BLOCKII:
OBJECT ORIENTED DESIGN

Unit 1 : Introduction to Object Oriented Design
Unit2 : Object Modeling Techniques (OMT) tools
Unit 3 : Phases of Object-Oriented Development

UNIT 1: INTRODUCTION TO OBJECT

ORIENTED DESIGN

Unit Structure:

1.1
1.2
1.3
1.4
1.5
1.6

1.7

1.8

1.9

1.10
1.11

1.12
1.13
1.14
1.15

Introduction

Unit Objectives

Brief History

Object-Oriented Software Development Methodology
Object-Oriented Approaches

Object-Oriented Analysis

1.6.1 Steps of performing object-oriented analysis
Object-Oriented Design

1.7.1 Goals of Object-Oriented Analysis and Design
Object-Oriented Programming

1.8.1 Objects

1.8.2 Classes

Different Concepts of Object-Oriented Design
1.9.1 Abstraction

1.9.2 Encapsulation

1.9.3 Inheritance

1.9.4 Modularity

1.9.5 Polymorphism

Generalization and Specialization

Link and Association

1.11.1 Degree of Association

1.11.2 Multiplicity

Summing Up

Answers to Check Your Progress

Possible Questions

References and Suggested Readings

1.1

INTRODUCTION

The object-oriented programming is widely used to solve different
kinds of computing problems. The concept of object-oriented
programming is to find solution to the problem based on real-life
examples. Object-oriented design is used to prepare a plan to solve
the software related problem diagrammatically. The whole design is

348 | Page

Space for Learners:

based on objects and classes where objects interact with each other
to solve a problem. In this unit, we will learn the object-oriented
approaches, the key concepts of object-oriented design and different
components of it.

Object-oriented design is a process to design software. The
fundamental steps of developing software are: Requirement
analysis, designing, coding, testing and maintenance of the software.
There are many techniques and tools to develop software. The need
for a tool may vary as per the requirement of the user and the
change in the technology. Among all other design strategies, object-
oriented development techniques are a popular one.

1.2 UNIT OBJECTIVES

The main objectives of this unit are:

e To familiarize with the object-oriented programming history

e To know the purpose and benefits of using object-oriented
approaches

e To have a clear concept on different concepts related to
object-oriented design

e To gather the knowledge on the importance of object-
oriented analysis and design

e To know the use of link, association and basics object-
oriented design

1.3 BRIEF HISTORY

In this section, we will show the evaluation of object-oriented
programming with time:

e The term ‘object’ and ‘oriented’ are in discussions at MIT in
the early 1960s.

e Alan Kay presented a detailed concept on “Object-Oriented
Programming” in 1966-1967.

e In MIT, an ALGOL version named AED-0 was initiated
which was capable of establishing a link between the data
structures and procedures.

e A programming language name Simula was designed using
object-oriented concept in the late 1960s. It was capable of

349 |Page

Space for Learners:

run on the UNIVAC 1107 computer. Simula introduced the
fundamental concepts of OOP like class, object, inheritance
and dynamic binding.

e The first version of Smalltalk programming language was
built by Alan Kay, Dan Ingalls and Adele Goldberg
inthe1970s.

e Inmid-1980s, Brad Cox developed Objective-C which
proved to be new beginning in OOP history. In parallel to
this, Bjarne Stroustrup created the Object-Oriented C++.

e Grady Booch proposed the design concept in a programming
language in a paper titled Object Oriented Design.

e In the 1990s, the popularity of using object-oriented
programming began using the languages like C++, Visual
FoxPro 3.0 etc.

e Eventually, object-oriented concepts were added to many
languages like ADA, Fortran, Pascal, Basic, COBOL etc.

e In present days, languages like Python, Ruby, JAVA by Sun
Microsystems, C#, Visual Basic.NET have completely
emerged as object-oriented programming languages. And
these languages are widely used in various fields.

1.4 OBJECT-ORIENTED SOFTWARE
DEVELOPMENT METHODOLOGY

This methodology helps the programmer to work based on object-
oriented concepts to solve the problems. Object-oriented software
development methodology includes the concept of requirement
analysis, object-oriented design and implementation of the system.
Unlike the traditional software development methods, it focuses on
developing software using objects. These objects can be easily
created, removed, modified and reused. Objects are also able to
communicate between themselves.

1.5 OBJECT-ORIENTED APPROACHES

The object-oriented paradigm focuses on solving a problem using
both theoretical and conceptual knowledge. Here, a system is
assumed as a collection of various entities which are able to work
and interact together to fulfil certain objectives. These entities may

350 | Page

Space for Learners:

be physical (like animal, flower, person etc.) or maybe abstract
concepts (like files, function etc.). In object-oriented analysis, these
entities are known as objects.

In an object-oriented approach, these objects consist of data and
procedures. The main aim is to propose a design to improve the
productivity and quality of the system. The whole object-oriented
programming approach can be partitioned into three main phases.
The first phase is Object-oriented Analysis (OOA) phase, where the
requirements are analysed and the problem domain is identified in
terms of objects. The Object-oriented design phase works to design
a solution domain based on the objects identified in the previous
phase. Object-oriented programming works on the implementation
of the system using object-oriented concepts.

The benefits of object-oriented programming approaches are:

e Object-oriented system model works in more organized way
than other traditional approaches.

e Object-oriented system can be designed and code easily.

e The maintenance cost is comparatively low in this approach.

e Object-oriented programming allows the reusability of
design and code.

e This programming is more adaptive in nature. Modifications
can be done easily as per requirement.

e This programming is reliable and more flexible for the
programmers.

1.6 OBJECT-ORIENTED ANALYSIS (OOA)

Object-oriented Analysis is the starting phase of the object-oriented
software development procedure. This phase gathers all the
requirements to develop the system and identifies all the classes and
relations between the classes. Objects are the instances of the class.
All the requirements are organized as objects. OOA focuses to
create real-world models using the object-oriented view of the real
world.

351 | Page

Space for Learners:

STOP TO CONSIDER
Grady Booch coined the term Object-Oriented Analysis as “Object-
Oriented Analysis is a method of analysis that examines requirements
from the perspective of classes and objects found in the vocabulary of
the problem domain”.

1.6.1 Steps of Performing Object-Oriented Analysis

The working of OOA is shown in Figure 1.1. The key steps of
performing object-oriented analysis are:

Defining the Problem: The first step in OOA is to analyse the
problem for better understanding. The problem needs to be studied
in detail and redefine the problem in engineering, so that a
computer-based solution can be prepared stepwise from the problem
definition using object-oriented concepts.

Requirement Analysis: The second step is to gather all the user
requirements. From this, we can proceed to propose the solution
domain in the design phase. A requirement specification document
should be prepared based on all user requirements and the software
requirement for solving the problem. The specification document
should contain what the system actually does, what type of inputs
are necessary, what are the outputs that system produces and how
processes can be built to generate required outputs.

Identification of Objects: In this step, we need to collect all the
objects and list the attributes contained in the object based on the
requirement specification document built in the previous step.
Objects can be related to real-life entity or can be of an abstract

type.

Deciding the services of objects: After the identification of objects,
the next step is to identify the services to be provided by each
object. Each object is assigned some services to be performed. The
strength of the object-oriented paradigm is that once the services are
provided to the objects, it is guaranteed to be accomplished by the
objects.

Establishing relationship among the objects: Objects need to
interact among themselves to perform different services to produce

352 |Page

Space for Learners:

better results. This works on identifying the relationships among the
objects so that objects can communicate during execution.

[DeﬂningaProblem]

Building of Requirement
SDECIfICEltIDr'I Document

/ Identification of Objects in
ohjects Problem Space

Identification of Identification of relations
services among objects

/

Perform
Design

Figure 1.1: Working of object-oriented analysis

1.7 OBJECT-ORIENTED DESIGN (OOD)

The classes identified in the OOA phase are designed in the design
phase. This phase also helps to build the user interfaces. As per the
requirement, more numbers of classes and objects can be added in
the design phase. Object-oriented design helps to build the solution
domain by identifying the classes, relationship between them,
identifying the constraints and designing the user interfaces. The
outputs of object-oriented analysis are taken as input to the object-
oriented design.

Object-oriented design follows the concept of decomposition. Here,
decomposition means to divide the whole system into the hierarchy
of various components. Each component has its own characteristics
and functions. These smaller components are known as subsystems.
OOD establishes communication between the subsystems using
corresponding objects. The main advantage of decomposing the
system in OOD is that all the subsystems are of lesser complexity,
so they can be easily understandable and manageable. And the

353 | Page

Space for Learners:

subsystems can be easily modified or replaced depending on the
situation without affecting the other subsystems. In OOD, to show
the interaction between two classes and objects, associations and
links are used.

Object-oriented design is composed of two main types of design:
Object Design and System Design. We will study this detailed
design in Unit 3. The models built using OOD are either static
models or dynamic models. Based on that OOD can be categorized
as of mainly three models:

1) Object Model
i) State Model or Dynamic model
111) Functional model

These three models can be represented with different diagrams.
Object model can be represented with class diagram and object
diagram. State models can be drawn using state diagram. Data
Flow Diagram (DFD) is generally used to represent functional
model. We will learn the functionalities of these three models and to
design their respective diagrams using Unified Modeling language
(UML) in the next unit.

In present days, many of the software designer use another model
known as interaction model instead of functional model. The state
diagrams of dynamic model focus on their respective class. But
sometimes it becomes difficult to understand the entire system.
Interaction model focuses on the relationship between the classes,
how the objects interact with others to display efficient result. To
present the interaction model, Use Case diagrams, Sequence
diagrams and Activity diagrams are commonly used.

STOP TO CONSIDER
Grady Booch defined the term OOD as, “Object-oriented design is a
method of design encompassing the process of object-oriented
decomposition and a notation for depicting both logical and physical as
well as static and dynamic models of the system under design”.

354 | Page

Space for Learners:

1.7.1 Goals of Object-Oriented Analysis and Design
(OOAD)

Both OOA and OOD are together known as Object-Oriented
Analysis and Design (OOAD) which includes both the requirement
analysis, identification of classes and design part of the object-
oriented system. The different objectives or goals of object-oriented
design and analysis are:

The main objective of performing object-oriented analysis and
design is that it helps the programmer to build an efficient solution
to complex problems based on the object-oriented concepts.

e Following the object-oriented analysis and design step,
software development team management can have a better
understanding of the problem domain.

e Graphical representations of the problem make it easier for
the team management, stakeholders and the end-user to work
together and check whether the software building process is
on the right track or not.

e [t increases the reusability of the project.

e [t is performed at the abstract level which helps to separate
the actual programming part from the design.

1.8 OBJECT-ORIENTED PROGRAMMING (OOP)

Object-oriented programming is a pattern of writing programs
where data and functions are put together in a skeleton-like structure
called class, where data need to be processed and functions need to
be performed. And the whole operation is executed using any
instance of a class known as an object. There can be multiple classes
in a program and a hierarchy of classes can be maintained using the
concept of inheritance. Along with this, object-oriented
programming follows the concepts of abstraction, encapsulation and
polymorphism. This programming technique uses different access
specifier to maintain the data hiding property.

Data hiding properties protect the data and member functions of a
class from unauthorised access outside the class. The reason behind
the popularity of object-oriented programming language is that it is
intact with real-world examples and so, has the capability of solving
complex problems in a better way.

355 | Page

Space for Learners:

STOP TO CONSIDER
Grady Booch defined the term OOP as, “Object-oriented
programming is a method of implementation in which programs are
organized as cooperative collections of objects, each of which
represents an instance of some class, and whose classes are all
members of hierarchy of classes united via inheritance relationships”.

1.8.1 Objects

An object can be said as an identity that can be categorized by its
behaviour. It is a component consisting of different properties and
methods to make data useful. M. R. Blaha and J. R. Rumbaugh
defined the term object in their book [2] as, “An object is a concept,
abstraction, or thing with the identity that has meaning for an
application”. Simply, an object is called as an instance of a class. No
memory is allocated during the defining of class. Memories are
allocated to the objects of a class based on the size of data members
(variables, constants etc.) defined inside the class.

Objects can be related with real life entity. For example, if we
consider a class name as flower, then a single flower of any kind
(say lotus or rose) can be considered as an individual object. Objects
can also be of an abstract type which has conceptual existence. For
example, if we consider a class name as examination, here different
subjects like subjectl, subject? etc. can be objects.

1.8.2 Classes

We have read an object as an instance of a class. So, a class is
collection of similar kind of objects which possesses similar
characteristics. A class is skeleton of program which consist of data
members and the member functions. The term data member refers to
the variable or constants declared within a class. The scope of these
variables is within this class. The member functions are the
procedures or functions defined in the class. The class does not
consume any memory. These data members and member functions
of the class can only be accessed through the objects of that class.
So, the objects consist of all the characteristics defined in the class.

356 | Page

Space for Learners:

All the objects of a class have the same number of attributes and
properties. By grouping set of similar objects relating to a class, the
concept of abstraction is introduced in the object-oriented
programming. As in the previous example, all the properties of a
flower are stored into the class flower. Any objects of class flower
possess similar kind of properties.

Later in this unit and next unit, we will learn how to draw class
diagram and object diagram in OOD.

CHECK YOUR PROGRESS -1

Fill in the blanks:

l. is collection of similar kind of
objects which possesses similar characteristics.

2. Instance of a class known as an

properties protect the data and member
functions of a class from unauthorised access outside the
class

3. design is a process to design
software.

1.9 DIFFERENT CONCEPTS OF OBJECT-
ORIENTED DESIGN (OOD)

In this section, we will study important concepts related to object-
oriented design and object-oriented programming.

1.9.1 Abstraction

Abstraction is a process of hiding the background detail from the
user. It is one fundamental method to deal with complexities. We
use different machines like any electronic device, electrical device,
mechanical device etc. for their daily use. These devices workin a
complex way as it looks from the outside. But to gather full
knowledge on how exactly a device performs before using a device
would be tougher for humans. People can use a device if they know
how exactly the device operates or what will be the outcome based

357 |Page

Space for Learners:

on the given input. There is the concept of abstraction lying on. This
concept allows hiding all the working procedures, functionalities
that are not necessary for using a particular device. Let us take an
example of an electric fan. We know that as we switch on the fan, it
will start rotating and help us to cool within a certain period of time.
When we switched off the fan, it stops. This information is enough
for us to have the benefit of an electric fan. But behind this, many
processes have to take place, conversion of energies has been going
on. Abstraction is the concept to separating all the complex
unnecessary information from the normal users.

In object-oriented programming also, the concept of abstraction is
playing the same role. Abstraction focuses on to separate the
important purpose from the unimportant aspects. For a particular
thing, many different abstractions also can be possible based on the
purpose of their use. The characteristics of a good model to identify
the important information of a problem and removes the other.

STOP TO CONSIDER

Grady Booch defined the abstraction as “An abstraction denotes the
essential characteristics of an object that distinguish it from all other
kinds of objects and thus provide crisply defined conceptual
boundaries, relative to the perspective of the viewer”.

1.9.2 Encapsulation

Encapsulation is also based on the concept of information hiding.
Abstraction deals with the characteristics of the object but
encapsulation focuses on the internal implementation for which
characteristics of the objects are raised. Encapsulation hides the
detailed information from the other objects. For this, the
modification in any part of a code does not affect the whole
program.

Encapsulation is a process of binding data with related methods and
it prevents its accessibility from other objects. The programs must
be encapsulated in the proper way. It is mainly used to hide the
internal detail from the outside objects.

358 | Page

Space for Learners:

STOP TO CONSIDER

Grady Booch coined encapsulation as, “Encapsulation is the process
of compartmentalizing the elements of an abstraction that constitute
its structure and behaviour; encapsulation serves to separate the
contractual interface of an abstraction and its implementation”.

1.9.3 Inheritance/ Hierarchy of Class

Inheritance is one of the key properties of object-oriented
programming. Inheritance allows a class or object to inherit the
characteristics of other classes or objects. The hierarchy of the
classes states that one class can access the data and member
functions of another class.

The class from which the properties can be inherited is known as
base class or super class or parent. The class which inherits the
properties of the parent class is known as derived class or subclass
or child class. In C++, a child class can inherit the properties of
multiple parent classes whereas a parent class can have multiple
child classes. C++ supports different types of inheritance like single
inheritance, multiple inheritance, multilevel inheritance, hierarchical
inheritance and hybrid inheritance. We have already studied the
functionalities of different types of inheritance in this paper.

STOP TO CONSIDER

Grady Booch defined the term hierarchy as, “Hierarchy is a ranking or
ordering of abstractions”.

Here, we try to learn the organization of class hierarchies with an
example. Let us take the example of different types of insurance
policy. A person can obtain insurance from any brand or company.
First the type of insurance is selected. Insurance can be of many
types like health insurance, life insurance, motor vehicle insurance.
All the insurance may have some common properties like brand
name, number of years, policy number etc. But the features,
procedures and benefits vary depending on type of insurance. So, in
figure 1.2, the main or parent class is termed as Insurance Policy
which may contain all the common properties. Based on the type, it
is divided into three child or subclasses, viz. Health Insurance,

359 |Page

Space for Learners:

Life Insurance, Motor Vehicle Insurance. The second hierarchy
level classes contain their features. Further, these child classes also
can be decomposed into more subclasses. For example, the feature
of health insurance may vary based on whether it is for self or for
family. Like Life Insurance class and Motor Vehicle Insurance
class also can be divided. Thus, in OOP multiple classes can be
organized in the level of hierarchy. Objects of lower-level classes
can access the properties of their parent classes, whereas parent
classes cannot access the properties of their child classes.

Insurance_Policy

— 1~

Health_Insurance Life_Insurance Motor_Vehicle_Insurance
Self Family Termed Whole- Two- Four-
Life wheeler wheeler

Figure 1.2: Hierarchy of classes types of insurance policy to
understand inheritance

1.9.4 Modularity

Modularity is the concept of splitting a program into single
components with aim to reduce complexity of the program. These
different components are known as modules. It can be said as the
degree to which it can be separated. It utilizes the concepts of
abstraction and encapsulation in the form of modules.

STOP TO CONSIDER

Grady Booch defined the term modularity as, “Modularity is the
property of a system that has been decomposed into a set of
cohesive and loosely coupled modules”.

360 | Page

Space for Learners:

1.9.5 Polymorphism

The term polymorphism describes the concept that is an object can
obtain many forms depending on the situation. In object-oriented
programming also, polymorphism works in similar way. It allows a
common external interface to perform two or more operations in a
different way based on what they are operating. Let us take an
example, suppose a plus sign (+) is used in such a way that when it
is placed in between two numbers in an operation, it shows the sum
of those two numbers as result. Again, if it is placed between two
strings and the operation is performed it gives the concatenated
string by combining those two input strings. So, in that case, the
plus sign is capable of performing the operation in different ways
based on the input variable. We can perform this type of operation
using an operator or function in OOP.

CHECK YOUR PROGRESS - 11

State True or False:

5. Abstraction is a process of hiding the background details
from the user.

6. In binary relationship, connection is established among
the objects of same class.

7. In wunary relationship the connection is established
between objects of two classes.

8. A single object of one class may build relationship with
more than one object of other class is known as one-to-
many relationship.

1.10 GENERALIZATION AND SPECIALIZATION

The concept of generalization and specialization is related to
hierarchy of classes. It is the relationship between a parent class and
one or more child classes. The classes are organized by the
similarities and differences between the classes and their properties.
Generalization is a process to create a class of higher-level hierarchy
known as parent class by combining all the common properties of

361 |Page

Space for Learners:

the child classes. The child classes have access to those common
properties. With this, child classes may have some other properties.

Specialization is nothing but just the reverse of generalization.
Specialization is a process of creating new specialized child classes
from the parent class. These specialized classes hold the distinguish
properties related to the parent class. It is used when a set of
properties (attributes or methods) can be applied to some of the
objects of a class, then a new child class is created which holds
those special properties. Here, the higher-level class is split into
lower-level classes.

Let us try to understand the concept of generalization and
specialization with a single example shown in Figure 1.3. If we
follow the concept of generalization, then two classes Polygon and
Circle have some properties. Their common properties like color of
the figure, border color, border line, methods to rotate and display
the figure are combined together to form a new class Figure2d, this
class consists of common properties of two-dimensional figures of
polygons and circles. So, lower-level hierarchy classes are
combined to form a higher-level class.

G Figure2D 5
¢ color P
n border-color e
e borderline ¢
r rotate() i
a display() a
| |
i [
z z
b Polygon Circle a
t t
i No-of-sides radius i
o It-of-sides 0
n angles area() .
area() circumference()
- perimeter() —

Figure 1.3: Example of generalization and specialization using 3
class hierarchy

If we follow the concept of specialization, the base class Figure2D
is subdivided into two child classes viz. Polygon and Circle. Here,
the derived classes can access the properties of the base class. And
each derived class contain their distinguished specialized properties.

362 | Page

Space for Learners:

In the object-oriented design phase, we may need to perform
generalization and specialization based on the context and demand
of the system.

1.11 LINK AND ASSOCIATION

In the next chapter, we will study UML and how we can draw a
class diagram, state diagram using UML etc. in OO Design. For
this, we need to understand two important parts of object-oriented
design to build the relationship among various objects and classes:
links and associations.

A link is used to connect two or more objects. It is used to establish
the relationship between the objects. The link between two objects
can be physical or conceptual. Through a link, communication can
be performed between two objects. A link is said to be as an
instance of an association like we say, an object is an instance of
class.

An association is used to build the relationship between classes. It
is more descriptive in nature. That means, an association can be said
a collection of group links sharing a common structure and common
semantics. The links in an association are used to connect all the
objects in a class. The syntax of link and association are shown here:

Class Diagram

Classl an Association Class2
* ¥
Object Diagram
a Link]
Objl:Classl Obj2:Class2

Figure 1.4: Association and Link using Class diagram and object
diagram

Let us try to understand the use of links and associations with an
example. Consider a model of a teacher, teaching subjects. Suppose,
there is two class, Teacher and Subject. And there is an association
between the classes as Teacher teaches Subject. There is a

363 |Page

Space for Learners:

possibility that a teacher can teach more than one subject, or one can
be taught by one or more teachers. So, objects are connected via
links. The class diagram and object diagram to show the link and
association are presented in following Figure 1.5:

Class Diagram

Teacher Subject

name %* * name

Object Diagram

BKalita: Teacher

name="BKalita"

OOP: Subject

RSarmah: Teacher name="00P"

name="RSarmah”

DBMS: Subject

DDeka: Teacher name="DBMS"

name="DDeka”

MBorah: Teacher

name="MBorah”

Figure 1.5: Class diagram and object diagram of Teacher and
Subject class with many to many relationships to understand links
and associations (many-to-many)

1.11.1 Degree of Association

The number of classes that are forming an association is known as

degree of association. A degree of association can be of 1, 2, 3 or
more.

364 | Page

Space for Learners:

Unary relationship: Here, the connection is established among the
objects of same class.

Binary relationship: Here, the connection is established between
objects of two classes. In this course, we will focus on only binary
relationships.

N-ary relationship: Here, the connection is established among
objects of three or more than three classes.

1.11.2 Multiplicity

M. R. Blaha and J. R. Rumbaugh defined multiplicity in their book
[2] as, “multiplicity specifies the number of instances of a class that
may relate to a single instance of an associated class. Multiplicity
constraints on the number of related objects”. In a binary
relationship, based on the concept of multiplicity, a relationship can
be categorized in mainly three ways:

One-to-one association: Here, a single object of one class builds a
relationship with a single object of another class.

One-to-many association: Here, a single object of one class may
build relationship with more than one object of other class.

Many-to-many association: Here, multiple objects of the first class
may associate with any object of the second class. Again, multiple
of objects of the second class may build relationship with any object
of the first class. As given example in Figure 1.5, a teacher may
teach many subjects and a subject may be taught by many teachers.
So, it is an example of many-to-many association. Here, the symbol
“*> indicates there can be either zero or one or multiple associations
can be held between the classes.

365|Page

Space for Learners:

1.12

SUMMING UP

Object-oriented approach focuses on finding a solution of a
problem based on real-life examples.

Object-oriented approach presents the problem domain in
terms of smaller modules known as objects. Objects are
consisting of data and procedures.

Object-oriented software development methodology is
composed of three main steps viz. requirement analysis,
object-oriented design and implementation of the system.
The main functions of object-oriented analysis are redefining
the problem technically, collection of user and software
requirements, identification of the classes and objects,
assigning the services to the objects and identification of
relations among the objects.

Object-oriented design plans to build the solution domain
based on the output of the object-oriented analysis phase.
The functions of object-oriented design are identifying the
classes based on previous steps, adding new classes on need
basis, establishing relationships among them, identification
of different constraints and designing the user interfaces.
Decomposition is a process to divide the whole problem of
high complexity into smaller subsystems of lower
complexities.

Object-oriented design can be performed using different
models like class model, dynamic model and functional
model. In present days, designers are using interaction
models instead of functional models.

Object-oriented programming is to find the solution to the
problem based on object-oriented design models.

Data hiding is a property used in object-oriented
programming to hide the internal data (data members,
member functions) from unauthorised access.

Objects are the basic entity of OOP which can be of either
physical or conceptual existence.

A class is a skeleton-like structure combing various data
members and member functions. These can be accessed by
the instances of the class i.e., objects.

Abstraction is the process of hiding background detail from
the users. Whereas encapsulation makes the system easier

366 | Page

Space for Learners:

for the users to handle by wrapping up the data and code into
a single entity.

e Inheritance is a method through which one class can inherit
the properties of another class. The class from which
properties are inherited is known as base class and the class
which inherits the properties is known as derived class.

e In OOD, relationships between multiple classes are
established using associations where multiple objects are
established wusing links. Links are the instances of
association.

1.13 ANSWER TO CHECK YOUR PROGRESS

1. Class 2.0bject 3.Data hiding 4.0Object-oriented

5. True 6.False 7. False 8. True

1.14 POSSIBLE QUESTIONS

1.

Explain the brief history of evaluation of object-oriented
programming.

. Describe the following concepts of OOP with example:

Abstraction, Encapsulation, Polymorphism

. Define the term link and association. Explain their working in

object-oriented design with an example.

What are the different types of models mainly used in object-
oriented design?

. Explain the working of object-oriented analysis with suitable

diagram.
Explain the concepts of generalization and specialization in OOP.

. What do you mean by degree of an association? What are the

different types of associations between the classes in a
relationship?

. What do you mean by one-to-many and many-to-many

association? Describe many-to-many association with an
example with the help of class diagram and object diagram.

367 |Page

Space for Learners:

1.15S REFERENCES AND SUGGESTED READINGS

1. Booch, G.: Object-Oriented Analysis & Design with
Applications. Pearson Education, 1994.

2. Blaha, M.R. and Rumbaugh, J.R.: Object-Oriented Modeling and
Design with UML. Pearson, 2007.

3. Balagurusamy, E.: Object-Oriented Programming with C++. Tata
McGraw-Hill, 2008 (fourth print).

368 | Page

Space for Learners:

UNIT 2:OBJECT MODELING
TECHNIQUES(OMT) TOOLS

Unit Structure:

2.1 Introduction
2.2 Unit Objectives
2.3 Object-oriented modeling
24 UML
2.4.1 Goals/ Characteristics of UML
2.5 Difterent Models of OO Design
2.6 Class Model
2.6.1 Class Diagram
2.6.2 Object Diagram
2.7 Dynamic Model
2.7.1 State Diagram
2.8 Functional Model
2.8.1 Data Flow Diagram (DFD)
2.9 Interaction Model
2.9.1 Use Case diagram
2.10 Summing Up
2.11 Answers to Check Your Progress
2.12 Possible Questions
2.13 References and Suggested Readings

2.1 INTRODUCTION

In the previous unit, we have learned the purpose of object-oriented
design, different object-oriented approaches and the important
concepts related to object-oriented design. With this, we have got
the basic idea of different diagrams based on different models of
object-oriented design.

In this unit, we will learn how to draw various diagrams using
different tools in object-oriented design. In object-oriented
modeling, one of the most used methods to perform design is
Unified Modeling Language (UML). Different software is available
to draw diagrams using UML tools. Object-oriented design is
composed of different models. Designers used the models as per the
requirement of the problem domain. Each model is represented by

369 | Page

Space for Learners:

specific diagram. Like class models are represented using a class
diagram and object diagram. Here, we will learn these design
procedures in detail with examples.

2.2 UNIT OBJECTIVES

The main objectives of this unit are:

e To understand the concept of object-oriented modeling

e To know the characteristics and use of UML

e To know various UML tools

e To have a clear concept of different models in object-
oriented design

e To be able to draw the class diagram, object diagram, state
diagram, DFD as per the problem.

e To have the knowledge of usecase diagrams

2.3 OBJECT-ORIENTED MODELING

Object-Oriented Modeling (OOM) is a process of object-oriented
design to design models for developing an application using
different object-oriented concepts. A model can be said as an
abstraction of a process for understanding its importance before
implementing it. The models present how exactly the coding will be
done. The execution of a program can be performed using any
object-oriented programming language, based on the processes
represented in a model.

The detailed design in object-oriented modeling consists of several
phases. In the first phase, the models look more abstract since it
focuses on the external detail of the system. Then, the model
evolves at different phases, and more details are included like how
the internal processes will be implemented, what functions are
required and how the entire system will be built.

The main reason for designing a model using an object-oriented
approach before starting the actual implementation or coding is that:

Easy to Understand: The diagrammatic representation of any system
is easy to understand for the users. Understanding the complete
coding procedure is not easy for normal users. Model diagrams help

370 | Page

Space for Learners:

user like clients, end-user, stakeholders to give feedback to the
developer team as how they want the exact system should work.

Abstraction: To have a clear idea of the system requirements and the
input-output of the system.

2.4 UML

Unified Modeling Language (UML) is a widely used modeling
language to design any software. It is used to identify, picturise,
create and document the models of any software system. UML was
initially created to use notational systems in software design. It is
adopted as a standard software design tool by the Object
Management Group (OMG). Further, UML was also approved as an
ISO standard by International Organization for Standardization
(ISO). With time, different versions of UML were released and it is
widely used by software designers over the world.

UML is widely used to model software systems. The main artifact in
designing a model using Unified Modeling Language is an object.
Using UML tools, different models like class model, object model,
state model can be designed. These models can be either static or
dynamic. The object-oriented design is performed using UML. So,
understanding the concepts of object-oriented design is a
prerequisite to use UML. As per the requirements, the object-
oriented design approach is transformed into any form of UML
diagram.

2.4.1 Goals/ Characteristics of UML

The main characteristics of UML are:

e UML is a General-Purpose modelling language.

o It designs diagrams based on the output of the object-
oriented analysis (OOA) approach.

e The workflow of a system to be developed is visualized by
UML.

e Both static and dynamic models can be presented using
UML tools.

e UML tools are easy to use, understand and helps to design
models conveniently.

371 | Page

Space for Learners:

2.5 DIFFERENT MODELS OF OOD

In this section, we will learn the working of different models of
object-oriented design, their respective diagrams in detail. With this,
we will study how to draw these diagrams based on the requirement
using Unified Modeling Language (UML) tools.

2.6 CLASS MODEL

A class model is a static model which represents the structure of the
system in terms of classes. The class model contains the classes,
their properties, the association among the classes. The properties of
classes contain different attributes and operations. These are also
referred with the term data member and member functions.
Associations among the classes are performed using the concept of
generalization and specialization.

During the study of class models, we need to have clear concepts on
the various concepts on class like enumeration, multiplicity, scope
and visibility of the classes.

2.6.1 Class Diagram

As the name suggests, in object-oriented design, the class diagrams
are used to represent the classes identified in the object-oriented
analysis phase.

Class diagram presents different graphic notations for modeling the
classes, showing their relationships and describing the objects. It is a
static diagram. The advantages of class diagrams are:

e [tis easy to understand and concise.

e It worked well for practice and plan easily.

e It has mapped to popular OOP languages like C++, JAVA,
etc.

e It helps programmers to implement the program easily based
on the model design.

e [tis useful for abstract modeling.

372 | Page

Space for Learners:

The syntax of defining a class on a class diagram is shown in Figure
2.1. It is represented using a rectangular box consisting of three
blocks. The class name is written on the top of the box. In the
second block, the properties of the class are written known as
attributes.

In object-oriented programming, these attributes are mentioned as
data members or variables. The data types and other properties of
the data members can also be written in the class diagram. The
methods known as member functions are defined in the last block of
the rectangular box. Let us try to learn how to draw class diagrams
for two different scenarios.

CLASS NAME

Data Members/
Attributes: Data Type

Member Functions/
Methods

Figure 2.1: Syntax of representation of a class

Scenario 1: In a company, employees are working in departments.
A department can have multiple employees, but one employee can
work in a single department. One department can control multiple
projects. An employee is categorized as either ‘Manager; or as
‘Other Employee’. Different information as per the requirement can
be stored in classes as attributes.

So, the class diagram using the above scenario can be drawn as
shown in Figure 2.2. The diagram consists of three main classes,
where the class Department can be considered as the base class.
The Employee class is associated with the Department class with
‘works on’ relationship. Department class stores the name of the
department as an attribute of string data type. The Employee class
stores the employee ID and name of the employee as shown in the
figure. Further, the concept of specialization is used in
the Employee class to categorized it to Manager class
or Other_emp class. Department class is associated with the

373 | Page

Space for Learners:

Project class as department undertakes the different
projects. Project class stores the value of two data
members, project_name and duration.
works_on
Employee Department
emp id ’ dept_name
emp_name
Specialﬁzan'onl 1
controls
%
Manager Other_emp Project
manager id designation project name
year of exp duration

Figure 2.2: Class diagram of a company system as in
scenario 1

Scenario 2: Let us consider a basic system of online shopping.

Customers can order multiple times, where order number is issued
against each order. Customers can select payment option against
each order. The payment system will generate bill number, mode of
payment, amount and date of product. Payment class is further
subdivided based on the payment options like internet banking, card

payment and cash of delivery.

Figure 2.3 shows the class diagram of basic online shopping system
as described in scenario 2. After identification of classes, desirable

attributes, their data types and methods of each class are also shown.

374 | Page

Space for Learners:

perform_payment()
payment_status()

Internet_banking

Card_payment

bank_name: string
user_id: string
password: password

verify_acc()
generate_otp()

card_no:int
card_type: string
exp-date: date
cveint

verify_card()

: Custt?mer places Order
cust_id: string order_no:int
cust_name: string * date_of_order: date
dob: date -

confirm_order()
send_order()
cancel_order()
recv_order()
view_order()
1
Payment Custom{er selects
bill_notint pay option
mode: string
amount: int 1
date: date

Cash_on_delivery

Status: string
No-of-notes: int

generate_otp()

Figure 2.3: Class diagram of a basic online shopping system as in
scenario 2

2.6.2 Object Diagram

As objects are the instances of a class, object diagrams are also
instances of class diagram. It is derived from the class diagram. So,
the object diagram is fully dependent on class diagrams.

Object diagrams are almost similar to the class diagrams. The key
difference between the class diagram and the object diagram is that
class diagram represents an abstract view of the systems showing
relationships between the classes. Whereas, object diagram
represents the instances of the classes at any particular point of time.

The syntax of declaring an object in an object diagram is shown in
Figure 2.4. The objects in the object diagram are instantiated from
respective classes. The object diagram shows the value assigned to

375 | Page

Space for Learners:

the attributes defined in the class. There can be more than one
objects of a class.

OBJECT NAME

Attribute=<"Valug">

Figure2.4: Syntax of an object in object diagram

The object diagram shows the links among different objects. The
objects of the same classes can be linked in the diagram. The links
among the objects of different classes are also presented in an object
diagram. There can be more than one object diagram for a class
diagram.

Figure 2.5 shows the object diagram of a company management
system as described in scenario 1. This object diagram is
instantiated from the class diagram presented in Figure 2.2.

A simple object diagram of the online shopping management system
is shown in Figure 2.6. It is instantiated from Figure 2.3. Here, a
single object is declared for each class; These objects are linked
based on the associations of classes. The values assigned to the
attributes are defined in the class diagram. Like this, we can draw
any object diagrams from a class diagram.

376 | Page

Space for Learners:

pl: Project

d2: Department

u

dept_name: “Sales

project_name:" Sale-
Surveyl”
duration: “6 months"

p2: Project

project_name:" Sales-
Survey-2"
duration: “24 months"

el: Employee e2: Employee e3: Employee

emp_id: 10056 emp_id: 11026 emp_id: 17049
emp_name; “A” emp_name; ‘8" emp_name: “A"
m1: Manager ol: Other_emp 02: Other_emp

manager_id: 0277
year_of exp: 25

designation:
“Comp-Operator”

designation:
“Sales Person”

Figure 2.5: Object diagram of Company management system for
class diagram shown in Figure 2.2

cl: Customer

orderl: Order

cust_id: “C1001"
cust_name: “abc”
dob: “25/11/1998”

order_no: 072508
date_of order: “27/06/2021"

Figure 2.6: Object diagram of Online Shopping System for class

377 |Page

pl: Payment
hill_no:07568
made: “online”
amount: 19999
date: “05/07/2021”

b1: Internet_banking
bank_name: “XYBank”
user_id: “abc@1”
password: v

diagram shown in Figure 2.3

Space for Learners:

CHECK YOUR PROGRESS -1

Fill in the blanks:
1. is widely used to model software systems.
2. A a static model which represents the structure of

the system in terms of classes.

3. Class diagram is a diagram.

4. Object diagram is fully dependent on

2.7 DYNAMIC MODEL OR STATE MODEL

State models are known as dynamic model in OOD. State model
represents the dynamic behaviour of a system. A state diagram is a
collection of different states of the system which occur following a
series of events.

A state can be said as an abstraction of the attribute values and links
among the objects. Different values and links are grouped together
to form the state model which shows the dynamic behaviour of the
system. In UML, an event is an action occurring at a particular point
of time. In a state diagram, the states are changed based on the
events as per the need of the system. It changes the states during
different phases of the system. Both the states and events in a
dynamic model depend on the level of abstraction.

A transition is known as the change from one state to other. The
change of state can be understood by the example of the physical
changes of water. It is normally in liquid state. If we freeze it, for
some time it changes to a solid state. If we start melting it, it returns
to liquid state again. If the water is boiled for more times, it
transforms into gaseous state. Similar things can be happened with a
software model, which changes its state as per the requirement.

378 | Page

Space for Learners:

2.7.1 State Diagram

Dynamic models or state models can be represented using the state
diagram. The state diagram presents the transition or change in the
state based on the events occurring in a system. The number of
states in a state diagram is finite. The main components of state
diagrams are:

States: The states are represented using a rectangle symbol with
rounded corner.

Initial state: the starting state of state diagram is known as initial
state. It is represented using black circle.

Transition: The transition or change in state is shown by using an
arrow. The arrow symbol is labelled by the event name.

Self transition: An arrow pointing to the same state is used for self-
transition.

Final state: In a state diagram, the conclusive state is represented a
filled circle with a circle notation.

The notations using UML of the state diagram are:

Initial state ->

Final state ->

State -> State Name

Transition ->

Self Transition -> State Name

Decision Box ->

QQZI@'

Figure 2.7 shows a partially completed state diagram of the
household motor control system as derived in [2]. We try to
understand the design of state diagram with this example. A motor
primarily in Off state, when it is switched on, it changes its state to

379 | Page

Space for Learners:

Starting. That is, it is preparing for run. Then, it to transforms to
Running state and continue to run. From this, if we switched off the
motor, it will go to Off state again. And if it is continued to run, it
may go to Too Hot state and the overheating may harm the functions

of the machine.
Off > Starting \
A 4
‘ Too Hot Running \

Figure 2.7: Partially completed State diagram of household motor
control system

White's Turn

checkmate
:@ Black Wins

Start Sty
e,
ap@

Black
Moves

Draw

@ White Wins

Black’s Turn

b 4

checkmate

Figure 2.8: State diagram of a Chess Game

Let us consider another example as shown in Figure 2.8 which
represents the state diagram for a chess game. This example is
derived from [2]. This diagram consists of mainly two states
namely White’s Turn and Black’s Turn. The states are changed
continuously in every move which starts from the White’s Turn
first. Depending on the checkmate and stalemate, the results of
the match is decided, So, the final state of the game would be

380 | Page

Space for Learners:

either Black Wins or White Wins or Draw. Thus, we can draw the
state diagrams of a system.

2.8 FUNCTIONAL MODEL

In object-oriented analysis and design, the functional model
specifies the overview of the entire system. It provides the overall
summary of the functions that the system is going to perform. This
model presents the system based on main three tasks: inputs of the
system, processing and outputs of the system. To represent the
functional model of a system, Data Flow diagram (DFD) is used.
DFD helps to provide functions of the internal process of the
system.

2.8.1 Data Flow Diagram (DFD)

Data Flow Diagram (DFD) represents the functions of the system in
form of the inputs to be provided to the system, the processing parts
of the system based on the inputs and the desired output of the
system along with the detail of internal data stores in the system.
DFD can be drawn in many phases or levels. These levels
arenamedasLevel-0 (Context Diagram), Level-1, etc. The basic
components of DFD are:

External Entity: These entities are named based on real-life
objects. These entities take the information and submit to the
processes. It can ask any query to the process and gets information
or response from the process.

Processes: In DFD, a process is the activity that executes the data
flow of a system. DFD shows how the data flows through a process
in a system. A process can have multiple sub-process under it.

Data Flows: Data flow depicts the movement of information among
external entities, processes and the place where data is stored
through arrows.

Data Store: Data store represents the place where data is stored. It
does not perform any operations, simply stores the data. Processes
can insert, update, delete or retrieve data to Data store.

381 |Page

Space for Learners:

The notations used in DFD are: Space for Learners:

External Entity -> Entity name
Process
Process ->
name
Data Flow -> _—
Data Store -> Data store name

Let us consider an example of DFD of basic Store Management
System as shown in Figure 2.9. This system consists of only two
entities, Customer and Seller. Here, the seller or shopkeeper would
enter product details which would be stored in the database.
Customer has to register into the system. After successful
registration, a customer gets Customer ID. A customer can order
products, if the product is available, a customer will get order
confirmation message. This Process is further subdivided into two
sub processes namely Registration and Selling Process as shown in

Figure 2.10.
Enter reg, detall Enter Product detall
§
Customer |, Cust D fore Seller
)) Management
[Order Products Stem Response
Order Confirmation

Figure 2.9: Level-0 DFD for basic store management system

382 |Page

Customer

Seller

Figure 2.10: Level-1 DFD for basic store management system

Persannel Detal

Stores/ Gats Info

Registration ~ ———

Gets C id

Customer Detail

Stores

Selling
process

Add Products

Check

Product Detail

Response to Query avallabilty

CHECK YOUR PROGRESS - 11

State True or False:

5. A transition is known as the change from one state to other.

6. The states and events in a dynamic model do not depend on

the level of abstraction.

7. Dynamic models cannot be represented using the state diagram.

8. DFD is used to represent the functional model of a system.

2.9 INTERACTION MODEL

The Interaction model describes the interactions inside a system.
The class model presents the objects present in the system; the state
model presents the life-cycle of declared objects in terms of states
whereas as interaction model presents how the interaction takes
place among these objects. Interaction models can be represented

383 |Page

Space for Learners:

using different diagrams like use case diagram, sequence diagram
etc. Here, we will study the designing of use case diagram with an
example.

2.9.1 Use Case Diagram

A use case is a representation of how a human being (known as
actor) uses a process to reach his goal. Use case is a part of
functionality that a system is able to provide by interacting with the
actors. An actor is the person who act as a direct external user in a
system. A use case is composed of one or more actors. Use case is a
description of the role of each actor to accomplish particular goal
using various processes. The use case of a system can be
represented by a use case diagram.

Let us take an example of the operation of a vending machine as
presented in [2]. The use case of the scenario is buying a beverage
by a customer. The customer delivers the beverage after successful
selection and payment made by customer. Figure 2.11 shows the use
case diagram for this vending machine. It represents three actors
namely Customer, Repair Technician and Store Clerk. Inside the
rectangular box, four use cases are shown in which actors
participate. The wuse cases are Buy beverage, Performed
Maintenance, Make repairs and Load Items. Repair Technician
participates in two use cases whereas other actors participate in one
use case.

Vending Machine

[]
Buy
Beverage
Customer
Performed
Maintenance T 0

Make _— ‘l‘

Repairs

Repair Technician

Load Items *

Stock Clerk

LSl

Figure 2.11: Use case diagram for a vending machine

384 |Page

Space for Learners:

In this unit, we have learnt different object-oriented modeling
techniques to design a system. Each model type is represented by a
particular diagram. These diagrams help us easy to understand the

workflow and behaviour of the system. Programmers perform the
coding to execute the system by following these designed models.
So, this is an important phase in developing a system using object-
oriented concepts.

2.10

SUMMING UP

Object-oriented modeling (OOM) is a process of designing a
model to develop a system using different object-oriented
concepts.

A model is an abstraction of a process to understand it before
its implementation. The system is built following the model.
Different models are there to design a system like class
model, state or dynamic model, functional model etc.

UML is mostly used general-purpose modeling language to
identify, picturise, creation and documentation the models of
any software system.

The Class model is a static model to represent the structure
of the whole system in terms of classes. The classes contain
their different characteristics and methods.

A Class model is represented using class and object
diagrams.

A Class diagram shows the classes, their relationships, the
attributes and methods present in each class.

An object diagram is an instantiation of the class diagram. A
class can have more objects. Object diagram shows the links
among different objects.

Each object in an object diagram contains particular value of
all attributes or data members of its class.

The dynamic model or state model shows the dynamic
behaviour of a system in terms of its change of state
following a series of events.

A state is nothing but an abstraction of attributes and links
among the objects. Transition is change of a state to another
in a system.

385 | Page

Space for Learners:

e A state model is represented by a state diagram. The main
components of state diagram are initial state, final state,
other states and transitions.

e Functional model specifies the overview of the whole system
inputs, its processing and outputs to the system.

e Functional models are represented using Data Flow Diagram
(DFD) in a system.

2.11 ANSWERS TO CHECK YOUR PROGRESS

1.UML 2. Class model3.Static4. Class diagram

5. True 6. False 7. False 8.True

2.12 POSSIBLE QUESTIONS

1. Explain the concepts and importance of object-oriented
modeling.

2. Describe the following models of OOD with example:
Class model, Dynamic model, Functional model

3. Explain the important characteristics of UML.

4. Explain the working of class diagram and object diagram with a
suitable example.

5. Why the dynamic models are required in object-oriented
modeling? How it is different from a class model.

6. How can we draw a state diagram of a system? Explain with a
suitable example.

7. What are the basic components of an DFD? Draw a data flow
diagram of level-0 DFD for online shopping management
system.

8. Prepare a class diagram of your family tree with name and age as
attribute of each class. Draw an object diagram of this class
diagram.

9. Draw a state diagram of complete telephone call procedure with
its different states.

386 | Page

Space for Learners:

10.

11.

Explain the working of an interaction model.

Write the importance of use case diagram. Draw a use case
diagram of simple vending machine with explanation of its
working.

2.13 REFERENCES AND SUGGESTED READINGS

. Booch, G.: Object-Oriented Analysis & Design with

Applications. Pearson Education, 1994.

. Blaha, M.R. and Rumbaugh, J.R.: Object-Oriented Modeling and

Design with UML. Pearson, 2007.

. Balagurusamy, E.: Object-Oriented Programming with C++. Tata

McGraw-Hill, 2008 (fourth print).

387 |Page

Space for Learners:

UNIT 3: PHASES OF OBJECT-ORIENTED

DEVELOPMENT

Unit Structure:

3.1
3.2
33
34
3.5

3.6

3.7
3.8
3.9

Introduction

Unit Objectives

Object Oriented modelling
Object Oriented Methodologies
Object Oriented Process
3.5.1 System Analysis
3.5.2 System Design

3.5.3 Object Design

3.5.4 Implementation
System Analysis

3.6.1 Object Model

3.6.2 Dynamic Modelling
3.6.3 Functional Modelling
System Design

Object Design

Summing Up

3.10 Answers to Check Your Progress
3.11 Possible Questions
3.12 References and Suggested Readings

3.1 INTRODUCTION

In software development, most of the methods used are based on
functional or data-driven approach. Object-oriented approach is
different from these approaches in many ways. In object-oriented
methods, data and functions are integrated in to one group. It
develops the software from some self-contained modules known
as objects. These objects can be easily modified, replaced and
reused. Object-oriented approach works based on the concepts of
real-world systems for which it becomes a popular methodology
for programmers. In object-oriented methodology, software can be
treated as a collection of discrete objects in which data and the

operations grouped together for desired outputs.

388 | Page

Space for Learners:

3.2 UNIT OBJECTIVES

The main objective of this chapter is to
* introduce the concept of object-oriented modelling.
« give an overview of object-oriented methodologies.
* introduces object-oriented methodology and
» discuss the phases of object-oriented design in detail.

3.3 OBJECT ORIENTED MODELLING

A model in object-oriented approach can be said as abstract view
of the problem with an objective to understand its purpose before
implementation. Since, working of a real system is very complex,
so we need to simplify it. A model hides the exact working
procedure and shows the important characteristics of the problem.

Through a model the problem is conceptualized and presented
distinctly. We can say that modelling helps us to deal with
complexities of the system and makes the whole system easily
understandable.

In object-oriented development, a model is an iterative process. In
designing the model as the working of the system progresses,
more detail is added to the model. Models are designed in
different levels. In every level, a model can be subdivided into
some smaller models for better understanding of their purposes.

3.4 OBJECT ORIENTED METHODOLOGIES

Object-oriented methodology is completely based on the concepts
of classes and objects. These concepts are introduced based on the
real-life examples. A class can be skeleton of a working
procedure. An object is an instance of a class. We have discussed
these in previous units.

An object can be created, modified, categorized, merged,
described, removed or reused. In object-oriented development,
software components can be modified and reused easily. It results

389 |Page

Space for Learners:

in high quality, higher productivity and lower maintenance cost of
the software.

Object-oriented development wuses different object-oriented
techniques to analyse, design, implement and maintenance of the
system. The developer determines what are the objects, their
characteristics, responsibilities and relationships with other
objects.

In object-oriented design phase, the whole architecture of the
system 1is described. The objects of different class and their
relationships are shown. In implementation phase, actual coding is
performed by the programmer based on the design report. The
program is connected with a database to store data so that the
whole system becomes operational.

3.5 OBJECT ORIENTED PROCESS

As we studied earlier, object-oriented development is built with its
basic element as object. For this, first the detail analysis is
performed to collect all the requirements. Object-oriented
development can be said as the traditional approach of system
designing as it also follows a sequential process to design the
system. The fundamental steps for designing a system using
object-oriented process are:

* System Analysis

* System Design

* Object Design

* Implementation

3.5.1 System Analysis

Like any other design system, the first phase of object-oriented
development is system analysis. Here, the interactions between the
developer and the clients or the user take place. Developer collects
the requirements and analyse them to have a clear idea of the
system.

Based on the information gathered in the analysis phase, a
document is prepared in which detail requirement of the system is
specified. This documentation describes the different models and

390 | Page

Space for Learners:

their functioning. In this stage, the implementation details are not
examined. We will discuss it in detail in section 3.6.

3.5.2 System Design

The second step of the object-oriented process is system design. In
this step, the entire system is designed based on requirement
analysis and specification documents of the previous step. In this
phase the system is divided into smaller parts known as sub-
systems. The sub-systems interact among themselves to solve the
problems. We will discuss it in detail in section3.7.

3.5.3 Object Design

In this phase, the details of the system analysis and system design
are implemented. The Objects identified in the system design
phase are designed in this phase. Here the implementation of these
objects is decided in the form of data structures and the
relationships between the objects are designed. For example, we
can define a class student and then we can create several objects of
this type.

In this phase, of the designer decides about the classes in the
system based on the system requirements. The designer also
decides, whether the classes need to be created freshly or inherited
from existing classes. We will discuss it in detail in section 3.8.

3.5.4 Implementation

During this phase, the class objects and the interrelationships of
these classes are translated into actual code by using an object-
oriented programming language. The required databases are
created and the complete system is transformed into operational
one.

3.6 SYSTEM ANALYSIS

In the system analysis or object-oriented analysis phase of
software development, the system requirements are determined,
the classes and the relationships among classes are identified.

391 |Page

Space for Learners:

There are three different analysis techniques used in conjunction
with each other in object-oriented analysis. They are object
modelling, dynamic modelling and functional modelling.

3.6.1 Object Model

The object model describes the structure of the objects. It
describes the identity of the objects, relationships with the other
objects, attributes, and the operations. The object model shows the
primary view about how real-world problems are divided into
objects and the objects interacts with each other. The object model
provides the basic framework on which other models are
positioned.

The object model is represented graphically by an object diagram.
The object diagram contains the classes interconnected by lines.
Each class represents a set of individual objects. The association
lines establish relationships among classes. Each association line
represents a set of links from the object of one class to the object
of another class.

Fig3.1: Object Diagram

392 |Page

Space for Learners:

A class describes a collection of similar objects. It is a template
where certain basic characteristics of a set of objects are defined.
A class defines the basic attributes and the operations of the
objects of that type. For creation of objects, instances of the class
are to be created as per the requirement of the system.

Classes are built on the basis of abstraction, where a set of similar
objects with common characteristics are listed. The characteristics
concern to the system under observation are taken and the class
definition is made.

3.6.2 Dynamic Modelling

Dynamic model describes about the features that changes with the
time. It is used to specify and implement control features of the
system. It describes states, transitions, events and actions. The
dynamic model includes event trace diagrams to describe a
scenario. An event is a task from one object to another, which
occurs at a particular time. An event is a one-way transmission of
information from one object to another. A scenario is a sequence
of events that occurs during one particular execution. Each of the
basic execution of the system is represented as a scenario. In the
fig 3.2, a scenario of ATM cash withdrawal is explained.

The dynamic model is represented graphically by state diagrams.
A state corresponds to the interval between two events received by
an object and describes the "value" of the object for that time
period. A state is an abstraction of an object's attribute values and
links, where sets of values are grouped together into a state
according to properties that affect the general behaviour of the
object. Each state diagram shows the state and event sequences
permitted in a system for one object class. The state diagram
should follow the object-oriented development notation. The
outcomes of dynamic modelling are event-trace diagram and state
diagram.

393 |Page

Space for Learners:

USER

ATM Consortium BANK

Insert Card

Request PIN

Insert PIN

Verify Account

Verify Bank Acc

Bank Acc ok

Account OK

Request Amount

Enter Amount

Process Transaction

Debit from Account

»

Debit Successful

Transaction OK

Dispatch Cash

Collect Cash

Print Receipt

Release ATM

Fig3.2: Event Trace Diagram

3.6.3 Functional Modelling

The functional model describes computations and specifies those
aspects of the system concerned with transformations of values.
Functions, mappings, constraints, and functional dependencies are
described in this model. The functional model describes what the
system does, without any detail about how and when it is done.

The functional model is represented graphically with data flow
diagrams, which show the flow of values from external inputs,
through operations and internal data storage, to external outputs.
Data flow diagrams show the dependencies between values and
computation of results from the input with the help of functions.
Functions are invoked as actions in the dynamic model and are

394 | Page

Space for Learners:

shown as operations on objects in the object model. Data flow
diagrams are discussed in detail in section 2.8.1.

3.7 SYSTEM DESIGN

Systems design is the process of defining the architecture,
components, modules, interfaces, and data for a system. It is a
process where system developers design the overall structure of
the system. System design emphasises on how to solve the
problem. The system design is divided into two parts — logical
design and physical design.

The logical design of the system is an abstract representation of
the inputs, outputs and data flows of the system. This is often
conducted by modelling; modelling involves a diagrammatical
representation of an actual system. System design includes Data
flow diagram, Class Diagram, Entity-relationship diagrams etc.

The physical design relates to the actual input and output process
of the system. Here how data is provided to the system, how it is
authenticated, how it is processed, and how it is displayed are
defined.

In object-oriented design methodology, system design is one of
the phases of the software development life cycle. During this
phase, developers decide the overall structure and style of the
system. During system design, the following design decisions are
to be handled.

a) Estimation of system performance

b) Make areuse plan.

c) Organize the system into subsystems

d) Identify concurrency inherent in the problem
e) Allocate subsystems to hardware.

f) Estimating Hardware Resource Requirements
g) Manage data stores.

h) Handle global resources.

1) Choose a global control strategy

j) Handle boundary conditions

k) Set trade off priorities

1) Select an architectural style.

395 | Page

Space for Learners:

a) Estimating System Performance
A rough performance estimates is calculated by the system.
The purpose of this step is to check feasibility of the system. The
execution of the system should be fast and free from common
errors. In this phase, number of transactions to be processed by the
system, response time needed, storage requirements etc are
estimated.

b) Making a Reuse Plan
Reuse is one of the main advantages of object-oriented
methodology. There are two different types of reuses, using
existing things or creating new reusable things. It is easier to reuse
existing things than to design new things. Reusable things can be
models, libraries, frameworks and patterns. The logic in a model
can applied to multiple problems.

¢) Organizing a system into Subsystems

A subsystem can be defined as a group of classes,
associations, operations, events and constraints that are
interrelated and can be used to solve a large problem. For
example, file system is a subsystem of operating system. A system
may be divided into smaller subsystems and each subsystem may
further be divided in to smaller subsystems without affecting to
the output result.

d) Identifying Concurrency
Concurrency i1s an important issue that needs to be
addressed in design process as it may affect the design of classes
and their interfaces. Concurrency is very important for improving
the efficiency of the system. One important goal of the system
design is to identify the objects that must work concurrently and
synchronize the objects that have mutual activity.

e) Allocation of Subsystems
We must allocate hardware to the each of the subsystems,
that is either a general-purpose processor or specialized functional
unit. The system designers must ensure the following:

e Estimate performance and allocate the resources needed by
system.

396 | Page

Space for Learners:

e Choose hardware and software to implement the
subsystems.

e Allocate software processors such that it satisfies
performance and minimize inter process communication

e Determine the connectivity of the physical units related to
the subsystems.

e Define the connection between nodes and communication
protocols to be used.

e (Consider the needs for redundant processing and provide
infrastructures.

e Identify the interfaces applied in deployment.

UML deployment diagram can be used to present the above steps.
A deployment diagram shows how the systems will be physically
distributed on the hardware.

f) Estimating Hardware Resource Requirements
To increase the performance of system, multiple
processors or hardware may be used. The number of processors
required depends on the computation requirement and the speed of
the machine. The system designer estimates the requirement of
processing power for a steady computing and high performance.
While implementing the system a decision needs to be
made regarding which subsystems will be implemented on which
set of hardware and software. In implementing the subsystems in
hardware following are needs to be keeps in mind
* Cost: As the technology advances, the cost of hardware
has come down still in system design the designer should
keep an eye on the cost of implementation and hardware
requirement.
* Performance: In this phase system designer need to
ensure high performance system.

g) Management of Data Storage
System designer needs to decide on the data storage for
implementation of the data structures, files and databases used in
the system. In identifying the data storage complexity of the data,
the size of the data, the access method, access time and portability
needs to be kept in mind. Having considered these issues, the

397 |Page

Space for Learners:

designer must take a decision about whether data can be stored in
flat files or in relational databases or in object databases.

h) Handling Global Resources
The system designer must identify the global resources and

determine a mechanism for control. There are several kinds of
global resources:

* Physical system: processors, tape drives and

communication channels.

* Input, output: keyboard, mouse, display screen etc.

* Logical Ids: object IDs, filenames, and class names.

* Access to shared data: Databases

i) Choosing a Software Control Strategy

In designing the system, it is best to choose a single control
style for the entire system. There are two kinds of control flows in
a software system: External control and Internal control. External
control concerns the flow of externally visible events among the
objects in the system and the internal control refers to the flow of
control within a process. It exists only in the implementation and
therefore is neither inherently concurrent nor sequential.

There are three kinds of external events: procedural-driven
sequential, event-driven sequential and concurrent. In a procedure-
driven system, the control lies within the program code.
Procedures request external input and then wait for it, when input
arrives, control resumes within the procedure that made the call. In
event-driven, the developers attach application procedures to
events and the dispatcher calls the procedures when the
corresponding events occur. In concurrent control, the developers
need to ensure concurrent execution of the system.

j) Handling boundary Conditions

In designing of the system, the system designer must consider
boundary conditions also need to address the issues like
initialization, termination and failure.

e Initialization: It refers to initialization of constant data,
parameters, global variables, tasks, guardian objects and
classes as per their hierarchy.

* Termination: Termination is required for all the
subsystems to release the reserved resources. In case of

398 | Page

Space for Learners:

concurrent system, a task must intimate other tasks about
its termination.

* Failure: It is the unplanned termination of the system,
which can occur due to various reasons such as system
fault, wrong user input, due to exhaustion of system
resources, external breakdown or bugs in system. A good
design must not affect remaining environment in case of
any failure and there must be a mechanism for recording
details of system activities and error logs.

k) Setting trade-off Priorities

The system designer must set priorities for each of the
subsystems that must be used as a guide trade-off for the rest of
the design. For example, system can be made faster by adding
extra memory. Design trade-offs involve not only the hardware
but also the process of developing the system. System designer
must define the importance of the various criteria as a guide to
design trade-offs. Design trade-offs affect entire character of the
system. Priorities are generally specified as a statement of design
philosophy.

1) Architectural Styles

Software architecture, according to ANSI/IEEE Standard
1471-2000, is defined as the “fundamental organization of a
system, embodied in its components, their relationships to each
other and the environment, and the principles governing its design
and evolution.”

The architecture of a system describes its gross structure.
This structure illuminates the top-level design decisions, including
things such as how the system is composed of interacting parts,
where are the main pathways of interaction, and what are the key
properties of the parts. Additionally, an architectural description
includes sufficient information to allow high-level analysis and
critical appraisal.

399 |Page

Space for Learners:

3.8 OBJECT DESIGN

Object design is the third phase in the Object-Oriented
Development. In object design, the designer adds more details and
refinement to the system. In object design, the designer
implements the objects discovered in analysis phase.

The operations identified in analysis phase are expressed as
algorithms and internal operations. The classes, attributes and
associations found in analysis phase are implemented with specific
data structures. If required, new object, classes can be added in
this phase. The following steps are performed in the object design
phase:

* Combine all the three models

* Design algorithms for operations

* Optimize design

* Implementation of control

* Maximize inheritance

* Design associations

* Determine object representation

+ Combine classes and associations into modules

a) Combine all The Three Models

The output of analysis phase are object model, dynamic
model and functional model. In this phase the object designer
converts actions and activities of the dynamic model and processes
in the functional model into operations of the classes in the object
model.

State diagrams constructed in the dynamic model provide
the detail working of the object. Transition in the state diagram
represents the change of states. In this phase the transitions are
mapped into operations of the object. The action performed in a
transition depends on both the event and the state of the object. So,
the algorithm implemented on objects depends on the state of the
object and the event.

An event generated by an object may represent an
operation on another object. Events often occur in pairs; the first

400 | Page

Space for Learners:

event triggers an action and the second event returns the result or
indicates the completion of the action.

Actions initiated by a transition in a state diagram may expand
into a full-fledged data flow diagram (DFD) in the functional
model. The collection of processes within the DFD represents the
body of an operation. The object designer must convert the DFD
into a linear sequence of steps in an algorithm.

b) Design Algorithms for Operations
Algorithms are designed for each operation in the DFD.
The DFD depicts what are the operations and the algorithm
explains how it is done. The algorithm designer must follow the
following steps in designing algorithms for operations:

* Selection of an appropriate algorithm

* Selection of an appropriate data structure

* Adding new classes and operations as necessary
* Assigning appropriate responsibility to classes

In choosing an appropriate algorithm the following criteria need to
be addressed:

Computational complexity: Determine the complexity of the
algorithm and choose an algorithm, which takes lesser
computation time.

Ease of implementation: We need to select a simpler algorithm
for implementation.

Flexibility: The algorithm designed should be flexible and there
should be provision for future extension. If an algorithm is highly
optimized then it is very difficult to understand and modify.

Choose an appropriate data structure: Every algorithm uses
some data structures, to make an algorithm efficient, an
appropriate and cost-effective data structure should be chosen.

Add new classes and operations as necessary: To hold
intermediate results, we may need to add new classes. A complex
operation can be decomposed into many low-level operations.

Assign appropriate responsibility to classes: Most of the
operations have an obvious target but there are some operations,
which can be placed at many places. This problem gets more

401 | Page

Space for Learners:

complicated if the operation involves many objects. So, we need
to take care of this issue.

¢) Optimize The Design
The analysis model defines the logical information about
the system, while the design model adds details about the
information accesses. The system designer must make a balance
between efficiency and clarity of the system.
The system designer can optimize the design by:
* Adding redundant associations to minimize access cost and
maximize convenience
» Rearranging the computation for greater efficiency
* Saving the derived attributes to avoid re-computation of
complicated expressions

Adding Redundant Associations for efficient access: During
design, the structure of the object model is evaluated for an
implementation. However, there may be situation where the
associations found useful in analysis phase may not be useful in
design phase. On the other hand, there may be some association
which is defined for some other objects and may need to be
redefined again for some other objects to simplify implementation.

Rearranging Execution Order for Efficiency: After adjustment
of the structure of object model for optimization, the next thing is
the optimization of the algorithm. For optimization of algorithms,
we need to find out the unnecessary codes and codes that does not
lead to solutions and remove those codes.

Saving Derived Attributes to Avoid Re-computation: There
may exist some data which can be derived from other data. This
kind of data may be termed as redundant data. Computation time
can be saved if we can eliminate the redundant calculations by
using previously calculated data.

d) Implementation of Control
As part of the system design, the designer must implement
state diagram designed in the dynamic model. There are three
basic approaches to implement it:
* To use location within the program to hold state.
* Direct implementation of state machine mechanism
» Using concurrent tasks

402 | Page

Space for Learners:

The state diagram can be converted to code as follows:

1. Identify the main path in the diagram that leads to
execution of events. Identify the names of states in the
path.

2. Identify alternate paths, which branch off the main path.
This becomes the conditional statements in the program.

3. To identify the loops, find out backward paths that branch
off the main path. Multiple backward paths become nested
loops in the programs.

4. The states and conditions correspond to exceptional
conditions need to be handled through exception handling
or by error subroutines.

Direct implementation of state machine mechanism: The direct
approach to implement control is to have a state machine engine
class that keeps track of execution of states and actions. Each
object instance maintains its own independent variables. The basic
flow of control can be traced by creating stubs of the action
routines. A stub contains the minimal piece of information
regarding functions or subroutines.

€) Maximize Inheritance
The specialization and generalization relationships are both
reciprocal and hierarchical. Specialization is just the other side of
the generalization. The definition of classes and operations can be
adjusted to make the inheritance as large as possible. It can be
done in the following ways.
* Rearranging and adjustment of classes and operations to
increase inheritance.
* Abstracting common behaviour out of the group of
classes.
* Use of delegation to share behaviour when inheritance is
semantically invalid.

Rearranging and adjustment of classes and operations to
increase inheritance

Inheritance leads to reusability of already existing functionality.
Inheriting more functions increases the level of reusability.
However, larger inheritance requires, functions definitions to be

403 | Page

Space for Learners:

redefined to serve multiple classes. The following adjustments can
be used to increase the level of inheritance.

. Some operations may have fewer arguments than others.
The missing arguments can be supplied in the function
definition and they may be ignored where they are not
necessary.

. Similar attributes in different classes may have different
names. These attributes may be moved to a common
ancestor class.

. Some operations may have fewer arguments because they
are special cases of more general arguments. These
special operations can be implemented by calling the
general operations with appropriate parameters

* An operation may be defined on several different classes
in a group but may not be required in other classes. In
that case the operation can be defined as a common
ancestor class and can be declared as no-operation on the
classes where they are not required.

f) Design Associations

During the object design phase, all the associations in the
object model are implemented. To make a decision for
implementation, all the associations need to be analysed as they
are used.
Analysing Association Traversal: Associations may be traversed
either unidirectional or bi-directional. The unidirectional
associations traversed in forward direction only and they are easy
to implement. Bi-directional associations allow reverse and
forward traversal, so bi-directional associations are always
preferred over unidirectional associations so that we can add new
behaviour or expand or modify the application rapidly.

One-way Associations: A unidirectional association can be
implemented as a pointer.
Two-way Associations: There are three approaches to implement
bi-directional associations as discussed below:
* Implement as an attribute in one direction only and
perform a search when a backward traversal is required.
* Implement as attributes in both the directions. This results
in fast access but if either attribute is updated then the other
attribute must also be updated to keep the link consistent.

404 | Page

Space for Learners:

» Implement as a distinct association object, independent of
either class. An association object is a set of pairs of
associated objects stored in a single variable size object.
For efficiency, an association object can be implemented
using two dictionary objects, one for the forward direction
and one for the backward direction.

Link Attributes: If an association has link attributes, then its
implementation depends on the multiplicity. If the association is
one-to-one, the link attributes can be stored as attribute of either
object. If the association is many-to-one, the link attributes can be
stored as attributes of the many object. If the association is many
to many, the link attributes cannot be associated with either of the
objects.

g) Determine Object Representation
The object designer has to choose when to use primitive
types in representing the objects or when to combine the groups of
objects. A class can be defined in terms of other classes but
ultimately all data members have to be defined in terms of built-in
data types supported by a programming language.

h) Packaging of Classes and Associations into Modules

Modularity is the property of a system that has been
decomposed into a set of cohesive and loosely coupled modules.
Modules serve as the physical containers in which we declare the
classes and objects. A module can be edited, compiled or imported
separately. Different object-oriented programming languages
support the packing in different ways. For example, Java supports
in the form of package, C++ in the form of header files etc.
Following purposes can be solved by modularity.

* A module typically groups a set of class definitions and
objects to implement some service or abstraction.

* A module is frequently a unit of division of responsibility
within a programming team. A module provides an
independent naming environment that is separate from
other modules within the program.

* A Modules support team engineering by providing
isolated name spaces.

Packaging involves the following three issues:

* Information Hiding

405 | Page

Space for Learners:

* Coherence of Entities
* Constructing Physical Modules

Information Hiding: During analysis phase we are not concerned
with information hiding. So, visibilities of class members are not
specified during analysis phase. It is done during object design
phase. In a class, data members and internal operations should be
hidden, so, they should be specified as private. External operations
form the interface so they should be specified as public.
Coherence of Entities: Module, class, method etc. are entities. An
entity is said to coherent, if it is organized on a consistent plan and
all its parts fit together toward a common goal. Policy needs to be
designed to make the modules more coherent.

Constructing Physical Modules: Modules of analysis phase have
changed as more classes and associations have been added during
object design phase. The object designer has to create modules
with well-defined and minimal interfaces. The classes in a module
should have similar kind of things in the system. There should be
cohesiveness or unity of the purpose in a module. So that the
classes, which are strongly associated can be put into a single
module.

CHECK YOUR PROGRESS

1. Choose the incorrect statement in terms of Objects.
a) Objects are abstractions of real-world
b) Objects can’t manage themselves
c¢) Objects encapsulate state and representation information
d) All of the mentioned
2. Which of the following points related to Object-oriented
development (OOD) is true?
a) OOA is concerned with developing an object model of
the application domain
b) OOD is concerned with developing an object-oriented
system model to implement requirements
c¢) All of the mentioned
d) None of the mentioned

406 | Page

Space for Learners:

3. Which of the following is a disadvantage of OOD ?
a) Easier maintenance
b) Objects may be understood as stand-alone entities
c¢) Objects are potentially reusable components
d) None of the mentioned

4.Inherited object classes are self-contained.
a) True
b) False

3.9 SUMMING UP

* A model is a simplified representation of reality. It provides a
means for conceptualization and communication of ideas in a
precise and unambiguous form.

* Object Oriented Methodology is a new system development
approach encouraging and facilitating reuse of software
components.

* The basic steps of system designing using object-oriented
methodology includes analysis, system design, object design
and implementation.

* The object model describes the static, structural and data
aspects of a system.

* The dynamic model describes the temporal, behavioural and
control aspects of a system.

* The functional model describes the transformational and
functional aspects of a system.

* Every system has all the three models. Each model describes
one aspect of the system but at the same time contains
references to the other models.

* An object is a concept, abstraction, or thing with crisp
boundaries and meaning for the problem at hand.

* An object has the following four main characteristics - unique
identification, set of attributes, set of states, and set of
operations (behaviour).

» C(lass is a template where certain basic characteristics of a set
of objects are defined. A class defines the basic attributes and
the operations of the objects of that type.

407 | Page

Space for Learners:

* A link is a physical or conceptual connection between object Space for Learners:
instances.

* Systems design is the process or art of defining the
architecture, components, modules, interfaces, and data for a
system to satisfy specified requirements. The system design
process is generally divided into two subphases — logical
design and physical design.

¢ The logical design of a system pertains to an abstract
representation of the data flows, inputs and outputs of the

system.

* The physical design relates to the actual input and output
processes of the system. This is laid down in terms of how
data is input into a system, how it is verified/authenticated,
how it is processed, and how it is displayed as output.

* Object oriented design is a process of refinement or adding
details. The object-designer works to implement the objects
discovered during analysis phase

3.10 ANSWERS TO CHECK YOUR PROGRESS

b) Objects can’t manage themselves
c) All the mentioned

d) None of the mentioned

b) False

PR b =

3.11 POSSIBLE QUESTIONS

Short answer type questions:
1. What is model? Why do we model?
2. What is object? Discuss the main characteristics of the
object with examples from the real world.
3. What is class? Discuss the relationships between class and
object.
4. Define association.

Long answer type questions:
1. What is object-oriented methodology? What are the
advantages of object-oriented methodology?

408 | Page

What is object-oriented process? Discuss the steps of
object-oriented process.

What are the three models involved in object-oriented
Analysis? Define each one of them.

What do you mean by object design? What are the steps
followed during the object design?

How can you combine object model, dynamic model and
functional model to obtain operations on classes?

What are the steps an object designer has to follow during
algorithm design?

What is dynamic model? How is it represented?

What is system design? What are two types of system
design? Explain.

3.12

REFERENCES AND SUGGESTED
READINGS

1. Object-Oriented Modeling and Design with UML, M. Blaha, J.
Rumbaugh, Pearson Education

2. Object-Oriented Analysis & Design with the Unified Process,
Satzinger, Jackson, Burd, Thomson

3. Object Oriented Analysis & Design, Grady Booch, Addison
Wesley

4. Timothy C. Lethbridge, Robert Laganiere, Object Oriented
Software Engineering, TMH

409 | Page

Space for Learners:

