is and after the first failure, the failure intensity decreases to and so on. The partial

distribution function (pdf) of is The cumulative distribution function (cdf) of is The software reliability function is,

therefore, 1.10.2 Musa’s Basic Execution Time Model This model was established by J.D. Musa in 1979, and it is based on

execution time. The basic execution model is the most popular and generally used reliability growth model, mainly

because: ? It is practical, simple, and easy to understand. ? Its parameters clearly relate to the physical world. ? It can be

used for accurate reliability prediction. The basic execution model determines failure behavior initially using execution

time. Execution time may later be converted in calendar time. ? The failure behavior is a nonhomogeneous Poisson

process, which means the associated probability distribution is a Poisson process whose characteristics vary in time

294 | P a g e Space for learners: ? It is equivalent to the M-O logarithmic Poisson execution time model, with different

mean value function ? The mean value function, in this case, is based on an exponential distribution. Variables involved in

the Basic Execution Model: ? Failure intensity (λ): number of failures per time unit. ? Execution time (τ): time since the

program is running. ? Mean failures experienced (µ): mean failures experienced in a time interval. In the basic execution

model, the mean failures experienced µ is expressed in terms of the execution time (τ) as where, -λ 0 : stands for the

initial failure intensity at the start of the execution. -v 0 : stands for the total number of failures occurring over an infinite

time period; it corresponds to the expected number of failures to be observed eventually. The failure intensity expressed

as a function of the execution time is given by It is based on the above formula. The failure intensity λ is expressed in

terms of µ as: where, λ 0 : Initial v 0 : Number of failures experienced, if a program is executed for an infinite time period.

295 | P a g e Space for learners: µ: Average or expected number of failures experienced at a given period of time. τ:
Execution time. The Musa basic execution time model assumes that all faults are equally likely to occur, are independent

of each other and are actually observed. The execution times between failures are modelled as piecewise exponentially

distributed. The intensity function is proportional to the number of faults remaining in the program and the fault

correction rate is proportional to the failure occurrence rate. 1.10.3 Goel-Okumoto (GO) Model The model developed by

Goel and Okumoto in 1979 is based on the following assumptions: 1. The number of failures experienced by time t

follows a Poisson distribution with the mean value function µ (t). This mean value method has the boundary conditions

µ(0) = 0 and Lim t→∞ µ(t) = N > ∞. 2. The number of software failures that occur in (t, t+Δt] with Δt → 0 is proportional

to the expected number of undetected errors, N - µ(t). The constant of proportionality is ∅. 3. For any finite collection of

times t 1 > t 2 > · · · > t n the number of failures occurring in each of the disjoint intervals (0, t 1),(t 1 , t 2)... (t n-1

,t n) is independent. 4. Whenever a failure has occurred, the fault that caused it is removed instantaneously and without

introducing any new fault into the software. Since each fault is perfectly repaired after it has caused a failure, the number

of inherent faults in the software at the starting of testing is equal to the number of failures that will have appeared after

an infinite amount of testing. According to assumption 1, M (∞) follows a Poisson distribution with expected value N.

Therefore, N is the expected number of initial software faults as compared to the fixed but unknown actual number of

initial software faults µ 0 in the Jelinski Moranda model.

296 | P a g e Space for learners: 1.11 SUMMARY ? Software reliability is

66% MATCHING BLOCK 242/246

the probability that the software will work without failure for a specified period of time. ?

Software failure is classified into Transient, Permanent, Recoverable, Unrecoverable and Cosmetic ? Reliability metrics are

used to quantitatively express the reliability of the software product. ? ROCOF measures the frequency of occurrence of

unexpected behavior. ?

100% MATCHING BLOCK 243/246

MTTF is the average time between two successive failures, observed over a large number of failures. ?

100% MATCHING BLOCK 244/246

MTTR measures the average time it takes to track the errors causing the failure and to fix them.

Check Your Progress-1 1. Write the characteristics of software failures over hardware failures? 2. What are the objectives

of software reliability models? 3. Write the difference between Goel-Okumoto model and Jelinski Moranda Model? 4.

Why MUSA’s model is most popular among reliability models? State TRUE or FALSE: 1. A failure can be related to the

operating system. 2. Defect that causes error in operation or negative impact is called fault. 3. Programmers can make

mistakes while developing the source code. 4. A model used to describe software reliability is known as MTBF 5.

Availability is the probability of software to opearate and deliver the desired request.

297 | P a g e Space for learners: ?

100% MATCHING BLOCK 245/246

POFOD measures the likelihood of the system failing when a service request is made. ?

100% MATCHING BLOCK 246/246

Availability of a system is a measure of how likely shall the system is available for use over a given period of time. ?

Software reliability techniques can be divided into four categories, namely product metrics, project management metrics,

Process metrics, fault and failure metrics. ? Fault tolerance techniques mainly N-Version Programming, Recovery blocks

and Check-pointing and Rollback Recovery 1.12 ANSWERS TO CHECK YOUR PROGRESS 1.13 POSSIBLE QUESTIONS

Short answer type questions: 1. Define Software Reliability? 2. What are the types of software failure? 3. Differentiate

between software reliability and hardware reliability? 4. Which factor is MUSA's basic model based on? 5. What are the

software the fault tolerance techniques? Long answer type questions: 1. What is the need of reliability matrices? Explain

the different reliability matrices? 2. Explain the software reliability measurement techniques? 3. Explain the software

reliability improvement techniques? 4. Write a note on Jelinski-Moranda Model and Goel-Okumoto Model

298 | P a g e Space for learners: 5. Describe MUSA's basic execution time model? 1.14 REFERENCES AND SUGGESTED

READINGS ? Musa, J.D, A. Iannino and K.okumoto Software Reliability : Measurement, Prediction , Application,

professional Edition : Software Engineering Series , McGraw- Hill, NewYork , NY.,1990 ? Software Reliability by John

Musa. ? Software Metrics and Reliability by Linda Rosenburg, Ted Hammer, Jack Shaw

satc.gsfc.nasa.gov/support/ISSRE_NOV98/ software_metrics_and_reliability.html – 2 ? Software Reliability by Jiantao,

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

299 | P a g e Space for learners: UNIT 2: SOFTWARE QUALITY MANAGEMENT Unit Structure: 2.1 Introduction 2.2 Unit

Objectives 2.3 Software Quality 2.4 Software Standards 2.5 Reviews and Inspections 2.5.1 Review Process 2.5.2 Program

Inspection 2.6 Quality Management and Agile Development 2.7 Summing Up 2.8 Answers to Check Your Progress 2.9

Possible Questions 2.10 References and Suggested Readings 2.1 INTRODUCTION If the quality of the software does not

meet the standards, then the final product might be slow, inconsistent, not reusable and hence, difficult to perform the

maintenance. In manufacturing industry, the concept of ‘quality assurance’ and ‘quality control’ were already in use, and

later these concepts were incorporated in software industry as well. Quality assurance (QA) defines the processes and

standards that lead to high-quality products whereas quality control is the application of these processes to eliminate the

products that do not meet the required level of quality. Thus quality management works in tandem with the software

development process as shown in fig 7.1. The quality management process performs periodical checks so that the

project meets the required standard. The quality management team should be independent from the development team

so that they can take an objective view of the software. This allows them to report on software quality without being

influenced by software development issues.

300 | P a g e Space for learners: Fig. 7.1: Quality management process 2.2 UNIT OBJECTIVES After going through this

unit, you will be able to: ? Understand what is software quality management and why is it necessary. ? Comprehend the

importance of standards in the software quality management and know how standards are used in quality assurance. ?

Understand how reviews and inspections improve software quality. ? Learn how quality is maintained in Agile software

development process. 2.3 SOFTWARE QUALITY In manufacturing industry, the product is manufacture under a set of

standard processes and procedures; and once the product is manufactured, it is tested to check whether it meets the

standard required specifications. If there are products that miss the standard specifications by a little margin, then such

products will still be deemed alright because there is a high probability that customers might never notice or even ignore

slight niggles or objections. But quality of software cannot be evaluated the way quality of manufactured products are

determined because one, the software Software Development Process D1 D2 D3 D4 D5 Quality Management Process

Standard and Procedures Quality Plan Quality Review Reports

301 | P a g e Space for learners: developer and the customer may never converge in their view of the requirements.

Second, it might never be possible to satisfy the requirements of all the thousands of users and stakeholders. And finally,

in some cases, it might not be possible to directly assess certain quality parameters like maintenance. Thus, the

assessment of software quality is a subjective process where it is the responsibility of the quality management team to

use their judgement to decide if an acceptable level of quality has been achieved and whether the software can be used

for its intended purpose. To do this we have to answer the following questions about the system’s characteristics. a) Have

programming and documentation standards been followed in the development process? b) Has the software been

properly tested? c) Is the software sufficiently dependable to be put into use? d) Is the performance of the software

acceptable for normal use? e) Is the software usable? f) Is the software well-structured and understandable? Thus, the

quality management team analyses the tests that has been carried out, makes sure the test are correctly done and

examines the test results to check whether the desired goal has been acquired. But, software quality is not just about

whether the system requirement has been successfully acquired, but also whether the non-functional system attributes

has been evaluated upon. There are around 15 important software quality attributes, as shown in table 7.1, on which we

have to test our system. Sl. no. Attribute Significance 1 Complexity Software complexity describes a specific set of

characteristics that focus on how our piece of code or software interacts with other pieces of code. 2 Efficiency

Software Efficiency determines the amount of code and testing resources required by a program to perform a particular

function. 3 Interoperability It is the ability of two or more systems to

302 | P a g e Space for learners: communicate or exchange data easily and to use the data that has been exchanged. 4

Learnability Learnability is a quality of software products and interfaces that allows users to quickly become familiar with

them and able to make good use of all their features and capabilities 5 Modularity Modularity is the degree to which a

system's components may be separated and recombined easily. 6 Portability It is the ability of a software application to

run on numerous platforms such as data portability, hosting, viewing, etc. 7 Reliability It relates to the software's ability to

continue operating, under given environmental conditions, for a particular amount of time. 8 Resilience Software

resilience refers to the ability to absorb the impact of disruption in one or more parts of a system, while still continuing to

provide an acceptable level of service. 9 Reusability Reusability is the likelihood that a segment of source code can be

used again to add new functionalities with slight or no modification. 10 Robustness Robustness is the ability of the

system to handle with abnormalities like errors during execution, erroneous input, sudden changes in hardware or

software environment, etc. 11 Scalability It is the ability of a system to handle the demand for stress caused by increased

usage without decreasing performance. 12 Security It is the ability of a system to resist or block malicious or

unauthorized attempts that destroy the system and at the same time provide access to legitimate users. 13 Supportability

It is the ability of a system that satisfies necessary requirements and needs to identifying and solving problems. 14

Testability It shows how well the system or component facilitates to perform tests to determine whether the predefined

test criteria have been met.

303 | P a g e Space for learners: 15 Usability It is described as how the user is utilizing a system effectively and the ease of

which users can learn to operate or control the system. One of the well-known principles of usability is to make it very

user-friendly and keep it as simple as possible. Table 7.1: Software quality attributes Particular software may not be able to

stand strong on all the above mentioned attributes — for example, if we want to improve robustness then this might lead

to loss of efficiency. Therefore, the quality management team should try to find out what are the major criteria for the

system being developed. Say, for example, if efficiency is very important then there is reason why other criteria like

scalability or usability may be relaxed. This should be stated in the quality plan so that the engineers working on the

software development can cooperate to achieve this. Thus, the quality plan should include all the definition of the quality

assessment process and the agreed upon quality attributes that are essential for the software. STOP TO CONSIDER 1.

The quality of software cannot be evaluated the way quality of manufactured products are determined. 2. The quality

management process goes in tandem with the software development process. 3. The assessment of software quality is a

subjective process. 4. Software quality is not just about whether the system requirement has been successfully acquired,

but also depends on many non-functional system attributes. 5. The quality management team should try to find out

what are the essential non-functional attributes for the software.

304 | P a g e Space for learners: 2.4 SOFTWARE STANDARDS Software standards play a major role in software quality

management. As assessment of software quality is a subjective process and it depends on the expectations of the

organization and the user; so, having a set of specified standards will assist in setting the definition of ‘quality’ for the

particular software. It will be the guiding principles for all the engineers in an organization and will also assist a new

engineer to quickly adapt, in case anyone leaves the organization. In software engineering, there are two types of

standards: a) Product standard: These are the standards that the product being developed should have. It includes

document standards, such as the structure of requirements documents, documentation standards, such as a standard

comment header for an object class definition, and coding standards, which define how a programming language

should be used b) Process standard: These are the standard processes that should be followed during software

development. It includes good development practice, definitions of specification, design and validation processes,

process support tools, and a description of the documents that should be written during these processes. Many

international bodies like the Institute of Electrical and Electronics Engineers (IEEE), American National Standards Institute

(ANSI) and British Standards Institution (BSI) have developed software standards that can be used for our projects. There

are standards even for programming languages such as Java and C++. There are standards that encompass many

software CHECK YOUR PROGRESS-1 1. Why the quality management team should be independent from the

development team? 2. The assessment of software quality is a subjective / objective process. (Choose the correct option)

3. Why should the quality management team try to find out the major software attributes that are significant for the

system being developed?

305 | P a g e Space for learners: engineering terminologies like procedures for deriving and writing software

requirements, quality assurance procedures, software verification and validation processes (IEEE, 2003) and safety /

security-critical procedures as IEC 61508 (IEC,1998). When developing the standards for a company, the quality

management team should formulate the standards by obtaining information and insight from such well-established

international quality standards. This way they can set the standards that will be credible and justifiable. But all software

standards might not be applicable to all kinds of software projects. The quality management team should plan and

prepare in advance, what are the criteria and standards that are viable for the individual project. They should be able to

identify what are the standards that are absolutely necessary, what can be used but in a modified manner and what can

be completely rejected. If this is not done in advance, then the software engineers will be wasting their time in achieving

the standard that is not necessary rather than fulfilling the required goals and standards for the project. STOP TO

CONSIDER 1. Software standards will act as the guiding principles for all the engineers in an organization. 2. In software

engineering, there are two types of standards: product standard and process standard. 3. The quality management team

should formulate the standards by obtaining information and insight from well-established international quality

standards. CHECK YOUR PROGRESS-2 4. Software standard will be the ____________________ for all the engineers in

an organization. 5. What are some of the international standard bodies? 6. How can we set credible software standard?

306 | P a g e Space for learners: 2.5 REVIEWS AND INSPECTIONS Reviews and inspections is another means by which we

can verify the quality of software. First the review team validates whether the quality standards have been followed or

not. The review team should look into the documents pertaining to software specifications, designs, or code, process

models, test plans, configuration management procedures, process standards, and user manuals. They should check the

consistency and completeness of the documents and the programming code and makes sure that quality standards have

been followed. After they verify the conformity to standards, then they try to discover problems and omissions in the

software or project documentation. That is, they thoroughly examine the records and documentations of the procedures

used to discover errors and omissions. 2.5.1 Review Process The review process mainly consists of three phases: a) Pre-

review activities: In pre-review activities there is planning and preparation of the review. A review team is created, a time

and place for the review is set, and the documents to be reviewed are distributed. Individual review team members will

go through the relevant documents and work independently to find errors, omissions, and deviations from standards. b)

Review meeting: A review meeting is formally arranged. It is chaired by one of the review team members while another

one transcribes all the important review decisions and actions to be taken. One of the authors of the document will have

to explain all the details about the document and the project. The chair should ensure that all the comments, instructions

and future actions are duly recorded. c) Post-review activities: After the review meeting is over, it is time to address the

issues and problems raised during the review. For example there may be issues related to solving bugs in software, or

restructuring the code so that it becomes more readable, more efficient, less complex and easier to maintain. Sometimes

there may be issue related to compliance of quality standards and rewriting the document, or in some cases allocating

more resources to the project

307 | P a g e Space for learners: if needed. The review chair must ensure that all the review comments have been duly

processed and thoroughly examined. 2.5.2 Program Inspections The main aim of program inspection is to find bugs in

the program being developed. A completed program is not required to perform the inspection; even an incomplete

version of the system can be examined. In fact, the most effective way to inspect a system is to use its test cases, find

problems and thus improve its effectiveness. One of the main tasks of the members of the inspection team is to

meticulously review each line of the source code, find any logical errors or any anomalies and show these at an

inspection meeting. Several books and journals have been published which provide us a list of common programming

errors that can be found in a particular project or domain. In fact, different list exists for different programming language

as each programming language can have different types of errors or anomalies. One such book is “Managing the

Software Process”, by Watts S. Humphrey, Addison-Wesley publication (1989). The inspection team members can make

use of such “list of common errors” to examine the project under preview. 2.6 QUALITY MANAGEMENT AND AGILE

DEVELOPMENT Although, most companies agree that inspections are very effective in finding bugs, but some may

forsake this process. Software engineers with experience of program testing may disagree that inspections can be more

effective than testing. Again, sometimes STOP TO CONSIDER 1. The review team verifies whether the software conforms

to quality standards and also tries to discover problems, anomalies and omissions in the software. 2. The review process

mainly consists of three phases. 3. The main aim of program inspection is to find bugs in the program under inspection.

4. The inspection team can make use of already existing list of common errors and problems.

308 | P a g e Space for learners: managers may not have the liberty to sustain extra cost; as inspections may incur

additional costs during design and development. Another such example is ‘Agile’ processes which does not approve of

using formal inspection methods. The Agile method focuses more on code development than on formal inspection

documentation process. It relies more on individual programmer’s ethical and responsible frame of mind. Here each

member follows good coding practises like refactoring, avoiding deep nesting, limiting line length, using proper naming

conventions, etc, as well as having a test-driven development so that a high quality code is created. In the Agile

processes, team members can also cooperate among themselves to check each other’s code. They follow the rules: a)

Check before check-in: It suggests that programmers should always check their own code, consult with other team

members, before using it in a system. b) Never break the build: It suggests that a programmer’s code should never break

the build. So, they have to rigorously test their code before they use it. If the build is broken, then it is the programmer’s

responsibility to fix it. c) Fix problem when you see them: If a programmer detects a problem or anomaly in another

programmer’s code, then he or she can directly modify the code instead of resending the code to the original

programmer. STOP TO CONSIDER 1. The formal inspection process may not be adopted by all companies. 2. In the Agile

processes, team members cooperate among themselves to check each other’s code. 3. In the Agile processes, each

programmer should rigorously test their own code, consult with other team members, before the code is checked in to

build the system.

309 | P a g e Space for learners: 2.7 SUMMING UP ? Software development process and software quality management

process should be done simultaneously. ? Software quality cannot be evaluated the way quality of manufactured

products are determined. ? The assessment of software quality is a subjective process depends on lot of other non-

functional factors like Complexity, Efficiency, Interoperability, Learnability, Modularity, Portability, Reliability, Resilience,

Reusability, Robustness, Scalability, Security, Supportability, Testability and Usability. ? One of the aims of the quality

management team is to find out those the essential non-functional attributes which directly affects the software. ?

Setting standards will assist in defining the ‘quality’ for the software, and help the engineers to follow the established

guidelines. ? Insight and information from well-established international quality standards will guide the quality

management team to formulate the standards for the company. CHECK YOUR PROGRESS-3 7. The review team makes

sure that have been followed and checks whether there are in the software. 8. For program inspection, a completed

program is required to perform the inspection. (True or False). 9. One of the main tasks of the members of the inspection

team is to meticulously review each line of the source code. (True or False). 10. The Agile method focuses more on than

on . 11. Agile method relies heavily on individual programmer’s ethical and responsible frame of mind to write good

documentation. (True or False).

310 | P a g e Space for learners: ? The purpose of review process is to verify whether the software conforms to quality

standards and also to discover problems, anomalies and omissions in the software. ? The review process mainly consists

of three phases: Pre- review activities, Review meeting and Post-review activities. ? The main aim of program inspection

is to find bugs in the program by meticulously examining each line of source code. ? The inspection team can make use

of already existing list of common errors and anomalies. ? The Agile software development method focuses more on

code development than on formal inspection documentation process and relies heavily on individual programmer’s

ethical and responsible behaviour. ? 12. The programmers in Agile software development process follow the rules like

Check before check-in, Never break the build and Fix problem when you see them. 2.8 ANSWERS TO CHECK YOUR

PROGRESS 1. The quality management team should be independent from the development team so that they can take

an objective view of the software. This allows them to report on software quality without being influenced by software

development issues. 2. The assessment of software quality is a subjective process. 3. A software may not be able to

satisfy all the non-functional attributes. So, the quality management team, in consultation with all the stakeholders,

should try to find out what are the attributes that are more essential for the system. This should be stated in the quality

plan, so that the software engineers can cooperate to achieve this. 4. Software standard will be the guiding principles for

all the engineers in an organization 5. Some of the international standard bodies are Electrical and Electronics Engineers

(IEEE), American National Standards Institute (ANSI) and British Standards Institution (BSI). 6. When developing the

standards for a company, the quality management team should formulate the standards by obtaining

311 | P a g e Space for learners: information and insight from such well-established international quality standards. This

way they can set the standards that will be credible and justifiable. 7. The review team makes sure that quality standards

have been followed and checks whether there are problems and omissions in the software. 8. False. 9. True 10. The Agile

method focuses more on code development than on formal inspection documentation process. 11. False 2.9 POSSIBLE

QUESTIONS Short answer type questions: 1. State why the evaluation process for the quality of software cannot be

measured in the same way as the quality of manufactured products. 2. To decide if an acceptable level of quality has

been achieved what are some of the questions about the system’s characteristics that the quality management team

needs to ask? 3. Why do you think the assessment of software quality is a subjective process? 4. What are two types of

standards in software engineering? 5. Why should the quality management team formulate the standards from well-

established international quality standards? 6. Explain the three phases of review process. 7. State the rules followed in

Agile software development. Long answer type questions: 1. Explain some of the non-functional system attributes that

the software quality needs to be evaluated upon. 2. What is the importance of software quality standards and how to

achieve it?

312 | P a g e Space for learners: 3. What is the significance of reviews and inspections and how can you implement them?

4. Explain how software quality is maintained in Agile method of software engineering. 2.10 REFERENCES AND

SUGGESTED READINGS ? Wixom, B. H., Roth, R. M., (2008), Systems Analysis and Design, Wiley Publishing ? Kendall, K.

E., Kendall J. E., (2019), Systems Analysis and Design, Pearson

313 | P a g e Space for learners: UNIT 3: SOFTWARE CONFIGURATION MANAGEMENT Unit Structure: 3.1 Introduction

3.2 Unit Objectives 3.3 Change Management 3.4 Version Management 3.4.1 Codelines and Baselines 3.4.1 Version

Control System 3.5 System building 3.5.1 Automated Build Tools 3.6 Release Management 3.7 Summing Up 3.8 Answers

to Check Your Progress 3.9 Possible Questions 3.10 References and Suggested Readings 3.1 INTRODUCTION As the

software is being developed there might be scenarios where there is sudden change in system requirements and some

additional features might have to be incorporated in the existing system. Occurrence of new bugs or arrival of a new

version of hardware may also force the developer to adapt their software according to the current changes. As changes

are inevitable, each of versions software has to be maintained and managed properly. If it is not maintained properly then

it will lead to a chaotic situation where no one will have the correct idea about what changes has been made and which

version is supposed to be considered. Thus configuration management plays a vital role in software development. There

are four components of software configuration management namely, Change management, Version management,

System building, and Release management; all of these will be discussed in this current unit.

314 | P a g e Space for learners: 3.2 UNIT OBJECTIVES After going through this unit, you will be able to: ? Understand

that sudden change in system requirements will continuously emerge through the software development process. ?

Learn how to analyse, respond and manage changes in the system. ? Learn to perform version management using

codeline and baseline. ? Understand the complex process of system building. ? Understand the differences between a

system version and a system release, and learn about release management process. 3.3 CHANGE MANAGEMENT As

changes to a system due to detection of new bugs, arrival of newer hardware or need for additional system requirements

is almost certain to emerge, so it is utmost necessary to make sure that the changes are applied in a controlled and

managed process. The main aim here is to find out which changes are commendable to make, which are vital, sensible

as well as cost-effective and more importantly keeping track of the components that has been changed. Any stakeholder

be it developer, user, product owner or project manager can request or report for a change in a system. This can be

straightforward bug report, or request for additional system requirements. The request has to be formally reported

through a change request form (CRF). After the CRF has been submitted, it is evaluated and determined whether the

change request is notable. In some events it may happen that a bug or an additional requirement has been reported, but

by the time the report has been filed, the bug might have been already erased or the additional feature has already been

implemented but the requester may not know about it. Sometimes the additional feature may already be existing in the

system and due to some misunderstanding, they may not be aware of it. In such cases the request is dissolved and it not

processed any further.

315 | P a g e Space for learners: If the requested change is a valid claim then it has to be duly processed and the following

steps are taken. First, vital information have to be collected like date of submission of the report, the significance of each

change requested, what will be the impact and scope of the change, which component of the system will be affected,

what will be the cost incurred and finally whether the request is approved or rejected. If it is approved then it has to be

decided how the changes have to be implemented and where the changes have to be incorporated. For example, the

change may have to be included in any one or more of the following cases: requirements documentation, technical

design documentation, programming code, project schedules, test cases, etc. As the change to the respective

component is being made, it is very essential that a snapshot of the changed state is recorded and properly maintained.

This is called as derivation history. For example if a change is made in program source code, then a good way of keeping

the derivation history is by using standardized comment at the begin of the code. This comment will point to the change

request that caused the change. For documents, records of changes incorporated in each version are usually maintained

in a separate page at the front of the document. STOP TO CONSIDER 1. Any stakeholder can request or report for a

change in a system. 2. Changes to an existing system are inevitable, so each of versions software has to be maintained

and managed properly. 3. The request has to be formally reported through a change request form (CRF). 4. Valid requests

are appropriately processed and analysed whereas misunderstood or superfluous requests are rejected. 5. For every

changes made, derivation history is to be maintained.

316 | P a g e Space for learners: 3.4 VERSION MANAGEMENT The main objective of version management (VM) is to keep

track of different versions of software components and the systems in which these components are used. It should be

ensured that no two developers have conflict or interference with the changes made to their respective versions. In

other words, version management is the process of managing codelines and baselines. 3.4.1 Codelines and Baselines

When a programmer revises or changes the source code of a component in a system, then there will be different

versions of each component. A codeline is the sequence of versions of source code where the later version in the

sequence is derived from the earlier version. Before checking in, i.e., submitting, the modified code, a programmer has to

follow certain guidelines. There has to be a limit to the number of times a programmer can check in the code. A

programmer cannot be allowed to check in as many times as possible because it will create a huge confusion for the

whole team. Before the code is checked in or submitted, it should be tested as much as possible and integrated as early

as possible. Once a stable version of the components in a system are judiciously saved by all the programmers or

developers, then a baseline, or to put in in simple terms, a milestone or a snapshot of the system, is created and stored.

Here we have to ensure that all the information like who has made the version and what changes were made in the

CHECK YOUR PROGRESS-1 1. What are the sudden changes that might occur during the software development

process? 2. What are the four components of software configuration management? 3. What are the main objectives of

software configuration management? 4. Any stakeholder be it developer, user, product owner or project manager

cannot request or report for a change in a system. (True or False).

317 | P a g e Space for learners: Codelines version has to well-documented and astutely preserved. At no point of time

should the versions in a baseline be lost, so that if a previous version of the software is requested it can be effortlessly

returned. Apart from component versions, the baseline also includes a specification of the libraries used, configuration

files, etc. Fig. 8.1 depicts a diagrammatical view of versions, codelines and baselines. Fig 8.1: Versions, Codelines and

Baselines 3.4.2 Version Control System There are software tools that enable us to identify, store and control access to the

different versions of components. These are called as Version Control (VC) systems and there are two main categories of

version control system: Centralized and Distributed. In centralized system there is a single master repository that

maintains all versions of the software components that are being developed. In distributed systems multiple versions of

the component repository can be stored at the same time. Each user has its own repository and working copy. Example

of centralized VC system is Subversion, whereas example of distributed VC system is Git. Key features of version control

systems: ? Version and release identification ? Change history recording ? Support for independent development ?

Project support ? Storage management Codelines Codelines Version 1.1 Version 1.2 Version 1.3 Version 2.1 Version 2.2

Version 3.1 Version 3.2 Component 1 Component 2 Component 3 Version 2.3 Baselines Release 1.0.0 Release 1.1.0

318 | P a g e Space for learners: 3.5 SYSTEM BUILDING System building is the process of creating a complete, executable

system by compiling and linking the system components, external libraries, configuration files, etc. As the version

management system contains the repositories of component versions, there need to exist communication between

system building tools and version management tools. The system building tool also needs configuration description of

baselines existing in the system. STOP TO CONSIDER 1. The main objective of version management (VM) is to keep track

of different versions of software components and the systems in which these components are used. 2. A codeline is the

sequence of versions of source code where the later version in the sequence is derived from the earlier version. 3. A

baseline represents the stable and agreed upon versions of all components in a certain point of time. 4. There are

software tools called Version Control (VC) systems that enable us to identify, store and control access to the different

versions of components. CHECK YOUR PROGRESS-2 5. ensures that no two developers have conflict or interference

with the changes made to their respective versions. 6. A is the sequence of versions of source code whereas a is a stable

and agreed upon versions of all components in a certain point of time. 7. A programmer need not follow any guidelines

to check in his version of code. (True or False). 8. In a baseline, a previous version of the software cannot be requested.

(True or False). 9. Apart from component versions, the baseline also includes a specification of the libraries used,

configuration files, etc. (True or False). 10. Give an example of centralized version control system and distributed version

control system. (Subversion, Git)

319 | P a g e Space for learners: System building has three main platforms: a) Development system: It includes

development tools such as compilers, source code editors, etc. Here, the developers need to create a private workspace

where they can download a copy of the code (also called as check out) from the code repository located in the version

management system. Once they have made the changes in their code and before they again commit it back into the

version management system, they have to test it in their private development environment. For this they will have to use

the local build tools in their private workspace. b) Build server: It is used to build definitive, executable versions of the

system. Once the developers have made the changes, performed appropriate testing, they upload their code (also called

as check in) to the version management system. The system build may rely on external libraries that are not included in

the version management system. c) Target environment: It is the actual platform on which the software actually has to

run. The actual platform can be the same type of hardware and software environment used during the development and

build phase. But many times the target environment can be rather smaller and simpler system like a mobile phone than a

high-end system used in the development environment. 3. 5. 1 Automated Build Tools The build script is a definition of

the system to be built. It includes information about components and their dependencies, and the versions of tools used

to compile and link the system. The build script includes the configuration specification which ensures that the scripting

language and the configuration description language remain the same. The configuration language includes constructs

to describe the system components to be included in the build and their dependencies. System building involves

assembling a large amount of information about the software and its operating environment. Therefore, for large

systems, automated build tool can be used to create a system build. Some example of automated build tools are Bazel,

Jenkins,

320 | P a g e Space for learners: Apache Maven, Gradle, Gulp, Travis CI, Nant, etc. Some of the features that the

automated build tools may provide are as follows: a) Build script generation: It analyzes the program that is being built,

identifies dependent components, and automatically generates a build script. It may also support the manual creation

and editing of build scripts. b) Version management system integration: It verifies the required versions of components

from the version management system. c) Minimal recompilation: It finds out which part of the source code requires to

be recompiled and performs the compilation. d) Executable system creation: It links the compiled object code files with

each other and with other required files, such as libraries and configuration files, and creates an executable system. e)

Test automation: Some build systems can automatically run automated tests using test automation tools such as JUnit.

These check that the build has not been ‘broken’ by changes. f) Reporting: It provides reports about the success or failure

of the build and the tests that have been run. g) Documentation generation: It may also be able to generate release notes

about the build and system help pages. STOP TO CONSIDER 1. System building is the process of creating a complete,

executable system by compiling and linking the system components, external libraries, configuration files, etc. 2. System

building has three main platforms: development system, build server and target environment. 3. The build script is a

definition of the system to be built which includes information about components and their dependencies, and the

versions of tools used to compile and link the system. 4. For larger complex systems, automated build tool can be used

to create a system build. 5. Automated build tools provide many features like build script generation, version

management system integration, minimal recompilation, executable system creation, test automation, reporting and

documentation generation.

321 | P a g e Space for learners: 3.6 RELEASE MANAGEMENT A system release is a version of a software system that is

distributed to customers or users. Two kinds of release types are there: major release and minor release. Major release

contains significant new functionality whereas minor release is used to find bugs or customer / user related issues and

repair them. Minor releases are usually distributed free of charge while the user has to make payment to use major

releases. A software company may have various releases of a product and may distribute these releases to many

customers or users. Sometimes a customer may be comfortable in using an older release and after many years of use,

may want specific changes to be made in that particular release. So it becomes imperative for the software company to

manage all the different releases, maintain information about which release is provided to which customer, store

information between releases and system versions and should be able to correlate and regulate the software that has

been delivered to a particular customer. CHECK YOUR PROGRESS-3 11. To build a complete system, there should be

communication between tools and tools. 12. System building consists of development platform where the developer

creates a private workspace and checks in the code to the version management system. (True or False). 13. How does a

developer use the development platform in system building? 14. Once appropriate testing has been performed, the

developer has to check in the code to the version management system and build an executable version of the system.

15. The actual platform is always the same as the one used during the development and build phase. (True or False). 16.

What is a build script? 17. Name some automated build tools.

322 | P a g e Space for learners: To document a release, the specific versions of the source code components that were

used to create the executable code have to be properly recorded. Copies of the source code files, corresponding

executables, and all data and configuration files should be properly stored. Even the versions of the operating system,

libraries, compilers, and other tools used to build the software should be well documented because these may be

required to build exactly the same system at some later date. So along with the source code, copies of the platform

software and the tools used to create the system should be stored in the version management system. Release

distribution is a costly affair as it requires advertising and publicity materials, marketing strategies, awareness campaigns,

etc., in order to entice customers into buying the new release of the software. If the releases are too frequent then the

customer may not bother to frequently buy new releases, or if the new releases with improved features are seldom made

then it will be difficult to hold on to the customers as they may start using latest software from another company. While

making a new release, a company cannot blindly believe that all the customers will be using their latest release. In fact,

there may be many customers who may be just satisfied with the older release and may never bother to upgrade to the

latest release. Say for example, a company has three releases of their software, R.1, R.2 and R.3, with R.1 being the oldest

and R.3 being the newest release. Say, R.1 is simple basic release, R.2 requires the customer to upload some specialized

data and R.3 is an advanced distributed system which makes use of the data uploaded by the customer in R.2. Now, since

release R.3 requires data uploaded by the customer in R.2 then, if a customer wants to go directly from R1 to R3, then the

company has to maintain proper record about which release was provided to which customer and accordingly take the

correct set of actions. If this is not handled appropriately, then the software may crash, causing frustration for the

customer and embarrassment for the company. To avoid such scenarios, some companies may even try to implement

automatic update of their software whenever there is any new release available. But if the customer switches off the

automatic update feature then this also cannot be forcefully implemented.

323 | P a g e Space for learners: 3.7 SUMMING UP ? As the software is being developed there might be scenarios where

there is sudden change in system requirements, new bugs may be detected or new hardware may have to be

introduced. ? So, changes to a system are inevitable and hence each of versions software has to be maintained and

managed properly STOP TO CONSIDER 1. Two kinds of release types are there: major release and minor release. 2. It is

important for the company to manage all the different releases and maintain the information about which release is

provided to which customer. 3. Along with the source code, copies of the platform software and the tools used to create

the system should be stored in the version management system. 4. Release distribution is financially costly. 5. A company

cannot presume that all the customers will be using their latest release. CHECK YOUR PROGRESS-4 18. Major release

contains significant new functionality whereas minor release is used to find new bugs. 19. Major releases are usually

distributed free of charge while the user has to make payment to use minor releases. (True or False). 20. A company

should store information between releases and system versions and should be able to correlate and regulate the

software that has been delivered to a particular customer. (True or False). 21. Why a company should not make too

frequent or too less releases? 22. A company can always trust the customer to have their latest release installed. (True or

False).

324 | P a g e Space for learners: otherwise it will lead to a chaotic situation where no one will have the correct idea about

what changes has been made and which version is supposed to be considered. ? There are four components of software

configuration management namely, Change management, Version management, System building, and Release

management. ? The main aim of change management is to find out which changes are commendable to make, which

are vital, sensible as well as cost-effective and more importantly to keep track of the components that has been

changed. ? Any stakeholder can request or report for a change in a system by formally filling a change request form

(CRF). ? Valid requests are appropriately processed and analysed whereas misunderstood or superfluous requests are

rejected. ? The main objective of version management (VM) is to keep track of different versions of software components

and the systems in which these components are used. ? Managing codelines and baselines is an important activity of

version management process. ? Version Control Software tools like Subversion and Git can be used to identify, store and

control access to the different versions of components. ? System building is the complicated process of creating a

complete, executable system by compiling and linking the system components, external libraries, configuration files, etc.

? System building has three main platforms: development system, build server and target environment. ? For larger

projects automated build tools can be used, which provide many features like build script generation, version

management system integration, minimal recompilation, executable system creation, test automation, reporting and

documentation generation. ? A system release is a version of a software system that is distributed to customers or users.

It is of two types: major release and minor release.

325 | P a g e Space for learners: ? Major release contains significant new functionality whereas minor release is used to

find bugs or customer / user related issues and to repair them. ? It is very important for the software company to manage

all the different releases, maintain information about which release is provided to which customer, store information

between releases and system versions. ? Release distribution incurs a lot of costs in order to advertise the new releases. ?

A company cannot presume that all the customers will always be using their latest release. 3.8 ANSWERS TO CHECK

YOUR PROGRESS 1. Some of the sudden changes that might occur during the software development process are

additional features to be included, changes in system requirements, occurrences of new bugs or arrival of new hardware,

etc. 2. The four components of software configuration management are change management, version management,

system building, and release management. 3. The objectives of software configuration management are to find out

which changes are commendable to make, which are vital, sensible as well as cost-effective and more importantly

keeping track of the components that has been changed. 4. False 5. Version management ensures that no two

developers have conflict or interference with the changes made to their respective versions. 6. A codeline is the

sequence of versions of source code whereas a baseline is a stable and agreed upon versions of all components in a

certain point of time. 7. False. 8. False. 9. True. 10. An example of centralized version control system is Subversion and an

example of distributed version control system is Git.

326 | P a g e Space for learners: 11. To build a complete system, there need to exist communication between system

building tools and version management tools. 12. False. 13. The developers need to create a private workspace where

they have to check out their code from the code repository located in the version management system. Once they have

made the changes in their code and before they can again commit it back into the version management system, they

have to test it in their private development environment. For this they will have to use the local build tools in their private

workspace. 14. Once appropriate testing has been performed, the developer has to check in the code to the version

management system and build an executable version of the system. 15. False. 16. The build script is a definition of the

system to be built which includes information about components and their dependencies, and the versions of tools used

to compile and link the system. The build script includes the configuration specification which ensures that the scripting

language used is the same as the configuration description language. 17. Some example of automated build tools are

Bazel, Jenkins, Apache Maven, Gradle, Gulp, Travis CI, Nant, etc. 18. Major release contains significant new functionality

whereas minor release is used to find new bugs. 19. False 20. True 21. If the releases are too frequent then the customer

may not bother to frequently buy new releases, or if the new releases with improved features are seldom made then it

will be difficult to hold on to the customers as they may start using latest software from another company. 22. False.

327 | P a g e Space for learners: 3.9 POSSIBLE QUESTIONS Short answer type questions: 1. Why is it utmost necessary to

properly maintain and manage the changes applied to each version of software? 2. Why is change request form (CRF)

used for? 3. Explain briefly how misunderstood or superfluous requests are handled in software configuration

management? 4. Explain succinctly what is the goal of version management? 5. What are Centralized and Distributed

version control system? 6. What is system building and why is it a complicated process? 7. State the difference between

major and minor release. 8. Why is it important for the company to manage all the different releases and maintain the

information about which release is provided to which customer? 9. How will you document and record a release? Long

answer type questions: 1. Explain in detail how to skilfully supervise change management in software configuration

management. 2. Explain how you will perform version management using codeline and baseline. 3. Explain in detail what

is the significance of Version Control System? 4. Explain in detail, the three platforms used by developers in system

building. 5. Describe the features of automated build tools that will assist developers in system building process. 6.

Explain the importance of release management and why company cannot presume that all the customers will be using

their latest release? 7. Explain all the process and procedures involved in release management.

328 | P a g e Space for learners: 3.10 REFERENCES AND SUGGESTED READINGS ? Pressman, R. S., (2004), Software

Engineering, A Practitioner’s Approach, McGraw-Hill ? Kendall, K. E., Kendall J. E., (2019), Systems Analysis and Design,

Pearson

Hit and source - focused comparison, Side by Side

Submitted text As student entered the text in the submitted document.

Matching text As the text appears in the source.

1/246 SUBMITTED TEXT 17 WORDS

Software Engineering is a study and approach to the

design, development, operation, and maintenance of

software

87% MATCHING TEXT 17 WORDS

Software Engineering is a systematic, disciplined,

quantifiable study and approach to the design,

development, operation, and maintenance of a software

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

2/246 SUBMITTED TEXT 31 WORDS

OF SOFTWARE ? Maintainability – The programme

should be able to evolve to suit changing requirements. ?

Efficiency – Software should not waste computational

resources such as memory, CPU cycles,

38% MATCHING TEXT 31 WORDS

of Software Engineering: • Maintainability – It should be

feasible for the software to evolve to meet changing

requirements. • Efficiency – The software should not

make wasteful use of computing devices such as

memory, processor cycles,

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

3/246 SUBMITTED TEXT 27 WORDS

If the various requirements mentioned in the SRS

document have been correctly implemented, a software

product is correct. ? Reusability – If the various modules

of

64% MATCHING TEXT 27 WORDS

if the different requirements as in the SRS document have

been correctly implemented. • Reusability – A software

product good reusability if the different modules of

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

4/246 SUBMITTED TEXT 33 WORDS

be expected to accomplish its desired function. ?

Portability – In this case, the software can be transferred

from one computer system or environment to another. ?

Adaptability– In this situation, the

81% MATCHING TEXT 33 WORDS

be expected to perform its desired function, over an

arbitrary time period. • Portability – In this case, the

software can be transferred from one computer system

or environment to another. • Adaptability – In this case,

the

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

5/246 SUBMITTED TEXT 31 WORDS

a detailed strategy that explains how to build, maintain,

replace, and change or improve certain software. The life

cycle is a methodology for improving software quality

and the development process

50% MATCHING TEXT 31 WORDS

a detailed plan describing how to develop, maintain,

replace and alter or enhance specific software. The life

cycle defines a methodology for improving the quality of

software and the overall development process.

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

6/246 SUBMITTED TEXT 37 WORDS

the team's top members, with input from the customer,

the sales department, market surveys, and industry

domain specialists. This information is then utilised to

establish the main project approach and conduct product

feasibility studies in the

52% MATCHING TEXT 37 WORDS

the team with inputs from the customer, the sales

department, market surveys and domain experts in the

industry. This information is then used to plan the basic

project approach and to conduct product feasibility study

in the

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

7/246 SUBMITTED TEXT 25 WORDS

The goal of the technical feasibility study is to identify the

various technical approaches that can be used to

successfully implement the project with

72% MATCHING TEXT 25 WORDS

The outcome of the technical feasibility study is to define

the various technical approaches that can be followed to

implement the project successfully with

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

8/246 SUBMITTED TEXT 51 WORDS

an SRS (Software Requirement Specification) document,

which contains all of the product requirements that must

be designed and developed throughout the project life

cycle. Stage 3: Designing the Product Architecture SRS is

the reference for product architects to come out with the

best architecture for the product to be developed.

83% MATCHING TEXT 51 WORDS

an SRS (Software Requirement Specification) document

which consists of all the product requirements to be

designed and developed during the project life cycle.

Stage 3: Designing the Product Architecture SRS is the

reference for product architects to come out with the

best architecture for the product to be developed.

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

9/246 SUBMITTED TEXT 18 WORDS

design approaches for the product architecture are

presented and documented in a DDS - Design Document

Specification

71% MATCHING TEXT 18 WORDS

design approach for the product architecture is proposed

and documented in a DDS - Design Document

Specification.

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

10/246 SUBMITTED TEXT 11 WORDS

as risk assessment, product robustness, design

modularity, budget, and time

100% MATCHING TEXT 11 WORDS

as risk assessment, product robustness, design

modularity, budget and time

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

11/246 SUBMITTED TEXT 21 WORDS

representation with external and third-party modules (if

any). All of the modules of the proposed architecture's

internal design should be

63% MATCHING TEXT 21 WORDS

representation with the external and third party modules

(if any). The internal design of all the modules of the

proposed architecture should be

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

12/246 SUBMITTED TEXT 22 WORDS

high-level programming languages, including C, C++,

Pascal, Java, and PHP. The programming language is

chosen based on the type of software

65% MATCHING TEXT 22 WORDS

high level programming languages such as C, C++,

Pascal, Java and PHP are used for coding. The

programming language is chosen with respect to the

type of software

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

13/246 SUBMITTED TEXT 40 WORDS

business strategy. The product might be released in a

limited market first, then tested in a real-world setting

(UAT- User acceptance testing). The product may then be

released as is or with proposed enhancements in the

intended market segment

50%

MATCHING TEXT 40 WORDS

business strategy of that organization. The product may

first be released in a limited segment and tested in the

real business environment (UAT- User acceptance

testing). Then based on the feedback, the product may be

released as it is or with suggested enhancements in the

targeting market segment.

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

14/246 SUBMITTED TEXT 100 WORDS

SDLC Models There are various software development life

cycle models defined and designed which are followed

during the software development process. These models

are also referred as Software Development Process

Models. Each process model follows a Series of steps

unique to its type to ensure success in the process of

software development. Following are the most important

and popular SDLC models followed in the industry − ?

Waterfall Model ? Iterative Model ? Prototyping Model ?

Spiral Model ? Incremental Model ? V-Model ? Big Bang

Model Other related methodologies are Agile Model, RAD

Model, Rapid Application Development and

93% MATCHING TEXT 100 WORDS

SDLC Models There are various software development life

cycle models defined and designed which are followed

during the software development process. These models

are also referred as Software Development Process

Models". Each process model follows a Series of steps

unique to its type to ensure success in the process of

software development. Following are the most important

and popular SDLC models followed in the industry − •

Waterfall Model • Iterative Model • Spiral Model • V-Model

• Big Bang Model Other related methodologies are Agile

Model, RAD Model, Rapid Application Development and

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

15/246 SUBMITTED TEXT 13 WORDS

development of actual software, a working prototype of

the system should be

87% MATCHING TEXT 13 WORDS

development of the software, a working prototype of the

system should be

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

16/246 SUBMITTED TEXT 13 WORDS

A prototype is a toy implementation of the system. A

prototype usually

100% MATCHING TEXT 13 WORDS

A prototype is a toy implementation of the system. – A

prototype usually

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

17/246 SUBMITTED TEXT 20 WORDS

to the development team. A prototype can help them to

critically examine the technical issues associated with

product development.

73% MATCHING TEXT 20 WORDS

to the actual software. A developed prototype can help

engineers to critically examine the technical issues

associated with product development.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

18/246 SUBMITTED TEXT 29 WORDS

It is also known as a linear-sequential life cycle model. It

is very simple to understand and use. In this waterfall

model, each phase must be completed before

82% MATCHING TEXT 29 WORDS

It is also referred to as a linear-sequential life cycle model.

C215.2 BTL3 29 It is very simple to understand and use. In

a waterfall model, each phase must be completed fully

before

https://jeppiaarcollege.org/wp-content/uploads/2019/02/II-YEAR-IV-SEM-CS8494-SOFTWARE-

ENGINEERING.pdf

19/246 SUBMITTED TEXT 46 WORDS

software. Prototyping Model is a software development

model in which prototype is built, tested, and reworked

until an acceptable prototype is achieved. It also creates

base to produce the final system or software. It works

best in scenarios where the project's requirements are

not known

79% MATCHING TEXT 46 WORDS

Software Prototyping Prototype methodology is defined

as a Software Development model in which a prototype is

built, test, and then reworked when needed until an

acceptable prototype is achieved. It also creates a base to

produce the final system. Software prototyping model

works best in scenarios where the project's requirement

are not known.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

20/246 SUBMITTED TEXT 60 WORDS

In this stage, the proposed system is presented to the

client for an initial evaluation. It helps to find out the

strength and weakness of the working model. Comment

and suggestion are collected from the customer and

provided to the developer.

100% MATCHING TEXT 60 WORDS

In this stage, the proposed system is presented to the

client for an initial evaluation. It helps to find out the

strength and weakness of the working model. Comment

and suggestion are collected from the customer and

provided to the developer.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

21/246 SUBMITTED TEXT 91 WORDS

Step 5: Refining prototype If the user is not happy with

the current prototype, you need to refine the prototype

according to the user's feedback and suggestions. This

phase will not over until all the requirements specified by

the user are met. Once the user is satisfied with the

developed prototype, a final system is developed based

on the approved final prototype. Step 6: Implement

Product and Maintain Once the final system is developed

based on the final prototype, it is thoroughly tested and

deployed to production. The system undergoes

100% MATCHING TEXT 91 WORDS

Step 5: Refining prototype If the user is not happy with

the current prototype, you need to refine the prototype

according to the user's feedback and suggestions. This

phase will not over until all the requirements specified by

the user are met. Once the user is satisfied with the

developed prototype, a final system is developed based

on the approved final prototype. Step 6: Implement

Product and Maintain Once the final system is developed

based on the final prototype, it is thoroughly tested and

deployed to production. The system undergoes

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

22/246 SUBMITTED TEXT 21 WORDS

Users are actively involved in development. Therefore,

errors can be detected in the initial stage of the software

development process.

100% MATCHING TEXT 21 WORDS

Users are actively involved in development. Therefore,

errors can be detected in the initial stage of the software

development process. ?

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

23/246 SUBMITTED TEXT 46 WORDS

Allows the client to compare if the software code

matches the software specification. It helps you to find

out the missing functionality in the system. It also

indicates the functions that are complicated or

challenging. Because it is a simple model, it is simple to

65% MATCHING TEXT 46 WORDS

Allows the client to compare if the software code

matches the software specification. ? It helps you to find

out the missing functionality in the system. ? It also

identifies the complex or difficult functions. ? Encourages

innovation and flexible designing. ? It is a straightforward

model, so it is easy to

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

24/246 SUBMITTED TEXT 93 WORDS

Step 2: Quick design The second phase is a preliminary

design or a quick design. In this stage, a simple design of

the system is created. However, it is not a complete

design. It gives a brief idea of the system to the user. The

quick design helps in developing the prototype. Step 3:

Build a Prototype In this phase, an actual prototype is

designed based on the information gathered from quick

design. It is a small working model of the required

system. Step 4: Initial user evaluation 26 |

100% MATCHING TEXT 93 WORDS

Step 2: Quick design The second phase is a preliminary

design or a quick design. In this stage, a simple design of

the system is created. However, it is not a complete

design. It gives a brief idea of the system to the user. The

quick design helps in developing the prototype. Step 3:

Build a Prototype In this phase, an actual prototype is

designed based on the information gathered from quick

design. It is a small working model of the required

system. Step 4: Initial user evaluation 20

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

25/246 SUBMITTED TEXT 13 WORDS

Customers may not be willing to participate in an

iteration cycle for

87% MATCHING TEXT 13 WORDS

customers may not be willing to participate in the

iteration cycle for

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

26/246 SUBMITTED TEXT 25 WORDS

Model This life cycle approach is also known as the

incremental or successive version model. In this life cycle

approach, the customer is first

45% MATCHING TEXT 25 WORDS

Model This life cycle model is also referred as the

successive versions model and the incremental model. In

this life cycle model the software is first

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

27/246 SUBMITTED TEXT 16 WORDS

A, B, C are modules of Software Product that are

incrementally developed and delivered. The

96% MATCHING TEXT 16 WORDS

A, B, C are modules of a product that are incrementally

developed and delivered. The

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

28/246 SUBMITTED TEXT 14 WORDS

Are we building the product right? Validation: Are we

building the right product?

88% MATCHING TEXT 14 WORDS

Are we building the product right”? Checks “Are we

building the right product”?

https://jeppiaarcollege.org/wp-content/uploads/2019/02/II-YEAR-IV-SEM-CS8494-SOFTWARE-

ENGINEERING.pdf

29/246 SUBMITTED TEXT 18 WORDS

Feasibility Study 3.5.2 Requirement Gathering 3.5.3

Software Requirement Specification 3.5.4 Software

Requirement Validation 3.6

100% MATCHING TEXT 18 WORDS

Feasibility Study ? Requirement Gathering ? Software

Requirement Specification ? Software Requirement

Validation

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

30/246 SUBMITTED TEXT 29 WORDS

requirements and analysis phase starts after the feasibility

study phase gets completed and the project is found to

be feasible and technically sound. The primary objective

of the

58% MATCHING TEXT 29 WORDS

requirements analysis and specification phase starts once

the feasibility study phase is completed and the project is

found to be financially sound and technically feasible.

The goal of the

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

31/246 SUBMITTED TEXT 16 WORDS

requirements and to organize these requirements

systematically in a specification document. This phase

consists of

86% MATCHING TEXT 16 WORDS

requirements and to systematically organize these

requirements in a specification document. This phase

consists of

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

32/246 SUBMITTED TEXT 43 WORDS

The System analyst starts requirements gathering activity

by collecting all information from the customer which

could be used to develop the requirements of the system.

Then, he analyses the information collected to get a

thorough understanding of the system to be developed.

60% MATCHING TEXT 43 WORDS

The analyst starts the requirements gathering and analysis

activity by the collecting all information from the

customer which could be used to develop the

requirements of the system. The analyst then analyzes

the collect Copy Right DTE&T, Odisha Page 65

information to obtain a clear and thorough

understanding of the product to be developed.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

33/246 SUBMITTED TEXT 17 WORDS

Feasibility Study ? Requirement Gathering ? Software

Requirement Specification ? Software Requirement

Validation

100% MATCHING TEXT 17 WORDS

Feasibility Study ? Requirement Gathering ? Software

Requirement Specification ? Software Requirement

Validation

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

34/246 SUBMITTED TEXT 22 WORDS

Engineering is the process of establishing the services

that the customer requires from the system and the

constraints under which it

100% MATCHING TEXT 22 WORDS

engineering is the process of establishing the services

that the customer requires from the system and the

constraints under which it

https://jeppiaarcollege.org/wp-content/uploads/2019/02/II-YEAR-IV-SEM-CS8494-SOFTWARE-

ENGINEERING.pdf

35/246 SUBMITTED TEXT 20 WORDS

The output of this study should be a feasibility study

report with adequate recommendations and comments

for

58% MATCHING TEXT 20 WORDS

The output of this phase should be a feasibility study

report that should contain adequate comments and

recommendations for

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

36/246 SUBMITTED TEXT 15 WORDS

Software Requirement Specification SRS is a document

created by a system analyst. After the

78% MATCHING TEXT 15 WORDS

Software Requirement Specification SRS is a document

created by system analyst after the

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

37/246 SUBMITTED TEXT 17 WORDS

Feasibility Study? The objective of this study is to establish

the reasons for developing the software,

68% MATCHING TEXT 17 WORDS

Feasibility study: The objective behind the feasibility study

is to create the reasons for developing the software

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

38/246 SUBMITTED TEXT 28 WORDS

from the software. ? Organizing Requirements – Here,

the developers arrange the requirements in the order of

priority, importance and convenience. ? Negotiation &

Discussion –

71% MATCHING TEXT 28 WORDS

from the software. ? Organizing Requirements - The

developers prioritize and arrange the requirements in

order of importance, urgency and convenience. ?

Negotiation & discussion -

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

39/246 SUBMITTED TEXT 20 WORDS

analyze the functionality for which the proposed software

system is needed. If the client has some similar software

55% MATCHING TEXT 20 WORDS

analyze the operation for which the new system is

required. If the client already has some software

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

40/246 SUBMITTED TEXT 58 WORDS

What is the problem? • Why should we solve the

problem? • What are the possible solutions to the

problem? • What precisely are the data input to the

system and what exactly are the data outputted by the

system? • What are the most likely complexities that

might arise while

71% MATCHING TEXT 58 WORDS

What is the problem? · Why is it important to solve the

problem? · What are the possible solutions to the

problem? · What exactly are the data input to the system

and what exactly the data output required of the system?

· What are the complexities that might arise while

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

41/246 SUBMITTED TEXT 23 WORDS

SOFTWARE REQUIREMENT SPECIFICATION After the

analyst has collected all the required information

regarding the software to be developed, and has

removed all

100% MATCHING TEXT 23 WORDS

Software Requirement Specification After the analyst has

collected all the required information regarding the

software to be developed and has removed all

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

42/246 SUBMITTED TEXT 15 WORDS

The goals of implementation part of the SRS documents

some general suggestions regarding development.

75% MATCHING TEXT 15 WORDS

The goals of implementation part of the SRS document

gives some general suggestion regarding development.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

43/246 SUBMITTED TEXT 23 WORDS

and the corresponding actions undertaken. The edges of

a decision tree denote conditions and the leaf nodes

denote the actions to be

79% MATCHING TEXT 23 WORDS

and the corresponding actions taken. ? The edges of a

decision tree represent conditions and the leaf nodes

represent the actions to be

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

44/246 SUBMITTED TEXT 21 WORDS

the 'new member' option, the software asks for member

details like the member's name, phone number, address

etc. Action: If

66% MATCHING TEXT 21 WORDS

the 'new member' option is selected, the software asks

details about the member like the member's name,

address, phone number etc. Action: If

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

45/246 SUBMITTED TEXT 18 WORDS

a membership record for the particular member. Also, a

bill is printed against the annual membership charge

61% MATCHING TEXT 18 WORDS

a membership record for the member is created and a bill

is printed for the annual membership charge

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

46/246 SUBMITTED TEXT 43 WORDS

security deposit. Renewal option Decision: If the user

selects the 'renewal' option, the LMS asks for the

membership number of the member and his name to

verify if he is an authorised member. Action: If his

membership is

31% MATCHING TEXT 43 WORDS

security deposit payable. Renewal option- Decision: If the

' renewal' option is chosen, the LMS asks for the

member's name and his membership number to check

whether he is a valid member or not. Action: If the

membership is

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

47/246 SUBMITTED TEXT 36 WORDS

the membership. Also, a cheque bearing the balance

amount due to the member gets printed. Finally, the

membership record gets deleted from the database.

Decision tree representation of the above example The

tree

77% MATCHING TEXT 36 WORDS

The membership is cancelled, a cheque for the balance

amount due to the member is printed and finally the

membership record is deleted from the database.

Decision tree representation of the above example - The

following tree

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

48/246 SUBMITTED TEXT 33 WORDS

representation of the above- mentioned example. After

the software gets the information from the user, it makes

a decision and accordingly, performs the corresponding

actions. Fig 3.6 2. Decision

50% MATCHING TEXT 33 WORDS

representation of the above example - The following tree

shows the graphical representation of the above

example. After getting information from the user, the

system makes a decision and then performs the

corresponding actions. Fig. Decision

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

49/246 SUBMITTED TEXT 48 WORDS

complex processing logic in a matrix or tabular form. The

top rows of the table specify the conditions or variables

to be evaluated. The rows at the bottom of the table

specify the actions to be performed upon satisfaction of

the corresponding conditions.

53% MATCHING TEXT 48 WORDS

complex processing logic in a tabular or a matrix form. ?

The upper rows of the table specify the variables or

conditions to be evaluated. ? The lower rows of the table

specify the actions to be taken when the corresponding

conditions

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

50/246 SUBMITTED TEXT 28 WORDS

to represent the problem in a tabular form. The table here

is divided into 2 parts. The part at the top shows the

conditions and the part

59% MATCHING TEXT 28 WORDS

to represent the LMS problem in a tabular form. ? Here

the table is divided into two parts: o The upper part

shows the conditions and o The lower part

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

51/246 SUBMITTED TEXT 17 WORDS

above, you can easily see that, if the valid selection

condition becomes false, the action

73% MATCHING TEXT 17 WORDS

above table you can easily understand that, if the valid

selection condition is false then the action

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

52/246 SUBMITTED TEXT 13 WORDS

the maintenance engineers to understand the

functionalities of the system. •

100% MATCHING TEXT 13 WORDS

the maintenance engineers to understand the

functionalities of the system.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

53/246 SUBMITTED TEXT 20 WORDS

Software Engineering – A Practitioner’s Approach, Roger

S. Pressman; ? McGraw-Hill International Edition. ?

Fundamentals Of Software Engineering, 2014 4

97% MATCHING TEXT 20 WORDS

Software Engineering – A Practitioner’s Approach by

Roger S. Pressman (McGraw-Hill international edition). 2.

Fundamentals of Software Engineering

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

54/246 SUBMITTED TEXT 37 WORDS

a project to success. It is difficult to describe the job

responsibilities of a project manager. The responsibility of

a project manager spans from invisible activities such as

building up team morale to clearly visible

70% MATCHING TEXT 37 WORDS

a project to success. ? It is very difficult to particularly

describe the job responsibilities of a project manager. ?

The job responsibility of a project manager ranges from

building up team morale to highly visible

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

55/246 SUBMITTED TEXT 43 WORDS

Estimating the following attributes of the project: Project

size: What will be problem complexity, expressed in terms

of the effort and time required to develop the product?

Cost: How much cost will be incurred to develop the

project? Duration:

79% MATCHING TEXT 43 WORDS

Estimating the following attributes of the project: Project

size: What will be problem complexity in terms of the

effort and time required to develop the product? Cost:

How much is it going to cost to develop the project?

Duration:

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

56/246 SUBMITTED TEXT 24 WORDS

project staff, etc. may change during the span of the

project. To overcome this problem, sometimes project

managers undertake project planning in stages.

91% MATCHING TEXT 24 WORDS

project staff, etc. may change during the span of the

project. Page 2 Page 2 ? In order to overcome this

problem, sometimes project managers undertake project

planning in stages.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

57/246 SUBMITTED TEXT 12 WORDS

stages protects managers from making big commitments

too early. This technique

95% MATCHING TEXT 12 WORDS

stages. This protects managers from making big

commitments too early. ? This technique

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

58/246 SUBMITTED TEXT 73 WORDS

sliding window technique, starting with an initial plan, the

project is planned more accurately in successive

development stages. At the start of a project, project

managers have incomplete knowledge about the details

of the project. Their information base gradually improves

as the project progresses through different phases. After

the completion of every phase, the project managers can

plan each subsequent phase more accurately and with

increasing levels of confidence. 4.6 SOFTWARE PROJECT

85% MATCHING TEXT 73 WORDS

Sliding Window Technique In this technique starting with

an initial plan, the project is planned more accurately in

successive development stages. At the start of a project,

project manager have incomplete knowledge about the

details of the project. The information gradually improves

as the project progress through different phases. After the

completion of every phase, the project manager can plan

each subsequent phase more accurately and with

increasing levels of confidence. 2.3 Project

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

59/246 SUBMITTED TEXT 49 WORDS

the dependency among the different activities determines

the order in which the different activities would be carried

out. For instance if an activity A needs the results of

another activity B, then activity A must be scheduled after

activity B. Generally, task dependencies define a partial

ordering among

86% MATCHING TEXT 49 WORDS

the activities. Dependency among the different activities

determines the order in which the different activities

would be carried out. If an activity A requires the results

of another activity B, then activity A must be scheduled

after activity B. The task dependencies define a partial

ordering among

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

60/246 SUBMITTED TEXT 17 WORDS

Once the activity network representation has been

worked out, resources are allocated to each activity.

Allocation

96% MATCHING TEXT 17 WORDS

Once the activity network representation has been

worked out, resources are allocated to each activity.

Resource allocation

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

61/246 SUBMITTED TEXT 20 WORDS

resource is generally done using a Gantt chart. After

resource allocation is done, a PERT chart representation

is developed

71% MATCHING TEXT 20 WORDS

Resource allocation is typically done using a Gantt chart.

After resource allocation is done, a Project Evaluation and

Review Technique chart representation is developed.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

62/246 SUBMITTED TEXT 53 WORDS

and PERT chart. 4.13.1 Activity Networks Work Breakdown

Structure (WBS) representation of a project is transformed

into an activity network by representing the activities

identified in WBS along with their interdependencies. An

activity network displays the different activities making up

a project, their estimated durations, and

interdependencies (

80% MATCHING TEXT 53 WORDS

and PERT Charts. Activity Networks and Critical Path

Method Work Structure representation of a project is

transformed into an activity network by representing the

activities identified in work breakdown structure along

with their interdependencies. An activity network shows

the different activities making up a project, their

estimated durations and interdependencies.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

63/246 SUBMITTED TEXT 20 WORDS

Each activity is represented by a rectangular node and the

duration of the activity is shown alongside each task.

100% MATCHING TEXT 20 WORDS

Each activity is represented by a rectangular node and the

duration of the activity is shown alongside each task.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

64/246 SUBMITTED TEXT 98 WORDS

critical path method From the activity network

representation following analysis can be made. The

minimum time (MT) to complete the project is the

maximum of all paths from start to finish. The earliest

start (ES) time of a task is the maximum of all paths from

the start to the task. The latest start time is the difference

between MT and the maximum of all paths from this task

to the finish. The earliest finish time (EF) of a task is the

sum of the earliest start time of the task and the duration

of the task.

91% MATCHING TEXT 98 WORDS

Critical Path Method · From the activity network Fig.2.4

representation, the following analysis can be made: · The

minimum time (MT) to complete the project is the

maximum of all paths from start to finish. · The earliest

start (ES) time of a task is the maximum of all paths from

the start to this task. · The latest start (LS) time is the

difference between MT and the maximum of all paths

from this task to the finish. · The earliest finish time (EF) of

a task is the sum of the earliest start time of the task and

the duration of the task.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

65/246 SUBMITTED TEXT 94 WORDS

The latest finish (LF) time of a task can be obtained by

subtracting maximum of all paths from this task to finish

from MT. The slack time (ST) is LS – EF and equivalently

can be written as LF – EF. The slack time (or float time) is

the total time that a task may be delayed before it will

affect the end time of the project. The slack time

indicates the “flexibility” in starting and completion of

tasks. A critical task is one with a zero slack time. A path

from the

84% MATCHING TEXT 94 WORDS

The latest finish (LF) time of a task can be obtained by

subtracting maximum of all paths from this task to finish

from MT. · The slack time (ST) is LS – EF and equivalently

can be written as LF – EF. The slack time is the total time

for which a task may be delayed before it would affect

the finish time of the project. The slack time indicates the

flexibility in starting and completion of tasks. · A critical

task is one with a zero slack time. · A path from the

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

66/246 SUBMITTED TEXT 38 WORDS

node to the finish node containing only critical tasks is

called a critical path. These parameters for different tasks

for the MIS problem are shown in the following table. 99 |

91% MATCHING TEXT 38 WORDS

node to the finish node containing only critical tasks is

called a critical path. · The above parameters for different

tasks for the MIS problem (Fig.2.4) are shown in the

following table.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

67/246 SUBMITTED TEXT 43 WORDS

Task ES EF LS LF ST Specification 0 15 0 15 0 Design

database 15 60 15 60 0 Design GUI part 15 45 90 120 75

Code database 60 165 60 165 0 Code GUI part 45 90 120

165 75

91% MATCHING TEXT 43 WORDS

Task ES EF LS LF ST Specification Part 0 15 0 15 0 Design

Database Part 15 60 15 60 0 Design GUI Part 15 45 90

120 75 Code Database Part 60 165 60 165 0 Code GUI

Part 45 90 120 165 75

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

68/246 SUBMITTED TEXT 63 WORDS

Task ES EF LS LF ST Specification 0 15 0 15 0 Design

database 15 60 15 60 0 Design GUI part 15 45 90 120 75

Code database 60 165 60 165 0 Code GUI part 45 90 120

165 75 The critical paths are all the paths whose duration

equals MT. The critical path in fig. 4.4 is shown with

87% MATCHING TEXT 63 WORDS

Task ES EF LS LF ST Specification Part 0 15 0 15 0 Design

Database Part 15 60 15 60 0 Design GUI Part 15 45 90

120 75 Code Database Part 60 165 60 165 0 Code GUI

Part 45 90 120 165 75 Integrate and Test 165 285 165 285

0 White User Manual 15 75 225 285 210 The critical paths

are all the paths whose duration equals MT. The critical

path in Fig.2.4 is shown with

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

69/246 SUBMITTED TEXT 30 WORDS

used to allocate resources to activities. The resources

allocated to activities include staff, hardware, and

software. Gantt charts (named after its developer Henry

Gantt) are useful for resource planning.

100% MATCHING TEXT 30 WORDS

Used to allocate resources to activities. ? The resources

allocated to activities include staff, hardware, and

software. ? Gantt charts (named after its developer Henry

Gantt) are useful for resource planning. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

70/246 SUBMITTED TEXT 39 WORDS

is a special type of bar chart where each bar represents

an activity. The bars are drawn along a time line. The

length of each bar is proportional to the duration of time

planned for the corresponding activity.

100% MATCHING TEXT 39 WORDS

is a special type of bar chart where each bar represents

an activity. ? The bars are drawn along a time line. ? The

length of each bar is proportional to the duration of time

planned for the corresponding activity.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

71/246 SUBMITTED TEXT 23 WORDS

bar consists of a white part and a shaded part. The

shaded part of the bar shows the length of time each

93% MATCHING TEXT 23 WORDS

bar consists of a write part and a shaded part. The shaded

part of the bar shows the length of time each

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

72/246 SUBMITTED TEXT 24 WORDS

A path from the start node to the finish node containing

only critical tasks is called a critical path. 100 |

100% MATCHING TEXT 24 WORDS

A path from the start node to the finish node containing

only critical tasks is called a critical path. ·

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

73/246 SUBMITTED TEXT 25 WORDS

task is estimated to take. The white part shows the slack

time, that is, the latest time by which a task must be

finished.

100% MATCHING TEXT 25 WORDS

task is estimated to take. The white part shows the slack

time, that is the latest time by which a task must be

finished.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

74/246 SUBMITTED TEXT 38 WORDS

PERT Chart PERT (Project Evaluation and Review

Technique) charts consist of a network of boxes and

arrows. The boxes represent activities and the arrows

represent task dependencies. PERT chart represents the

statistical variations in the project estimates

91% MATCHING TEXT 38 WORDS

PERT chart ? PERT (Project Evaluation and Review

Technique) charts consist of a network of boxes and

arrows. ? The boxes represent activities and the arrows

represent task dependencies. ? It represents the statistical

variations in the project estimates. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

75/246 SUBMITTED TEXT 58 WORDS

Thus, in a PERT chart instead of making a single estimate

for each task, pessimistic, likely, and optimistic estimates

are made. The boxes of PERT charts are usually

annotated with the pessimistic, likely, and optimistic

estimates for every task. Since all possible completion

times between the minimum and maximum duration for

every task has to be considered,

98% MATCHING TEXT 58 WORDS

Thus, in a PERT chart instead of making a single estimate

for each task, pessimistic, likely, and optimistic estimates

are made. Page 8 Page 8 ? The boxes of PERT charts are

usually annotated with the pessimistic, likely, and

optimistic estimates for every task. Since all possible

completion times between the minimum and maximum

duration for every task has to be considered.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

76/246 SUBMITTED TEXT 13 WORDS

Once project planning is complete, project managers

document their plan in a)

87% MATCHING TEXT 13 WORDS

Once project planning is complete, project managers

document their plans in a

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

77/246 SUBMITTED TEXT 19 WORDS

Software Engineering – A Practitioner’s Approach, Roger

S. Pressman; McGraw-Hill International Edition. ?

Fundamentals Of Software Engineering, 2014 4

97% MATCHING TEXT 19 WORDS

Software Engineering – A Practitioner’s Approach by

Roger S. Pressman (McGraw-Hill international edition). 2.

Fundamentals of Software Engineering

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

78/246 SUBMITTED TEXT 24 WORDS

PROJECT PLANNING Once a project is found to be

feasible, software project managers undertake project

planning. Project planning is undertaken and completed

100% MATCHING TEXT 24 WORDS

Project planning Once a project is found to be feasible,

software project managers undertake project planning.

Project planning is undertaken and completed

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

79/246 SUBMITTED TEXT 30 WORDS

is going to cost to develop the software? Duration – How

long it is going to take to develop the product? Effort –

How much effort would be required

64% MATCHING TEXT 30 WORDS

is it going to cost to develop the project? Duration: How

long is it going to take to complete development? Effort:

How much effort would be required?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

80/246 SUBMITTED TEXT 26 WORDS

Sliding Window Protocol. In this technique starting with

an initial plan the project is planned more accurately in

successive development stages. After the completion of

82% MATCHING TEXT 26 WORDS

Sliding Window Technique In this technique starting with

an initial plan, the project is planned more accurately in

successive development stages. At the start of

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

81/246 SUBMITTED TEXT 26 WORDS

The project size is a measure of the problem complexity

in terms of the effort and time required to develop the

product. Currently, two metrics (

94%

MATCHING TEXT 26 WORDS

The project size is a measure of the problem complexity

in terms of the effort and time required to develop the

product. Two metrics

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

82/246 SUBMITTED TEXT 13 WORDS

are popularly being used to estimate size: 5.6.1 Lines of

Code (LOC)

95% MATCHING TEXT 13 WORDS

are popularly being used widely to estimate size: ? Lines

of Code (LOC) ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

83/246 SUBMITTED TEXT 29 WORDS

project managers usually divide the problem into

modules and each modules into sub modules and so on,

until the size of the leaf module can be approximately

predicted.

83% MATCHING TEXT 29 WORDS

project managers usually divide the problem into

modules and each modules into sub modules and a so

on until the sizes of the different leaf level modules can

be approximately predicted.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

84/246 SUBMITTED TEXT 16 WORDS

LOC count can only be accurately computed after the

code has been fully developed. ?

85% MATCHING TEXT 16 WORDS

LOC count can be accurately computed only after the

code has been fully developed.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

85/246 SUBMITTED TEXT 23 WORDS

can estimate the size of the project directly from the

problem specification. This is completely in contrast with

the LOC metric. The

65% MATCHING TEXT 23 WORDS

can easily estimate the size of a software product directly

from the problem specification. . ? This is in contrast to

the LOC metric, where the

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

86/246 SUBMITTED TEXT 22 WORDS

the size of the software product mainly depends on the

number of different functions or features it supports. A

software product

57% MATCHING TEXT 22 WORDS

the size of the software product is directly depending on

the number of functions and features that it supports. If a

software product

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

87/246 SUBMITTED TEXT 20 WORDS

number of input and output to a system gives some idea

about the number of functions supported by the

57% MATCHING TEXT 20 WORDS

number of input and output data values to the software

as it gives some indications of the number of functions

supported by the

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

88/246 SUBMITTED TEXT 27 WORDS

UFP = (Number of Inputs)*4 + (Number of Outputs)*5 +

(Number of Inquiries) * 4 + (Number of files) *10 +

(Number of Interfaces)*10

100% MATCHING TEXT 27 WORDS

UFP = (Number of inputs) * 4 + (Number of outputs) * 5 +

(Number of inquiries) * 4 + (Number of files) * 10 +

Number of interfaces) * 10

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

89/246 SUBMITTED TEXT 13 WORDS

Number of inputs: Each data item input by the user is

counted

100% MATCHING TEXT 13 WORDS

Number Of Inputs: Each data item input by the user is

counted. ·

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

90/246 SUBMITTED TEXT 33 WORDS

data input items inputted by the user is not counted. 2)

Number of outputs: The output considered refer to

reports printed, screen outputs, error messages produced

etc. While computing the number of

54% MATCHING TEXT 33 WORDS

data item input by the user is counted. · Number Of

Outputs: The outputs refers to reports printed, screen

outputs, error messages produced etc. · Number Of

Inquiries: It is the number of

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

91/246 SUBMITTED TEXT 16 WORDS

Number of Inquiries: It is the number of distinctive

interactive queries made by the users.

80% MATCHING TEXT 16 WORDS

Number Of Inquiries: It is the number of distinct

interactive queries which can be made by the users. ·

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

92/246 SUBMITTED TEXT 27 WORDS

by the system. 4) Number of files: Each logical file is

counted. It implies a group of logically related data. Thus,

logical files include data structures

60% MATCHING TEXT 27 WORDS

by the users. · Number Of Files: Each logical file is

counted. A logical file means groups of logically related

data. Thus logical files can be data structures

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

93/246 SUBMITTED TEXT 29 WORDS

Number of Interfaces: The interfaces are used to

exchange information with other systems. Examples of

such interfaces are files on tapes, disks, communication

links with other systems etc.

80% MATCHING TEXT 29 WORDS

Number Of Interfaces: Here the interfaces which are used

to exchange information with other systems. Examples of

interfaces are data files on tapes, disks, communication

links with other systems etc.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

94/246 SUBMITTED TEXT 24 WORDS

The project size is a measure of the problem complexity

in terms of the effort and time required to develop the

product.

100% MATCHING TEXT 24 WORDS

The project size is a measure of the problem complexity

in terms of the effort and time required to develop the

product.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

95/246 SUBMITTED TEXT 27 WORDS

and support There are three broad categories of

estimation techniques: 1. Empirical Estimation Techniques

2. Heuristic Technique 3. Analytical Estimation Technique

5.7.1 Empirical Estimation

77% MATCHING TEXT 27 WORDS

and There are three broad categories of estimation

techniques: ? Empirical estimation techniques ? Heuristic

techniques ? Analytical estimation techniques Empirical

Estimation

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

96/246 SUBMITTED TEXT 21 WORDS

educated guess of the project parameters. While using

this technique, prior experience with similar products is

helpful. Although, empirical estimation

90% MATCHING TEXT 21 WORDS

educated guess of the project parameters. ? While using

this technique, prior experience with similar products is

Two popular empirical estimation

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

97/246 SUBMITTED TEXT 62 WORDS

Expert Judgement Technique – It is one of the most

widely used technique. In this an expert makes an

educated guess of the problem analyzing the problem

thoroughly. Usually the expert calculate the cost of

different components (modules and subsystems) that

would make up the system and then combines the

estimates for the individual modules to arrive at the

overall

50% MATCHING TEXT 62 WORDS

Expert Judgment Technique ? It is one of the most widely

used techniques. ? In this approach, an expert makes an

educated guess of the problem size after analyzing the

problem thoroughly. ? Usually, the expert estimates the

cost of the different components (i.e. or subsystems) of

the system and then combines to arrive at the overall

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

98/246 SUBMITTED TEXT 34 WORDS

Delphi Cost Estimation Technique – It tries to overcome

the shortcomings of expert judgment technique. It is

carried out by a team comprising of a group of experts

and coordinators. The coordinator provides

75% MATCHING TEXT 34 WORDS

Delphi cost estimation ? This approach tries to overcome

some of the shortcomings of the expert judgment

approach. ? It is carried out by a team comprising of a

group of experts and a coordinator. ? In this approach,

coordinator provides

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

99/246 SUBMITTED TEXT 27 WORDS

technique assumes that the relationship among the

different project parameters can be modelled using

suitable mathematical expression. Once the independent

parameters are known the dependent parameters

78% MATCHING TEXT 27 WORDS

technique assumes that the relationships among the

different project parameters can be using suitable

mathematical expressions. ? Once the basic

(independent) parameters are known, the other

(dependent) parameters

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

100/246 SUBMITTED TEXT 22 WORDS

Analytical Estimation Technique It derives the required

results staring with certain basic assumptions regarding

the project. Thus, unlike empirical and heuristic

71% MATCHING TEXT 22 WORDS

Analytical Estimation Techniques ? It derive the required

results starting with basic assumptions regarding the

project. ? Thus, unlike empirical and heuristic

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

101/246 SUBMITTED TEXT 41 WORDS

COCOMO Boehm proposed COCOMO (Constructive

Cost Estimation Model) in 1981.COCOMO is one of the

most generally used software estimation models in the

world. COCOMO predicts the efforts and schedule of a

software product based on the size of the software.

98% MATCHING TEXT 41 WORDS

COCOMO Model Boehm proposed COCOMO

(Constructive Cost Estimation Model) in 1981.COCOMO

is one of the most generally used software estimation

models in the world. COCOMO predicts the efforts and

schedule of a software product based on the size of the

software.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

102/246 SUBMITTED TEXT 34 WORDS

organic type, if the project deals with developing a well-

understood application program, the size of the

development team is reasonably small, and the team

members are experienced in developing similar methods

of projects.

91%

MATCHING TEXT 34 WORDS

organic type, if ? The project deals with developing a well

understood application program. ? The size of the

development team is reasonably small. ? The team

members are experienced in developing similar types of

projects.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

103/246 SUBMITTED TEXT 29 WORDS

Semidetached: A development project can be treated

with semidetached type if the development consists of a

mixture of experienced and inexperienced staff. Team

members may have finite experience

83% MATCHING TEXT 29 WORDS

Semidetached: ? A development project can be

considered of semidetached type, if ? The development

consists of a mixture of experienced and inexperienced

staff. ? Team members may have limited experience

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

104/246 SUBMITTED TEXT 15 WORDS

related systems but may be unfamiliar with some aspects

of the order being developed.

89% MATCHING TEXT 15 WORDS

related systems but may be unfamiliar with some aspects

of the system being developed. ·

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

105/246 SUBMITTED TEXT 14 WORDS

embedded type, if the software being developed is

strongly coupled to complex hardware,

100% MATCHING TEXT 14 WORDS

embedded type, if ? The software being developed is

strongly coupled to complex hardware. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

106/246 SUBMITTED TEXT 90 WORDS

done through three stages: 5.8.1 Basic COCOMO Model

The basic COCOMO model provides an approximate

estimate of the of the project parameters. The following

expressions give the basic COCOMO estimation model:

Effort=a1*(KLOC) a2 PM T dev =b1*(efforts) b2 Months

where, a) KLOC is the estimated size of the software

product indicate in Kilo Lines of Code b) a1, a2, b1, b2 are

constants for each group of software products. 121 |

58% MATCHING TEXT 90 WORDS

done through three stages): ? Basic COCOMO, ?

Intermediate COCOMO, ? Complete Basic COCOMO The

basic COCOMO model gives an approximate estimate of

the project parameters. ? The basic COCOMO estimation

model is given by the following expressions: Effort = a 1 *

(KLOC) a 2 PM T dev = b 1 * (Effort) b 2 Months ? Where

KLOC is the estimated size of the software product

expressed in Kilo Lines of Code, o a 1 , a 2 , b 1 , b 2 are

constants for each category of software products,

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

107/246 SUBMITTED TEXT 56 WORDS

T dev is the estimated time to develop the software,

expressed in months. d) Effort is the total effort required

to develop the software product, expressed in person

months (PMs). For the three classes of software products,

the formulas for estimating the effort based on the code

size are shown below:

93% MATCHING TEXT 56 WORDS

T dev is the estimated time to develop the software,

expressed in months, o Effort is the total effort required

to develop the software product, expressed in person

months (PMs). ? Estimation of development For the three

classes of software products, the formulas for estimating

the effort based on the code size are shown below:

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

108/246 SUBMITTED TEXT 82 WORDS

Organic: Effort = 2.4(KLOC) 1.05 PM Semi-detached:

Effort = 3.0(KLOC) 1.12 PM Embedded: Effort = 3.6(KLOC)

1.20 PM Estimation of development time: For the three

classes of software products, the formulas for estimating

the development time based on the effort are given

below: Organic: T dev = 2.5(Effort) 0.38 Months Semi-

detached: T dev = 2.5(Effort) 0.35 Months Embedded: T

dev = 2.5(Effort) 0.32

100% MATCHING TEXT 82 WORDS

Organic : Effort = 2.4(KLOC) 1.05 PM Semi-detached :

Effort = 3.0(KLOC) 1.12 PM Embedded : Effort =

3.6(KLOC) 1.20 PM ? Estimation of development time: ?

For the three classes of software products, the formulas

for estimating the development time based on the effort

are given below: Organic : T dev = 2.5(Effort)0.38 Months

Semi-detached : T dev = 2.5(Effort)0.35 Months

Embedded : T dev = 2.5(Effort)0.32

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

109/246 SUBMITTED TEXT 15 WORDS

The effort required to develop a product increases very

rapidly with project size.

100% MATCHING TEXT 15 WORDS

the effort required to develop a product increases very

rapidly with project size.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

110/246 SUBMITTED TEXT 216 WORDS

The size of the product increases by two times, the time

to develop the product does not double but rises

moderately. This can be explained by the fact that for

larger products, a larger number of activities which can

be carried out concurrently can be identified. The parallel

activities can be carried out simultaneously by the

engineers. This reduces the time to complete the project.

The development time is roughly the same for all three

categories of products. For example, a 60 KLOC program

can be developed in approximately 18 months, regardless

of whether it is of organic, semidetached, or embedded

type. From the effort estimation, the project cost can be

obtained by multiplying the required effort by the

manpower cost per month. But, implicit in this project

cost computation is the assumption that the entire

project cost is incurred on account of the manpower

cost alone. In addition to manpower cost, a project

would incur costs due to hardware and software required

for the project and the company overheads for

administration, office space etc. It is important to note

that the effort and the duration estimations obtained

using the COCOMO model are called a nominal effort

estimate and nominal duration estimate. The term

nominal implies that if anyone tries to 122 |

97% MATCHING TEXT 216 WORDS

the size of the product increases by two times, the time

to develop the product does not double but rises

moderately. This can be explained by the fact that for

larger products, a larger number of activities which can

be carried out concurrently can be identified. The parallel

activities can be carried out simultaneously by the

engineers. This reduces the time to complete the project.

7 Further, from fig, it can be observed that the

development time is roughly the same for all three

categories of products. For example, a 60 KLOC program

can be developed in approximately 18 months, regardless

of whether it is of organic, semidetached, or embedded

type. Fig 5.3 Time vs Size From the effort estimation, the

project cost can be obtained by multiplying the required

effort by the manpower cost per month. But, implicit in

this project cost computation is the assumption that the

entire project cost is incurred on account of the

manpower cost alone. In addition to manpower cost, a

project would incur costs due to hardware and software

required for the project and the company overheads for

administration, office space, etc. It is important to note

that the effort and the duration estimations obtained

using the COCOMO model are called a nominal effort

estimate and nominal duration estimate. The term

nominal implies that if anyone tries to

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

111/246 SUBMITTED TEXT 44 WORDS

complete the project in a time shorter than the estimated

duration, then the cost will increase drastically. But, if

anyone completes the project over a longer period of

time than the estimated, then there is almost no decrease

in the estimated cost value.

100% MATCHING TEXT 44 WORDS

complete the project in a time shorter than the estimated

duration, then the cost will increase drastically. But, if

anyone completes the project over a longer period of

time than the estimated, then there is almost no decrease

in the estimated cost value. 8

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

112/246 SUBMITTED TEXT 16 WORDS

It is important to note that effort and duration estimations

obtained using the COCOMO Model

93% MATCHING TEXT 16 WORDS

It is important to note that the effort and the duration

estimations obtained using the COCOMO model

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

113/246 SUBMITTED TEXT 48 WORDS

that if we try to complete the project in a time shorter

than the estimated duration the cost will increase

drastically. But if we complete the project over a longer

period of time than the estimated, then there is almost no

decrease in the estimated cost. 5.8.2

85% MATCHING TEXT 48 WORDS

that if anyone tries to complete the project in a time

shorter than the estimated duration, then the cost will

increase drastically. But, if anyone completes the project

over a longer period of time than the estimated, then

there is almost no decrease in the estimated cost

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

114/246 SUBMITTED TEXT 75 WORDS

Intermediate Model The basic COCOMO model

considers that the effort is only a function of the number

of lines of code and some constants calculated

according to the various software systems. The

intermediate COCOMO model recognizes these facts

and refines the initial estimates obtained through the

basic COCOMO model by using a set of 15 cost drivers

based on various attributes of software engineering.

Classification of Cost Drivers and their attributes: Product

–

100% MATCHING TEXT 75 WORDS

Intermediate Model: The basic Cocomo model considers

that the effort is only a function of the number of lines of

code and some constants calculated according to the

various software systems. The intermediate COCOMO

model recognizes these facts and refines the initial

estimates obtained through the basic COCOMO model

by using a set of 15 cost drivers based on various

attributes of software engineering. 9 Classification of

Cost Drivers and their attributes: (Product

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

115/246 SUBMITTED TEXT 37 WORDS

Run-time performance constraints ? Memory constraints

? The volatility of the virtual machine environment ?

Required turnabout time ? Personnel attributes - ? Analyst

capability ? Software engineering capability ? Applications

experience 123 |

88% MATCHING TEXT 37 WORDS

Run-time performance constraints o Memory constraints

o The volatility of the virtual machine environment o

Required turnabout time Personnel attributes - o Analyst

capability o Software engineering capability o

Applications experience

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

116/246 SUBMITTED TEXT 34 WORDS

The characteristics of the development personal that are

considered include the experience of personal ,

programming capability , analysis capability etc.

Development Environment: It captures the development

facilities available to the developers.

53% MATCHING TEXT 34 WORDS

The attributes of development personnel that are

considered include the experience level of personnel,

programming capability, analysis capability etc. Copy

Right DTE&T, Odisha Page 43 Development Environment

The development environment attributes capture the

development facilities available to the developers.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

117/246 SUBMITTED TEXT 19 WORDS

Use of software tools ? Application of software

engineering methods ? Required development schedule

5.8.3 Complete COCOMO Model

76% MATCHING TEXT 19 WORDS

Use of software tools o Application of software

engineering methods o Required development schedule

10 Table 5.1 Ratings 11 3. Detailed COCOMO Model:

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

118/246 SUBMITTED TEXT 26 WORDS

major limitation of both the basic and intermediate

COCOMO models is that they consider a software

product as a single homogeneous entity. However, most

large

94% MATCHING TEXT 26 WORDS

major shortcoming of both the basic and intermediate

COCOMO models is that they consider a software

product as a single homogeneous entity. ? However,

most large

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

119/246 SUBMITTED TEXT 21 WORDS

incorporates all qualities of the standard version with an

assessment of the cost driver’s effect on each method of

the

100% MATCHING TEXT 21 WORDS

incorporates all qualities of the standard version with an

assessment of the cost driver?s effect on each method of

the

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

120/246 SUBMITTED TEXT 29 WORDS

In complete COCOMO the whole software is

differentiated into multiple modules, and then we apply

COCOMO in various modules to estimate effort and then

sum the effort. The

94% MATCHING TEXT 29 WORDS

In detailed cocomo, the whole software is differentiated

into multiple modules, and then we apply COCOMO in

various modules to estimate effort and then sum the

effort. The

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

121/246 SUBMITTED TEXT 15 WORDS

is estimated separately. This approach reduces the margin

of error in the final estimate.

100% MATCHING TEXT 15 WORDS

is estimated separately. This approach reduces the margin

of error in the final estimate. 2.6

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

122/246 SUBMITTED TEXT 32 WORDS

The Six phases of detailed COCOMO are: 1. Planning and

requirements 2. System structure 3. Complete structure

4. Module code and test 5. Integration and test 6. Cost

Constructive model

100% MATCHING TEXT 32 WORDS

The Six phases of detailed COCOMO are: 1. Planning and

requirements 2. System structure 3. Complete structure

4. Module code and test 5. Integration and test 6. Cost

Constructive model

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

123/246 SUBMITTED TEXT 41 WORDS

Boehm proposed COCOMO (Constructive Cost

Estimation Model) in 1981.COCOMO is one of the most

generally used software estimation models in the world.

COCOMO predicts the efforts and schedule of a software

product based on the size of the software. 5.10

100% MATCHING TEXT 41 WORDS

Boehm proposed COCOMO (Constructive Cost

Estimation Model) in 1981.COCOMO is one of the most

generally used software estimation models in the world.

COCOMO predicts the efforts and schedule of a software

product based on the size of the software.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

124/246 SUBMITTED TEXT 14 WORDS

to transform user requirements into some suitable form,

which helps the programmer in

100% MATCHING TEXT 14 WORDS

to transform user requirements into some suitable form,

which helps the programmer in

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

125/246 SUBMITTED TEXT 18 WORDS

Each module is well defined system that can be used with

other applications. ? Each module has

93% MATCHING TEXT 18 WORDS

Each module is a well-defined system that can be used

with other applications. o Each module has

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

126/246 SUBMITTED TEXT 24 WORDS

high- level design is called software architecture or the

program structure. Many different types of notations have

been used to represent a high-level design.

74% MATCHING TEXT 24 WORDS

high-level design is called the program structure or the

software architecture many different types of notations

have been used to represent a high-level design.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

127/246 SUBMITTED TEXT 16 WORDS

During detailed design, the data structure and the

algorithms of the different modules are designed.

100% MATCHING TEXT 16 WORDS

During detailed design, the data structure and the

algorithms of the different modules are designed.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

128/246 SUBMITTED TEXT 31 WORDS

Objects - All entities involved in the solution design are

known as objects. For example, person, banks, company

and customers are treated as objects. Every entity has

some attributes associated

89% MATCHING TEXT 31 WORDS

Objects: All entities involved in the solution design are

known as objects. For example, person, banks, company,

and users are considered as objects. Every entity has

some attributes associated

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

129/246 SUBMITTED TEXT 19 WORDS

some methods to perform respective operation. ? Classes

- A class is a generalized description of an object (

78% MATCHING TEXT 19 WORDS

some methods to perform on the attributes. 2. Classes: A

class is a generalized description of an object.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

130/246 SUBMITTED TEXT 15 WORDS

Encapsulation not only bundles important information of

an object together, but also restricts access

89% MATCHING TEXT 15 WORDS

Encapsulation not only bundles essential information of

an object together but also restricts access

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

131/246 SUBMITTED TEXT 30 WORDS

Inheritance - OOD permits similar classes to stack up in

hierarchical manner where the lower or sub-classes can

inherit, re-use and implement allowed variables and

methods from their immediate

66% MATCHING TEXT 30 WORDS

Inheritance: OOD allows similar classes to stack up in a

hierarchical manner where the lower or sub-classes can

import, implement, and re-use allowed variables and

functions from their immediate

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

132/246 SUBMITTED TEXT 15 WORDS

of OOD is known as inheritance. This makes it easier to

define specific class

75% MATCHING TEXT 15 WORDS

of OOD is called an inheritance. This makes it easier to

define a specific class

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

133/246 SUBMITTED TEXT 18 WORDS

class and to construct generalized classes from specific

ones. ? Polymorphism - OOD languages provide a

mechanism

90% MATCHING TEXT 18 WORDS

class and to create generalized classes from specific

ones. 7. Polymorphism: OOD languages provide a

mechanism

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

134/246 SUBMITTED TEXT 19 WORDS

This is called polymorphism, which allows a single

interface performing tasks for different types. 149 |

71% MATCHING TEXT 19 WORDS

This is known as polymorphism, which allows a single

interface is performing functions for different types.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

135/246 SUBMITTED TEXT 21 WORDS

Depending upon how the function is invoked, respective

portion of the code gets executed. 7.4 SOFTWARE

DESIGN

78% MATCHING TEXT 21 WORDS

Depending upon how the service is invoked, the

respective portion of the code gets executed. Design

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

136/246 SUBMITTED TEXT 19 WORDS

N N Y Y N N Y Y Opens Website Y N Y N Y N Y N

63% MATCHING TEXT 19 WORDS

N Y N Y Y N N N Y Y N Y N N N Y N

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

137/246 SUBMITTED TEXT 16 WORDS

and improve the objectives of an existing system and to

develop a new system specification.

80% MATCHING TEXT 16 WORDS

and refine the objectives of an existing system and

develop a new system specification

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

138/246 SUBMITTED TEXT 25 WORDS

different modules of the software from its flow chart

representation. Besides, data interchange among

different modules is not represented in a flow chart. 8.3.2

82% MATCHING TEXT 25 WORDS

different modules of the software from its flow chart

representation. Copy Right DTE&T, Odisha Page 89 • Data

interchange among different modules is not represented

in a flow chart.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

139/246 SUBMITTED TEXT 19 WORDS

Transform Analysis Transform analysis distinguishes the

key functional modules and the high-level inputs and

outputs for these

72% MATCHING TEXT 19 WORDS

Transform Analysis Transform analysis identifies the

primary functional components (modules) and the high

level input and outputs for these

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

140/246 SUBMITTED TEXT 11 WORDS

The first step in transform analysis is to divide the

100% MATCHING TEXT 11 WORDS

The first step in transform analysis is to divide the

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

141/246 SUBMITTED TEXT 24 WORDS

into 3 types of parts: ? Input ? Logical processing ?

Output The input portion comprises procedures that

convert input data from physical

65% MATCHING TEXT 24 WORDS

into three types of parts: Input Logical processing Output

The input portion in the DFD includes processes that

transform input data from physical

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

142/246 SUBMITTED TEXT 35 WORDS

an afferent branch. The output portion of transform

analysis alters output data from logical to physical form.

Each output portion is termed an efferent branch. The

remaining portion of transform analysis is called

71% MATCHING TEXT 35 WORDS

an afferent branch. The output portion of a DFD

transforms output data from logical form to physical

form. Each output portion is called an efferent branch.

The remaining portion of a DFD is called

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

143/246 SUBMITTED TEXT 30 WORDS

In the next step, the structure chart is derived by drawing

one functional component for the central transform, and

the afferent and efferent branches. Each input and output

83% MATCHING TEXT 30 WORDS

In the next step of transform analysis, the structure chart

is derived by drawing one functional component for the

central transform and the afferent and efferent branches.

Identifying the level input and output

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

144/246 SUBMITTED TEXT 11 WORDS

are represented as boxes in the first level structure chart.

100% MATCHING TEXT 11 WORDS

are represented as boxes in the first level structure chart

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

145/246 SUBMITTED TEXT 22 WORDS

depending upon the input data item. Each different way

in which input data is handled is considered a transaction.

The

85% MATCHING TEXT 22 WORDS

depending upon the input data item. Each different way

in which input data is handled in a transaction. The

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

146/246 SUBMITTED TEXT 35 WORDS

of the data input to the system to the final result through

a hierarchy of levels. It starts with the most abstract

definition of the system (context diagram) and at each

higher level DFD,

73% MATCHING TEXT 35 WORDS

of the data input to the system to the final result through

a hierarchy of levels. ? A DFD starts with the most abstract

definition of the system (lowest level) and ends with more

detailed (higher level DFD). ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

147/246 SUBMITTED TEXT 26 WORDS

To develop a higher-level DFD model, processes are

decomposed into their sub-processes and the data flow

among these sub-processes is identified. 179 |

100% MATCHING TEXT 26 WORDS

To develop a higher-level DFD model, processes are

decomposed into their sub-processes and the data flow

among these sub-processes is identified. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

148/246 SUBMITTED TEXT 18 WORDS

The input portion in the DFD that transform input data

from physical to logical form is called

85% MATCHING TEXT 18 WORDS

The input portion in the DFD includes processes that

transform input data from physical to logical form. Each

input portion is called

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

149/246 SUBMITTED TEXT 12 WORDS

approach, the system is viewed as a collection of objects.

100% MATCHING TEXT 12 WORDS

approach, the system is viewed as a collection of objects.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

150/246 SUBMITTED TEXT 18 WORDS

For example, in a Banking Software, each account may be

a separate object with its own data

76% MATCHING TEXT 18 WORDS

For example, in a Library Automation Software, each

library member may be a separate object with its own

data

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

151/246 SUBMITTED TEXT 14 WORDS

vary depending on the purpose for which it is being

created. For example,

76% MATCHING TEXT 14 WORDS

vary depending on the application for which it is being

designed. For example,

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

152/246 SUBMITTED TEXT 18 WORDS

to convert user requirements into some suitable form,

which helps the programmer in software coding and

implementation.

91% MATCHING TEXT 18 WORDS

to transform user requirements into some suitable form,

which helps the programmer in software coding and

implementation.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

153/246 SUBMITTED TEXT 19 WORDS

A structure chart differs from a flow chart in following

ways: ? It is usually difficult to identify

88% MATCHING TEXT 19 WORDS

A structure chart differs from a flow chart in three

principal ways: • It is usually difficult to identify

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

154/246 SUBMITTED TEXT 27 WORDS

different modules of the software from its flow chart

representation. ? Data interchange among different

modules is not represented in a flow chart. 2.

86% MATCHING TEXT 27 WORDS

different modules of the software from its flow chart

representation. Copy Right DTE&T, Odisha Page 89 • Data

interchange among different modules is not represented

in a flow chart.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

155/246 SUBMITTED TEXT 14 WORDS

vary depending on the purpose for which it is being

constructed. For example,

76% MATCHING TEXT 14 WORDS

vary depending on the application for which it is being

designed. For example,

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

156/246 SUBMITTED TEXT 25 WORDS

Fundamentals of Software Engineering, Fifth Edition,

2018, Rajib Mall; PHI ? Software Engineering – A

Practitioner’s Approach, Roger S. Pressman; McGraw-Hill

International Edition

70% MATCHING TEXT 25 WORDS

Fundamentals of Software Engineering By Rajib Mall

Prentice Hall of India 2. Software Engineering A

Practitioner’s Approach By Roger S. Pressman McGraw-

Hill International Edition

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

157/246 SUBMITTED TEXT 13 WORDS

Good software development organizations usually

develop their own coding standards and guidelines

100% MATCHING TEXT 13 WORDS

Good software development organizations usually

develop their own coding standards and guidelines.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

158/246 SUBMITTED TEXT 23 WORDS

Rules for limiting the scope of global variables: These

rules list what types of data can be declared global and

what cannot,

86% MATCHING TEXT 23 WORDS

Rules for limiting the use of global These rules list what

types of data can be declared global and what cannot. 2.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

159/246 SUBMITTED TEXT 29 WORDS

Name of the module ? Date on which the module was

created ? Authors name ? Modification history ? Synopsis

of the module ? Different functions supported

79% MATCHING TEXT 29 WORDS

Name of the module b) Date on which the module was

created c) Author's name d) Modification history e)

Synopsis of the module f) Different functions supported

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

160/246 SUBMITTED TEXT 15 WORDS

along with their input/output parameters ? Global

variables accessed / modified by the

95% MATCHING TEXT 15 WORDS

along with their input/output parameters g)Global

variables accessed / modified by the

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

161/246 SUBMITTED TEXT 11 WORDS

Naming conventions for global variables, local variables

and constant identifiers:

100% MATCHING TEXT 11 WORDS

Naming conventions for global variables, local variables,

and constant identifiers:

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

162/246 SUBMITTED TEXT 27 WORDS

error return values and exception handling mechanism:

The way error conditions are reported by different

functions in a program should be standard within an

organization.

72% MATCHING TEXT 27 WORDS

Error return conventions and exception handling

mechanisms: The way error conditions are reported by

different functions in a program and the way common

exception conditions are handled should be standard

within an organization. 6.2

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

163/246 SUBMITTED TEXT 16 WORDS

Do not use a coding style that is too clever or too difficult

to understand:

100% MATCHING TEXT 16 WORDS

Do not use a coding style that is too clever or too difficult

to understand 2.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

164/246 SUBMITTED TEXT 12 WORDS

The length of any function should not exceed 10 source

lines:

100% MATCHING TEXT 12 WORDS

The length of any function should not exceed 10 source

lines. 6.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

165/246 SUBMITTED TEXT 32 WORDS

two types of reviews carried out on the code of a

module. a) Code

85% MATCHING TEXT 32 WORDS

two types of reviews are carried out on the code of a

module. ? Code

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

166/246 SUBMITTED TEXT 24 WORDS

be considered during code inspection: ? Use of

uninitialized variables ? Jumps into loops ? Non –

terminating loops 204 |

90% MATCHING TEXT 24 WORDS

be checked during code inspection: • Use of uninitialized

variables. • Jumps into loops. • Non-terminating loops. •

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

167/246 SUBMITTED TEXT 17 WORDS

operators ? Improper modification of loop variables ?

Comparison of equality of floating point values ,

100% MATCHING TEXT 17 WORDS

operators Improper modification of loop variables

Comparison of equality of floating point values.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

168/246 SUBMITTED TEXT 32 WORDS

Fault - When error exists fault occurs. A fault, also known

as a bug, is a result of an error which can cause system to

fail. ? Failure - failure is

91% MATCHING TEXT 32 WORDS

Fault: When error exists, fault occurs. A fault, also known

as a bug or defect, is a result of an error which can cause

system to fail. 160 • Failure: It is

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

169/246 SUBMITTED TEXT 20 WORDS

of an error. But mere presence of an error may not

necessarily lead to failure. 220 |

73% MATCHING TEXT 20 WORDS

of an error (or defect or bug). But, the presence of an

error may not necessarily lead to failure. •

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

170/246 SUBMITTED TEXT 57 WORDS

is the triplet [I , S, O], where I is the data input to the

system, S is the state of the system at which the data is

input and O is the expected output of the system. d) Test

Suite: It is the set of all test cases with which a given

software product is

94% MATCHING TEXT 57 WORDS

is the triplet [I, S, O], where I is the data input to the

system, S is the state of the system at which the data is

input, and O is the expected output of the system. • Test

suite: This is the set of all test cases with which a given

software product is

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

171/246 SUBMITTED TEXT 13 WORDS

then one valid and two invalid equivalence classes are

defined. ? If

100% MATCHING TEXT 13 WORDS

then one valid and two invalid equivalence classes are

defined. 3. If

https://pdfcoffee.com/software-engineering-notes-pdf-free.html

172/246 SUBMITTED TEXT 17 WORDS

then one valid and two invalid equivalence classes are

defined. ? If a member of set

83% MATCHING TEXT 17 WORDS

then one valid and two invalid equivalence classes are

defined. 3. If an input condition specifies a member of a

set,

https://pdfcoffee.com/software-engineering-notes-pdf-free.html

173/246 SUBMITTED TEXT 12 WORDS

an input condition, then one valid and one invalid

equivalence class

90% MATCHING TEXT 12 WORDS

an input condition is Boolean, then one valid and one

invalid equivalence class

https://pdfcoffee.com/software-engineering-notes-pdf-free.html

174/246 SUBMITTED TEXT 29 WORDS

Summary of the Black Box Test Suite Design Approach ?

Examine the input and output values of the program. ?

Identify the equivalence classes. 223 |

93% MATCHING TEXT 29 WORDS

Summary of the Black-box test suite Design · Examine

the input and output values of the program. · Identify the

equivalence classes. ·

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

175/246 SUBMITTED TEXT 18 WORDS

boundary value analysis involves designing test cases

using the values at the boundaries of different

equivalence classes.

79% MATCHING TEXT 18 WORDS

Boundary value analysis-based test suite design involves

designing test cases using the values at the boundary of

different equivalence classes.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

176/246 SUBMITTED TEXT 32 WORDS

every statement in a program at least once. The principal

idea gfis that unless a statement is executed there is no

way to determine whether an error exists in that

statement.

74% MATCHING TEXT 32 WORDS

every statement in a program is executed at least once.

The principle idea governing the statement coverage

strategy is that unless a statement is executed there is no

way to determine whether an error exist in that statement

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

177/246 SUBMITTED TEXT 32 WORDS

defined in terms of control flow graph (CFG) of a

program. Control flow graph: It describes the sequence

in which the different instructions of a program gets

executed. In other words

82% MATCHING TEXT 32 WORDS

defined in terms of the control flow graph (CFG) of a

program. Control Flow Graph (CFG) A control flow graph

describes the sequence in which the different instructions

of a program get executed. In other words,

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

178/246 SUBMITTED TEXT 15 WORDS

is the set of all test cases with which a given software

product is

100% MATCHING TEXT 15 WORDS

is the set of all test cases with which a given software

product is

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

179/246 SUBMITTED TEXT 20 WORDS

Driver and Stub Modules: In order to test a single module,

we need a complete environment to provide all

100% MATCHING TEXT 20 WORDS

Driver and Stub Modules In order to test a single module,

we need a complete environment to provide all

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

180/246 SUBMITTED TEXT 40 WORDS

that is necessary for execution of the module. Other than

the module under test the following are needed to test

the module: ? The procedures belonging to other

modules that the module under test calls. 226 |

59% MATCHING TEXT 40 WORDS

that is necessary for execution of the module. We will

need the following in order to be able to test the module:

o The procedures belonging to other modules that the

module under test calls.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

181/246 SUBMITTED TEXT 23 WORDS

data structures that the module accesses. ? A procedure

to call the functions of the module under test with

appropriate parameters.

89% MATCHING TEXT 23 WORDS

data structures that the module accesses. o A procedure

to call the function of the module under test with

appropriate parameters.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

182/246 SUBMITTED TEXT 14 WORDS

stubs and drivers are designed to provide the complete

environment for a module

100% MATCHING TEXT 14 WORDS

Stubs and drivers are designed to provide the complete

environment for a module. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

183/246 SUBMITTED TEXT 16 WORDS

describes the sequence in which the different instructions

of a program get executed. 2.7

100% MATCHING TEXT 16 WORDS

describes the sequence in which the different instructions

of a program get executed.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

184/246 SUBMITTED TEXT 13 WORDS

the highest-level modules are tested first and

progressively, lower-level modules are tested

78% MATCHING TEXT 13 WORDS

The higher- level modules are tested first and then lower-

level modules are tested

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

185/246 SUBMITTED TEXT 14 WORDS

all the modules of the system are simply put together and

tested. This

100% MATCHING TEXT 14 WORDS

all the modules of the system are simply put together and

tested. This

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

186/246 SUBMITTED TEXT 43 WORDS

once an error is found during the integration testing, it is

very difficult to localize the error as the error may

potentially belong to any of the modules being

integrated. So, debugging errors reported during big bang

integration testing are very expensive

96% MATCHING TEXT 43 WORDS

once an error is found during the integration testing, it is

very difficult to localize the error as the error may

potentially belong to any of the modules being

integrated. Debugging errors reported during big–bang

integration testing are very expensive.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

187/246 SUBMITTED TEXT 15 WORDS

each subsystem is to test the interfaces among various

modules making up the subsystem.

89% MATCHING TEXT 15 WORDS

each subsystem is to test the interface among various

modules making up the subsystem.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

188/246 SUBMITTED TEXT 12 WORDS

integration testing is that several disjoint subsystems can

be tested simultaneously.

100% MATCHING TEXT 12 WORDS

integration testing is that several disjoint subsystems can

be tested simultaneously.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

189/246 SUBMITTED TEXT 14 WORDS

occurs when the system is made up of a large number of

small

100% MATCHING TEXT 14 WORDS

occurs when the system is made up of a large number of

small

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

190/246 SUBMITTED TEXT 13 WORDS

and …. are designed to provide the complete

environment for a module

95% MATCHING TEXT 13 WORDS

and drivers are designed to provide the complete

environment for a module. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

191/246 SUBMITTED TEXT 30 WORDS

White-Box Testing 3.3.1 White Box Testing Tools 3.3.2

White box testing examples 3.3.3 Advantage of White box

testing 3.3.4 Disadvantage of White box testing 3.4 Code

Coverage 3.5

52% MATCHING TEXT 30 WORDS

WHITE-BOX TESTING Objectives, White-box testing,

Need of white-box testing, Advantages and

disadvantages of white-box testing, Black-box vs White-

box testing, Logic coverage

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

192/246 SUBMITTED TEXT 30 WORDS

areas of the program not exercised by a set of test cases.

It also creates some test cases to increase coverage and

determining a quantitative measure of code coverage.

74% MATCHING TEXT 30 WORDS

areas of a program not exercised by a set of test cases,

Creating additional test cases to increase coverage, and

Determining a quantitative measure of code coverage,

https://pdfcoffee.com/software-engineering-notes-pdf-free.html

193/246 SUBMITTED TEXT 26 WORDS

expression coverage, is a testing method for testing and

evaluating the variables or sub-expressions in a

conditional statement. The purpose of condition

coverage is to

48% MATCHING TEXT 26 WORDS

expression coverage is a testing method used to test and

evaluate the variables or sub-expressions in the

conditional statement. The goal of condition coverage is

to

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

194/246 SUBMITTED TEXT 17 WORDS

TEST CASE1: A=TRUE, B=TRUE TEST CASE2: A=TRUE,

B=FALSE TEST CASE3: A=FALSE, B=TRUE TEST CASE4:

A=FALSE, B=FALSE

100% MATCHING TEXT 17 WORDS

Test case 1: A = true, B=true Test case 2: A=true, B=False

Test case 3: A= False, B=True Test case 4: A=False,

B=False

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

195/246 SUBMITTED TEXT 34 WORDS

passes through the loop where a>b, n is the maximum

limit of passes. ? Make b, b-1; b+1 passes through the

loop, where "b" is the highest amount of passes through

the loop

53% MATCHING TEXT 34 WORDS

passes through the loop where x>y, n is the maximum

number of passes through the loop. ? Make "y","y-1","y+1"

passes through the loop where "y" is the maximum

number of allowable passes through the loop.

https://jeppiaarcollege.org/wp-content/uploads/2019/02/II-YEAR-IV-SEM-CS8494-SOFTWARE-

ENGINEERING.pdf

196/246 SUBMITTED TEXT 17 WORDS

This makes it possible to identify how the system

responds to expected and unexpected user actions,

100% MATCHING TEXT 17 WORDS

This makes it possible to identify how the 178 system

responds to expected and unexpected user actions.

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

197/246 SUBMITTED TEXT 16 WORDS

is a range of values, then design test cases for one valid

and two invalid

76% MATCHING TEXT 16 WORDS

is a range of values, then derive the test case for one valid

and two invalid

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

198/246 SUBMITTED TEXT 17 WORDS

Boundary Value Analysis Invalid (min -1) Valid (min, +min,

- max, max) Invalid (max+1) 17 18,19,55,56 57

100% MATCHING TEXT 17 WORDS

Boundary Value Analysis Invalid (min-1) Valid (min, min+,

max-, max) Invalid (max+) 0 1,2,99,100 101

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

199/246 SUBMITTED TEXT 19 WORDS

It is a technique where the input data is divided into

partitions of valid and invalid values. 2.

100% MATCHING TEXT 19 WORDS

It is a technique where the input data is divided into

partitions of valid and invalid values.

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

200/246 SUBMITTED TEXT 15 WORDS

Boundary values are those that contain the upper and

lower limit of a variable.

100% MATCHING TEXT 15 WORDS

Boundary values are those that contain the upper and

lower limit of a variable.

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

201/246 SUBMITTED TEXT 15 WORDS

It will help decrease testing time due to a lesser number

of test cases

100% MATCHING TEXT 15 WORDS

It will help decrease testing time due to a lesser number

of test cases

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

202/246 SUBMITTED TEXT 11 WORDS

The Equivalence partitioning will reduce the number of

test cases

100% MATCHING TEXT 11 WORDS

The Equivalence partitioning will reduce the number of

test cases

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

203/246 SUBMITTED TEXT 34 WORDS

The Boundary Value Analysis is often called a part of the

Stress and Negative Testing. The Equivalence partitioning

can be suitable for all the software testing levels such as

unit, integration, system. 6.

100% MATCHING TEXT 34 WORDS

The Boundary Value Analysis is often called a part of the

Stress and Negative Testing. The Equivalence partitioning

can be suitable for all the software testing levels such as

unit, integration, system.

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

204/246 SUBMITTED TEXT 24 WORDS

combinations of input conditions. But since there may be

some critical behavior to be tested when some

combinations of input conditions are considered,

80% MATCHING TEXT 24 WORDS

combinations of input conditions. There may be some

critical behaviour to be tested when some combinations

of input conditions are considered.

https://baou.edu.in/assets/pdf/BSCIT_303_slm.pdf

205/246 SUBMITTED TEXT 36 WORDS

It may be just a routine maintenance task as some bug

discovered by some user or it may be a large event in

itself based on maintenance size or nature. Following are

4 types of

94% MATCHING TEXT 36 WORDS

It may be just a routine maintenance tasks as some bug

discovered by some user or it may be a large event in

itself based on maintenance size or nature. Following are

some types of

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

206/246 SUBMITTED TEXT 10 WORDS

To keep the software usable over long period of time,

100% MATCHING TEXT 10 WORDS

to keep the software usable over long period of time.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

207/246 SUBMITTED TEXT 13 WORDS

it includes new features, new user requirements for

refining the software .

100% MATCHING TEXT 13 WORDS

It includes new features, new user requirements for

refining the software

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

208/246 SUBMITTED TEXT 16 WORDS

which are not significant at this moment but they may

cause serious issues in future,

90% MATCHING TEXT 16 WORDS

which are not significant at this moment but may cause

serious issues in future.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

209/246 SUBMITTED TEXT 20 WORDS

software configuration management is to systematically

manage, organize and control the changes in the

document, codes and other entities.

81% MATCHING TEXT 20 WORDS

Software Configuration Management is defined as a

process to systematically manage, organize, and control

the changes in the documents, codes, and other entities

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

210/246 SUBMITTED TEXT 27 WORDS

Software Configuration management is a process to

systematically manage, organize and control the changes

in the documents, code and other entities during

software development life cycle.

88% MATCHING TEXT 27 WORDS

Software Configuration Management is defined as a

process to systematically manage, organize, and control

the changes in the documents, codes, and other entities

during the Software Development Life Cycle.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

211/246 SUBMITTED TEXT 21 WORDS

Policies which changes over time, taxation and newly

introduced constraints like how to maintain bookkeeping,

may trigger need for modification.

92% MATCHING TEXT 21 WORDS

Policies, which changes over the time, such as taxation

and newly introduced constraints like, how to maintain

bookkeeping, may trigger need for modification. ?

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

212/246 SUBMITTED TEXT 14 WORDS

over time customer may ask for new features or function

in the software.

84% MATCHING TEXT 14 WORDS

Over the time, customer may ask for new features or

functions in the software. ?

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

213/246 SUBMITTED TEXT 21 WORDS

any of the hardware or platform of target host changes.

Software changes are needed to keep adaptability. 4.8

82% MATCHING TEXT 21 WORDS

any of the hardware and/or platform (such as operating

system) of the target host changes, software changes are

needed to keep adaptability. ?

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

214/246 SUBMITTED TEXT 22 WORDS

The purpose of software maintenance is to perform the

following: ? Expanding the customer requirements and

base. ? Enhancing software’s capabilities,

50% MATCHING TEXT 22 WORDS

The purpose of software maintenance is to preserve the

value of software over time, which can accomplished by:

• Expanding the customer base. • Enhancing software’s

capabilities. •

https://www.professionalqa.com/software-maintenance-models

215/246 SUBMITTED TEXT 41 WORDS

PROCESS OF SOFTWARE MAINTENANCE Software

Maintenance phase of Software Development Life Cycle

(SDLC), is implemented through a proper software

maintenance process, known as Software Maintenance

Life Cycle (SMLC). This life cycle consists of seven

different phases, each of which

89% MATCHING TEXT 41 WORDS

Process of Software Maintenance: Software Maintenance

is an important phase of Software Development Life

Cycle (SDLC), and it is implemented in the system

through a proper software maintenance process, known

as Software Maintenance Life Cycle (SMLC). This life cycle

consists of seven different phases, each of which

https://www.professionalqa.com/software-maintenance-models

216/246 SUBMITTED TEXT 38 WORDS

A plan is prepared to incorporate the changes in the

software. The input attribute, initial estimate of resources,

project documentation, cost of modification and

maintenance is also estimated in this phase 3. Design

Phase: The new modules

76% MATCHING TEXT 38 WORDS

a plan is prepared to incorporate the changes in the

software. The input attribute comprises validated

modification request, initial estimate of resources, project

documentation, and repository information. The cost of

modification and maintenance is also estimated. • Design

Phase: The new modules

https://www.professionalqa.com/software-maintenance-models

217/246 SUBMITTED TEXT 28 WORDS

need to be replaced or modified are designed based on

the requirements received from the different sources. The

test cases along with the safety and security issues

40% MATCHING TEXT 28 WORDS

need to be replaced or modified are designed as per the

requirements specified in the earlier stages. Test cases are

developed for the new design including the safety and

security issues.

https://www.professionalqa.com/software-maintenance-models

218/246 SUBMITTED TEXT 55 WORDS

are also developed for the new design. These test cases

are created for the validation and verification of the

system. 4. Implementation Phase: In this phase, the

modification of the new modules is made in the coding

level. New features that demand modification are added,

and the modified software along with the new modules

45% MATCHING TEXT 55 WORDS

are developed for the new design including the safety

and security issues. These test cases are created for the

validation and verification of the system. •

Implementation Phase: In the implementation phase, the

actual modification in the software code are made, new

features that support the specifications of the present

software are added, and the modified software is

installed. The new modules

https://www.professionalqa.com/software-maintenance-models

219/246 SUBMITTED TEXT 14 WORDS

the system to ensure that no defect, error or bug is left

undetected.

96% MATCHING TEXT 14 WORDS

the modified system to ensure that no defect, error or

bug is left undetected.

https://www.professionalqa.com/software-maintenance-models

220/246 SUBMITTED TEXT 17 WORDS

no new faults are introduced in the software as a result of

maintenance activity. 6.

100% MATCHING TEXT 17 WORDS

no new faults are introduced in the software as a result of

maintenance activity.

https://www.professionalqa.com/software-maintenance-models

221/246 SUBMITTED TEXT 63 WORDS

Acceptance Testing Phase: Acceptance testing is applied

on the system after modifications by the user or by the

third party specified by the end user. The testing is used

to verify thenewly added features of the software are

according to the requirements or not. 7. Delivery Phase:

After the successful accomplishing of acceptance testing,

the new integrated system is delivered to the

50% MATCHING TEXT 63 WORDS

Acceptance Testing Phase: Acceptance testing is

performed on the fully integrated system by the user or

by the third party specified by the end user. The main

objective of this testing is to verify that all the features of

the software are according to the requirements stated in

the modification request. • Delivery Phase: Once the

acceptance testing is successfully accomplished, the

modified system is delivered to the

https://www.professionalqa.com/software-maintenance-models

222/246 SUBMITTED TEXT 19 WORDS

SOFTWARE MAINTENANCE MODELS To overcome

internal as well as external problems of the software,

Software maintenance models are

100% MATCHING TEXT 19 WORDS

Software Maintenance Models: To overcome internal as

well as external problems of the software, Software

maintenance models are

https://www.professionalqa.com/software-maintenance-models

223/246 SUBMITTED TEXT 21 WORDS

These models use techniques to simplify the process of

maintenance as well as to make are cost effective. 1.

83% MATCHING TEXT 21 WORDS

These models use different approaches and techniques

to simplify the process of maintenance as well as to make

is cost effective.

https://www.professionalqa.com/software-maintenance-models

224/246 SUBMITTED TEXT 17 WORDS

Iterative Enhancement Model: Iterative enhancement

model considers the changes made to software are

iterative in nature.

87% MATCHING TEXT 17 WORDS

Iterative Enhancement Model: Iterative enhancement

model considers the changes made to the system are

iterative in nature.

https://www.professionalqa.com/software-maintenance-models

225/246 SUBMITTED TEXT 43 WORDS

software depends on the analysis of the existing software

system after completing the documents preparation of

the existing system at the beginning. Moreover, it

attempts to control complexity and tries to maintain

good design.Iterative Enhancement Model is divided into

three stages:

59% MATCHING TEXT 43 WORDS

software based on the analysis of the existing system. It

assumes complete documentation of the software is

available in the beginning. Moreover, it attempts to

control complexity and tries to maintain good design.

Iterative Enhancement model Iterative Enhancement

Model is divided into three stages: •

https://www.professionalqa.com/software-maintenance-models

226/246 SUBMITTED TEXT 35 WORDS

These codes are then going through modification and

enhancement for the specified new requirements. The

final step of this model is the integration of modified parts

into the new system. 276 |

75% MATCHING TEXT 35 WORDS

These parts are then go through modification and

enhancement, which are done on the basis of the

specified new requirements. The final step of this model

is the integration of modified parts into the new system.

https://www.professionalqa.com/software-maintenance-models

227/246 SUBMITTED TEXT 43 WORDS

Model [1] 5. Taute Maintenance Model: In 1983, the

Taute’s model is a maintenance model that developed by

Taute which consists of eight phases in cycle fashion. The

process of maintenance begins by requesting the change

and ends with its operation.

70% MATCHING TEXT 43 WORDS

model image Taute Maintenance Model: Named after the

person who proposed the model, Taute’s model is a

typical maintenance model that consists of eight phases

in cycle fashion. The process of maintenance begins by

requesting the change and ends with its operation.

https://www.professionalqa.com/software-maintenance-models

228/246 SUBMITTED TEXT 38 WORDS

software, software maintenance is required. ? Software

Maintenance phase of Software Development Life Cycle

(SDLC), is implemented through a proper software

maintenance process, known as Software Maintenance

Life Cycle (SMLC). ? SMLC has seven different phases. ?

64% MATCHING TEXT 38 WORDS

Software Maintenance: Software Maintenance is an

important phase of Software Development Life Cycle

(SDLC), and it is implemented in the system through a

proper software maintenance process, known as

Software Maintenance Life Cycle (SMLC). This life cycle

consists of seven different phases,

https://www.professionalqa.com/software-maintenance-models

229/246 SUBMITTED TEXT 16 WORDS

To overcome internal as well as external problems of the

software, Software maintenance models are

100% MATCHING TEXT 16 WORDS

To overcome internal as well as external problems of the

software, Software maintenance models are

https://www.professionalqa.com/software-maintenance-models

230/246 SUBMITTED TEXT 16 WORDS

the probability that the software will work without failure

for a specified period of time.

66% MATCHING TEXT 16 WORDS

The probability of the software executing without a failure

for a specified period of time

https://pdfcoffee.com/software-engineering-notes-pdf-free.html

231/246 SUBMITTED TEXT 80 WORDS

Transient- Transient failures occur only for certain input

values while invoking a function of the system. ?

Permanent- Permanent failures occur for all input values

while invoking a function of the system. ? Recoverable-

When recoverable failures occur, the system recovers

with or without operator intervention. ? Unrecoverable-

In unrecoverable failures, the system may need to be

restarted. ? Cosmetic- These classes of failures cause

only minor irritations, and do not lead to incorrect results.

97% MATCHING TEXT 80 WORDS

Transient: Transient failures occur only for certain input

values while invoking a function of the system.

Permanent: Permanent failures occur for all input values

while invoking a function of the system. Recoverable:

When recoverable failures occur, the system recovers

with or without operator intervention. Unrecoverable: In

unrecoverable failures, the system may need to be

restarted. Cosmetics: These classes of failures cause only

minor irritations, and do not lead to incorrect results.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

232/246 SUBMITTED TEXT 18 WORDS

The reliability requirements for different categories of

software products may be different. For 286 |

100% MATCHING TEXT 18 WORDS

The reliability requirements for different categories of

software products may be different. For

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

233/246 SUBMITTED TEXT 26 WORDS

this reason, it is necessary that the level of reliability

required for a software product should be specified in the

SRS (software requirements specification) document.

100% MATCHING TEXT 26 WORDS

this reason, it is necessary that the level of reliability

required for a software product should be specified in the

SRS (software requirements specification) document.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

234/246 SUBMITTED TEXT 66 WORDS

reliability metrics which can be used to quantify the

reliability of software products. a. Rate of occurrence of

failure (ROCOF) - ROCOF measures the frequency of

occurrence of unexpected behaviour (i.e. failures).

ROCOF measure of a software product can be obtained

by observing the behaviour of a software product in

operation over a specified time interval and then

recording the total number of failures

92% MATCHING TEXT 66 WORDS

reliability metrics which can be used to quantity the

reliability of software products are: Rate of Occurrence of

Failure (ROCOF) ROCOF measures the frequency of

occurrence of unexpected behaviour (i.e. failures). The

ROCOF measure of a software product can be obtained

by observing the behaviour of a software product in

operation over a specified time interval and then

calculating the total number of failures

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

235/246 SUBMITTED TEXT 35 WORDS

Mean Time To Failure (MTTF) - MTTF is the average time

between two successive failures, observed over a large

number of failures. To measure MTTF, we can record the

failure data for n failures.

100% MATCHING TEXT 35 WORDS

Mean TIME TO Failure (MTTF) MTTF is the average time

between two successive failures, observed over a large

number of failures. To measure MTTF, we can record the

failure data for n failures.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

236/246 SUBMITTED TEXT 74 WORDS

Mean Time To Repair (MTTR) - Once failure occurs,

sometime is required to fix the error. MTTR measures the

average time it takes to track the errors causing the failure

and to fix them. d. Mean Time Between Failure (MTBR) -

MTTF and MTTR can be combined to get the MTBR

metric: MTBF = MTTF + MTTR. Thus, MTBF of 300 hours

indicates that once a failure occurs, 287 |

93% MATCHING TEXT 74 WORDS

Mean Time To Repair (MTTR): ? Once failure occurs,

some time is required to fix the error. MTTR measures the

average time it takes to track the errors causing the failure

and to fix them. ? Mean Time Between Failure (MTBR): ?

MTTF and MTTR can be combined to get the MTBR

metric: MTBF = MTTF + MTTR. Thus, if MTBF of 300

hours indicates that once a failure occurs,

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

237/246 SUBMITTED TEXT 21 WORDS

the next failure is expected after 300 hours. In this case,

time measurements are real time and not the execution

89% MATCHING TEXT 21 WORDS

the next failure is expected to occur only after 300 hours.

In this case, the time measurements are real time and not

the execution

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

238/246 SUBMITTED TEXT 84 WORDS

POFOD measures the likelihood of the system failing

when a service request is made. For example, a POFOD

of 0.001 would mean that 1 out of every 1000 service

requests would result in a failure. f. Availability- Availability

of a system is a measure of how likely shall the system is

available for use over a given period of time. This metric

not only considers the number of failures occurring

during a time interval, but also takes into account the

repair time (

92% MATCHING TEXT 84 WORDS

POFOD measures the likelihood of the system failure

when a service request is made. For example a POFOD of

0.001 would mean that 1 out of every 1000 service

requests would result in a failure. Availability Availability of

a system is a measure of how likely will the system be

available for use over a given period of time. This metric

not only considers the number of failures occurring

during a time interval, but also takes into account the

repair time (

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

239/246 SUBMITTED TEXT 48 WORDS

SOFTWARE RELIABILTY MODELS A software reliability

model indicates the form of a random process that

defines the behavior of software failures to time. Software

reliability models have appeared as people try to

understand the features of how and why software fails,

and attempt to quantify software reliability.

96% MATCHING TEXT 48 WORDS

Software Reliability Models A software reliability model

indicates the form of a random process that defines the

behavior of software failures to time. Software reliability

models have appeared as people try to understand the

features of how and why software fails, and attempt to

quantify software reliability.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

240/246 SUBMITTED TEXT 31 WORDS

There is no individual model that can be used in all

situations. No model is complete or even representative.

Most software models contain the following parts: 292 |

100% MATCHING TEXT 31 WORDS

There is no individual model that can be used in all

situations. No model is complete or even representative.

Most software models contain the following parts:

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

241/246 SUBMITTED TEXT 28 WORDS

A reliability growth model is a numerical model of

software reliability, which predicts how software reliability

should improve over time as errors are discovered and

repaired.

100% MATCHING TEXT 28 WORDS

A reliability growth model is a numerical model of

software reliability, which predicts how software reliability

should improve over time as errors are discovered and

repaired.

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SCSA1303.pdf

242/246 SUBMITTED TEXT 17 WORDS

the probability that the software will work without failure

for a specified period of time. ?

66% MATCHING TEXT 17 WORDS

The probability of the software executing without a failure

for a specified period of time

https://pdfcoffee.com/software-engineering-notes-pdf-free.html

243/246 SUBMITTED TEXT 18 WORDS

MTTF is the average time between two successive

failures, observed over a large number of failures. ?

100% MATCHING TEXT 18 WORDS

MTTF is the average time between two successive

failures, observed over a large number of failures.

https://www.sctevtservices.nic.in/docs/website/pdf/140305.pdf

244/246 SUBMITTED TEXT 20 WORDS

MTTR measures the average time it takes to track the

errors causing the failure and to fix them.

100% MATCHING TEXT 20 WORDS

MTTR measures the average time it takes to track the

errors causing the failure and to fix them. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

245/246 SUBMITTED TEXT 16 WORDS

POFOD measures the likelihood of the system failing

when a service request is made. ?

100% MATCHING TEXT 16 WORDS

POFOD measures the likelihood of the system failing

when a service request is made.

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

246/246 SUBMITTED TEXT 25 WORDS

Availability of a system is a measure of how likely shall the

system is available for use over a given period of time. ?

100% MATCHING TEXT 25 WORDS

Availability of a system is a measure of how likely shall the

system is available for use over a given period of time. ?

https://kp.kiit.ac.in/wp-content/uploads/2022/01/5TH_CS_SOFTWARE_ENGG_SM-1.pdf

