

(3)

CONTENTS:

BLOCK- I : PROGRAMMING LANGUAGE CONCEPTS AND
IMPERATIVE PROGRAMMING LANGUAGES

Unit 1: Evolution of Programming Languages 4-19

Unit 2: Programming Methodology-I 20-34

Unit 3: Programming Methodology-II 35-48

Unit 4: Introduction to Imperative Programming Languages 49-66

Unit 5: Concept of Subprogram in Imperative 67-81
 Programming Languages

BLOCK- II : OBJECT ORIENTED LANGUAGES
Unit 1: Data Abstraction 82-113

Unit 2: Inheritance 114-149

Unit 3: Polymorphism 150-173

Unit 4: Exception Handling 174-196

BLOCK- III : FUNCTIONAL PROGRAMMING LANGUAGES
AND LOGIC PROGRAMMING LANGUAGES

Unit 1: Introduction to Functional Programming Languages 197-216

Unit 2: Functional Programming in C++ 217-243

Unit 3: Logic Programming Languages-I 244-259

Unit 4: Logic Programming Languages-II 260-291

4

BLOCK- I

PROGRAMMING LANGUAGE CONCEPTS AND

IMPERATIVE PROGRAMMING LANGUAGES

Unit 1: Evolution of Programming Languages

Unit 2: Programming Methodology-I

Unit 3: Programming Methodology-II

Unit 4: Introduction to Imperative Programming Languages

Unit 5: Concept of Subprogram in Imperative

 Programming Languages

5

UNIT 1: EVOLUTION OF PROGRAMMING

LANGUAGES

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Introduction to Programming Languages

 1.3.1 Purpose of Programming Languages

 1.3.2 Historical Perspective and Current Trends

1.4 Factors Influencing the Evolution of Programming

Languages

 1.4.1 Influence of Computer Architecture

 1.4.2 Influence of Operating Systems

 1.4.3Influence of Implementation Methods

1.5 Summing up

1.6 Answers to Check Your Progress

1.7 Possible Questions

1.8 References and Suggested Readings

1.1 INTRODUCTION

Programming languages form the foundation of modern computing,

enabling human interaction with machines through structured

instructions. This unit provides a comprehensive overview of

programming languages, their purpose, historical evolution, and the

key factors influencing their development. It begins with an

introduction to programming languages, covering their syntax,

semantics, and pragmatics, followed by a discussion on their role in

problem-solving, automation, software development, and artificial

intelligence. The historical perspective traces the evolution from

machine code and assembly languages to high-level, modular, and

object-oriented languages, culminating in modern domain-specific

and web-centric languages.

6

The unit also explores factors influencing the evolution of

programming languages, including computer architecture, operating

systems, and implementation methods. Advancements in computer

architecture, such as parallel processing, memory management, and

specialized hardware, have led to new language features and

optimizations. Similarly, operating systems have played a crucial

role in shaping system calls, networking capabilities, and security

mechanisms in programming languages. The implementation

methods—compilation, interpretation, Just-In-Time (JIT)

compilation, and runtime environments—determine language

performance, portability, and ease of use. By understanding these

influences, learners will gain insights into why programming

languages are designed the way they are and how they continue to

evolve with technological advancements.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the fundamental concepts of programming

languages, including syntax, semantics, and pragmatics.

 Explain the purpose of programming languages in human-

computer interaction, problem-solving, and software

development.

 Analyze the historical evolution of programming languages

from machine code to modern high-level and domain-

specific languages.

 Identify key programming paradigms such as procedural,

object-oriented, and functional programming.

 Examine the influence of computer architecture on the

design and evolution of programming languages.

 Describe the impact of operating systems on programming

languages, including system calls, networking capabilities,

and security features.

 Describe the impact of Describe the impact of on

programming languages

7

1.3 INTRODUCTION TO PROGRAMMING

LANGUAGES

A programming language is a formal set of instructions that allows

humans to communicate with computers and control their behavior.

It provides a structured way to write programs, which consist of

commands that a computer can interpret and execute.

A programming language consists of:

Syntax: The rules that define the structure of valid statements.

Semantics: The meaning behind those statements.

Pragmatics: How the language is used effectively in real-world

applications.

1.3.1 Purpose of Programming Languages

Programming languages serve as a medium through which humans

communicate with computers to execute various tasks. They provide

a structured way to define computations, automate processes, and

develop software applications. Over time, programming languages

have evolved to meet the needs of different computing paradigms,

including system programming, artificial intelligence, web

development, and data science. Let’s discuss the purpose of

programming languages in detail.

Human-Computer Interaction:

One of the primary purposes of programming languages is to

provide a bridge between human logic and machine execution.

Computers operate using binary (0s and 1s), which is difficult for

humans to interpret and manage. Programming languages introduce

higher-level abstractions that allow developers to write instructions

in a way that is more readable and understandable.

Early computers were programmed directly using machine code,

which was difficult and error-prone. The Assembly Language

introduced symbolic representations for instructions but still closely

tied to hardware architecture. High-Level Languages provide a more

human-friendly way to write programs (e.g., Python, Java, C++).By

using programming languages, developers can efficiently control

hardware and software without directly dealing with machine code.

8

Problem-Solving and Algorithm Implementation:

Programming languages are essential for implementing algorithms

that solve computational and real-world problems.

Mathematical Computations: Used for numerical analysis, statistical

modelling, and scientific computing.

Algorithm Development: Used to implement searching, sorting, and

optimization algorithms.

Artificial Intelligence and Machine Learning: Languages like

Python, R, and Julia are widely used for AI model training and data

analysis.

Abstraction and Automation:

Programming languages abstract complex operations, making it

easier to write, debug, and maintain programs. High-level

programming languages abstract away low-level details such as

memory management, CPU registers, and instruction execution.

Also, Programming languages enable automation of repetitive tasks,

reducing human effort and minimizing errors. By providing higher

levels of abstraction, programming languages simplify software

development and improve efficiency.

Portability and Code Reusability:

Programming languages enable developers to write code that can

run on different platforms with minimal modification.

Portability: Languages like Java use the "Write Once, Run

Anywhere" (WORA) approach, allowing programs to execute on

multiple operating systems using the Java Virtual Machine (JVM).

Web applications written in JavaScript can run on any modern web

browser without modification.

Code Reusability: Object-oriented programming (OOP) languages

like Java, Python, and C++ support modular code design. Libraries

and frameworks provide reusable code, reducing development

effort.

Software Development:

Programming languages are fundamental to creating software

applications across different domains. Programming languages

provide developers with tools to build, test, and deploy software

solutions efficiently.

9

 System Software: Languages like C and Rust are used to develop

operating systems, compilers, and firmware.

 Application Software: Java, Python, and C++ are widely used

for desktop applications.

 Web Development: JavaScript, HTML, CSS, and backend

languages like PHP and Python enable the development of

dynamic websites.

 Mobile Development: Swift (for iOS) and Kotlin (for Android)

allow mobile app development.

 Embedded Systems: C and Assembly are commonly used for

programming microcontrollers and embedded devices.

Scalability and Performance Optimization:

Programming languages play a crucial role in building scalable and

high-performance applications. C and Fortran are used for

applications that require extreme computational power, such as

simulations and scientific computing. Languages like Java, Go, and

Python are optimized for cloud-based and distributed systems.

Languages like Erlang, Rust, and Java provide features for handling

multiple processes and threads efficiently. By selecting appropriate

programming languages, developers can ensure their applications

perform efficiently under different workloads.

Enabling Artificial Intelligence and Data Processing:

Modern programming languages are heavily used in artificial

intelligence, machine learning, and big data applications.

Python and R are widely used in AI due to their rich ecosystem of

libraries (e.g., TensorFlow, PyTorch, Scikit-learn), e.g., Image

recognition, natural language processing (NLP). SQL, Python

(Pandas), and Scala (Apache Spark) help process and analyze large

datasets. E.g., Real-time analytics for recommendation systems

(Netflix, Amazon). Programming languages empower businesses

and researchers to leverage data for decision-making and

innovation.

Programming languages are essential tools for modern computing,

enabling developers to write software that powers businesses,

science, and everyday life.

10

1.3.2 Historical Perspective and Current Trends

Programming languages have changed a lot over time. This change

has been driven by new technology, the increasing complexity of

computing tasks, and the need to make programming easier and

more efficient. The history of programming languages can be

divided into different stages, starting from basic machine code to the

modern high-level and specialized languages we use today.

Machine code consists of binary instructions (0s and 1s) directly

executed by a computer’s processor. These codes are Specific to

each processor (non-portable), Difficult to read, write, and debug

and Prone to errors and time-consuming to program. Machine codes

were used for early computers like the ENIAC (1945) and UNIVAC

(1951). A deep knowledge of hardware architecture is required for

this kind of coding.

Assembly language introduced mnemonic symbols to represent

machine instructions, making programming slightly more human-

readable. The characteristics of assembly language are:

 One-to-one correspondence with machine code instructions.

 Uses symbols like MOV, ADD, and SUB instead of binary

codes.

 Still architecture-dependent and requires an assembler to translate

into machine code.

Early systems like IBM 360, PDP-11 used this language. Compared

to machine code, assembly language had improved readability and

debugging but still required knowledge of hardware details.

After assemble language, High-level Programming Languages

introduced english-like syntax and abstraction from hardware,

making programming easier and more portable. This kind of

language is closer to human language, abstracts hardware details

and requires compilers or interpreters to translate into machine code.

The Major developments are – FORTRAN, COBOL, LISP, ALGOL

etc. This kind of programming language enabled complex problem-

solving with easier syntax, increased portability across different

computers and reduced programming errors and development time.

Next, the era of modular programming started. Modular

programming introduced block-structured languages. It emphasized

11

on code readability and maintainability. It has better error handling

and debugging capabilities. The major developments are – C,

Pascal, Prolog, Ada etc. C became the foundation for modern

operating systems (Linux, Windows). The structured programming

improved maintainability and reusability. And thus stronger data

abstraction principles influenced later languages.

The Object-oriented programming (OOP) introduced concepts like

encapsulation, inheritance, and polymorphism, enabling better

software organization and reuse. It uses objects and classes to model

real-world entities. It encourages code reuse through inheritance and

also supports modular programming for large applications. C++,

Smalltalk, Java, Python are the major developments.Java

revolutionized web development. C++ became widely used for

game development and systems programming. Python gained

popularity in AI, data science, and automation.

The rise of the internet led to scripting languages designed for web

development and automation. These are designed for rapid

development and ease of use. They often used for web and server-

side scripting. JavaScript enabled dynamic content in web browsers;

PHP used for server-side scripting in web applications; Ruby

focused on developer happiness (Ruby on Rails framework) etc.

Thus scripting languages enabled interactive web applications,

simplified web and backend development and thus paved the way

for modern web technologies (Node.js, React, Angular).

Modern and domain-specific Languages focus on security,

concurrency, functional programming, and domain-specific

applications. The major characteristics of those kind of languages

are - Improved performance, safety, and concurrency; Emphasis on

cloud computing, AI, and data science; Increased use of functional

programming paradigms etc.

Programming languages have evolved to make coding easier, more

efficient, and more secure. From simple machine code to powerful

high-level languages, each step has made software development

more accessible, flexible, and productive. Today, programming

languages continue to improve, helping developers create better and

more advanced software for the future.

12

1.4 FACTORS INFLUENCING THE EVOLUTION

OF PROGRAMMING LANGUAGES

The evolution of programming languages has been shaped by

various technological, computational, and human factors. Among

them, computer architecture, operating systems, and implementation

methods play crucial roles. These elements define the capabilities,

performance, and usability of programming languages, influencing

their development over time.

1.4.1 Influence of Computer Architecture

Computer architecture refers to the structure and organization of a

computer system, including its hardware components, instruction

set, and data processing capabilities. As hardware evolves,

programming languages adapt to take advantage of new capabilities.

The design and evolution of programming languages have been

significantly influenced by computer architecture. One key factor is

the Instruction Set Architecture (ISA), which determines how a

processor executes instructions. Different ISAs, such as CISC

(Complex Instruction Set Computing) and RISC (Reduced

Instruction Set Computing), require different language design

approaches. Assembly languages were tightly linked to specific

ISAs (e.g., x86 Assembly vs. ARM Assembly), while high-level

languages abstract these differences, though performance

optimizations still consider underlying architecture. Another major

influence is the shift toward Parallel and Multicore Architectures.

Early languages like FORTRAN and COBOL were designed for

sequential execution, but the rise of multicore processors led to the

development of concurrency-focused languages like Go, Rust, and

Erlang. Even widely used languages like Java and Python evolved to

include threading and parallel computing models to better utilize

multiple CPU cores. Memory Management and Addressing have

also played a crucial role in language development. Older systems

required manual memory management using functions like malloc

and free in C, whereas modern languages such as Java and Python

13

introduced automatic garbage collection to simplify memory

handling. Additionally, advancements in virtual memory and cache

hierarchies have influenced memory-efficient programming

techniques.

Finally, the rise of Specialized Hardware, including GPUs and AI

accelerators, has led to the creation of domain-specific languages.

For instance, CUDA was developed for NVIDIA GPUs, while

OpenCL enables parallel processing across different hardware.

Similarly, AI and machine learning growth have led to specialized

languages like TensorFlow and Julia, which cater to scientific

computing and data-intensive applications. These architectural

influences continue to shape modern programming languages,

ensuring they align with the evolving hardware landscape.

1.4.2 Influence of Operating Systems

Operating systems (OS) provide an interface between hardware and

software, influencing programming paradigms, system calls, and

runtime behavior.

The evolution of programming languages has also been heavily

influenced by operating system (OS) design and functionality.

System Calls and APIs played a crucial role in shaping early

languages like Assembly and C, which were closely tied to low-

level OS functions such as file handling and process control. As

computing advanced, higher-level languages emerged to abstract OS

dependencies, with Java’s JVM enabling cross-platform execution.

Modern languages like Swift (for iOS) and Kotlin (for Android) are

deeply integrated with mobile OS environments, optimizing

application development for specific platforms. Another key

influence is Multi-User and Networking Capabilities. The

development of UNIX in the 1970s influenced C’s process control

14

and networking APIs, leading to more sophisticated networking-

oriented languages like Erlang, designed for distributed telecom

systems.

The rise of the internet further drove the evolution of web-based

languages like JavaScript and PHP, which are essential for modern

web applications. Security and Access Control have also shaped

programming language features. OS security requirements led to the

development of sandboxing techniques in Java and JavaScript, while

modern system programming languages like Rust enforce memory

safety through strict ownership and borrowing rules. These

advancements help prevent vulnerabilities such as memory leaks

and buffer overflows.

Lastly, Real-Time and Embedded Systems require predictable

execution times, influencing the creation of languages like Ada,

widely used in critical applications like avionics and defense. C and

Assembly remain dominant in embedded systems due to their

efficiency and low overhead, ensuring precise control over hardware

resources. As operating systems continue to evolve, programming

languages will adapt to enhance performance, security, and platform

compatibility.

1.4.3 Influence of Implementation Methods

The implementation method of a programming language has a major

impact on its performance, portability, and ease of use. One of the

key distinctions in implementation is Compilation vs. Interpretation.

Compiled languages like C, C++, and Rust convert source code into

machine code before execution, resulting in high performance and

efficiency. However, they require recompilation for different

platforms. On the other hand, Interpreted languages like Python,

JavaScript, and Ruby translate and execute code line by line at

15

runtime. This makes debugging easier and enhances cross-platform

compatibility, but at the cost of slower execution speed. Some

languages use Hybrid Approaches, such as Java, which compiles

code into bytecode that runs on the Java Virtual Machine (JVM),

balancing performance and portability. Similarly, Python’s CPython

is an interpreter, but it also supports compilation methods like PyPy

and Cython. Another optimization method is Just-In-Time (JIT)

Compilation, used in Java (JVM), JavaScript (V8 engine), and .NET

(CLR), which translates bytecode into machine code at runtime to

improve execution speed while maintaining portability.

Virtual Machines and Runtime Environments also play a critical

role in language portability. The JVM allows Java programs to run

across different OS platforms, while .NET CLR enables

interoperability among multiple languages like C#, F#, and

VB.NET. Additionally, WebAssembly (Wasm) provides near-native

performance for languages like Rust, C++, and Python in web

environments.

Memory management strategies also influence language design.

Early languages like C required manual memory management, while

automatic garbage collection in languages like Java, Python, and C#

improved memory safety and developer productivity. More recently,

memory safety mechanisms in languages like Rust and Swift reduce

the need for garbage collection while ensuring security.

Another major design factor is Dynamic vs. Static Typing. Statically

typed languages such as C, Java, and Rust perform type checking at

compile time, improving performance and reducing runtime errors.

Dynamically typed languages like Python, JavaScript, and Ruby

offer greater flexibility but can introduce errors during execution.

Some modern languages like Type Script and Kotlin offer optional

static typing, striking a balance between flexibility and safety.

16

Overall, the choice of implementation method shapes a language’s

efficiency, security, and ease of development, influencing how it is

used in various computing environments.

1.5 SUMMING UP

A programming language is a formal way for humans to

communicate with computers, defining how instructions are written

CHECK YOUR PROGRESS-I

1. State True or False:

a) Programming languages provide a structured way to define

computations and automate processes.

b) Machine code is highly portable and easy to debug.

c) Assembly language introduced symbolic representations for

machine instructions, making programming more human-

readable.

d) Scripting languages like JavaScript and PHP are primarily

designed for system programming.

2. Fill in the Blanks:

a) The two main components of a programming language

are__________and____________.

b) The primary role of an operating system is to provide an

interface between hardware and ____________.

c) A programming paradigm that focuses on breaking

programs into small, reusable functions is

called_______________.

d) The instruction set architecture (ISA) determines how a

processor executes _______________.

e) The Just-In-Time (JIT) compilation technique improves

performance by translating ______________.

17

and executed. It consists of syntax (rules for valid statements),

semantics (meaning of statements), and pragmatics (real-world

usage). Programming languages have evolved to improve human-

computer interaction, making it easier to control hardware and

automate processes. They facilitate problem-solving, algorithm

implementation, and abstraction, reducing complexity and

enhancing productivity.

Key benefits include portability (e.g., Java's "Write Once, Run

Anywhere"), code reusability (via object-oriented programming),

and support for software development across multiple domains,

including system software, web, mobile, and embedded systems.

Performance optimization and scalability are also critical, with

languages like C, Java, and Python used for high-performance and

distributed computing. Additionally, modern programming

languages play a significant role in AI, machine learning, and data

processing, enabling advanced analytics and automation.

The factors Influencing Programming Language Evolution are:

 Computer Architecture: Changes in instruction sets, parallel

computing, and memory management have shaped language

design. The shift to multicore processing led to concurrency-

focused languages like Go and Rust, while specialized hardware

(e.g., GPUs) inspired domain-specific languages like CUDA and

OpenCL.

 Operating Systems: OS influence programming via system calls,

networking capabilities, and security features. UNIX shaped C’s

process control, while Java's JVM enabled cross-platform

execution. Mobile OS environments drove the adoption of Swift

(iOS) and Kotlin (Android). Security concerns led to memory-

safe languages like Rust.

18

 Implementation Methods: The choice between compiled (C,

Rust) and interpreted (Python, JavaScript) languages affects

performance and portability. Hybrid approaches, such as Java’s

bytecode (JVM) and JIT compilation, balance efficiency and

flexibility. Modern runtime environments like Web Assembly

extend language capabilities to the web.

1.6ANSWERS TO CHECK YOUR PROGRESS

1.a) True b) False c) True d) False

2.a) Syntax, Semantics b) Software c) Modular programming

 d) Instructionse) Bytecode into machine code at runtime

1.7 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. What are the three main components of a programming

language?

2. Why is portability an important factor in programming

languages?

3. How did object-oriented programming improve software

development?

4. What is the role of scripting languages in web development?

5. What are some key influences of computer architecture on

programming languages?

Long Answer Type Questions:

6. Discuss the impact of object-oriented programming (OOP) on

modern software development, including key concepts.

7. Explain the influence of operating systems on programming

languages, focusing on system calls, networking, and security.

8. Compare and contrast compilation and interpretation, explaining

how they impact programming language performance.

19

9. How have modern trends in programming languages, such as

security, concurrency, and domain-specific languages, shaped

software development today?

1.8REFERENCES AND SUGGESTED READINGS

1. Sebesta, Robert W. Concepts of programming languages. Pearson

Education India, 2016.

---×---

20

UNIT 2: PROGRAMMING METHODOLOGY I

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Introduction to Programming Methodology

2.4 Development in Programming Methodology

2.5 Desirable Features in Programming Languages

2.6 Design Issues in Programming Methodology

2.7 Summing up

2.8 Answers to Check Your Progress

2.9 Possible Questions

2.10 References and Suggested Readings

2.1 INTRODUCTION

The development of programming methodology refers to the

evolution of techniques and principles used in writing efficient,

maintainable, and scalable software. Initially, programming was

done in machine and assembly languages, which were complex and

hardware-dependent. With time, structured programming introduced

modularity and readability, followed by object-oriented

programming (OOP), which emphasized code reuse and abstraction.

Functional and declarative paradigms further expanded

programming capabilities. Modern methodologies integrate multiple

paradigms, concurrency, and domain-specific approaches to

enhance efficiency and adaptability in software development.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the Concept of Programming Methodology.

 Recognize the Benefits of Systematic Programming

Approaches.

 Describe the historical development of programming

paradigms including procedural, object-oriented, functional,

event-driven, and concurrent programming.

 Evaluate Desirable Features in Programming Languages.

21

 Analyze Design Issues in Programming Methodology.

2.3 INTRODUCTION TO PROGRAMMING

METHODOLOGY

Programming methodology refers to the systematic approach used

in designing, writing, testing, and maintaining software. It defines

best practices, principles, and techniques that help developers create

efficient, reliable, and maintainable programs.

In the early days, programming was done using machine code and

assembly language, making development error-prone and hardware-

dependent. Over time, structured programming introduced better

readability and organization, followed by object-oriented

programming (OOP), which emphasized modularity and reuse.

Later, functional and declarative paradigms emerged to enhance

problem-solving approaches.

Modern programming methodologies integrate various paradigms,

emphasize agile development, and focus on software quality,

scalability, and security. The evolution of programming

methodology ensures that software development keeps pace with

technological advancements and growing computational

demands.Below are the key reasons why programming methodology

is important:

Improves Code Readability and Maintainability:A well-defined

programming methodology promotes writing clean and well-

structured code, ensuring better readability and maintainability. By

following proper naming conventions, indentation, and comments,

developers can make the code more understandable, reducing

ambiguity and confusion. This structured approach facilitates team

collaboration, allowing multiple developers to work on the same

codebase efficiently. For example, using meaningful variable names

enhances clarity, while writing modular code with functions or

classes improves reusability, making the development process more

efficient and scalable.

Enhances Software Reliability and Debugging:Following

systematic programming practices reduces the chances of errors and

bugs, ensuring that software functions as intended. Implementing

error handling mechanisms, such as exception handling in Java and

Python, helps identify and manage runtime errors efficiently,

22

preventing unexpected crashes and improving program stability.

Additionally, proper testing methodologies, including unit testing,

integration testing, and system testing, verify that the software

behaves as expected in different scenarios. By adopting these

practices, developers can enhance software reliability, minimize

debugging efforts, and deliver high-quality applications.

Increases Development Efficiency and Productivity:By following

a structured methodology, developers can focus on solving problems

rather than dealing with unnecessary complexities, making the

software development process more efficient. Code reuse through

functions, libraries, and frameworks significantly speeds up

development by reducing redundancy and allowing developers to

leverage pre-existing solutions. Agile methodologies and modular

programming further enhance productivity by enabling teams to

work in parallel on different parts of a project, ensuring faster

iterations and continuous improvements. For example, using

Python’s built-in libraries for data analysis eliminates the need to

write custom algorithms from scratch, saving time and effort.

Similarly, adopting agile development cycles facilitates iterative

enhancements, allowing developers to refine and optimize software

based on feedback and evolving requirements.

Ensures Scalability and Performance Optimization:Good

programming practices lead to efficient code that runs faster and

consumes fewer resources, making software more responsive and

scalable. Optimized data structures and algorithms play a crucial

role in enhancing performance, especially in large-scale applications

where processing vast amounts of data efficiently is essential.

Scalable design principles ensure that software can handle increased

workloads, adapting to growing data and user demands without

compromising speed or reliability. For example, using hash tables

for fast lookups significantly improves search efficiency compared

to linear searches in large datasets. Additionally, implementing

multi-threading allows applications to leverage multiple CPU cores,

enabling parallel execution and improving overall system

performance. By incorporating these best practices, developers can

create high-performance, scalable, and resource-efficient software

solutions.

Supports Code Reusability and Modularity:Writing modular

code allows developers to reuse components across different

23

projects, improving efficiency and reducing redundancy. By

breaking down software into smaller, self-contained modules,

developers can easily integrate and modify existing code without

rewriting it. Object-oriented programming (OOP) further enhances

reusability through principles such as inheritance, which allows new

classes to derive properties and behaviors from existing ones, and

polymorphism, which enables a single interface to represent

different underlying data types. Additionally, functional

programming promotes reusability by emphasizing pure functions—

which produce the same output for given inputs without side

effects—and higher-order functions, which take other functions as

arguments or return them as results. These methodologies

collectively contribute to writing scalable, maintainable, and

reusable code, ultimately improving software development

productivity.

Enhances Security and Robustness: Secure programming

practices are essential in preventing vulnerabilities such as SQL

injection, buffer overflow, and cross-site scripting, which can

compromise software security. By adopting sandboxing techniques

and memory safety mechanisms, developers can minimize security

risks and ensure that applications run in a controlled environment.

Modern programming languages like Rust and Swift incorporate

built-in memory safety features, such as ownership models and

automatic memory management, to prevent common security

pitfalls like dangling pointers and memory leaks. These proactive

measures enhance software reliability and protect systems from

potential cyber threats.

2.4 DEVELOPMENT IN PROGRAMMING

METHODOLOGY

The evolution of programming approaches has been driven by

continuous advancements in hardware, software requirements, and

the increasing complexity of computing tasks. Over time,

programming methodologies have transformed to enhance

efficiency, maintainability, and scalability in software development.

The major programming paradigms can be categorized into different

stages, each addressing specific challenges in programming. The

earliest approach was machine code, where instructions were

directly written in binary (0s and 1s). This was complex, time-

24

consuming, and prone to errors. To improve efficiency, assembly

language introduced mnemonic symbols such as MOV, ADD, and

SUB, making programming slightly easier but still closely tied to

hardware.

As software systems grew, the need for structured and modular code

led to procedural programming, which introduced structured

programming techniques. Procedural programming used functions

to break down tasks, followed a top-down approach, and introduced

control flow structures like loops and conditionals. Languages like

FORTRAN, COBOL, and C enabled modular programming and

reduced reliance on low-level machine instructions.

The procedural programming had limitations in managing large-

scale applications, which led to the rise of object-oriented

programming (OOP). OOP models real-world entities using objects

and classes, incorporating concepts like encapsulation, inheritance,

and polymorphism to improve code reuse and modularity. Popular

OOP languages include C++, Java, and Python, widely used in

enterprise applications and graphical user interfaces. An alternative

approach, functional programming, treats computation as

mathematical functions, emphasizing immutability and pure

functions. It supports parallel processing and is widely used in data

analysis and distributed computing. Languages like Lisp, Haskell,

and Scala follow this paradigm.

The rise of graphical interfaces and web applications led to event-

driven and reactive programming, where programs respond to user

interactions or system events using event listeners and callbacks.

JavaScript, Node.js, and ReactiveX frameworks are widely used in

UI development and real-time applications.

As computing moved towards multicore and distributed

environments, concurrent and parallel programming emerged,

enabling efficient task execution across multiple processors.

Languages like Go, Rust etc. facilitate high-performance computing,

AI, and cloud-based applications.

In modern computing, domain-specific languages (DSLs) have been

developed for specialized tasks, providing optimized syntax and

libraries for fields such as databases (SQL), web development

(HTML/CSS), and machine learning (TensorFlow, PyTorch). The

evolution of programming approaches has significantly improved

software development by enhancing maintainability, security, and

25

scalability. Today, modern programming blends multiple paradigms,

using object-oriented, functional, event-driven, and concurrent

programming together to create robust and efficient applications. As

technology advances, programming methodologies will continue to

evolve, adapting to new computational challenges.

2.5 DESIRABLE FEATURES IN PROGRAMMING

LANGUAGES

A programming language serves as a bridge between human logic

and machine execution, allowing developers to create efficient and

reliable software. To facilitate effective programming, a language

must possess certain desirable features that enhance its usability,

performance, and security. These features influence a language’s

adoption, efficiency, and ease of maintenance. Below are some of

the most important desirable features in programming languages.

Simplicity and Readability: A programming language should have

a simple and clear syntax that is easy to understand and use.

Simplicity reduces the learning curve for new developers and makes

the code easier to maintain. Languages with minimal complexity

avoid unnecessary syntax and constructs that can make coding

difficult. Additionally, a language should allow for the natural

expression of logic, resembling mathematical notation or natural

language, to enhance readability. A consistent and intuitive syntax,

like that of Python, improves code clarity by emphasizing

indentation and structure, making programs easier to follow and

debug.

Expressiveness and Conciseness: A language should allow

programmers to express ideas efficiently with minimal code. High-

level languages like Python and JavaScript offer rich built-in

functions and extensive libraries that accelerate development. Code

reusability is another important factor—object-oriented languages

like Java and C++ promote reusability through classes and

inheritance. Furthermore, a programming language should provide

higher-level abstraction, enabling developers to focus on solving

problems rather than dealing with low-level system details.

Performance and Efficiency: Programming languages should

execute efficiently in terms of speed and resource utilization.

Optimized compilation or interpretation plays a key role in

26

performance. Compiled languages such as C and Rust translate code

directly into machine instructions for faster execution. Efficient

memory management, including garbage collection in Java and

automatic memory safety in Rust, helps in improving performance

by preventing memory leaks. Additionally, languages designed for

high-performance computing, such as C and Rust, ensure minimal

overhead, making them suitable for embedded systems and real-time

applications.

Portability and Platform Independence: A language should allow

programs to run on different platforms with minimal modifications.

Cross-platform support is crucial for modern applications, as it

ensures software can run on multiple operating systems. Java

achieves this through its "Write Once, Run Anywhere" (WORA)

approach, which relies on the Java Virtual Machine (JVM).

Standardized libraries and APIs further enhance portability by

providing consistent functionality across different platforms.

Moreover, support for virtual machines, such as WebAssembly

(Wasm), allows languages like C++ and Rust to run efficiently

across diverse environments.

Robustness and Reliability: A programming language should

minimize errors and handle exceptions efficiently to ensure stable

software. A strong typing system is one of the key factors in

reliability—statically typed languages like Java, C#, and Rust

enforce type checks at compile time, reducing runtime errors.

Additionally, modern programming languages provide exception

handling mechanisms, such as try-catch blocks, to manage errors

effectively. Memory safety is another critical aspect of robustness;

languages like Rust use ownership models, and Swift provides

automatic memory management to prevent common security

vulnerabilities like buffer overflows and memory leaks.

Security Features: Security is a fundamental concern in software

development, particularly in web applications and system

programming. A secure programming language should enforce

memory safety, as seen in Rust and Swift, to prevent vulnerabilities

such as buffer overflow attacks. Sandboxing is another important

feature—it isolates code execution from the operating system,

ensuring malicious code does not compromise system security.

Additionally, modern languages provide built-in security libraries

that offer encryption, authentication, and access control

mechanisms, helping developers build secure applications.

27

Scalability and Modularity: A language should support the

development of scalable applications that can handle increasing

workloads efficiently. Modular programming support is essential for

scalability, allowing developers to write reusable and maintainable

code. Object-oriented programming (OOP) and functional

programming paradigms facilitate modular design. Parallel

processing capabilities, as seen in languages like Go and Erlang,

enable applications to scale effectively by utilizing concurrency.

Moreover, strong framework support, such as Django for Python

and Spring for Java, helps developers build large-scale applications

efficiently.

Support for Multiple Paradigms: Modern programming languages

should support multiple programming paradigms to provide

flexibility in software development. Procedural programming, found

in languages like C and Pascal, allows structured programming with

functions and loops. Object-oriented programming (OOP), used in

Java, C++, and Python, enables better code organization through

classes and objects. Additionally, functional programming,

supported in languages like Haskell, Lisp, and Scala, promotes

immutability and higher-order functions, which enhance modularity

and reduce side effects in code execution.

Dynamic and Static Typing: Typing systems affect how variables

and data are handled in a programming language. Statically typed

languages such as C, Java, and Rust enforce type constraints at

compile time, reducing errors and improving performance. On the

other hand, dynamically typed languages like Python and JavaScript

do not require explicit type declarations, making development faster

but increasing the likelihood of runtime errors. Hybrid typing

systems, such as those in TypeScript and Kotlin, allow optional

static typing to balance flexibility with type safety.

Maintainability and Debugging Support: A programming

language should facilitate easy debugging, testing, and long-term

maintenance of code. Readability plays a significant role in

maintainability—languages with well-structured syntax and clear

coding conventions make it easier to understand and modify code.

Integrated debugging tools, such as those available in Python and

Java, assist developers in identifying and fixing errors efficiently.

Furthermore, compatibility with version control systems like Git

ensures that code changes can be tracked and managed effectively,

making collaboration and maintenance easier in large-scale projects.

28

The choice of a programming language depends on its desirable

features, which determine how efficiently developers can write,

debug, and maintain code. While some languages prioritize

performance (e.g., C, Rust), others focus on ease of use and rapid

development (e.g., Python, JavaScript). A well-designed

programming language should strike a balance between

performance, security, scalability, and usability, enabling developers

to create robust and efficient software solutions.

2.6 DESIGN ISSUES IN PROGRAMMING

METHODOLOGY

The design of a programming language is influenced by several

factors, including usability, efficiency, reliability, and security.

These design issues play a crucial role in determining how a

language is structured, how it executes code, and how developers

interact with it. Understanding these factors helps in developing

robust and efficient programming languages suited to various

applications.

 Syntax and Readability

The syntax of a language defines how statements are written and

structured. Readability is crucial because well-structured and

intuitive syntax makes the language easier to learn and use. Some

languages, like Python, prioritize simple and clean syntax, while

others, such as Perl, allow more flexibility but may lead to complex

and unreadable code.

Key considerations for syntax and readability include whether the

language should use keywords (e.g., if, else, while) or symbolic

representations (e.g., {}, ;). Another important aspect is whether

indentation and whitespace should be significant, as in Python, or

ignored, as in C and Java.

 Type System and Type Safety

The type system determines how variables and functions handle

data. Strongly typed languages, such as Java and Rust, enforce strict

type rules, reducing runtime errors. In contrast, weakly typed

languages like JavaScript and Python offer flexibility but can lead to

unexpected behavior.

Key considerations include static vs. dynamic typing, where types

can be checked at compile-time (e.g., C, Java) or at runtime (e.g.,

29

Python, JavaScript). Another design choice is explicit vs. implicit

typing—should the developer declare types explicitly, as in C and

Java, or should the language infer them automatically, as seen in

Swift, Kotlin, and TypeScript?

 Memory Management

Memory management is critical for performance and security.

Manual memory management, as seen in C with malloc and free,

offers control but increases the risk of memory leaks and

segmentation faults. On the other hand, automatic memory

management via garbage collection, as in Java and Python,

simplifies development but may introduce performance overhead.

Languages must decide whether to rely on garbage collection or

require manual memory handling. Some modern languages, like

Rust, enforce memory safety through ownership models, eliminating

memory leaks and buffer overflows.

 Concurrency and Parallelism

With the rise of multicore processors, efficient handling of multiple

tasks simultaneously is essential. Some languages, such as Go, Rust,

and Erlang, are designed with built-in concurrency support, while

others, like Python, require additional libraries or frameworks.

Key considerations include whether the language should support

multithreading and parallel execution natively. Another aspect is the

communication model between threads—should the language use

shared memory (as in Java and C++) or message passing (as in

Erlang and Go)?

 Security Features

Security is a major concern in programming language design. Some

languages, such as Rust, enforce memory safety, preventing issues

like buffer overflows. Others, like Java and JavaScript, implement

sandboxing techniques to isolate code execution and reduce risks.

Design considerations include whether the language should include

features to prevent common vulnerabilities like SQL injection and

buffer overflow. Another key aspect is enforcing strict access

control and sandboxing mechanisms to improve security.

 Portability and Platform Independence

30

Portability allows a language to run on different platforms with

minimal changes. Java achieves this through the Java Virtual

Machine (JVM), while C and C++ rely on platform-specific

compilation. Web-based languages like JavaScript and Python are

inherently cross-platform.

Languages must decide whether to be compiled for each platform or

use a virtual machine. Another consideration is whether they should

support multiple architectures natively to enhance their applicability

across different environments.

 Error Handling and Exception Management

Proper error handling improves software robustness and

maintainability. Languages like Java and Python use structured

exception handling (e.g., try-catch blocks), while C relies on error

codes, making error handling more complex.

Key considerations include whether the language should support

built-in exception handling mechanisms and whether errors should

be checked at compile-time or runtime to ensure reliability.

 Paradigm Support (Imperative, Functional, Object-

Oriented, etc.)

Programming paradigms define the approach to solving problems.

Some languages, such as Java and C++, focus on object-oriented

programming, while others, like Haskell and Lisp, emphasize

functional programming. Modern languages like Python and Kotlin

support multiple paradigms.

A key design decision is whether the language should support only

one paradigm (e.g., C, Java) or multiple paradigms (e.g., Python,

Scala). Another factor is whether the language should allow features

like first-class functions and immutability, which are central to

functional programming.

31

 Standard Library and Ecosystem

A rich standard library simplifies development by providing built-in

functionality. Python, for instance, has extensive libraries for AI and

data science, while JavaScript has frameworks for web

development.

Languages must decide whether to provide a minimal standard

library (e.g., C) or an extensive one (e.g., Python). Additionally,

built-in support for networking, data processing, and concurrency

enhances a language’s usability and versatility.

 Compilation vs. Interpretation

Compiled languages, such as C and Rust, translate code into

machine code before execution, improving performance. Interpreted

languages, such as Python and JavaScript, execute code line-by-line,

offering flexibility but reducing speed. Some languages, like Java,

use a hybrid approach with Just-In-Time (JIT) compilation.

Key considerations include whether the language should be

compiled, interpreted, or use a hybrid model. Additionally,

designers must balance execution speed with flexibility to meet

different application needs.

The design of a programming language is influenced by various

factors, including readability, memory management, security,

portability, and execution efficiency. Each design choice impacts

how developers interact with the language and how applications

perform in real-world scenarios. By addressing these design issues

effectively, programming languages can enhance usability,

reliability, and performance, making them suitable for diverse

computing environments.

32

2.7 SUMMING UP

 Programming methodology refers to a structured approach to

software development, emphasizing best practices in design,

implementation, testing, and maintenance.

 Key benefits include improved code readability, reduced errors

through systematic debugging and testing, enhanced

development productivity via reusable components and agile

CHECK YOUR PROGRESS-I

1. State True or False:

a) Programming methodology defines best practices and

techniques for writing maintainable software.

b) Object-Oriented Programming enhances code reuse through

inheritance and polymorphism.

c) Machine code is easy to write and maintain.

d) Memory safety features in languages like Rust help prevent

buffer overflows and memory leaks.

e) Procedural programming is more suitable than object-

oriented programming for large-scale applications.

2. Fill in the Blanks:

a) Programming methodology refers to the

________________________ used in designing, writing,

testing, and maintaining software.

b) ______________ was introduced to improve code

readability and organization.

c) In functional programming, ________________ produce the

same output for given inputs without side effects.

d) _____________________ involves techniques like garbage

collection or ownership models to handle resource

allocation.

e) Python emphasizes syntax clarity and uses

_______________ as a significant part of code structure.

33

practices, and support for scalable and high-performance

applications.

 Programming methodology also reinforces software robustness

and security by incorporating safe memory practices and

preventive measures against vulnerabilities.

 Programming methodologies have developed alongside

advances in hardware and software complexity. Early

approaches used machine and assembly code, which were error-

prone and hardware-dependent.

 Object-oriented programming (OOP) followed, supporting real-

world modeling, inheritance, and encapsulation. Functional

programming introduced pure functions and immutability, ideal

for data analysis and concurrency.

 The growth of interactive applications gave rise to event-driven

and reactive programming, while parallel and concurrent

programming became vital in multicore and cloud environments.

 Modern development blends multiple paradigms and employs

domain-specific languages to meet specialized needs, ensuring

scalability, maintainability, and security.

 An effective programming language must be simple, readable,

expressive, and concise, allowing developers to write clear and

maintainable code.

 Programming language design is influenced by various factors.

Syntax and readability impact ease of learning, while the type

system affects safety and flexibility.

 Languages must also address concurrency, parallelism, and error

handling mechanisms for modern computing needs. Security

features such as buffer overflow protection and sandboxing are

critical.

 Portability ensures cross-platform compatibility, and paradigm

support (imperative, functional, OOP) increases versatility.

 A rich standard library improves development efficiency, and

decisions around compilation versus interpretation affect

performance and flexibility.

34

2.8ANSWERS TO CHECK YOUR PROGRESS

1.a) True b) True c) False d) True e) False

2.a) Systematic approach b) Structured programming

 c) Pure functions d) Memory managemente) Indentation

2.9 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. Mention any two key reasons why programming methodology is

important.

2. Name two programming paradigms introduced after object-

oriented programming.

3. Define the concept of memory safety in programming

languages.

4. What is meant by platform independence in programming

languages?

5. Mention any two desirable features of a programming language.

Long Answer Type Questions:

6. Discuss the importance of programming methodology in

software development. Provide examples.

7. Explain how programming methodology has evolved from

machine code to modern paradigms.

8. Discuss various programming paradigms and their impact on

software design and development.

9. Compare compiled and interpreted languages in terms of

performance and flexibility.

10. What is concurrency in programming? How is it supported in

modern programming languages?

2.10REFERENCES AND SUGGESTED READINGS

 Sebesta, Robert W. Concepts of programming languages.

Pearson Education India, 2016.

---×---

35

UNIT 3: PROGRAMMING METHODOLOGY II

Unit Structure:

3.1 Introduction

3.2 Objectives

3.3 Language Processors

3.4 Syntax, Semantics and Virtual Machines

3.5 Binding and Binding Time

3.6 Summing Up

3.7Answers to Check Your Progress

3.8 Possible Questions

3.9 References and Suggested Readings

3.1 INTRODUCTION

The software tools that helps a computer to understand and execute

what is required by translating high level language program into low

level language is called a language processor. Based on the

programming language, there are different types of language

processors like assembler, interpreter and compiler. With the help of

language processors, programmers can write codes easily and make

it functional on computer systems.

3.2 OBJECTIVES

After going through this unit, you will be able to

 Understand different types of language processors

 Understand the syntax and semantics of programming

language

 Understand the virtual machine

 Understand binding and the binding time

 Understand the types of binding

36

3.3 LANGUAGE PROCESSORS

A language processor is a computer program that translates source

code from one programming language into other language. They

also detect the errors occurred during the translation. All computer

programs are written in high level languages like C, C++, Python,

Java. To make this language understandable by the computer, it is

translated into machine codes. The machine codes are also known as

object codes and is made up of only ones and zeros. There are

different types of language processors: assembler, interpreter and

compiler.

 Assembler: Assembler is used to translate a program written

in assembly language into machine language. The input to an

assembler is a source code that consists of assembly

language instructions. Assembly language is the first

language that provided an interface for interaction between

human being and a computer. Assembly language use certain

codes called mnemonics to carry out the different tasks.

Some examples of mnemonics are ADD, SUB, MUX, DIV

and so on. These mnemonics are converted to binary or the

machine codes by the computer. Every computer have it’s

own set of instructions, as mnemonics depend upon the

architecture of the computer.

Fig 1: Assembler

 Interpreter: Interpreter translates a single line in the source

program into machine code and executes it immediately

before proceeding towards the next line. The interpreter

moves to the next line only after checking whether there is

Assembler

Source code

(Assembly

Language)

Object code

(Machine

Language)

37

any error and if any error is present, it corrects

it.Programming languages like Python, Ruby and Javascript

uses interpreter. As interpreter translates each statement line

by line into the corresponding machine code, it is much

slower than compiler and assembler. Hence execution time is

longer compared to the other language processors. But it is

easier for the interpreter to stop in the middle of the

execution and do the modifications and debugging if

required. Interpreters are commonly installed in web servers

as it has a set of executable scripts which needs to be

interpreted one by one. It can also be used during the

development stage of a program where small chunks of code

need to be tested rather than the whole program at once.

Fig 2: Interpreter

 Compiler: Compiler translates a source code written in high

level language program into machine codes as a whole in

one go. The source code is executed successfully only if it

free from errors. The errors have to be corrected for

successful completion. Errors are specified with the line

numbers in the source code so that the user can easily go

through it and rectify the errors. High level languages like C,

C++ and C# uses compiler.

Source Code (High

level Programming

language)

Interpreter

Executable code

(Machine language

output)/ output

Get Next Instruction

38

Fig 3: Compiler

Differences between Compiler and Interpreter

1. Compiler reads the whole program all at once while interpreter

reads the whole program line by line.

2. Compiler directly generates machine codes easily understood by

the computer while interpreter generates only intermediate code

after translation.

3. Compiler is time consuming as it takes a lot of time in analyzing

the source code while interpreter takes very less time in

analyzing the source code.

4. Compiler is faster than interpreter

5. Compiler requires more memory space whereas interpreter

requires less memory space.

6. Compiler is used by programming language like C,C++ while

interpreter is used by programming languages like Python, Ruby.

3.4 SYNTAX, SEMANTICS AND VIRTUAL COMPUTERS

Syntax and Semantics: The set of rules that defines the structure of

the program and format of a language is called the syntax of a

program. Syntax tells the computer how to read and write the code

with a specific set of words and phrases in a specific order so that

the computer can understand when instructions are given by the

user. Keywords, operators, punctuation and formatting conventions

are encompassed in the syntax of a programming language. Syntax

forms the basic foundation of all programming languages and acts

Compiler

Source code

(High Level

Language)

Object code

(Machine

Language)

39

as a bridge between human-readable code and machine-executable

instructions. On the other hand, semantics is the meaning

associated with each statement of the program language. Semantics

is used as a tool for language design for expressing design choices,

understanding language features and how they interact. Thus it describes

the properties of a language. Every programming language will have it’s

own syntax as well as semantics.

Let’s see the syntax and semantics of the Java language.

The structure of a Java program is depicted in Fig 4:

Documentation Section

(Suggested)

Package Statement

(Optional)

Import Statements

(Optional)

Interface Statements

(Optional)

Class Definitions

(Optional)

Main Method Class

 {

 Main Method Definition

 }

 (Essential)

Fig 4: General Structure of a Java program

Let’s go through each and every section of the Java program

Documentation Section: The name of the program, the author and

other details of a program are written as comments in the

documentation section which the programmer might refer at a later

stage. Comments explain in details about the classes and the

algorithm used in the program. Single comments in Java starts with

a // and are given in the following form

//This is a comment

Multiline comments are written in this form

40

/* These are comments*/

Anything written in between /* and */ is ignored by Java.

Package Statement: Package statement is the first statement of a

Java program. This statement declares the name of the package and

informs the compiler it tells the compiler that the classes defined

here belong to this package. It is written in the following form

 package sample;

Here sample is the name of a package. This statement is optional.

As class defined in the program may not be part of any package.

Import Statement: After package there may be any number of

import statements before the class definition. Import statement is of

the form:

import sample.student;

This statement instructs the interpreter to load the student class from

the package sample.

Interface Statements: Interface statements are used when we want

to implement multiple inheritance feature in the program. This

statement is also optional. It consists of a group of method

declarations.

Class Definitions: There may be more than one class definitions in

a Java program. Class is the main element of a Java program.

Main Method: Main method is the main starting point of a Java

program. It creates objects of various classes and establishes

communications between them. When the end of main method is

reached, the program terminates and the operating system takes

back the control of the program.

An example of a simple Java program is illustrated below:

class Student

{

 public static void main(String args[])

 {

41

 System.out.println (“Java is better than C++”);

 }

}

Now let’s explain each statement in details:

Class Student declares a class. All class definitions in Java is written

within the curly braces. The line

public static void main (String args[])

defines a method named main. Here

Public: It is an access specifier that declares the main method as

unprotected and therefore it is accessible to all other classes.

Static: The static keyword declares this method a one that belongs to

the entire class and it is not a part of any object of a class.

Void: Void states that the main method does not return any value.

As a whole this statement declares a parameter named args which is

an array of class string.

The last statement of the program

System.out.println (“Java is better than C++”);

is similar to printf statement in C and cout in C++. It simply prints

the line.“Java is better than C++”.

Every Java statement is terminated with a semicolon.

42

Virtual Machines: The task of a compiler is to translate the source

code into machine code. Java compiler also does the same thing. But

Java maintains architecture neutrality. This is possible because the

compiler of Java produces an intermediate code known as bytecode

for a machine that doesn’t really exist. This machine is called the

Java Virtual Machine and it resides only inside the computer

memory. It is also a computer but a simulated one. It performs all

the major functions of a real computer. The process of compilation

of a Java program is shown in Fig 5:

Fig 5: Process of Compilation

The bytecode produced by the virtual machine is not machine

specific. So, the machine specific code is generated by the Java

interpreter which plays the role of an intermediator between the

Java Program Java Compiler Virtual

Machine

Source code Bytecode

Check Your Progress I

1.Assembly language use certain codes called ________to carry out

the different tasks

2. Programming languages like Python, Ruby and Javascript uses

3. ______forms the basic foundation of all programming languages

4. Every programming language will have its own syntax as well as

5. ______statement in Java instructs the interpreter to load the

specified class from the package sample.

6. Every Java statement is terminated by a _________

43

virtual machine and the real machines. Every machine has its own

interpreter. No two machines can have the same interpreter. Fig 6

depicts how the bytecode generated by the virtual machine is

converted into the machine code by the Java interpreter.

Fig 6: Process of converting bytecode into machine code

The Java API acts as the intermediary between the user programs

and the virtual machine which in turn again acts as the intermediary

between the operating system and the Java object framework. Fig 7

illustrates how Java works on a typical computer.

Bytecode Java

Interpreter

Machine code

Virtual Machine Real Machine

Real Machine

Operating System

Java Virtual Machine

Java Object Framework (API)

Compiler
Interpreter

User Application Programs

 Users

44

3.5 BINDING AND BINDING TIME

Binding in Java refers to the process of associating a method call or

variable reference with its corresponding implementation or data

type. Binding can occur in run time as well as also in compile time.

Run time binding is also called late binding or dynamic binding

whereas compile time binding is also called early or static binding.

For writing efficient, flexible and maintainable Java program, it’s

very necessary for the developer to know the differences between the

above said two types of binding. The time at which the binding takes

place in a program is called binding time. Now let’s discuss the two

types of binding:

1. Static Binding: Static binding (also known as early binding or

compile time binding) takes place during the compile time of a

program.It refers to the association of method calls and variable

references with their corresponding implementations and data

types based on the information available in the source code. The

main characteristic of static binding is that the binding is

determined and also fixed at compile time. The example below

illustrates static binding.

public class Main {

void addNum (int n1, int n2){

 System.out.println(n1 + n2);

 }

void addNum (intn1, intn2, int n3){

 System.out.println(n1 + n2 + n3);

 }

public static void main (String args[]){

//creating Main class object

 Main object = new Main();

//method call

 object.addNum(20, 30);

 object.addNumbers(50, 80, 100);

 }

}

Here the output will be 50 and 230.

45

Advantages:

1. Static binding is fast compared to dynamic binding as the compiler

has all the information it needs to bind the method calls and

references. Thus, this is how it contributes towards the overall

efficiency of the program.

2. It can detect the errors at an early stage. The inconsistencies or

mismatches found in method calls or variables are detected and marked

as compile time errors.

Disadvantage

As the name itself indicates that in static binding the decisions made

during the binding time remains constant throughout the program. This

might be a problem when certain programs require dynamic behaviour.

So, static binding lacks flexibility.

2. Dynamic Binding

Dynamic binding (also known as late binding or runtime binding)

occurs during the execution phase of the program. Dynamic binding

determines the method calls and variable references based on the

actual type of the objects at runtime. Due to this dynamic behavior,

Java is flexible and polymorphism as well as inheritance can be

implemented thus making it a very powerful programming language.

The example below illustrates dynamic binding:

class Test1{

void show(){

 System.out.println("Inside show method of Test1 class");

 }

}

public class Main extends Test1{

void show (){

 System.out.println("Inside show method of Main class");

 }

public static void main (String args[]){

//creating object

 Test1 object = new Main();

//method calls

 object.show();

 }

}

46

The following line will be printed as an output of this program:

Inside show method of Main class

Advantages:

1. Dynamic binding allows polymorphism thus enhancing code

reusability and maintainability.

2. In dynamic binding, decisions are made during the run time. The

decisions are not fixed at the very beginning and hence allows

adaptability in the program.

Disadvantages:

1. Dynamic binding results in slower execution compared to static

binding as the runtime has to look up the method dynamically. As a

result performance overhead increases.

2. In case of Java dynamic binding can lead to higher memory

consumption.

3.6 SUMMING UP

 A language processor is a computer program that translates

source code from one programming language into other

language

 Assembler is used to translate a program written in assembly

language into machine language

 Interpreter translates a single line in the source program into

machine code and executes it immediately before proceeding

towards the next line.

 Compiler translates a source code written in high level

language program into machine codes as a whole in one go.

 The set of rules that defines the structure of the program and

format of a language is called the syntax of a program.

 Java compiler translates the source code into an intermediate

code called the bytecode for a machine that doesn’t really

exist.

 Java virtual machine is also a computer but a simulated one

and can perform all the tasks of a computer.

47

 The intermediate code generated by the Java compiler is

converted into machine code by the Java interpreter.

 Binding in Java refers to the process of associating a method

call or variable reference with its corresponding

implementation or data type.

 Binding can occur in run time as well as also in compile time.

 Static binding takes place during the compile time of a

program.

 Dynamic binding occurs during the execution phase of the

program.

3.7ANSWERS TO CHECK YOUR PROGRESS

1. mnemonics

2. interpreter

3. Syntax

4. semantics

5. import

6. semi colon

3.8 POSSIBLE QUESTIONS

1. What is a language processor?

2. What is an assembler?

3. How assembler is different from compiler?

4. Distinguish between compiler and interpreter.

5. What do you mean by syntax and semantics of a program?

6. Explain the general structure of a Java program.

7. What is a Java Virtual Machine? Explain the process of

compilation of a program in Java.

8. What is binding?

9. What is binding time?

10. Explain static and dynamic binding with the help of an

example.

11. List two advantages each for static binding and dynamic

binding.

12. List the demerits of dynamic binding.

48

3.9 REFERENCES AND SUGGESTED READINGS

 https://www.w3schools.blog/static-vs-dynamic-binding-in-

java

 https://www.cl.cam.ac.uk/teaching/0809/Semantics/notes-

mono.pdf

 https://medium.com/@appwebcoders/compile-time-binding-

and-run-time-binding-in-java-2e1ef107d586

 Balaguruswamy, E. (2014). Programming with Java-A Primer.

McGraw-Hill Professionals.

---×---

49

UNIT 4: INTRODUCTION TO IMPERATIVE

PROGRAMMING LANGUAGES

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Imperative Programming Language

4.4 Statements and data types

4.5 Subprograms, sequence control and data control

4.6 Dynamic allocation using pointers

4.7 Operating and Programming environment

4.7.1 Java Runtime Environment

4.7.2 Application Programming Interface

4.8 Summing Up

4.9 Answers to check your progress

4.10 Possible Questions

4.11 References and Suggested Readings

4.1 INTRODUCTION

Imperative programming refers to a paradigm of computer

programming in which a program is described with the help of a

sequence of steps which results in changing the state of the

computer. It is a model based on moving bits around and changing

the state of the machine. In this type of programming, natural

language can also be used in expressing the commands to be given

to the computer. Imperative programming focusses on how to

accomplish a task rather than what to accomplish as in declarative

programming.

4.2 UNIT OBJECTIVES

After going through this unit you will be able to:

 Understand Imperative programming language

 Learn statements and data types in imperative programming

language

 Learn subprograms, sequence control and data control

50

 Understand the concept of dynamic memory allocation using

pointers

 Understand the programming environment of the imperative

programming language.

4.3 IMPERATIVE PROGRAMMING LANGUAGES

Imperative or procedural languages are command-driven or

statement-oriented language. The basic concept is the state of the

machine which is nothing but the set of all memory locations in the

computer. As we all know that a program is a sequence of

statements and after execution of each statement the computer

changes value of one or more locations in it’s memory to enter to a

new state. This programming model is supported by C, C++, Java,

FORTRAN, ALGOL, PL/I, Pascal, Ada, Smalltalk and COBOL.

The different imperative languages can further be assigned to three

subordinate programming style: structured, procedural and modular.

Structured programming consists of specific control structures such

as sequences, selection and iteration. It is easy to maintain, read and

understand a structured program. It promotes code reuse, since even

internal modules can be extracted and made independent, residents

in libraries, described in directories and referenced by many other

applications. Almost all high-level language program support

structured programming. Procedural programming divides the task a

program is supposed to perform into smaller sub-tasks, which are

individually described in the code. This results in programming

modules which can also be used in other programs. Modular

programming model designs, develops and tests the individual

program components independently of one another. The individual

modules are then combined to create the actual software.

In this Unit we will use the language Java for understanding the

concepts of the Imperative programming language.

4.4 STATEMENTS AND DATA TYPES IN IMPERATIVE

PROGRAMMING LANGUAGE

The statements in Imperative programming language can be mainly

divided into three types:

51

 Selection Statements: In selection statements there are two

or more execution path, out of which one is selected and

executed accordingly. It is mainly used for decisions and

branching such as choosing between multiple paths. In Java,

there are four selection statements: if, if-else, if-else-if-else

and switch statement. The syntax followed by an example is

given below.

 a) if statement: if(condition)

 {

 // Statements to execute if

 // condition is true

 }

 Example: class If Statement {

 public static void main(String[] args) {

 int number = 10;

 // checks if number is less than 0

 if (number < 0) {

 System.out.println("The number is negative.");

 }

 System.out.println("Statement outside if block");

 }

 }

 b) if-else statement: if(condition)

 {

 // code if condition is true.

 }

 else

 {

52

 //code if condition is false.

 }

 Example: class Main {

 public static void main(String[] args) {

 int number = 10;

 // checks if number is greater than 0

 if (number > 0) {

 System.out.println("The number is positive.");

 }

 // execute this block

 // if number is not greater than 0

 else {

 System.out.println("The number is not positive.");

 }

 System.out.println("Statement outside if...else block");

 }

}

 c) if-else-if-else: if (condition1)

 {

 //block of code to be executed if condition1 is

true

 } else if(condition2)

 {

53

 // block of code to be executed if condition1 is false

and condition2 is true

 }

 else

 {

 //block of code if condition1 is false and condition2

is false

 }

Example: class Main {

 public static void main(String[] args) {

 int number = 0;

 // checks if number is greater than 0

 if (number > 0) {

 System.out.println("The number is positive.");

 }

 // checks if number is less than 0

 else if (number < 0) {

System.out.println("The number is negative.");

 }

 // if both condition is false

 else {

 System.out.println("The number is 0.");

 }

 }

 }

54

d) switch statement: switch(expression){

 case x: // block of code

 break;

 case y: // block of code

 break;

 default:// block of code

 }

Example:

class Main {

 public static void main(String[] args) {

 int number = 44;

 String size;

 // switch statement to check size

 switch (number) {

 case 29: size = "Small";

 break;

 case 42: size = "Medium";

break;

 case 44:size = "Large";

 break;

 case 48:size = "Extra Large";

 break;

 default: size = "Unknown";

 break;

55

 }

 System.out.println("Size: " + size);

 }

}

 Sequence Statements : Sequence statement consists of a

block of statements that are executed one after the other

sequentially

Example:

class HelloWorld

 {

 public static void main(String args[])

 {

 System.out.println("Hello World"); //Prints on screen “Hello

World”

 }

}

These are simply a block of statements that are being executed one

after the other.

 Iteration Statements: Iteration statements repeat a certain

block of statements in a loop until it keeps on satisfying a

certain condition. The three iteration statements are: for

loop, while loop and do-while loop.

a) for loop: for (initialization expr; test expr; update exp)

 {

 // body of the loop

 // statements we want to execute

 }

Example:

class sample{

56

 public static void main(String[] args)

 {

 for (int i = 1; i<= 10; i++) {

 System.out.println(i);

 }

 }

}

b) while loop: while(testExpression){

 //body of loop

 }

Example:
class Main {

 public static void main(String[] args) {

 // declare variables

 int i = 1, n = 5;

 // while loop from 1 to 5

 while(i<= n) {

 System.out.println(i);

 i++;

 }

 }

}

c) do-while loop:do{

 //body of the loop

 }while(testExpression)

Example:

import java.util.Scanner;

 class Main {

 public static void main(String[] args) {

 int i = 1, n = 5;

 // do...while loop from 1 to 5

 do {

 System.out.println(i);

 i++;

 } while(i<= n);

 }

 }

57

The different data types in Imperative programming language can be

mainly divided into types:

 Primitive Data Types: The most fundamental data types

usable in a programming language are the primitive data

types. There are eight primitive data types: Boolean, byte,

character, short, int, long, float, and double. These data types

in any programming language serves as the foundation for

data manipulation

 Derived Data Types: Derived data types are derived from

the primitive data types. These includes String, array and

classes.

 User-Defined Data Types: These are the data types that are

defined by the user depending upon the requirement of the

program.

4.5 SUBPROGRAMS, SEQUENCE CONTROL AND DATA

CONTROL

Subprogram: A subprogram is a set of instructions or a piece of

program that can be called from different parts or places of a

program. It eliminates the process of writing the same code again

and again wherever it needs to be executed. The programmer can

call this subprogram anywhere in the program without bothering

CHECK YOUR PROGRESS

1. Give two examples of Imperative programming

languages.

2. Structured programming consists of specific control

structures such as _________, selection and iteration

3. What is modular programming?

4. Selection statements are used for decisions and

branching such as choosing between _____paths.

5. The three iteration statements are for loop, ____loop

and do-while loop.

6. Array is a _______data type.

7. ___________data type serves as the foundation for

data manipulation

58

about how to implement the operation. Subprograms are also called

subroutines. There are mainly three types of subprograms:

procedure, functions and methods.

The general characteristics of a subprogram are:

1. Subprogram always have a single entry.

2. At any moment only one subprogram can be executed, others are

suspended but they may remain active.

3. The execution returns to the main program or the caller once the

subprogram terminates.

Subroutines in JAVA are defined in a class. A subroutine can only

be called if it is defined somewhere in a program. The name of the

subroutine, information required to make call to the subroutine, and

the code that will be executed each time the subroutine is called

must be defined in the subroutine. A subroutine definition in Java

takes the form:

modifiers return_type subroutine_name(parameter list){

statements

}

The statements within the curly braces is the body of the subroutine.

Modifiers define some characteristics of the subroutine such as

whether it is static or public. return_type refers to a method that may

return a value or void. Parameters represent information that is

passed into the subroutine from outside such as data type, order or

number of parameters to be used by the subroutine's internal

computations. Sometimes there may be zero parameters also.

Example:

public class Factnum{

public int Fact(int n) //Subroutine method definition

 {

 int f=1;

 for (int=1;i<=n; i++)

59

 f= f*I;

 return f;

 }

public static void main(String args[])

 {

 Scanner sin = new Scanner(System.in);

int inp = sin.nextInt();

 int factorial= Fact(n1); //Subroutine call

System.out.println(factorial);

}}

Sequence control: When a subprogram or subroutine is called, the

execution of calling program is temporarily stopped during

execution of the subprogram. Once the subprogram is completed,

execution of the calling program resumes at the point immediately

following the call.

The following assumptions are made for simple subroutine call and

return structure

i) Subprogram can never be recursive

ii) Explicit call statements are required

iii) Subprograms must execute completely at call

iv)Immediate transfer of control at point of call or return

v) Single execution sequence for each subprogram

4.6 DYNAMIC ALLOCATION USING POINTERS

Heap memory also known as dynamic memory in JAVA is allocated

automatically when a function is called and deallocated

automatically when a function exits. Whenever a programmer

requests for memory it is allocated a block of memory of a

particular size and it remains until something happens that makes it

go away. The significant source of errors in C/C++ is dropping all

60

references to a memory location without deallocating it. This error is

known as memory leak. Java removes this error by handling

memory deallocation automatically, using garbage collection.

Heap memory is a huge memory available for use by the programs.

Whenever a program needs memory, it makes an explicit request by

executing the heap allocation function. The allocation function

reserves a block of memory of the requested size and returns a

pointer to the program. For example a program makes three separate

allocation requests for storing three GIF images. In this case the

allocation function will allocate three blocks of heap memory for the

three images and will return three pointers to the main program. The

pointers serves as the base addresses of the heap memory. At any

time a some blocks might be in use and some blocks will be free for

use as they are not committed yet by any program. So heap memory

is available to satisfy allocation requests. The heap manager keeps

track of the memory being allocated to the different programs

alongwith the information about the free blocks. As soon as a new

program is allocated a block of heap memory, the heap manager

updates it’s private data structure.

As soon as a program finishes it’s task, the block of memory used

by the program is marked unused. This allows the garbage collector

of JAVA to clean the memory space marked as unused and make it

available for future allocation request. The heap manager again

updates it’s private data structure to show that that area of memory

is free again and can be allocated to new program request.

Let’s go through a simple heap example. Here is a simple example

that allocates an Employee object block in the heap, and then

deallocates it. This is the simplest possible example of heap block

allocation, use, and deallocation. The example shows the state of

memory at three different times during the execution of the above

code. The stack and heap are shown separately in the drawing—a

drawing for code which uses stack and heap memory needs to

distinguish between the two areas to be accurate since the rules

which govern the two areas are so different. In this case, the lifetime

of the local variable empPtr is totally separate from the lifetime of

the heap block, and the drawing needs to reflect that difference.

void Heap1() {

 Employee empPtr;

 // Allocates local pointer local variable (but not its pointee)

61

 // T1

/ Allocates heap block and stores its pointer in local variable.

 // Dereferences the pointer to set the the name to Sam

empPtr = new Employee();

empPrt.setName("Sam");

 // T2

// Deallocateing heap block makes the pointer equals to null.

 //This will let the garbage collection to know that this object is

unsed and it

 //must be cleared from the head

 // The programmer must remember not to use the pointer

 // after the pointee has been deallocated (this is

 // why the pointer is shown in gray).

empPtr = null;

 // T3

}

4.7 OPERATING AND PROGRAMMING ENVIRONMENT

Java is an object oriented programming language that enables us not

only to organize program codes into logical units called objects but

also to take advantage of encapsulation, inheritance and

polymorphism. Java programming environment consists of a

programming language, an API specification and a virtual machine

specification.

4.7.1 Java Runtime Environment

The Java Runtime Environment, or JRE, is the software

environment that runs on top of a computer’s operating system

software and provides the class libraries and other resources that a

specific Java program requires to run. The three interrelated

components that are required for developing and running Java

programs are JRE, JDK and JVM. Let’s study briefly about JDK

and JVM.

 The Java Development Kit, or JDK, is a large number of

development tools required for developing Java applications.

The tools and their descriptions are given in table 1:

62

Tool Description

appletviewer Enables us to run Java applet

java Java interpreter which runs applets and

applications by reading and interpreting bytecode

files

javac The Java compiler which translates Java source

code to bytecode files that the interpreter can

understand

javadoc Creates HTML-format documentation from Java

source code files

javah Produces header files for use with native methods

javap Java disassemble which enables us to convert

bytecode files into a program description

jdb Java debugger, which helps us to find errors in our

programs

Table 1: Java Development Tools

 The Java Virtual Machine, or JVM, runs live Java

applications and is the one that calls the main method

present in a Java code. JVM is a part of JRE(Java Runtime

Environment).

Figure 1 depicts the process of building and running java

application program.

Text Editor

Java

Source

code

Javac

Java

Class

File

javadoc

javah

HTML Files

Header Files

63

Fig 1: Process of building and running Java application programs

4.7.2 Application Programming Interface

Java Application Programming Interface (API) or Java Standard

Library (JSL) includes hundreds of classes and methods grouped

into several functional packages. The most commonly used

packages are:

 Language Support Package: A collection of classes and

methods required for implementing basic features of Java

 Utilities Package: A collection of classes to provide

utility functions such as date and time functions.

 Input/Output package: A collection of classes required

for input/output manipulation.

 Networking package: A collection of classes for

communicating with other computers via Internet.

 AWT: The Abstract Window Tool Kit package contains

classes that implements platform independent graphical

user interface.

 Applet package: This includes a set of classes that

allows us to create Java applets.

4.8 SUMMING UP

 Imperative or procedural languages are command-driven or

statement-oriented language where the basic concept is set of

all memory locations in the computer.

java

Java Program

output

jdb

64

 A program is a sequence of statements and after execution of

each statement the computer changes value of one or more

locations in it’s memory to enter to a new state.

 C, C++, Java, FORTRAN, ALGOL, PL/I, Pascal, Ada,

Smalltalk and COBOL are all imperative programming

languages.

 Structured programming consists of specific control

structures such as sequences, selection and iteration.

 Procedural programming divides the task a program is

supposed to perform into smaller sub-tasks, which are

individually described in the code.

 Modular programming model designs, develops and tests the

individual program components independently of one

another.

 The statements in imperative languages can be categorized

into: selection, sequence and iteration statement.

 The different data types in imperative programming

language are : primitive, derived and user defined data types.

 A subprogram is a set of instructions or a piece of program

that can be called from different parts or places of a

program.

 When a subprogram or subroutine is called, the execution of

calling program is temporarily stopped during execution of

the subprogram.

 In Java allocation and deallocation of memory is done

automatically using garbage collection.

 The three interrelated components that are required for

developing and running Java programs are JRE, JDK and

JVM.

 Java Application Programming Interface (API) or Java

Standard Library (JSL) includes hundreds of classes and

methods grouped into several functional packages

4.9 ANSWERS TO CHECK YOUR PROGRESS

1. C++ and Java

2. Sequences

65

3. Modular programming model designs, develops and tests the

individual program components independently of one another.

The individual modules are then combined to create the actual

software.

4. Multiple

5. while

6. Derived

7. Primitive

4.10 POSSIBLE QUESTIONS

1. What is imperative programming language?

2. What are the three main programming style? Explain.

3. Explain the selection statement type with the help of an

example.

4. Distinguish between sequence and iteration statement with the

help of examples.

5. What are the different data types in imperative programming

language? Explain.

6. Define subprogram.

7. Mention the general characteristics of subprogram.

8. Write a short note on: Dynamic allocation, Garbage Collection

9. What is a heap memory? How does it help in overcoming the

memory leak program?

10. Describe the programming environment of Java.

4.11 REFERENCES AND SUGGESTED READINGS

 https://www.slideshare.net/slideshow/java-methods-or-

subroutines-or-functions/249830971

 https://math.hws.edu/javanotes/c4/s2.html

66

 3.https://ggn.dronacharya.info/csedept/Downloads/Question

Bank/Even/IV%20sem/Section_A_Sequence_Control.pdf

 https://opendsa.cs.vt.edu/ODSA/Books/vt/cspointer/fall-

2017/Pointers_Test/html/HeapMem.html

 https://docs.oracle.com/cd/E19455-01/806-

3461/6jck06gqb/index.html

 https://www.ibm.com/think/topics/jre

 Balaguruswamy, E. (2014). Programming with Java-A Primer.

McGraw-Hill Professionals.

---×---

67

UNIT 5: Concept of Subprogram in Imperative

Programming Language

Unit Structure:

5.1 Introduction

5.2 Objectives

5.3 Subprogram activation- parameter passing methods

5.4 Scope rules for names

5.5 Nested procedures and Syntax

5.6 Summing Up

5.7 Answers to Check Your Progress

5.8 Possible Questions

5.9 References and Suggested Readings

5.1 INTRODUCTION

In the previous chapter we have learned about the basic concept of

subprogram, characteristics of a subprogram, subprograms in Java

and also the sequence control in subprogram. In this chapter we will

learn about the different parameter passing methods in subprograms.

We will also learn about scope rules for names as well as about the

nested procedures, syntax and translation.

5.2 OBJECTIVES

After going through this unit, you will be able to

 Understand how the parameters are passed in a subprogram

 The two ways of parameter passing: pass by value and pass

by reference

 Different scope rules of variables

 Different nested procedures and syntax

68

5.3 SUBPROGRAM ACTIVATION- PARAMETER PASSING

METHODS

The process of calling and executing a subprogram (such as a

function or procedure) in a program is referred to as subprogram

activation. For smooth execution of a program, certain actions are

required during the activation. Such type of actions includes

allocating resources, passing parameters, and ensuring that control

returns to the correct location after the subprogram completes.

The key steps involved in a subprogram activation are:

1. Subprogram call: A subprogram is invoked or called by the

main program or another subprogram by using a function

call, procedure call, etc.

2. Creation of stack: A new stack frame is created once a

subprogram is activated. This frame contains the local

variables, parameters to be passed to the subprogram and the

return address as where to start the execution once a

subprogram terminates.

3. Parameter Passing: Parameters passing is the arguments

that are expected by the subprogram and are passed by

means of value, reference and name.

4. Execution: The parameters that are passed along with the

local variables are used during the execution of a

subprogram.

5. Return: The stack frame is destroyed once the subprogram

completes its execution and the control returns to the main

program.

6. Control Transfer: Once the control is transferred back to

the to the point where the subprogram was called, the main

program starts resuming again.

Different programming paradigms (procedural, object-oriented) and

languages (C, Java, Python) handle these aspects differently, but the

concept of subprogram activation remains consistent. We will

discuss how the parameters are being passed during subprogram

activation.

As we have already learned about the basic concepts of a

subprogram, let’s try to understand the parameter passing methods

of a subprogram. Before discussing about the parameter passing

methods we need to understand how a function is defined. A

program consists of a number of procedures and functions. These

functions which are called subprograms may or may not contain

parameters. A function is defined in the following way in Java:

69

public static double average(double a, double b, double c){

// code

}

Here double is the data type and average is the function name. x, y,

z are the parameters.

Now let’s write a subprogram for this function:

public static double average(double a, double b, double c)

{

return(a + b + c)/3;

}

So the program will be like:

import java.util.Scanner;

public class Exercise2{

public static void main(String[]args)

{

Scanner in =new Scanner(System.in);

System.out.print("Input the first number: ");

double x =in.nextDouble();

System.out.print("Input the second number: ");

double y =in.nextDouble();

System.out.print("Input the third number: ");

double z =in.nextDouble();

System.out.print("The average value is "+average(a,b,c)+"\n");

}

public static double average(double a, double b, double c)

{

return(a+b+c)/3;

 }

}

A subprogram may be defined before or after the main function. The

parameters in a subprogram can be passed basically in two ways:

 Pass by value

 Pass by reference

 Pass by value: Pass by value is the default mode of passing

parameters into methods. This means that the parameters

70

declared inside the method body is a copy of the original

argument that was passed in. Whenever a method is called, a

copy of each actual parameter is passed. Now if we make

any change to the copy, there will be no effect on the actual

parameters. In Java there is no mechanism to change the

actual parameters value. A Java program where the

parameters are passed by value is demonstrated in the

program below:

 Program to demonstrate pass by value

 public class Sample1 {

 public static void main(String[] args) {

 int number=10;

 System.out.println("Before: " + number);

 modifyNumber(number);

 System.out.println("After: " + number);

 }

 public static void modifyNumber(int value) {

 value = value * 2;

 System.out.println("Modified: " + value);
 }

 }

 Pass by reference: In pass by reference method the actual

value is not passed rather an alias or the reference to the

parameter is passed. Here if we make any changes to the

parameter instances, it would affect the actual value also.

Java is always a pass by value mechanism but there are ways

to make it pass by reference. The pass by reference is

handled by pass by value in Java.

 To understand the above concept let’s first understand the

 storage mechanism of Java. The reference variables along

 with the names of methods and classes are stored in heap but

 the primitive data types are stored always in stack along with

 their values.

 As reference variables are stored in stack, so the value of the

 parameter of such variables is the reference or address of the

 given variable. This is in case of arrays, objects and strings.

For example, if we have an array ‘a’ with elements {1, 2, 3} and we

pass ‘a’ as a parameter to a method, then the method receives the

71

copy of reference or address of ‘a’ as its parameter. The following

example demonstrates the use of pass by reference in Java.

Example:

import java.util.*;

public class ParamPass{

 public static void changeAray(int[]a){

 A[0]=a[0]*2;

 System.out.println(“Inside

method:a=”+Arrays.toString(a));

}

public static void main(String[] args){

 int[] aray = {1,2,3};

 System.out.println(“Before calling changeArraymethod:arr = “+

Arrays.toString(array));

changeAray(aray);

System.out.println(“After calling changeArraymethod:arr = “+

Arrays.toString(array));

After executing this program we will get :

Before calling changeAray method: arr = [1, 2, 3]

Inside method: a = [2, 2, 3]

After calling changeAray method: arr = [2, 2, 3]

5.4 SCOPE RULES FOR VARIABLES

The part of the program where the variable is accessible is called the

scope of a variable. Scope defines the visibility and the lifetime of a

variable. Java allows variable to be declared not only in the main ()

method but also within any block. A block begins with a curly brace

and ends with a curly brace. Thus, a block defines a scope. A scope

determines what objects are visible to other parts of your program.

In other programming languages the two general categories of scope

are: local and global. But these two scopes doesn’t fit the strict

object oriented Java language.

In Java, here are four scopes for variables in Java: local, instance,

class, and method parameters.

72

1. Local Variables: The variables that are declared insidea method,

constructor, or code block are referred to as local variables. These

variables can only be accessed within the block in which they are

defined. The lifetime of local variable exists only while the method

or block is executing.

Example: public class Main{

 public static void main(String[] args) {

 intx=10; // 'x' is a local variable

 System.out.println(x);

 }

}

2. Instance Variables: The variables that are inside a class but are

outside any method are called instance variables. These variables

are initialized at the time of class instantiation. Instance variables

can be accessed by methods and constructors only of that particular

class. The lifetime of this class variable exists as long as the object

that contains it is alive.

Example: class Exercise{

 int speed;

 public void setsample(int sample){

 this.sample = sample;

 }

 }

3. Class Variables: The variables that are declared inside the class

are called class variables. They are declared with the static keyword

and are outside any method.Class variables are accessible within

static methods or from any object of the class. Static variables can

be accessed using the class name or object reference. The lifetime of

class variable exists as long as the class is loaded in the JVM.

Example: class Maths{

 static x=0;

73

 public static void increment(){

 x++;

 }

 }

The scope defined by a method begins with curly braces and if the

method consists of parameters, they are too included within the

block’s scope. A variable that is declared inside a scope cannot be

visible to the code that is defined outside the scope. Variables

declared inside the scope are localized and also protected from

unauthorized access and modification. Scopes can also be nested. A

new nested cope is created as soon as a new block is created. When

this occurs, the outer scope encloses the inner scope. This means

thatobjectsdeclaredintheouterscopewillbevisibletocodewithintheinne

rscope.However, the reverse is not true.

Let’s understand the effect of nested scopes, with the help of an

example.

// Demonstrate block scope.

class Scope {

 public static void main(String args[]) {

 inta; // known to all code within main

 a = 10;

 if(a == 10) { // start new scope

 intb = 20; // known only to this block

 // a andb both known here.

 System.out.println("a and b: " + x + " " + b); a = b * 2;

} // b = 100; // Error! b not known here

 // a is still known here.

System.out.println("a is " + a);

}

74

}

As we can observe, the variable a is declared at the start of main()’s

scope and is accessible to all subsequent code within main(). The

variable b is declared within the if block and so b is only visible to

other code within its block. Therefore, b is not known outside the

block. So, if b was declared outside the block, a compile time error

would have occurred. Within the if block, a can be used because

code within a block (that is, a nested scope) has access to variables

declared by an enclosing scope.

A variable is valid only after it’s declaration. So, a variable is

usually defined at the start of a method so that it can be used by the

other codes within the block and it’s useless to declare the variable

at the end of the block as no code will be able to access it.

A variable is created once it enters a scope and is destroyed as it

leaves the scope. So, this indicates that a variable will not hold its

value once it has gone out of scope. Therefore, variables declared

within a method will not hold their values between calls to that

method. Also, a variable declared within a block will lose its value

when the block is left. Thus, the lifetime of a variable is confined to

its scope.

In a variable declaration if an initializer is included, then that

variable will be reinitialized each time the block in which it is

declared is entered. Let’s understand this with the help of an

example.

 For example, consider the next program.

// Demonstrate lifetime of a variable.

class LifeTime{ public static void main(String args[])

{

int x;

for(x = 0; x < 3; x++) {

 int y = -1; // y is initialized each time block is entered

 System.out.println("y is: " + y); // this always prints -1

 y = 100;

75

 System.out.println("y is now: " + y); }

}

}

The output generated by this program is shown here:

y is: -1

y is now: 100

y is: -1

y is now: 100

y is: -1

y is now: 100

As we can see, y is reinitialized to –1 each time the inner for loop is

entered. Even though it is subsequently assigned the value 100, this

value is lost. Although blocks can be nested, a variable cannot be

declared with the same name as one in an outer scope.

For example, the following program cannot be compiled as it is

illegal:

// This program will not compile

class ScopeErr { public static void main(String args[]) {

int num = 1; {

int num = 2; // Compile-time error as num is already defined!

}

}

}

We need to understand carefully about the variable scope as it is

very crucial for managing data visibility, memory usage, and

preventing conflicts in larger Java applications.

76

5.5 NESTED PROCEDURE AND SYNTAX

A method of a class can be called only by an object of that class

using the dot operator. A method can also be called by another

method of the same class using the class name, but only if both

methods are present in the same class. This is known as nesting of

methods. Efficient code organization and simplified method calls

within a class are possible through nesting of methods. A program

to illustrate the nesting method in Java is given below:

import java.util.Scanner;

public class Nesting_Methods

{

 int perimeter(int l, int b)

{

 intpr=12*(l + b);

 return pr;

}

 int area(int l, int b)

{

 int pr= perimeter(l, b);

 System.out.println("Perimeter:"+pr);

 int ar=6* l * b;

CHECK YOUR PROGRESS

1. A program consists of a number of procedures and

2. A ____________ can be defined before or after the main function.

Subprogram

3._________ defines the visibility and the lifetime of a variable.

Scope

4. A variable that is declared _______ a scope cannot be visible to

the code that is defined outside the scope. Inside

5. A variable declared within a block will lose its value when that

________is left.

77

 return ar;

}

 int volume(int l, int b, int h)

{

 int ar= area(l, b);

 System.out.println("Area:"+ar);

 int vol;

 vol= l * b * h;

 return vol;

}

 public static void main(String[]args)

{

 Scanner s =new Scanner(System.in);

 System.out.print("Enter length of cuboid:");

 int l =s.nextInt();

 System.out.print("Enter breadth of cuboid:");

 int b =s.nextInt();

 System.out.print("Enter height of cuboid:");

 int h =s.nextInt();

 Nesting_Methods obj=new Nesting_Methods();

 int vol=obj.volume(l, b, h);

 System.out.println("Volume:"+vol);

}

}

Another program demonstrating the use of nested methods in Java is

given below:

class Nesting

{

 int m, n;

 Nesting(int x, int y)

 {

 m = x;

 n = y;

 }

int largest()

{

78

 if(m>=n)

 return(m);

 else

 return(n);

}

void display()

 {

 int large = largest();

 System.out.println(“Largest value = “+ large);

 }

}

void display()

{

 int large = largest();

}

}

}

class NestingTest

{

 public static void main(String args[])

 {

 Nesting nest = new Nesting (50, 40);

 nest.display();

 }

}

79

Java programming language is also capable of defining to define a

class within another class. Such a class is called a nested class and is

shown below:

class Class1 {

 ...

class Class2 {

 ...

 }

}

Here Class1 is the outer class and Class2 is the inner class.

There are two types of nested classes in Java: non-static and static.

Non-static nested classes are called inner classes. Nested classes that

are declared static are called static nested classes. These inner

classes don’t have a name and only a single object is created for it.

These subclasses can be helpful while overloading methods of a

class or interface without having to subclass a class.

Let’s understand the inner class with the help of an example:

// Java program implements method inside method

public class nestedpr {

 // create a local interface with one abstract

 // method sample()

 interface loc_Interface {

 void sample();

 }

 // function have implements another function run()

 static void Sam()

 {

 // implement run method inside Foo() function

loc_Interface r = new loc_Interface() {

 public void sample()

 {

 System.out.println("GUCDOE");

 };

 };

 r.sample();

 }

80

 public static void main(String[] args)

 {

 Sam();

 }

}

Nested classes are usually used when we need to logically group

classes that are used in one place. It also helps to increase

encapsulation. Nested classes make a program more readable and

maintainable in code.

5.6 SUMMING UP

 A program consists of a number of procedures and functions.

 A subprogram may be defined before or after the main

function.

 The parameters in a subprogram can be passed basically in

two ways:

 Pass by value

 Pass by reference

 Scope defines the visibility and the lifetime of a variable.

 A variable that is declared inside a scope cannot be visible to

the code that is defined outside the scope.

 Scopes can also be nested.

 A variable is valid only after it’s declaration.

 A variable is created once it enters a scope and is destroyed

as it leaves the scope.

 A method can also be called by another method of the same

class using the class name, but only if both methods are

present in the same class

 Efficient code organization and simplified method calls

within a class are possible through nesting of methods.

5.7 ANSWERS TO CHECK YOUR PROGRESS

1. Functions

2. Subprogram

81

3. Scope

4. Inside

5. Block

5.8 POSSIBLE QUESTIONS

1. What are the key steps in execution of a subprogram? Explain

2. What are the four scopes for variables in Java? Explain

3. How a function is defined in Java?

4. Mention the two ways in which the parameters are passed in a

subprogram?

5. Explain pass by value method with the help of an example.

6. Explain pass by reference with the help of an example.

7. Define scope of a variable.

8. What are the two scopes of variable in Java?

9. Explain nesting of methods with the help of an example.

10. What is the benefit of using nested classes?

5.9 REFERENCES AND SUGGESTED READINGS

 https://www.sanfoundry.com/java-program-shows-nesting-

methods/

 https://www.tutorialspoint.com/different-ways-to-achieve-

pass-by-reference-in-java

 Schildt, H. (2007). Java: the complete reference.

---×---

82

BLOCK- II

OBJECT ORIENTED LANGUAGES

Unit 1: Data Abstraction

Unit 2: Inheritance

Unit 3: Polymorphism

Unit 4: Exception Handling

83

UNIT 1: DATA ABSTRACTION

UNIT STRUCTURE:

1.1 Introduction

1.2 Objectives

1.3 Introduction to Data Abstraction and Encapsulation

1.4 Class

1.5 Object

1.6 Constructor

1.7 Destructor

1.8 Templates

1.9 Summing Up

1.10 Possible Questions

1.11 References and Suggested Readings

1.1 INTRODUCTION

 In 1960, the scientists of Norwegian computing center had

first introduced the major concepts of Object-Oriented Programming

(OOP) that are class, object and inheritance. They had developed

Simula programming language by introducing these OOP concepts

in it. In 1970, Xerox Corporation had introduced the concept of

OOP by developing the first OOP language, ‘Smalltalk’.

Object-Oriented Programming(OOP) is a programming

paradigm that stretches more importance on data than the algorithm.

Concept of object is utilized to develop OOP where object is a

physical entity that combines data and procedures together in a

group. Major advantages of OOP are presented as follows.

 Code reusability is improved in OOP. Existing objects

can be utilized to derive new classes in OOP.

 Maintenance is simpler and easier in OOP as objects are

independent entities. Also due to Inheritance,

maintenance can be easily performed in OOP.

 Improved modularity is realized in OOP. In OOP, a large

and complex problem can be solved by developing small

and manageable objects.

84

 Data security and integrity can improved in OOP by

implementing Encapsulation to provide a mechanism for

hiding internal properties of an object from the other

objects.

 In OOP, needless implementation details are hidden from

the users and as a result development of applications will

be simpler.

 In OOP, new features can be easily added without

affecting other parts of software. So, it is easier to scale

applications in OOP.

 Debugging and testing is easier in OOP. Objects are

independent entities and as a result, it will be easier to

debug individual objects. Similarly, code testing is also

easier as individual objects can be easily tested.

Main properties of Object Oriented Programming (OOP) are

Data Abstraction, Encapsulation, Inheritance and Polymorphism.

Any programming language that supports these four properties is an

OOP language. For example: C++, Java etc. In this unit, we are

going to discuss about Data Abstraction and Encapsulation. We will

learn about class and objects. Concepts of constructor, destructor and

templates are also discussed in this chapter.

1.2 OBJECTIVES

 After reading this unit, you are expected to be able to learn:

 About Data Abstraction and Encapsulation in OOP

 Meaning of class and object

 Construction of class in Java and C++

 Instantiation of objects

 About constructor and its types

 About destructor

 About templates

85

1.3 INTRODUCTION TO DATA ABSTRACTION AND

ENCAPSULATION

 Data abstraction is one of the main properties of OOP

which allows hiding the implementation particulars of objects and

offering only the necessary features to the users. This process

provides a mechanism for the developer to develop a complex

software system by hiding its internal complexities from the other

users of that software. As a result a user can utilize the complex

software system without realizing its internal complexities.

 Data abstraction in OOP can be implemented through

Encapsulation. Encapsulation is also a main property of OOP

which permits combining data and methods together to form a

single unit. In such a unit, data are accessed by the available

methods to perform their tasks and due to the Encapsulation

process, restriction on the data access from outside the

corresponding unit can be implemented. So, data security and data

integrity can be achieved through Encapsulation in OOP.

1.4 CLASS

 In OOP, Encapsulation is implemented by defining classes.

A class is a model or a blueprint that forms a single unit by

enclosing data and methods. So, class can be used as a language

tool to create user-defined data types in OOP.

 The syntax to define a class in Java is presented as follows.

class ClassName

 {

 Body of the class

 }

 The syntax to define a class in C++ is presented as follows.

 class ClassName

 {

 Body of the class

 };

86

In the above syntax, ‘ClassName’ is the name of the class

and ‘class’ is a keyword. The body of a class can include data

members with different data types, methods or functions and nested

classes. A nested class is a class that is defined inside a class.

In OOP, access specifiers are associated with the members

of classes so that visibility and accessibility of the members of a

class from outside the class can be controlled. In Java, four access

specifiers are available as presented in the following points.

 public: Class members declared with the access specifier,

‘public’ are accessible from any part of the program.

 private: Class members declared with the access specifier,

‘private’ are accessible by only the members of the class

where they are declared. It means that these members are

not accessible from outside the class where they are

declared.

 protected:‘protected’ access specifier is associated with

Inheritance. Class members declared with the access

specifier, ‘protected’ are accessible by the same class

members and by the members of the derived classes of the

class where they are declared. These members are also

accessible from the other classes available in the same

package.

 default: In Java, if no access specifier is used in the

declaration of a class member then ‘default’ access specifier

is considered as access specifier for that class member. A

class member with ‘default’ access specifier can be

accessible by the members of the same class and also

accessible in the other classes available in the same

package.

Example of a class definition in Java:

class Employee

{

 String emID, emName, emAddress;// default access specifier

private StringemContact,emDept, emDesig,emEmail;

protected float basicSal, grossSal,emHRA,emDA;

87

public void readEmployeeInfo()

 {

 Scanner scan = new Scanner(System.in);

System.out.println("Enter the Employee ID: ");

emID = scan.next();

scan.nextLine();

System.out.println("Enter the Employee Name: ");

emName = scan.next();

scan.nextLine();

System.out.println("Enter the Employee Address: ");

emAddress = scan.next();

scan.nextLine();

System.out.println("Enter Employee Contact No.: ");

emContact = scan.next();

scan.nextLine();

System.out.println("Enter Employee Department: ");

emDept = scan.next();

scan.nextLine();

System.out.println("Enter Employee Designation: ");

emDesig = scan.next();

scan.nextLine();

System.out.println("Enter Employee E-mail ID: ");

emEmail = scan.next();

scan.nextLine();

System.out.println("Enter Employee Basic Salary: ");

basicSal = scan.nextFloat();

scan.nextLine();

System.out.println("Enter Employee House Rent

Allowance(in Percentage): ");

emHRA = scan.nextFloat();

scan.nextLine();

System.out.println("Enter Employee Dearness

Allowance(in Percentage): ");

emDA = scan.nextFloat();

scan.nextLine();

scan.close();

 }

public void displayEmplyeeInfo()

88

 {

grossSal=basicSal+(emHRA/100)*basicSal+(emDA/100)*basicSal;

System.out.println("Employee ID:" +emID);

System.out.println("Employee Name:" +emName);

System.out.println("Employee Address:" +emAddress);

System.out.println("Employee Contact No.:" +emContact);

System.out.println("Employee Department:" +emDept);

System.out.println("Employee Designation:" +emDesig);

System.out.println("Employee E-mail ID:" +emEmail);

System.out.println("Employee Gross Salary:" +grossSal);

 }

}

In C++, members of a class are declared under any of the

three access specifiers as presented in the following points.

 public: Class members declared under ‘public’ access

specifier are accessible from any part of the program.

 private: Class members declared under ‘private’ access

specifier are accessible only within the class where they are

declared. These members cannot be accessible directly from

outside the class where they are declared. In C++, if no

access specifier is used in the declaration of a class member

then by default that class member will be considered under

‘private’ access specifier.

 protected: Class members declared under ‘protected’

access specifier are accessible within the same class and in

the derived classes of the class where they are declared.

Example of a class definition in C++:

class Employee

{

private:

char emID[10], emName[200], emAddress[300];

char emCont[10],emDep[50], emDsg[50], email[200];

protected:

89

float basicSal, grossSal,emHRA,emDA;

public:

void readEmployeeInfo()

{

cout<<"\nEnter the Employee ID: ";

cin>>emID;

cout<<"\nEnter the Employee Name: ";

cin>>emName;

cout<<"\nEnter the Employee Address: ";

cin>>emAddress;

cout<<"\nEnter Employee Contact No.: ";

cin>>emCont;

cout<<"\nEnter Employee Department: ";

cin>>emDep;

cout<<"\nEnter Employee Designation: ";

cin>>emDsg;

cout<<"\nEnter Employee E-mail ID: ";

cin>>email;

cout<<"\nEnter Employee Basic Salary: ";

cin>>basicSal;

cout<<"\nEnter Employee House Rent Allowance(in Percentage): ";

cin>>emHRA;

cout<<"\nEnter Employee Dearness Allowance(in Percentage): ";

cin>>emDA ;

 }

void displayEmployeeInfo()

{

grossSal=basicSal+(emHRA/100)*basicSal+(emDA/100)*basicSal;

cout<<"\nEmployee ID:" <<emID;

cout<<"\nEmployee Name:" <<emName;

cout<<"\nEmployee Address:"<<emAddress;

cout<<"\nEmployee Contact No.:"<<emCont;

cout<<"\nEmployee Department:"<<emDep;

cout<<"\nEmployee Designation:"<<emDsg;

cout<<"\nEmployee E-mail ID:"<<email;

cout<<"\nEmployee Gross Salary:"<<grossSal;

90

 }

};

1.5 OBJECT

 We have already learnt that Object Oriented Programming is

based on the concept of object where object is an entity which

contains data and functions. Objects can be created by instantiating

classes.

Three basic characteristics of object are Identity, State and

Behavior. Each object of a class must have a unique identity. It

means that each object of any class must possess unique object

name. The State of an object is represented by its data or properties.

For example, an object of a class, ‘student’ may contain properties

like name of the student, percentage of the student, course of the

student, roll number of the student etc. The Behavior of an object is

represented by the methods available in that object.

The general syntax to create object in Java is presented as

follows.

Class_NameObject_Name = new Class_Name();

 In the above syntax, ‘Class_Name’ is the name of the class,

‘Object_Name’ is the name of the object that is instantiated, ‘new’

is a keyword in Java used as Java operator for instantiation of

objects and ‘Class_Name()’ is the constructor of the class.

For example, the following Java statement can be used to

create object of the class, ‘Employee’.

Employee emp1 = new Employee();

In the above statement, ‘emp1’ is the object that is

instantiated.

The general syntax to create object in C++ is presented as

follows.

Class_NameObject_Name;

For example, the following C++ statement can be used to

create object of the class, ‘Employee’.

91

Employee emp1;

Object name is used with the dot operator (.) to access the

data or methods available in that object. We already have learnt that

outside class, only public members of an object can be accessed

directly with the object name. For example, if we want to access the

function, ‘void readEmployeeInfo()’ defined in the class,

‘Employee’ then the following Java Statement can be used.

Employee emp1 = new Employee();

emp1.readEmployeeInfo();

1.6 CONSTRUCTOR

A constructor is a special member function of a class used to

initialize the objects of that class. Initialization of an object refers

the process to set initial values for the data members of that object.

When an object of a class is instantiated then an appropriate

constructor available in that class will be invoked automatically.The

name of a constructor must be same with name of the class where it

is defined. Another important point regarding constructor is that no

return type is provided in a constructor. In case of Inheritance, when

a derived class object is instantiated then the constructor of the base

class will be invoked first and then the derived class constructor will

be invoked. Another important point regarding constructor is that

constructor of a class cannot be declared as virtual.

Let us consider the following Java program to understand the

concept of constructor.

Program 1.1: Java program to demonstrate the concept of

Constructor.

import java.util.Scanner;

class Employee

{

private String emID, emName, emAddress, emContact;

private String emDept, emDesig, emDOB, emEmail;

protected double basicSal, grossSal,emHRA,emDA;

92

public void readEmployeeInfo()

 {

 Scanner scan = new Scanner(System.in);

System.out.println("Enter the Employee ID: ");

emID = scan.next();

scan.nextLine();

System.out.println("Enter the Employee Name: ");

emName = scan.nextLine();

System.out.println("Enter the Employee Address: ");

emAddress = scan.nextLine();

System.out.println("Enter the Employee Contact No.: ");

emContact = scan.next();

scan.nextLine();

System.out.println("Enter the Employee Department: ");

emDept = scan.nextLine();

System.out.println("Enter the Employee Designation: ");

emDesig = scan.nextLine();

System.out.println("Enter the Employee Date of Birth: ");

emDOB = scan.next();

scan.nextLine();

System.out.println("Enter the Employee E-mail ID: ");

emEmail = scan.next();

scan.nextLine();

scan.close();

 }

public void displayEmplyeeInfo()

 {
grossSal=basicSal + (emHRA/100)*basicSal +(emDA/100)*basicSal;

System.out.println("Employee Information::”);

System.out.println("Employee ID:" +emID);

System.out.println("Employee Name:" +emName);

System.out.println("Employee Address:" +emAddress);

System.out.println("Employee Contact No.:" +emContact);

System.out.println("Employee Department:" +emDept);

System.out.println("Employee Designation:" +emDesig);

System.out.println("Employee Date of Birth:" +emDOB);

System.out.println("Employee E-mail ID:" +emEmail);

System.out.println("Employee Basic Salary:" +basicSal);

System.out.println("Employee HRA Allowance:" +emHRA);

93

System.out.println("Employee Dearness Allowance:" +emDA);

System.out.println("Employee Gross Salary:" +grossSal);

}

 // Constructor with no parameter or Default Constructor

Employee()

 {

basicSal=50000.00;

emHRA=10.00;

emDA=53.00;

 }

// Constructor with two double type parameters

Employee(double bas,double da) {

basicSal=bas;

emHRA=10.00;

emDA=da;

 }

//Constructor with three double type parameters

Employee(double bas,double hra, double da) {

basicSal=bas;

emHRA=hra;

emDA=da;

 }

 // Copy Constructor

Employee(Employee emTemp)

{

emID=emTemp.emID;

emName=emTemp.emName;

emAddress=emTemp.emAddress;

emContact=emTemp.emContact;

emDept=emTemp.emDept;

emDesig=emTemp.emDesig;

emDOB=emTemp.emDOB;

emEmail=emTemp.emEmail;

basicSal = emTemp.basicSal;

emHRA = emTemp.emHRA;

emDA = emTemp.emDA;

94

 }

}

classEmployeeInfo

{

private double bas,hra,da;

public static void main(String[] args)

 {

double bas,hra,da;

bas= 65000.00;

hra= 12.00;

da= 60.00;

 Employee emp=new Employee(bas,hra,da); /*Constructor

with three double type parameters is invoked*/

emp.readEmployeeInfo();

emp.displayEmplyeeInfo();

Employee empCopy= new Employee(emp);/*Copy constructor is

invoked*/

empCopy.displayEmplyeeInfo();

 }

}

Output of the Program:

Enter the Employee ID: E0012

Enter the Employee Name:PrantikDeka

Enter the Employee Address: Guwahati, Assam

Enter the Employee Contact No.: 9999999999

Enter the Employee Department: HR

Enter the Employee Designation: Manager

Enter the Employee Date of Birth: 12-09-1991

Enter the Employee E-mail ID: pr@dd.com

Employee Information::

Employee ID:E0012

Employee Name:PrantikDeka

Employee Address:Guwahati, Assam

Employee Contact No.:9999999999

Employee Department:HR

Employee Designation:Manager

95

Employee Date of Birth:12-09-1991

Employee E-mail ID:pr@dd.com

Employee Basic Salary:65000.0

Employee HRA Allowance:12.0

Employee Dearness Allowance:60.0

Employee Gross Salary:111800.0

Employee Information::

Employee ID:E0012

Employee Name:PrantikDeka

Employee Address:Guwahati, Assam

Employee Contact No.:9999999999

Employee Department:HR

Employee Designation:Manager

Employee Date of Birth:12-09-1991

Employee E-mail ID:pr@dd.com

Employee Basic Salary:65000.0

Employee HRA Allowance:12.0

Employee Dearness Allowance:60.0

Employee Gross Salary:111800.0

In Program 1.1, it is observed that three constructors are

defined in the class, ‘Employee’. So, multiple constructors can be

defined in the same class but they must be different from each other

in terms of their number of parameters or type of corresponding

parameters or both. It means two constructors in the same class with

same number of parameters and same data types of the

corresponding parameters are not allowed. Defining more than one

constructor in the same class is termed as Constructor

Overloading. If one or more than one parameters are passed into a

constructor then that constructor is termed as Parameterized

constructor. In Program 1.1, ‘Employee(double bas,double hra,

double da)’ is an example of parameterized constructor.

It may be possible that a class is defined without defining a

constructor explicitly in it. In that case, programming languages like

Java and C++ deliver a system generated constructor for that class.

Such constructor is termed as Default constructor. The default

constructor does not have any parameter. This constructor initializes

the objects by setting default values to the different data members of

the corresponding objects. The default values are dependent upon the

96

type of the data member and the corresponding programming

language. For example in Java, the default value for an ‘int’ type

data member is 0, for a ‘boolean’ type data member is ‘false’ etc. It

may be also possible that a constructor is defined for a class where

the constructor does not have any parameter. Such a constructor is

also termed as default constructor. Through this user-defined default

constructor, the programmer can initialize the object by setting

default values for the data members of the corresponding objects as

per the requirements in the corresponding program. In Program 1.1,

a default constructor is defined where the default values for

‘basicSal’,‘emHRA’ and‘emDA’ are 50000.00, 10.00 and

53.00respectively.

When a constructor is defined in a class to initialize an object

with the values of the data members of an existing object then such a

constructor is termed as Copy constructor. Copy constructor is used

when it is required to instantiate an object with the same state of an

old object. In Program 1.1, a Copy constructor(‘Employee(Employee

emTemp)’) is defined where an existing object is passed as

parameter into the constructor. From the output of the program, it is

observed that different values to the properties of the object

instantiated by using the Copy constructor are same with the values

to the corresponding properties of the object that is passed as

parameter into the Copy constructor.

Program 1.2: C++ program to demonstrate the concept of

Constructor

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<string.h>

class Employee

{

private:

char emID[10], emName[200], emAdd[200], emCont[200];

char emDep[50], emDes[100], emDOB[12], emEmail[100];

float basicSal, grossSal,emHRA,emDA;

97

public:

void readEmployeeInfo()

 {

cout<<"\nEnter the Employee ID: ";

cin>>emID;

cout<<"\nEnter the Employee Name: ";

gets(emName);

cout<<"\nEnter the Employee Address: ";

gets(emAdd);

cout<<"\nEnter the Employee Contact No.: ";

cin>>emCont;

cout<<"\nEnter the Employee Department: ";

gets(emDep);

cout<<"\nEnter the Employee Designation: ";

gets(emDes);

cout<<"\nEnter the Employee Date of Birth: ";

cin>>emDOB;

cout<<"\nEnter the Employee E-mail ID: ";

cin>>emEmail;

 }

 void displayEmplyeeInfo()

 {

grossSal=basicSal + (emHRA/100)*basicSal

+(emDA/100)*basicSal;

cout<<"\nEmployee Information::";

 cout<<"\nEmployee ID:"<<emID;

 cout<<"\nEmployee Name:"<<emName;

 cout<<"\nEmployee Address:"<<emAdd;

 cout<<"\nEmployee Contact No.:"<<emCont;

 cout<<"\nEmployee Department:"<<emDep;

 cout<<"\nEmployee Designation:"<<emDes;

 cout<<"\nEmployee Date of Birth:"<<emDOB;

 cout<<"\nEmployee E-mail ID:"<<emEmail;

 cout<<"\nEmployee Basic Salary:"<<basicSal;

 cout<<"\nEmployee HRA Allowance:"<<emHRA;

 cout<<"\nEmployee Dearness Allowance:"<<emDA;

 cout<<"\nEmployee Gross Salary:"<<grossSal;

98

 }

 Employee() // Constructor with no parameter

 {

 basicSal=50000.00;

 emHRA=10.00;

 emDA=53.00;

 }

 Employee(float bas, float da) /* Constructor with two float

type parameters*/

 {

 basicSal=bas;

 emHRA=10.00;

 emDA=da;

 }

 Employee(float bas, float hra, float da) /*Constructor with

three float type parameters*/

 {

 basicSal=bas;

 emHRA=hra;

 emDA=da;

 }

 Employee(Employee &emTemp)// Copy Constructor

 {

 strcpy(emID,emTemp.emID);

 strcpy(emName,emTemp.emName);

 strcpy(emAdd,emTemp.emAdd);

 strcpy(emCont,emTemp.emCont);

 strcpy(emDep,emTemp.emDep);

 strcpy(emDes,emTemp.emDes);

 strcpy(emDOB,emTemp.emDOB);

 strcpy(emEmail,emTemp.emEmail);

 basicSal = emTemp.basicSal;

 emHRA = emTemp.emHRA;

 emDA = emTemp.emDA;

 }

99

} ;

int main()

{

float bas,hra,da;

clrscr();

bas= 65000.00;

hra= 12.00;

da= 60.00;

 Employee emp(bas,hra,da); /*Constructor with three float type

parameters is invoked*/

emp.readEmployeeInfo();

emp.displayEmplyeeInfo();

 Employee empCopy(emp); //Copy constructor is invoked

empCopy.displayEmplyeeInfo();

getch();

return(0);

}

1.7 DESTRUCTOR

A destructor is also a special member function of a class. It is

invoked automatically when an object is no longer required. The job

of a destructor is to release the resources allocated to the

corresponding object. A class can contain only one destructor. It

means that destructor overloading is not possible. A destructor does

not have any parameter and return type. In C++, the name of a

destructor is same with the name of the corresponding class preceded

by the character, tilde (~). For example, if the name of the class is

‘className’ then the destructor of the class will be:

 ~className{

 // Body of the Destructor

 }

 In case of C++, if a class is defined without defining a

destructor in it then the compiler will generate a default destructor

for that class.

100

In case of Inheritance, when an object of a derived class is

no longer needed and it is destroyed then the destructor of the

derived class will be invoked first and then the base class destructor

will be invoked. In C++, destructor of a base class can be declared

as virtual. In that case, if a base class pointer point to an object of a

derived class and that derived class object is destroyed then the

destructor of the derived class and destructors of all its base classes

are called. On the other hand, if the destructor of the base class is

not declared as virtual and the object of the derived class pointed to

by a base class pointer, is destroyed then only the destructor of the

base class is called.

1.8 TEMPLATES

 Template is a useful feature provided in C++ to allow

developing reusable functions and classes that can be used as single

frameworks for supporting different data types. It allows the

developer to write programs in such a way that the program will

work on different data types without writing same code for each data

type. So, use of templates can improve the code reusability,

maintainability and flexibility in C++ programming.

 In general, two types of templates can be declared in C++

that are Function template and Class template.

Function template: A Function template is a template which is

declared for function. A Function template allows writing a function

which can perform its job by supporting different data types

available in C++. It means that if we declare a function template then

we are not required to write multiple copies of the same function for

different types of parameters or data. When a function template is

declared and a function call correspond to that template is performed

then the compiler generates a new function using that function

template depending upon the type of the parameters in the function

call. Then this compiler generated function is invoked. The function

generated by compiler using a function template is termed as

template function.

The syntax for declaring a Function template is presented as

follows.

101

template<class D,……>

Return_Type functionName(Parameters)

{

 // Statements of the template function

}

In the above syntax, ‘template’ is a keyword in C++ and ‘D’

is a template data type. A function template can be declared with

more than one template data types. The parameter list of the template

function must contain at least one template type parameter. Let us

consider the following C++ program to understand the concept of

Function template.

Program 1.3: C++ program to demonstrate the concept of Function

template.

#include<iostream.h>

#include<conio.h>

 // Function templates

template<class D>

 D average(D nm1,D nm2,D nm3)

 {

return((nm1+nm2+nm3)/3);

 }

template<class D>

 D average(D aN[],int n)

 {

int i;

 D temp=0;

for(i=0;i<n;i++)

{

temp+=aN[i];

 }

return(temp/n);

102

 }

int main()

 {

int nm1,nm2,nm3,av,i,n;

float arrN[100];

float rnm1,rnm2,rnm3,rav;

clrscr();

cout<<"\n Enter three Integer numbers::";

cin>>nm1>>nm2>>nm3;

av=average(nm1,nm2,nm3);

cout<<"\n Average of the three Integer numbers is="<<av;

cout<<"\n\n Enter three Real numbers::";

cin>>rnm1>>rnm2>>rnm3;

rav=average(rnm1,rnm2,rnm3);

cout<<"\n Average of the three Real numbers is="<<rav;

cout<<"\n\n Enter the total number of data to be stored in the array=";

cin>>n;

if(n>100)

cout<<"\n Wrong input";

else

{

cout<<"\n Enter "<<n<<" number of real numbers into the array::";

for(i=0;i<n;i++)

 {

 cout<<"\nEnter "<<i+1<<"th data into the array=";

 cin>>arrN[i];

}

rav=average(arrN,n);

cout<<"\n Average of the numbers stored in the array is="<<rav;

 }

getch();

return(0);

}

Output of the program:

Enter three Integer numbers:: 23 45 67

 Average of the three Integer numbers is= 45

103

Enter three Real numbers:: 12.6 56.8 78.12

 Average of the three Real numbers is= 49.173332

Enter the total number of data to be stored in the array= 2

Enter2number of real numbers into the array::

Enter 1th data into the array= 45.55

Enter 2th data into the array= 65.23

Average of the numbers stored in the array is= 55.389999

In Program 1.3, a function template is declared to calculate

the average of three values. From the output of the program it is

observed that when three integer values are passed as parameters to

the template function then it returns the average of these numbers

that is also an integer number. Again when three real numbers are

passed as parameters then it returns the average which is also a real

number. Hence, the template function works on both ‘int’ and ‘float’

type data.

In Program 1.3, it is observed that two function templates

are declared with same function name where the first template

function has three template type parameters and the second template

function has two parameters where one is a template type array and

the other one is an ‘int’ type parameter. This type of multiple

declarations of Function templates is referred as overloading of

function templates.

In Program 1.3, it is also observed that the declared function

template can handle a single template data type. But functions may

require more than one parameter of different data types so that they

can perform their jobs. In such situation, the function template is

declared with multiple template data types as per requirement.For

example, let us consider the following C++ program.

Program 1.4:C++ program to demonstrate the use of Function

template with more than one template data types.

#include<iostream.h>

#include<conio.h>

 // Function template with two template data types

template<class D, class E>

104

void displayData(D data1,E data2)

 {

cout<<"\n The first data="<<data1;

cout<<"\n The second data="<<data2;

 }

int main()

 {

int intData;

float floatData;

char strData[50];

clrscr();

cout<<"\n Enter an integer number=";

cin>>intData;

cout<<"\n\n Enter a Real number=";

cin>>floatData;

cout<<"\n Entered data are:";

displayData(intData,floatData);

getch();

return(0);

}

Output of the program:

Enter an integer number= 12

Enter a Real number= 34.89

 Entered data are:

The first data= 12

The second data= 34.89

In Program 1.4, a function template is declared with two template

data types (‘D’ and ‘E’).

Class template: The template declared for class is termed as class

template. A class template allows creating a class that can operate on

multiple data types. It means that class templates allow creating

105

classes for performing same tasks for multiple data types without

writing same codes for each of the data types.

The syntax of declaring Class templates is presented as

follows.

template< class D1, class D2, …….>

class Class_Name

{

private:

 // D1 type data member

D1 data1;

public:

 //Member function with a D2 type parameter

void function1(D2 data2);

};

In the above syntax, declaration of one data member and one

member function is provided in the class template.

Let us consider the following C++ program to understand the

concept of Class templates.

Program 1.5:C++ program to demonstrate the concept of Class

template.

#include<iostream.h>

#include<conio.h>

// Class template

template<class D>

class Sort

{

private:

 D arr[50],temp;

 int i,j;

public:

 void readData(int nData)

 {

106

 cout<<"\n Enter "<<nData<<" number of data into the

array::";

 for(i=0;i<nData;i++)

 {

 cout<<"\nEnter "<<i+1<<"th data into the array=";

 cin>>arr[i];

 }

 }

 void displayData(int nData)

 {

 cout<<"\n Data available in the array are::\n";

 for(i=0;i<nData;i++)

 {

 cout<<"\t"<<arr[i];

 }

 }

 void bubble_sort(int nData)

 {

 for (int i = 0; i <nData - 1; i++)

 {

 for (int j = 0; j <nData - i - 1; j++)

 {

 if (arr[j] >arr[j + 1])

 {

 temp= arr[j];

 arr[j]=arr[j+1];

 arr[j+1]=temp;

 }

 }

 }

 }

 };

int main()

{

int N;

 Sort <int> obj1;

 Sort <float> obj2;

107

clrscr();

cout<<"\n\n Enter the total number of data to be stored in the array=";

cin>>N;

if(N>50)

 cout<<"\n Wrong input";

else

{

cout<<"\n Sorting for Integer numbers::";

obj1.readData(N);

cout<<"\n Before sorting, the data in the array are::";

obj1.displayData(N);

 obj1.bubble_sort(N);

cout<<"\n After sorting, the data in the array are::";

obj1.displayData(N);

cout<<"\n Sorting for Real numbers::";

obj2.readData(N);

cout<<"\n Before sorting, the data in the array are::";

obj2.displayData(N);

 obj2.bubble_sort(N);

cout<<"\n After sorting, the data in the array are::";

 obj2.displayData(N);

 }

getch();

return 0;

}

Output of the program:

Enter the total number of data to be stored in the array= 4

Sorting for Integer numbers::

Enter 4 number of data into the array::

Enter 1th data into the array= 23

Enter 2th data into the array= 4

Enter 3th data into the array= 56

Enter 4th data into the array= 8

Before sorting, the data in the array are::

Data available in the array are::

 23 4 56 8

After sorting, the data in the array are::

108

 Data available in the array are::

 4 8 23 56

Sorting for Real numbers::

Enter 4 number of data into the array::

Enter 1th data into the array= 12.5

Enter 2th data into the array= 12.1

Enter 3th data into the array= 56.3

Enter 4th data into the array= 5.9

 Before sorting, the data in the array are::

 12.5 12.1 56.3 5.9

 After sorting, the data in the array are::

5.9 12.1 12.5 56.3

In Program 1.5, a class template is declared with one

template data type. From the output of the program, it is observed

that using the class template, sorting of data using Bubble sort

algorithm can be performed on both integer and real numbers stored

in an integer array and a float type array respectively.

Check Your Progress

1. Choose the correct option

(a) Which of the following is not a main property of Object

Oriented Programming (OOP)?

 (i) Abstraction

 (ii) Encapsulation

 (iii) Template

 (iv) Inheritance

109

(b) Which of the following is one of the advantages of OOP?

(i) Code reusability is degraded

 (ii) Maintenance becomes simpler

 (iii) Adding a new feature become complex

 (iv) None of the above

(c) _____ permits combining data and methods together to

form a single unit.

 (i) Encapsulation

 (ii) Abstraction

 (iii) Polymorphism

 (iv) None of the above

(d) Which of the following is not an access specifier in

C++?

 (i) public

 (ii) private

 (iii) protected

 (iv) default

(e) Class members declared with the access specifier, ____

are accessible by only the members of the class where

they are declared.

 (i) public

 (ii) private

 (iii) protected

 (iv) None of the above

(f) Which of the following access specifier is associated

with Inheritance?

(i) public

(ii) private

(iii) protected

(iv) None of the above

(g) Which of the following is a basic characteristic of

objects?

(i) Identity

(ii) State

(iii) Behavior

(iv) All of the above

110

(h) Find out the false statement regarding constructor.

(i) Multiple constructors can be defined in a single

class.

(ii) Constructor can be declared as virtual.

(iii) Constructor is invoked to initialize the objects.

(iv) All of the above

(i) ______ constructor does not have any parameter.

(i) Copy constructor

(ii) Parameterized constructor

(iii) Default constructor

(iv) None of the above

(j) Find out the True statement regarding destructor.

(ii) Destructor can be declared as virtual.

(iii) Destructor is invoked when an object is instantiated.

(iv) Initialization of object is performed by the destructor

(k) Which of the following is not a type of template in C++?

(i) Class template

(ii) Object template

(iii) Function template

(iv) None of the above

1.9 SUMMING UP

 Object-Oriented Programming (OOP) is a programming

paradigm that gives more emphasis on data than the

algorithm.

 Improved code reusability, simpler maintenance, improved

modularity, improved data security and integrity and easier

debugging and testing are some of the general advantages of

OOP.

 Four main properties of OOP are Data Abstraction,

Encapsulation, Inheritance and Polymorphism.

111

 Data abstraction in OOP allows hiding the implementation

particulars of objects and offering only the necessary

features to the users.

 Data abstraction in OOP is implemented through

Encapsulation. Encapsulation in OOP permits combining

data and methods together to form a single unit.

 Encapsulation is implemented by defining classes in OOP.

 A class is a model or a blueprint that forms a single unit by

enclosing data and methods.

 A nested class is a class that is defined inside a class.

 In OOP, access specifiers are associated with the members

of classes so that visibility and accessibility of the members

of a class from outside the class can be controlled.

 Four access specifiers available in Java are public, private,

protected and default.

 Three access specifiers available in C++ are public, private,

protected.

 Class members declared with the access specifier, ‘public’

are accessible from any part of the program.

 Class members declared with the access specifier, ‘private’

are accessible only inside the class where they are declared.

 ‘protected’ access specifier is associated with Inheritance.

Class members declared with the access specifier,

‘protected’ are accessible by the same class members and

by the members of the derived classes of the class where

they are declared.

 In Java, if no access specifier is used in the declaration of a

class member then ‘default’ access specifier is considered

as access specifier for that class member. A class member

with ‘default’ access specifier can be accessible by the

members of the same class and also accessible in the other

classes available in the same package. In C++, by default,

the access specifier of a class member is private.

 Object Oriented Programming is based on the concept of

object where object is an entity which contains data and

functions. An object is actually a variable of a class.

 Three basic characteristics of object are Identity, State and

Behavior.

 Object name is used with the dot operator (.) to access the

data or methods available in that object.

112

 A constructor is a special member function of a class used to

initialize the objects of that class. The name of a constructor

must be same with name of the class where it is defined.

Constructor does not have any return type.

 More than one constructor can be defined in a single class

and it is termed as constructor overloading.

 If one or more than one parameters are passed into a

constructor then that constructor is termed as Parameterized

constructor.

 If no constructor is defined in a class then programming

languages like Java and C++ deliver a system generated

constructor for that class. Such constructor is termed as

Default constructor. The default constructor does not have

any parameter.

 When a constructor is defined in a class to initialize an object

with the values of the data members of an existing object

then such a constructor is termed as Copy constructor.

 A destructor is a special member function of a class and it is

invoked automatically when an object is destroyed. The job

of a destructor is to release the resources allocated to the

corresponding object. A class can contain only one

destructor. A destructor does not have any parameter and

return type. In C++, the name of a destructor is same with the

class name preceded by the character, tilde (~).

 In C++, Template allows developing reusable functions and

classes that can be used as single frameworks for supporting

different data types.

 Use of templates can improve the code reusability,

maintainability and flexibility in C++ programming.

 In general, two types of templates can be declared in C++

that are Function template and Class template. A Function

template is a template which is declared for function. A

Function template allows writing a function which can

perform its job by supporting different data types available in

C++.

 The template declared for class is termed as class template.

113

ANSWERS TO CHECK YOUR PROGRESS

1.

(a) (iii) Template

(b) (ii) Maintenance becomes simpler

(c) (i) Encapsulation

(d) (iv) default

(e) (ii) private

(f) (iii) protected

(g) (iv) All of the above

(h) (ii) Constructor can be declared as virtual.

(i) (iii) Default constructor

(j) (ii) Destructor can be declared as virtual.

(k) (ii) Object template

1.10 POSSIBLE QUESTIONS

1. Write down the advantages of Object Oriented Programming

(OOP).

2. Define class and object.

3. Explain different access specifiers that are available in Java and

C++.

4. What is Constructor overloading? Give example.

5. What is Constructor? Explain different types of Constructors.

6. What is destructor? Write down the differences between

Constructor and Destructor.

7. Write down a short note on Template.

1.11 REFERENCES AND SUGGESTED READINGS

1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering

C++. Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++.

Tata McGraw-Hill, 2006

3) Jana, Debasish. Java and object-oriented programming

paradigm. PHI Learning Pvt. Ltd., 2005.

4) Schildt, Herbert. Java: the complete reference. McGraw-Hill

Education Group, 2014.

---×---

114

UNIT 9: POINTER

UNIUNIT 2: INHERITANCE

Unit Structure:

2.1 Introduction

2.2 Objectives

2.3 Introduction to Inheritance

2.4 Advantages of Inheritance

2.5 Casting Up the Hierarchy

2.6 Types of Inheritance

2.6.1 Single Inheritance

2.6.2 Multiple Inheritance

2.6.3 Hierarchical Inheritance

2.6.4 Multi-Level Inheritance

2.6.5 Hybrid Inheritance

2.7 Virtual Base Class

2.8 Summing Up

2.9 Possible Questions

2.10 References and Suggested Readings

2.1 INTRODUCTION

 In the earlier unit, we have learnt about two important

properties of Object Oriented Programming (OOP) that are

Abstraction and Encapsulation. In this unit, we are going to discuss

about Inheritance which is also an important property of OOP.

Inheritance allows defining new sub classes or child classes from

already existing classes. Advantages of Inheritance and different

types of Inheritance are going to be discussed in this unit. Concept

of Virtual Base class in C++ will also be discussed here.

2.2 OBJECTIVES

 After reading this unit, you are expected to be able to learn:

 What is Inheritance?

 About the advantages of Inheritance.

115

 About casting up the hierarchy.

 About different types of Inheritance in Object Oriented

Programming (OOP).

 About the concept of Virtual Base class in C++.

2.3 INTRODUCTION TO INHERITANCE

 We have already learnt that Inheritance is one of the main

properties of OOP. Inheritance is a technique provided in OOP to

create new sub or child classes from the already existing classes. In

this process, the already existing classes are called as base class. A

base class can also be referred as parent class or super class. On the

other hand, the newly created classes from a base class are called as

derived classes. A derived class can also be referred as sub class or

child class. A derived class inherits the properties and behaviors of

its base class and it may also contain its own properties and

behaviors. Role of access specifiers in OOP is already discussed in

the earlier unit. In this regard, one important point is that private

members of a base class are not inherited to its derived classes.

Public and protected members of a base class can be inherited to its

derived classes. In Java, the members of a base class with ‘default’

access specifier can be inherited to its derived classes that are

available in the same package. But derived classes from different

package cannot inherit them.

 The syntax to implement Inheritance in Java is presented as

follows.

class Base-Class{

 //Body of the Base class

}

class Derived-Class extends Base-Class{

 // Body of the Derived class

}

 In the above syntax, ‘Derived-Class’ is a child class derived

from the base class, ‘Base-Class’ where ‘extends’is a keyword in

Java.

116

Example:

class UniversityPeople

{

 public void displayInfo()

 {

 System.out.println("Class for University People Information::");

 }

}

class Student extends UniversityPeople // Child class creation

{

public void displayStudentInfo()

{

System.out.println("Class for Student Information Derived from

the Base class, UniversityPeople");

}

}

 In the above example, ‘UniversityPeople’ is the base class

and ‘Student’ is the derived class extended from

‘UniversityPeople’.

The syntax to implement Inheritance in C++ is presented as

follows.

class Base-Class{

 //Body of the Base class

};

class Derived-Class : [Visibility-Mode] Base-Class{

 // Body of the Derived class

};

In the above syntax, ‘Derived-Class’ is a child class derived

from the base class, ‘Base-Class’. Here, Visibility-Mode may be

used to state how the features of the base class are inherited to its

derived class. ‘public’ or ‘private’ or ‘protected’ can be used as

Visibility-Mode in C++.If no Visibility-Mode is provided in the

117

definition of a derived class then by default the Visibility-Mode will

be ‘private’. Let us consider the following points related to the

Visibility-Mode.

 If the Visibility-Mode is ‘public’ then:

 Public members of the base class will be inherited to

the derived class as public members.

 Protected members of the base class will be inherited

to the derived class as protected members.

 If the Visibility-Mode is ‘protected’ then:

 Public members of the base class will be inherited to

the derived class as protected members.

 Protected members of the base class will be inherited

to the derived class as protected members.

 If the Visibility-Mode is ‘private’ then:

 Public members of the base class will be inherited to

the derived class as private members.

 Protected members of the base class will be inherited

to the derived class as private members.

Example:

class UniversityPeople

{

 public void displayInfo()

 {

 cout<<“\nClass for University People Information::";

 }

}

class Student: public UniversityPeople // Child class creation

{

public void displayStudentInfo()

{

cout<<“\nClass for Student Information Derived from the Base

class, UniversityPeople ";

 }

}

118

 In the above example, ‘UniversityPeople’ is the base class

and ‘Student’ is the child class derived from ‘UniversityPeople’

where the visibility mode of the inheritance is ‘public’.

2.4 ADVANTAGES OF INHERITANCE

 Inheritance is a very useful property of Object-Oriented

Programming (OOP).Advantages of Inheritance in OOP are

presented in the following points.

 New features can be easily included to an already existing

application without changing any existing code of the

application by implementing Inheritance.

 Reusability of already existing code can be increased

through Inheritance. Base class properties and behaviors

can be reused in the derived classes due to Inheritance.

 Due to Inheritance, redundancy in code is decreased as it

allows reuse of existing code.

 Code maintenance and modification may also become

easier due to Inheritance as any modification performed in a

base class is also reflected in its derived classes.

 Run-time polymorphism is supported in OOP through

Inheritance. A base class function can be overridden by a

derived class function at run-time.

 Real-world relationships can be implemented to develop an

application by implementing Inheritance in OOP.

 Development time of an application using OOP can be

reduced by implementing Inheritance.

2.5 CASTING UP THE HIERARCHY

In Inheritance, casting up the hierarchy refers to use a base

class pointer or a base class reference for pointing or referring a

derived class object. But this base class pointer or reference variable

can be used to access only the features of the base class. It can be

used to override a base class function by a derived class function at

run-time. Casting up the hierarchy is also termed as Upcasting. In

119

C++, function overriding using Upcasting is possible by applying

the concept of virtual function. Details of virtual function will be

discussed in the next unit. Let us consider the following C++

program to get a clear idea about Upcasting.

Program 2.1 C++ program to demonstrate Upcasting

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

class UniversityPeople

{

private:

 char upName[200], upAddress[300], upContact[10];

public:

 void inputInfo()

 {

 cout<<"Input People Information::";

 cout<<"\nInput Name: ";

 gets(upName);

 cout<<"\nInput Address: ";

 gets(upAddress);

 cout<<"\nInput Contact Number: ";

 cin>>upContact;

 }

 void displayInfo()

 {

 cout<<"\nPeople Information::";

 cout<<"\nName="<<upName;

 cout<<"\nAddress ="<<upAddress;

 cout<<"\nContact Number ="<<upContact;

}

};

class Student : public UniversityPeople

{

private:

 char stCourse[100];

120

 int stSemester,stRollNo;

public:

 void inputInfo()

 {

 cout<<"\nInput Information of the Student::";

 cout<<"\nInput Student Course: ";

 gets(stCourse);

 cout<<"\nInput Semester: ";

 cin>>stSemester;

 cout<<"\nInput Student Roll Number: ";

 cin>>stRollNo;

 }

 void displayInfo()

 {

 cout<<"\nPeople Type-Student";

 cout<<"\nRoll Number="<<stRollNo;

 cout<<"\nCourse of the Student="<<stCourse;

 cout<<"\nSemester of the Student="<<stSemester;

 }

};

int main()

{

UniversityPeople *up;

 Student st;

clrscr();

up=&st; //Upcasting

up->inputInfo();

up->displayInfo();

getch();

return(0);

}

Output of the program:

Input People Information::

Input Name: BhargabSarma

 Input Address: Nalbari, Assam

 Input Contact Number: 777777

121

People Information::

 Name=BhargabSarma

 Address=Nalbari, Assam

 Contact Number =777777

In the above program, UniversityPeople is a base class and

Student is its derived class. It is observed that ‘up’ is a base class

pointer used to point the derived class object, ‘st’. From the output,

it is also observed that the base class methods are invoked when

‘up’ is used to call these methods.

2.6 TYPES OF INHERITANCE

In General, Object-Oriented Programming (OOP) supports

five different types of Inheritance. These five types of Inheritance

are:

(a) Single Inheritance,

(b) Multiple Inheritance,

(c) Hierarchical Inheritance,

(d) Multi-Level Inheritance,

(e) Hybrid Inheritance.

2.6.1 Single Inheritance

When only one child class is derived from only one base

class then it is termed as Single Inheritance. Let us consider the

following Java program to get a clear idea about Single Inheritance.

Program 2.2: Java program to demonstrate Single Inheritance

import java.util.Scanner;

class UniversityPeople

{

private String upName, upAddress, upContact;

public void inputInfo(Scanner scan)

 {

System.out.println("Input People Information::");

System.out.println("Input Name: ");

upName = scan.nextLine();

122

System.out.println("Input Address: ");

upAddress = scan.nextLine();

System.out.println("Input Contact Number: ");

upContact = scan.nextLine();

 }

public void displayInfo()

 {

System.out.println("People Information::");

System.out.println("Name="+upName);

System.out.println("Address ="+upAddress);

System.out.println("Contact Number ="+upContact);

 }

}

class Student extends UniversityPeople

{

private String stDept, stCourse;

private int stSemester,stRollNo;

public void inputStudentInfo(Scanner scan)

 {

System.out.println("Input Information of the Student::");

System.out.println("Input Student Department: ");

stDept = scan.nextLine();

System.out.println("Input Student Course: ");

stCourse = scan.nextLine();

System.out.println("Input Semester: ");

stSemester = scan.nextInt();

System.out.println("Input Student Roll Number: ");

stRollNo = scan.nextInt();

 }

public void displayStudentInfo()

 {

System.out.println("People Type-Student");

System.out.println("Roll Number="+stRollNo);

System.out.println("Department of the Student ="+stDept);

123

System.out.println("Course of the Student="+stCourse);

System.out.println("Semester of the Student="+stSemester);

 }

}

class UniversityInfo

{

public static void main(String[] args)

 {

 Scanner scan = new Scanner(System.in);

 Student st1 = new Student();

 st1.inputInfo(scan);

 st1.inputStudentInfo(scan);

 st1.displayInfo();

 st1.displayStudentInfo();

 }

}

Output of the program:

 Input People Information::

 Input Name:AmitSarma

 Input Address: Guwahati, Assam

 Input Contact Number: 22222

 Input Information of the Student::

 Input Student Department: GUCDOE

 Input Student Course: M.A. in Assamese

 Input Semester: 2

Input Student Roll Number: 25

 People Information::

 Name=AmitSarma

 Address =Guwahati, Assam

 Contact Number =22222

 People Type-Student

 Roll Number=25

 Department of the Student =GUCDOE

 Course of the Student=M.A. in Assamese

 Semester of the Student=2

124

In the above program, ‘Student’ is the only derived class which

is derived from the base class, ‘UniversityPeople’. So, it is an

example of Single Inheritance. The diagrammatic representation of

this Single Inheritance is presented as follows.

Figure 2.1: Diagrammatic Representation of a Single Inheritance

2.6.2 Multiple Inheritance

When a sub class is derived from more than one base class

then it is termed as Multiple Inheritance. It means that a child class

can have multiple parent classes in case of Multiple Inheritance.

Now let us consider the following C++ program to get a clear idea

about Multiple Inheritance.

Program 2.3 C++ program to demonstrate Multiple Inheritance

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

class UniversityPeople

{

private:

char upName[200], upAddress[300], upContact[10];

public:

void inputInfo()

 {

cout<<"Input People Information::";

cout<<"\nInput Name: ";

UniversityPeople

Student

125

gets(upName);

cout<<"\nInput Address: ";

gets(upAddress);

cout<<"\nInput Contact Number: ";

cin>>upContact;

 }

void displayInfo()

{

cout<<"\nPeople Information::";

cout<<"\nName="<<upName;

cout<<"\nAddress ="<<upAddress;

cout<<"\nContact Number ="<<upContact;

}

};

class Department

{

private:

char deptName[200],deptHOD[200],DOE[11];

public:

void inputDepartmentInfo()

 {

cout<<"\n Input Department Information::";

cout<<"\n Input Department Name:";

gets(deptName);

 cout<<"\n Input Head of the Department:";

gets(deptHOD);

cout<<"\n Input Date of Establishment:";

cin>>DOE;

 }

void displayDepartmentInfo()

 {

cout<<"\n Department Name=";

cout<<deptName;

 cout<<"\n Head of the Department=";

cout<<deptHOD;

cout<<"\n Date of Establishment=";

cout<<DOE;

 }

};

126

class Student : public UniversityPeople, public Department

{

private:

char stCourse[100];

int stSemester,stRollNo;

public:

void inputStudentInfo()

 {

cout<<"\nInput Information of the Student::";

cout<<"\nInput Student Course: ";

gets(stCourse);

cout<<"\nInput Semester: ";

cin>>stSemester;

cout<<"\nInput Student Roll Number: ";

cin>>stRollNo;

 }

void displayStudentInfo()

 {

cout<<"\nPeople Type-Student";

cout<<"\nRoll Number="<<stRollNo;

cout<<"\nCourse of the Student="<<stCourse;

cout<<"\nSemester of the Student="<<stSemester;

 }

};

int main()

{

 Student st;

clrscr();

st.inputInfo();

st.inputDepartmentInfo();

st.inputStudentInfo();

st.displayInfo();

st.displayDepartmentInfo();

st.displayStudentInfo();

getch();

return(0);

}

127

Output of the program:

Input People Information::

 Input Name:MridulGogoi

 Input Address:Dibrugarh, Assam

 Input Contact Number: 9999

 Input Department Information::

 Input Department Name: Assamese

Input Head of the Department: Prof. BimalBarua

 Input Date of Establishment: 03-07-1991

 Input Information of the Student::

 Input Student Course: M.A. in Assamese

Input Semester:3

Input Student Roll Number: 7

People Information::

 Name=MridulGogoi

 Address =Dibrugarh, Assam

 Contact Number =9999

Department Name=Assamese

 Head of the Department=Prof. BimalBarua

 Date of Establishment=03-07-1991

 People Type-Student

 Roll Number=7

Course of the Student=M.A. in Assamese

Semester of the Student=3

In the above program, it is observed that ‘Student’ is a derived

class and it is derived from two base classes that

are‘UniversityPeople’ and‘Department’. The diagrammatic

representation of this Multiple Inheritance is presented as follows.

Figure 2.2: Diagrammatic Representation of a Multiple Inheritance

UniversityPeople

Student

Department

128

2.6.3 Hierarchical Inheritance

Hierarchical Inheritance is the opposite of Multiple

Inheritance. When more than one sub classes are derived from a

single base class then it is termed as Hierarchical Inheritance. Let us

consider the following Java program to understand Hierarchical

Inheritance.

Program 2.4: Java program to demonstrate Hierarchical

Inheritance

import java.util.Scanner;

class UniversityPeople

{

private String upName, upAddress, upContact;

public void inputInfo(Scanner scan)

 {

System.out.println("Input People Information::");

System.out.println("Input Name: ");

upName = scan.nextLine();

System.out.println("Input Address: ");

upAddress = scan.nextLine();

System.out.println("Input Contact Number: ");

upContact = scan.nextLine();

 }

public void displayInfo()

 {

System.out.println("People Information::");

System.out.println("Name="+upName);

System.out.println("Address ="+upAddress);

System.out.println("Contact Number ="+upContact);

 }

}

STOP TO CONSIDER

Multiple Inheritance is not supported in Java Programming.

129

class Student extends UniversityPeople

{

private String stDept, stCourse;

private int stSemester,stRollNo;

public void inputStudentInfo(Scanner scan)

 {

System.out.println("Input Information of the Student::");

System.out.println("Input Student Department: ");

stDept = scan.nextLine();

System.out.println("Input Student Course: ");

stCourse = scan.nextLine();

System.out.println("Input Semester: ");

stSemester = scan.nextInt();

System.out.println("Input Student Roll Number: ");

stRollNo = scan.nextInt();

scan.nextLine();

 }

public void displayStudentInfo()

 {

System.out.println("People Type-Student");

System.out.println("Roll Number="+stRollNo);

System.out.println("Department of the Student ="+stDept);

System.out.println("Course of the Student="+stCourse);

System.out.println("Semester of the Student="+stSemester);

 }

}

class Staff extends UniversityPeople

{

private String staDept,staDOJ;

private int staEL,staCL;

public void inputStaffInfo(Scanner scan)

 {

130

System.out.println("Input Information of the Staff::");

System.out.println("Input Department of the Staff: ");

staDept = scan.nextLine();

System.out.println("Input Date of Joining of the Staff: ");

staDOJ = scan.nextLine();

System.out.println("Input Available Earn Leave: ");

staEL = scan.nextInt();

System.out.println("Input Available Casual Leave: ");

staCL = scan.nextInt();

 }

public void displayStaffInfo()

 {

System.out.println("People Type-Staff");

System.out.println("Department of the Staff ="+staDept);

System.out.println("Date of Joining of the Staff="+staDOJ);

System.out.println("Available Earn Leave the Staff="+staEL);

System.out.println("Available Casual Leave of the Staff="+staCL);

 }

}

class UniversityInfo

{

public static void main(String[] args)

 {

Scanner scan = new Scanner(System.in);

Student st1 = new Student();

 Staff sta1 = new Staff();

st1.inputInfo(scan);

st1.inputStudentInfo(scan);

st1.displayInfo();

st1.displayStudentInfo();

sta1.inputInfo(scan);

sta1.inputStaffInfo(scan);

sta1.displayInfo();

sta1.displayStaffInfo();

131

 }

}

Output of the program:

Input People Information::

 Input Name: RakeshRabha

 Input Address:Goalpara, Assam

Input Contact Number:5555

Input Information of the Student::

 Input Student Department: GUCDOE

 Input Student Course: M.A. in English

 Input Semester:3

Input Student Roll Number:5

People Information::

Name=RakeshRabha

 Address =Goalpara, Assam

 Contact Number =5555

People Type-Student

 Roll Number=5

 Department of the Student =GUCDOE

 Course of the Student=M.A. in English

 Semester of the Student=3

Input People Information::

Input Name: PrabalGoswami

 Input Address:Nalbari, Assam

 Input Contact Number:33333

 Input Information of the Staff::

Input Department of the Staff: GUCDOE

 Input Date of Joining of the Staff: 13-07-2009

Input Available Earn Leave:0

Input Available Casual Leave:7

People Information::

Name=PrabalGoswami

 Address =Nalbari, Assam

 Contact Number =33333

People Type-Staff

 Department of the Staff =GUCDOE

132

 Date of Joining of the Staff=13-07-2009

Available Earn Leave the Staff=0

Available Casual Leave of the Staff=7

In the above program, ‘Staff’ and ‘Student’ are two derived

classes and both of these classes are derived from the same base

class, ‘UniversityPeople’. The diagrammatic representation of this

Hierarchical Inheritance is presented as follows.

Figure 2.3: Diagrammatic Representation of a Hierarchical Inheritance

2.6.4 Multi-Level Inheritance

When a sub class is derived from another sub class then it is

termed as Multi-Level Inheritance. Let us consider the following

Java program to understand the concept of Multi-Level Inhetirance.

Program 2.5: Java program to demonstrate Multi-Level

Inheritance

import java.util.Scanner;

class UniversityPeople

{

private String upName, upAddress, upContact;

public void inputInfo(Scanner scan)

 {

System.out.println("Input People Information::");

System.out.println("Input Name: ");

upName = scan.nextLine();

System.out.println("Input Address: ");

upAddress = scan.nextLine();

UniversityPeople

Student Staff

133

System.out.println("Input Contact Number: ");

upContact = scan.nextLine();

 }

public void displayInfo()

 {

System.out.println("People Information::");

System.out.println("Name="+upName);

System.out.println("Address ="+upAddress);

System.out.println("Contact Number ="+upContact);

 }

}

class Staff extends UniversityPeople

{

private String staDept,staDOJ;

private int staEL,staCL;

public void inputStaffInfo(Scanner scan)

 {

System.out.println("Input Information of the Staff::");

System.out.println("Input Department of the Staff: ");

staDept = scan.nextLine();

System.out.println("Input Date of Joining of the Staff: ");

staDOJ = scan.nextLine();

System.out.println("Input Available Earn Leave: ");

staEL = scan.nextInt();

System.out.println("Input Available Casual Leave: ");

staCL = scan.nextInt();

scan.nextLine();

 }

public void displayStaffInfo()

 {

System.out.println("People Type-Staff");

System.out.println("Department of the Staff ="+staDept);

System.out.println("Date of Joining of the Staff="+staDOJ);

System.out.println("Available Earn Leave the Staff="+staEL);

134

System.out.println("Available Casual Leave of the Staff="+staCL);

 }

}

class TeachingStaff extends Staff

{

private String tstaDesig;

private double tstaBasic,tstaDA;

public void inputTeachingStaffInfo(Scanner scan)

 {

System.out.println("Input Information of the Teaching Staff::");

System.out.println("Input Designation of the Teaching Staff: ");

tstaDesig = scan.nextLine();

System.out.println("Input Basic Salary of the Teaching Staff: ");

tstaBasic = scan.nextInt();

System.out.println("Input Dearness Allowance: ");

tstaDA = scan.nextInt();

 }

public void displayTeachingStaffInfo()

 {

System.out.println("Staff Type-Teaching");

System.out.println("Designation of the Staff ="+tstaDesig);

System.out.println("Basic Salary="+tstaBasic);

System.out.println("Dearness Allowance="+tstaDA);

 }

}

class UniversityInfo

{

public static void main(String[] args)

 {

 Scanner scan = new Scanner(System.in);

TeachingStaff tsta1 = new TeachingStaff();

135

tsta1.inputInfo(scan);

tsta1.inputStaffInfo(scan);

tsta1.inputTeachingStaffInfo(scan);

tsta1.displayInfo();

tsta1.displayStaffInfo();

tsta1.displayTeachingStaffInfo();

 }

}

Output of the program:

Input People Information::

 Input Name: AnkurDeka

 Input Address:Dibrugarh, Assam

 Input Contact Number: 44444

 Input Information of the Staff::

 Input Department of the Staff: GUCDOE

 Input Date of Joining of the Staff: 12-11-2009

 Input Available Earn Leave: 0

Input Available Casual Leave: 6

Input Information of the Teaching Staff::

Input Designation of the Teaching Staff: Assistant Professor

Input Basic Salary of the Teaching Staff: 78600

Input Dearness Allowance: 53

People Information::

Name=AnkurDeka

Address =Dibrugarh, Assam

 Contact Number =44444

People Type-Staff

Department of the Staff =GUCDOE

 Date of Joining of the Staff=12-11-2009

 Available Earn Leave the Staff=0

Available Casual Leave of the Staff=6

Staff Type-Teaching

 Designation of the Staff =Assistant Professor

 Basic Salary=78600

 Dearness Allowance=53

136

In the above program it is observed that ‘TeachingStaff’ is a sub

class derived from the class, ‘Staff’ that is again a sub class derived

from the base class,‘UniversityPeople’. It means that

‘UniversityPeople’ is the grandparent class of ‘TeachingStaff’.The

diagrammatic representation of this Multi-Level Inheritance is

presented as follows.

Figure 2.4: Diagrammatic Representation of a Multi-Level Inheritance

2.6.5 Hybrid Inheritance

We have already learnt about four types of Inheritance in the

earlier sub-sections. Now, if more than one types of inheritance

among these four types of Inheritance are combined to implement an

Inheritance then it is termed as Hybrid Inheritance. Let us consider

the following Java program to understand the concept of Hybrid

Inheritance.

Program 2.6: Java program to demonstrate Hybrid Inheritance

import java.util.Scanner;

class UniversityPeople

{

private String upName, upAddress, upContact;

public void inputInfo(Scanner scan)

UniversityPeople

TeachingStaff

Staff

137

 {

System.out.println("Input Information::");

System.out.println("Input Name: ");

upName = scan.nextLine();

System.out.println("Input Address: ");

upAddress = scan.nextLine();

System.out.println("Input Contact Number: ");

upContact = scan.nextLine();

 }

public void displayInfo()

 {

System.out.println("People Information::");

System.out.println("Name="+upName);

System.out.println("Address ="+upAddress);

System.out.println("Contact Number ="+upContact);

 }

}

class Student extends UniversityPeople

{

private String stDept, stCourse;

private int stSemester,stRollNo;

public void inputStudentInfo(Scanner scan)

 {

System.out.println("Input Information of the Student::");

System.out.println("Input Student Department: ");

stDept = scan.nextLine();

System.out.println("Input Student Course: ");

stCourse = scan.nextLine();

System.out.println("Input Semester: ");

stSemester = scan.nextInt();

System.out.println("Input Student Roll Number: ");

stRollNo = scan.nextInt();

scan.nextLine();

 }

public void displayStudentInfo()

138

 {

System.out.println("People Type-Student");

System.out.println("Roll Number="+stRollNo);

System.out.println("Department of the Stduent ="+stDept);

System.out.println("Course of the Student="+stCourse);

System.out.println("Semester of the Student="+stSemester);

 }

}

class Staff extends UniversityPeople

{

private String staDept,staDOJ;

private int staEL,staCL;

public void inputStaffInfo(Scanner scan)

 {

System.out.println("Input Information of the Staff::");

System.out.println("Input Department of the Staff: ");

staDept = scan.nextLine();

System.out.println("Input Date of Joining of the Staff: ");

staDOJ = scan.nextLine();

System.out.println("Input Available Earn Leave: ");

staEL = scan.nextInt();

System.out.println("Input Available Casual Leave: ");

staCL = scan.nextInt();

scan.nextLine();

 }

public void displayStaffInfo()

 {

System.out.println("People Type-Staff");

System.out.println("Department of the Staff ="+staDept);

System.out.println("Date of Joining of the Staff="+staDOJ);

System.out.println("Available Earn Leave the Staff="+staEL);

System.out.println("Available Casual Leave of the Staff="+staCL);

139

 }

}

class TeachingStaff extends Staff

{

private String tstaDesig;

private double tstaBasic,tstaDA;

public void inputTeachingStaffInfo(Scanner scan)

 {

System.out.println("Input Information of the Teaching Staff::");

System.out.println("Input Designation of the Teaching Staff: ");

tstaDesig = scan.nextLine();

System.out.println("Input Basic Salary of the Teaching Staff: ");

tstaBasic = scan.nextInt();

System.out.println("Input Dearness Allowance: ");

tstaDA = scan.nextInt();

scan.nextLine();

 }

 public void displayTeachingStaffInfo()

 {

System.out.println("Staff Type-Teaching");

System.out.println("Designation of the Staff ="+tstaDesig);

System.out.println("Basic Salary="+tstaBasic);

System.out.println("Dearness Allowance="+tstaDA);

 }

}

class UniversityInfo

{

public static void main(String[] args)

 {

 Scanner scan = new Scanner(System.in);

TeachingStaff tsta1 = new TeachingStaff();

140

tsta1.inputInfo(scan);

tsta1.inputStaffInfo(scan);

tsta1.inputTeachingStaffInfo(scan);

tsta1.displayInfo();

tsta1.displayStaffInfo();

tsta1.displayTeachingStaffInfo();

 Student tst1 = new Student();

tst1.inputInfo(scan);

tst1.inputStudentInfo(scan);

tst1.displayInfo();

tst1.displayStudentInfo();

 }

}

Output of the program:

Input People Information::

 Input Name: AnkurDeka

 Input Address:Dibrugarh, Assam

 Input Contact Number: 44444

 Input Information of the Staff::

 Input Department of the Staff: GUCDOE

 Input Date of Joining of the Staff: 12-11-2009

 Input Available Earn Leave: 0

Input Available Casual Leave: 6

Input Information of the Teaching Staff::

Input Designation of the Teaching Staff: Assistant Professor

Input Basic Salary of the Teaching Staff: 78600

Input Dearness Allowance: 53

People Information::

 Name=AnkurDeka

 Address =Dibrugarh, Assam

 Contact Number =44444

People Type-Staff

 Department of the Staff =GUCDOE

 Date of Joining of the Staff=12-11-2009

141

Available Earn Leave the Staff=0

 Available Casual Leave of the Staff=6

Staff Type-Teaching

 Designation of the Staff =Assistant Professor

Basic Salary=78600

 Dearness Allowance=53

Input People Information::

Input Name:AmitSarma

Input Address: Guwahati, Assam

Input Contact Number: 22222

Input Information of the Student::

 Input Student Department: GUCDOE

 Input Student Course: M.A. in Assamese

 Input Semester: 2

Input Student Roll Number: 25

People Information::

 Name=AmitSarma

 Address =Guwahati, Assam

 Contact Number =22222

 People Type-Student

 Roll Number=25

 Department of the Student =GUCDOE

 Course of the Student=M.A. in Assamese

 Semester of the Student=2

In the above program, it is observed that ‘Student’ and ‘Staff’

are two derived classes derived from the same base class,

‘UniversityPeople’. So, a Hierarchical Inheritance is noticed here.

Again, it is also observed that ‘TeachingStaff’ is derived from ‘Staff’

and ‘Staff’ is derived from ‘UniversityPeople’. Here, a Multi-Level

Inheritance is also noticed. This combination of two types of

Inheritance is an example of Hybrid Inheritance.The diagrammatic

representation of this Hybrid Inheritance is presented as follows.

142

Figure 2.5: Diagrammatic Representation of a Hybrid Inheritance

2.7 VIRTUAL BASE CLASS

Let us consider a situation where a child class is derived

from two base classes and both of these base classes are derived

from a common base class. As a result, the child class object will

receive two instances of its grandparent class through its base

classes. In this situation, ambiguity issues may occur if members of

the grandparent class are required to be accessed by the grandchild

class objects. In C++, the concept of virtual base class is provided

to solve this problem. In C++, when multiple derived classes are

created from a common base class then in the definitions of the

derived classes, the base class is declared as virtual by using the

key word ‘virtual’. As a result, if a child class is derived from these

derived classes then the child class object will receive a single

instance of its grandparent class. As a result, ambiguity and

memory duplications can be avoided.

Program 2.7: C++ program to demonstrate the concept of

Virtual Base class.

#include<iostream.h>

UniversityPeople

TeachingStaff

Staff Student

143

#include<conio.h>

class class1// Grandparent class

{

protected:

 int num;

public:

 class1()

 {

 num=10;

 }

};

class class2:virtual public class1// Base class is declared as virtual

{

public:

 class2()

 {

 num=20;

 }

};

class class3:virtual public class1// Base class is declared as virtual

{

public:

 class3()

 {

 num=30;

 }

};

class class4: public class2,public class3// Grandchild class

{

public:

 void display()

 {

144

 cout<<"\n Value in num ="<<num;

 }

};

int main()

{

 class4 c1;

clrscr();

c1.display();

getch();

return(0);

}

Output of the program:

Value in num = 30

In the above program, class1, class2,class3 and class4 are

four classes where class2 and class3 are derived from class1 and

class4 is derived from class2 and class3. So class4 is the grand

child class of class1. In this situation, objects of class4 should

receive two instances of class1 through class2 and class3. But in

the definitions of class2 and class3, the base class, class1 is

declared as virtual by using the keyword, ‘virtual’. As a result,

objects of class4 will receive only one instance of class1. But if

class1 is not declared as virtual in the definitions of class2 and

class3, then ambiguity issue will occur and the following error will

occur if we try to compile the program.

 Error virtualBase.CPP 41: Member is ambiguous:

‘class1::num’ and ‘class1::num’

CHECK YOUR PROGRESS

1. Choose the correct option

(a) ____ members of a base class cannot be inherited to its

derived classes.

 (i) Public

145

(ii) Private

(iii) Protected

(iv) None of the above

 (b) ____ members of a base class can be inherited to its derived classes.

 (i) Public

 (ii) Protected

 (iii) Private

 (iv) Both (i) and (ii)

(c) In C++, if the Visibility-Mode of an Inheritance is

‘protected’ then ______.

(i) Public members of the base class will be inherited to the

derived class as public members.

(ii) Public members of the base class will be inherited to the

derived class as protected members.

(iii) Public members of the base class will be inherited to the

derived class as private members.

(iv) None of the above

(d) Which of the following is an advantage of Inheritance?

 (i) Code reusability

 (ii) Decrease in application development time

 (iii) New features can be easily added to an application

 (iv) All of the above

(e) Which of the following is not an advantage of

Inheritance?

 (i) Implementation of real-world relationships

 (ii) Increase in code redundancy

 (iii) Extensibility

 (iv) None of the above

(f) Upcasting means_______.

(i) Use a pointer or reference to refer an object of a class.

(ii)Use a child class pointer or a child class reference for pointing or

referring a base class object.

(iii)Use a base class pointer or a base class reference for pointing or

referring a derived class object.

(iv) None of the above

146

(g) Which of the following is not a type of Inheritance?

(i) Hybrid Inheritance

(ii) Multiple Inheritance

(iii) Complete Inheritance

(iv) Hierarchical Inheritance

(h) Which of the following statement is true for Hierarchical

Inheritance?

(i) Multiple child classes are derived from the same base class.

(ii) One child class is derived from multiple base classes.

(iii) A derived class is derived from another derived class.

(iv) None of the above

(i) Which of the following statement is true for Multi-Level

Inheritance?

(i) A derived class is derived from multiple base classes.

(ii) A derived class is derived from another derived class.

(iii) Multiple derived classes derived from one base class

(iv) None of the above

(j) Which of the following Inheritance is implemented by combining

more than one type of Inheritance?

(i)Multiple Inheritance

(ii) Multi-Level Inheritance

(iii) Hybrid Inheritance

(iv) None of the above

(k) Which of the following is not supported in Java Programming?

(i) Multiple Inheritance

(ii) Multi-level Inheritance

(iii) Single Inheritance

147

(iv) None of the above

2.8 SUMMING UP

 Inheritance is one of the basic properties of Object Oriented

Programming (OOP). Inheritance allows creating new sub

or child classes from the already existing classes. In this

process, the already existing classes are called as base class

and the newly created classes from a base class are called as

derived classes.

 Private members of a base class cannot be inherited to its

derived classes. Public and protected members of a base

class can be inherited to its derived classes. In Java, the

members of a base class with ‘default’ access specifier can

be inherited to its derived classes that are available in the

same package.

 Advantages of Inheritance are: (a) Reusability of code, (b)

Extensibility, (c) Decrease in application development time,

(d) Implementation of real-world relationships, (e) Easier

code maintenance and modification (f) Implementation of

run-time polymorphism (g) Decrease in code redundancy.

 In Inheritance, casting up the hierarchy refers to use a base

class pointer or a base class reference for pointing or

referring a derived class object.

 Five types of Inheritance supported in OOP are: (a)Single

Inheritance, (b)Multiple Inheritance, (c)Hierarchical

Inheritance, (d)Multi-Level Inheritance, (e)Hybrid

Inheritance.

 In Single Inheritance, one child class is derived from only

one base class.

148

 In Multiple Inheritance, a sub class is derived from more than

one base class.

 In Hierarchical Inheritance, more than one sub classes are

derived from a single base class.

 In Multi-Level Inheritance, a sub class is derived from

another sub class.

 In a Hybrid Inheritance, more than one types of inheritance

are combined to implement the Inheritance.

 In C++, when multiple derived classes are created from a

common base class and a child class is again derived from

these derived classes then in the definitions of these derived

classes, the base class is declared as virtual by using the key

word ‘virtual’. As a result, objects of the child class derived

from these derived classes will receive a single instance of

its grandparent class. As a result, ambiguity and memory

duplications can be avoided.

ANSWERS TO CHECK YOUR PROGRESS

1.

(a) (ii) Private

(b) (iv) Both (i) and (ii)

(c)(ii) Public members of the base class will be inherited to the

derived class as protected members.

(d) (iv) All of the above

(e) (ii) Increase in code redundancy

(f) (iii)Use a base class pointer or a base class reference for

pointing or referring a derived class object.

(g) (iii) Complete Inheritance

(h) (i) Multiple child classes are derived from the same base

class.

(i) (ii) A derived class is derived from another derived class.

(j) (iii) Hybrid Inheritance

(k) (i) Multiple Inheritance

149

2.9 POSSIBLE QUESTIONS

1) Define Inheritance. Explain the importance of Inheritance in

Object Oriented Programming (OOP) with suitable

examples.

2) Write down the relationship between access specifiers and

Inheritance.

3) What is Upcasting? Give example.

4) Explain different types of Inheritance with suitable

examples.

5) Write a short note on Virtual Base class.

2.10 REFERENCES AND SUGGESTED READINGS

1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering

C++. Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++.

Tata McGraw-Hill, 2006

3) Jana, Debasish. Java and object-oriented programming

paradigm. PHI Learning Pvt. Ltd., 2005.

4) Schildt, Herbert. Java: the complete reference. McGraw-Hill

Education Group, 2014.

---×---

150

UNIT 3: POLYMORPHISM

Unit Structure:

3.1 Introduction

3.2 Objectives

3.3 Introduction to Polymorphism

3.4 Compile Time polymorphism

 3.4.1 Function Overloading

 3.4.2 Operator Overloading

 3.4.3 Static Binding

3.5 Run time Polymorphism

 3.5.1 Virtual Function

 3.5.1.1 Pure Virtual Function

 3.5.2 Dynamic Binding

3.6 Summing Up

3.7 Possible Questions

3.8 References and Suggested Readings

3.1 INTRODUCTION

 Polymorphism is one of the important properties of Object

Oriented Programming (OOP).Origin of the word,‘Polymorphism’ is

two Greek words, ‘Poly’ and ‘Morphe’ where ‘Poly’ means ‘many’

and ‘Morphe’ means ‘form’. In this unit, we are going to discuss

about Polymorphism in OOP and its different types. Different

concepts related to Polymorphism will also be discussed in this unit.

3.2 OBJECTIVES

 After reading this unit, you are expected to be able to learn:

 About Polymorphism.

151

 About Compile time polymorphism and static binding.

 About Function overloading.

 About Operator overloading.

 About Runtime polymorphism and Dynamic binding.

 About Virtual function.

 About Pure virtual function.

 What is Abstract class?

3.3 INTRODUCTION TO POLYMORPHISM

 Polymorphism is an important property of Object Oriented

Programming (OOP) that allows same function name for multiple

functions with different functionalities and defining new operations

for an operator. Due to Polymorphism, the code extensibility of an

OOP language becomes simpler and better. Polymorphism

improves code reusability, readability and maintainability.

Dynamic binding is supported by Polymorphism in OOP so that

appropriate function can be called at runtime. But it may lead to the

performance issues as this process may require additional

computations at runtime.

 There are two types of Polymorphism available in OOP.

These two categories of Polymorphism are Compile-time

polymorphism and Run-time polymorphism.

3.4 COMPILE-TIME POLYMORPHISM

 We have already learnt that in OOP, Polymorphism permits

to use the same function name for multiple functions with different

functionalities and to define new operations for an operator. In this

process, if there are multiple functions with same function name then

in case of compile time polymorphism, which function will be called

at the time of function call will be decided by the compiler at

compile time depending upon the number of parameters or types of

parameters or both available in the function call. Similarly, if a new

operation is defined for an operator then the compiler will decide

152

about the execution of this operation at compile time depending

upon the operands of that operator. So, Compile-time polymorphism

is divided into two types that are Function overloading and Operator

overloading.

3.4.1 Function Overloading

 When more than one function are available in a program with

same function name but their number of parameters or types of

corresponding parameters or both are different from each other then

it is referred as Function overloading. Each of these functions will

perform different jobs. Function overloading can improve the

readability of a program.

 Let us consider the following Java program to acquire a clear

idea about Function overloading.

Program 3.1: Java program to demonstrate Function overloading

import java.util.Scanner;

class Average

{

private int i, total;

 //Function overloading

public int averageEst(int N1, int N2, int N3)

 {

return((N1+N2+N3)/3);

 }

public float averageEst(float N1, float N2, float N3)

 {

return((N1+N2+N3)/3);

 }

public int averageEst(int[]arrNum, int N)

 {

total =0;

153

for(i = 0;i<N;i++)

 {

total+=arrNum[i];

 }

return(total/N);

 }

}

class calAverage

{

public static void main(String[] args)

 {

int num1, num2, num3, avg;

int[] arrNum = new int[100];

int i, N;

float rnum1, rnum2, rnum3, ravg;

 Scanner scan = new Scanner(System.in);

System.out.println("Enter three integer numbers: ");

System.out.println("Enter the value for num1= ");

 num1 = scan.nextInt();

scan.nextLine();

System.out.println("Enter the value for num2= ");

 num2 = scan.nextInt();

scan.nextLine();

System.out.println("Enter the value for num3= ");

 num3 = scan.nextInt();

scan.nextLine();

 Average average1=new Average();

avg= average1.averageEst(num1,num2,num3);

System.out.println("Estimated average of three integer numbers is="

+avg);

System.out.println("Enter three real numbers: ");

System.out.println("Enter the value for rnum1= ");

 rnum1 = scan.nextFloat();

scan.nextLine();

154

System.out.println("Enter the value for rnum2= ");

 rnum2 = scan.nextFloat();

scan.nextLine();

System.out.println("Enter the value for rnum3= ");

 rnum3 = scan.nextFloat();

ravg= average1.averageEst(rnum1,rnum2,rnum3);

System.out.println("Estimated average of three integer numbers is="

+ravg);

scan.nextLine();

System.out.println(" Enter the total number of data to be stored in

the array=");

 N = scan.nextInt();

scan.nextLine();

if(N>200)

System.out.println("Wrong input");

else

 {

System.out.println("Enter "+N+" number of integer numbers into the

array::");

for(i = 0;i<N;i++)

 {

 System.out.println("Enter "+(i+1)+"th data into the array=");

 arrNum[i] = scan.nextInt();

scan.nextLine();

 }

avg=average1.averageEst(arrNum, N);

System.out.println("Average of the numbers stored in the array

is="+avg);

scan.close();

 }

 }

}

155

Output of the program:

 Enter three integer numbers:

Enter the value for num1=12

Enter the value for num2=23

Enter the value for num3=45

Estimated average of three integer numbers is=26

Enter three real numbers:

Enter the value for rnum1=12.8

Enter the value for rnum2=67.5

Enter the value for rnum3=90.23

Estimated average of three integer numbers is=56.843334

Enter the total number of data to be stored in the array=3

Enter 3 number of integer numbers into the array::

Enter 1th data into the array=10

Enter 2th data into the array=20

Enter 3th data into the array=30

Average of the numbers stored in the array is=20

In Program 3.1, three member functions are defined in the

class ‘Average’ with the same function name, ‘averageEst’ where

each of the function is different from the other two functions in

terms of either number of arguments or types of the corresponding

arguments. From the output of the program, it is observed that,

depending upon the arguments, the matching function with function

name, ‘averageEst’ is invoked.

3.4.2 Operator Overloading

Different operators are available in a computer programming

language and each of these operators can perform specific operations

on only primitive or built-in data types. For example, Addition (+)

operator is a binary operator and it is used for arithmetic addition. In

Object Oriented Programming (OOP), additional operations can be

defined for an operator so that it can also be used on user-defined

data types or user-defined classes and this process is referred as

Operator overloading. Due to Operator overloading, one operator

can be utilized to perform operations on both primitive data types

and user defined data types. So, Operator overloading can improve

the extensibility of an OOP language.

156

In an OOP language, existing operators can only be

overloaded. It means that no new operators can be created in the

process of Operator overloading. The basic operation of an operator

cannot be changed by Operator overloading. Syntax rules of the

operators are also followed when they are overloaded. All operators

available in an OOP language cannot be overloaded. For example, in

C++, ::(Scope Resolution Operator) is one of the operators that

cannot be overloaded. The compiler can identify the new operation

of an overloaded operator at the time of compilation.

All OOP languages do not support Operator overloading. For

example, Operator overloading is not supported directly in JAVA. In

C++, Operator overloading is implemented by defining special

member functions or friend functions in a class. Details of Operator

overloading in C++ will be discussed in the later chapter.

3.4.3 Static Binding

Connecting a function call to its corresponding function body

or function definition is termed as binding in case of computer

programming. If the binding can be performed by the compiler at the

time of compilation then it is referred as static binding. In case of

static binding, the compiler can be able to identify and collect all the

required information at the compile time to link a particular function

call to its corresponding function body. As a result, due to static

binding the efficiency of a program is improved. But the flexibility

of a program may be degraded due to static binding. Compile-time

polymorphism is executed by static binding.

3.5 RUN-TIME POLYMORPHISM

 In OOP, Run-time Polymorphism is associated with

Inheritance. When both a base class and its derived class contain a

function with same function prototypes and an object of the derived

class is used to call that function then the function in the derived

class will be called by overriding the function available in the base

class. It is referred as function overriding. Concept of Virtual

function can be used for function overriding in OOP. If Virtual

function is used for function overriding then linking of the function

call with its appropriate function body is determined at the run-time.

157

So, function overriding by using virtual function is a Run-time

Polymorphism.

3.5.1 Virtual Function

 In OOP, Virtual function is used to implement Runtime

Polymorphism. In C++, functions available in a base class are

declared as Virtual function by using ‘virtual’ keyword so that at

runtime these functions can be overridden by the corresponding

functions with same signature that are available as member functions

in the derived classes. The functionality of a virtual function is

different from the functionality of its corresponding function with

same signature that is available in the derived class. In C++, a

Virtual function can be overridden when it is called by using a base

class reference or a pointer that point to or refer a derived class

object. The implementation of function overriding using Virtual

function in C++ is discussed in a later chapter.

In Java, ‘virtual’ keyword is not available and it is not

required to declare a function as Virtual function because all

instance functions in Java are by default Virtual functions except

static, final, and private functions. In Java, a virtual function

available in a base class can be overridden by a function with same

signature available in its derived class by calling that function using

a reference of the base class which is referring an object of the

derived class. Let us consider the following Java program to acquire

a clear idea about Function overriding using Virtual function.

Program 3.2: Java program to demonstrate Function

overriding

import java.util.Scanner;

class Student

{

private String sName, sAddress, sCourse;

private int rollNo;

public void inputInfo()

 {

 Scanner scan = new Scanner(System.in);

System.out.println("Enter Student Name: ");

158

sName = scan.next();

scan.nextLine();

System.out.println("Enter Student Address: ");

sAddress = scan.next();

scan.nextLine();

System.out.println("Enter Student Course: ");

sCourse = scan.next();

scan.nextLine();

System.out.println("Enter Student Roll Number: ");

rollNo = scan.nextInt();

scan.nextLine();

scan.close();

 }

public void displayInfo()

 {

System.out.println("Entered Student Information::");

System.out.println("Stduent Name="+sName);

System.out.println("Student Address="+sAddress);

System.out.println("The course of the Student="+sCourse);

System.out.println("Student Roll Number="+rollNo);

 }

}

class Examination extends Student

{

private int markP1, markP2, markP3, markP4;

private int markTotal, per;

public void inputInfo()

 {

Scanner scan = new Scanner(System.in);

System.out.println("Enter Marks obtained in the Examination::");

System.out.println("Enter marks obtained in Paper1=");

 markP1 = scan.nextInt();

scan.nextLine();

System.out.println("Enter marks obtained in Paper2=");

159

markP2 = scan.nextInt();

scan.nextLine();

System.out.println("Enter marks obtained in Paper3=");

 markP3 = scan.nextInt();

scan.nextLine();

System.out.println("Enter marks obtained in Paper4=");

markP4 = scan.nextInt();

scan.nextLine();

markTotal = markP1+markP2+markP3+markP4;

per = markTotal/4;

scan.close();

 }

public void displayInfo()

 {

System.out.println("Student's Examination Information::");

System.out.println("Marks obtained in Paper1="+markP1);

System.out.println("Marks obtained in Paper2="+markP2);

System.out.println("Marks obtained in Paper3="+markP3);

System.out.println("Marks obtained in Paper4="+markP4);

System.out.println("Total Marks obtained="+markTotal);

System.out.println("Obtained Percentage="+per);

 }

}

class StudentInfo

{

public static void main(String[] args)

{

Student st = new Examination();

st.inputInfo();

st.displayInfo();

 }

}

Output of the program:

Enter Marks obtained in the Examination::

160

Enter marks obtained in Paper1=78

Enter marks obtained in Paper2=90

Enter marks obtained in Paper3=80

Enter marks obtained in Paper4=67

Student's Examination Information::

Marks obtained in Paper1=78

Marks obtained in Paper2=90

Marks obtained in Paper3=80

Marks obtained in Paper4=67

Total Marks obtained=315

Obtained Percentage=78

In program 3.2, the class, ‘Examination’ is extended from

the base class, ‘Student’. The derived class, ‘Examination’ contain

two member functions with same function prototypes to the two

member functions available in the base class, ‘Student’. These two

functions are‘inputInfo()’ and ‘displayInfo()’. From the output of the

program, it is observed that when a reference of the base class,

‘Student’ is used to refer an object of the derived class,

‘Examination’ then the member functions (‘inputInfo()’ and

‘displayInfo()’) of the base class are overridden by the member

functions(‘inputInfo()’ and ‘displayInfo()’) of the derived class.

3.5.1.1 Pure Virtual Function

 In C++, Pure virtual function is a virtual function that is

declared in a base class but its functionality is not defined in that

base class. The functionality of a Pure virtual function must be

defined in the derived class of that base class or it has to be declared

again as a Pure virtual function in that derived class. In Java, the

concept of Pure virtual function is achieved by Abstract method. In

Java, an Abstract method is also a method which is declared in a

class but its functionality is not defined in that class. The

functionality of an Abstract method must be defined in the derived

class of the class where the Abstract method is declared or it must be

again declared as Abstract in that derived class. ‘abstract’ keyword

is used to declare a method as Abstract method.

 In C++, if a class contains one or more Pure virtual functions

then that class is referred as Abstract class. In Java, A base class can

161

be declared as Abstract class by using the keyword, ‘abstract’.

Creation of object of an Abstract class is not possible. In Java, if a

class contains any abstract method then that class must be declared

as abstract class. In OOP, an Abstract class is considered as a

blueprint that can be used to derive different classes with different

new features and functionalities.

 The syntax of writing Pure virtual function in C++ is

presented as follows.

class Class_Name

{

public:

virtual Return_Type Function_Name(Argument List) = 0;

};

Let us consider the following C++ program to acquire a clear

idea about the implementation of Pure virtual function.

Program 3.3:C++ program to demonstrate Pure virtual function

include <iostream.h>

include <conio.h>

class calArea

{

public:

virtual void readInfo() = 0; // Pure virtual function

virtual void displayArea() = 0; // Pure virtual function

};

class Circle : public calArea

{

private:

float radius;

public:

void readInfo();

void displayArea();

162

};

void Circle :: readInfo()

{

cout<< "\n ****Area calculation for Circle***";

cout<< "\n Enter the radius of the Circle =";

cin>> radius;

cout<<"\n";

}

void Circle :: displayArea()

{

cout<< "\n Radius of the Circle=";

cout<< radius;

cout<< "\n Area of the Circle=";

cout<< 3.1415*radius*radius; // Value of p=3.1415

cout<< "\n";

}

class Square : public calArea

{

private:

floats Length;

public:

void readInfo();

void displayArea();

};

void Square :: readInfo()

{

cout<< "\n****Area calculation for Square****";

cout<< "\n Enter the length of one side in the Square =";

cin>>sLength;

cout<< "\n";

}

void Square :: displayArea()

{

163

cout<< "\n Length of one side in the square =";

cout<<sLength;

cout<< "\n Area of the square =";

cout<<sLength*sLength;

cout<< "\n";

}

class Trapezoid : public calArea

{

private:

float base1, base2, vHeight;

public:

void readInfo();

void displayArea();

};

void Trapezoid :: readInfo()

{

cout<< "\n****Area calculation for Trapezoid****";

cout<< "\n Enter the First base of the Trapezoid=";

cin>> base1;

cout<< "\n Enter the Second base of the Trapezoid=";

cin>> base2;

cout<< "\n Enter the vertical height of the Trapezoid=";

cin>>vHeight;

cout<< "\n";

}

void Trapezoid :: displayArea()

{

cout<< "\n First base of the Trapezoid=";

cout<< base1;

cout<< "\n Second base of the Trapezoid=";

cout<< base2;

cout<< "\n Vertical height of the Trapezoid=";

cout<<vHeight;

cout<<"\n Area of the Trapezoid=";

cout<< 0.5*(base1+base2)*vHeight;

cout<< "\n";

}

164

int main()

{

calArea *cA;

Circle Cr;

Square Sr;

Trapezoid Tr;

clrscr();

cA = &Cr;

cA->readInfo();

cA->displayArea();

cA = &Sr;

cA->readInfo();

cA->displayArea();

cA = &Tr;

cA->readInfo();

cA->displayArea();

getch();

return(0);

}

Output of the program:

****Area calculation for Circle***

Enter the radius of the Circle =8

Radius of the Circle=8

Area of the Circle=201.056

****Area calculation for Square****

 Enter the length of one side in the Square =2

Length of one side in the square =2

Area of the square =4

 ****Area calculation for Trapezoid****

Enter the First base of the Trapezoid=4

 Enter the Second base of the Trapezoid=5

165

Enter the vertical height of the Trapezoid=6

First base of the Trapezoid=4

Second base of the Trapezoid=5

Vertical height of the Trapezoid=6

Area of the Trapezoid=27

In program 3.3, ‘readInfo()’ and‘displayArea()’ are two

pure virtual functions declared in the base class, ‘calArea’. The

definitions of these two pure virtual functions are provided in the

derived classes(‘Circle’,‘Square’, and ‘Trapezoid’) of the base class,

‘calArea’.

Let us consider the following Java program to acquire a clear

idea about the implementation of Abstract method.

Program 3.4:Java program to demonstrate the implementation of

Abstract method.

import java.util.Scanner;

abstract class calArea // Abstract class

{

abstract void readInfo(); // Abstract method

abstract void displayArea(); // Abstract method

}

class Circle extends calArea

{

private float radius;

public void readInfo()

 {

 Scanner scan = new Scanner(System.in);

System.out.println(" ****Area calculation for Circle***");

System.out.println("Enter the radius of the Circle = ");

radius = scan.nextFloat();

scan.nextLine();

scan.close();

 }

166

public void displayArea()

 {

System.out.println("Radius of the Circle="+radius);

System.out.println("Area of the Circle="+3.1415*radius*radius);

 }

}

class Square extends calArea

{

private float sLength;

public void readInfo()

 {

 Scanner scan = new Scanner(System.in);

System.out.println("****Area calculation for Square****");

System.out.println("Enter the length of one side in the Square =");

sLength=scan.nextFloat();

scan.nextLine();

scan.close();

 }

public void displayArea()

{

System.out.println(" Length of one side in the square ="+sLength);

System.out.println(" Area of the square ="+sLength*sLength);

}

}

class Trapezoid extends calArea

{

private float base1, base2, vHeight;

public void readInfo()

{

Scanner scan = new Scanner(System.in);

167

System.out.println("****Area calculation for Trapezoid****");

System.out.println(" Enter the First base of the Trapezoid=");

base1=scan.nextFloat();

scan.nextLine();

System.out.println(" Enter the Second base of the Trapezoid=");

base2=scan.nextFloat();

scan.nextLine();

System.out.println("Enter the vertical height of the Trapezoid=");

vHeight=scan.nextFloat();

scan.nextLine();

scan.close();

}

public void displayArea()

{

System.out.println("First base of the Trapezoid="+base1);

System.out.println("Second base of the Trapezoid="+base2);

System.out.println("Vertical height of the Trapezoid="+vHeight);

System.out.println("Area of the

Trapezoid="+0.5*(base1+base2)*vHeight);

}

}

class Area

{

public static void main(String[] args)

{

calArea aR=new Trapezoid();

aR.readInfo();

aR.displayArea();

}

}

Output of the program:

****Area calculation for Trapezoid****

 Enter the First base of the Trapezoid=2

 Enter the Second base of the Trapezoid=3

168

Enter the vertical height of the Trapezoid=6

First base of the Trapezoid=2.0

 Second base of the Trapezoid=3.0

Vertical height of the Trapezoid=6.0

Area of the Trapezoid=15.0

In program 3.4, ‘readInfo()’ and‘displayArea()’ are two

abstract methods declared in the base class, ‘calArea’. The

definitions of these two abstract methods are provided in the derived

classes(‘Circle’,‘Square’, and ‘Trapezoid’) of the base class,

‘calArea’.

3.5.2 Dynamic Binding

Dynamic binding refers the linking of a function call to its

appropriate function body at run-time. It is also termed as Late

binding. It is observed that in case of function overriding using

virtual function, all required information to call the appropriate

member function of the derived class is recognized at run time only

and a member function of the base class is overridden by the

appropriate member function available in the derived class. So,

Dynamic binding enables function overriding using virtual function

in OOP.

CHECK YOUR PROGRESS

1. Choose the Correct Option

(a) Find out the false statement regarding Polymorphism.

(i) Same name for multiple methods.

(ii) Defining new operation for an existing operator.

(iii) Same name for multiple variables.

(iv) None of the above.

(b) Which of the following is a Compile-time Polymorphism?

(i) Function overloading

(ii) Function overriding using virtual function

(iii) Operator overriding

(iv) None of the above

169

(c) Which of the following is a run-time Polymorphism?

(i) Function overloading

(ii) Function overriding using virtual function

(iii) Operator overriding

(iv) None of the above

(d) Function overriding can be implemented by using _____.

(i) inline function

(ii) constructor

(iii) virtual function

(iv) None of the above

(e) Defining additional operation for an existing operator is termed

as____.

(i) Function overloading

(ii) Operator overloading

(iii) Operator overriding

(iv)None of the above

(f) If connecting a function call to its corresponding function body is

performed by the compiler at the time of compilation then it is

referred as _____.

(i) Static binding

(ii) Dynamic binding

(iii) Virtual binding

(iv)None of the above

(g) In C++, _____ is a keyword used to declare a base class member

function as virtual?

(i) abstract

(ii) vir

(iii) virtual

(iv)None of the above

(h) Which of the following types of instance function is not virtual

function in Java?

(i) static function

(ii) final function

(iii) private function

170

(iv) All of the above

(i)____is a virtual function that does not have any definition.

(i) Pure virtual function

(ii) Abstract virtual function

(iii) Inline virtual function

(iv) None of the above

(j) An _____ class contains one or more Pure virtual functions.

(i) Static

(ii) Private

(iii) Abstract

(iv) None of the above

(k) If connecting a function call to its corresponding function body

is performed at run-time then it is referred as _____.

(i) Static binding

(ii) Dynamic binding

(iii) Virtual binding

(iv)None of the above

5.8 SUMMING UP

 Polymorphism is one of the important properties of Object

Oriented Programming (OOP) that permits same function name for

multiple functions with different functionalities and allows defining

new operations for an operator.

 Advantages of Polymorphism are: (a) the code extensibility

of an OOP language becomes simpler and better (b) code reusability,

readability and maintainability improves due to Polymorphism.

 Two types of Polymorphism are Compile-time

polymorphism and Run-time polymorphism.

 In case of compile time polymorphism, which function body

will be called at the time of function call will be decided by the

compiler at compile time depending upon the number of parameters

or types of parameters or both.

171

 When more than one function are available in a program with

same function name but their number of parameters or types of

corresponding parameters or both are different from each other then

it is referred as Function overloading.

 In Object Oriented Programming (OOP), additional

operations can be defined for an operator so that it can also be used

on user-defined data types or user-defined classes and it is termed as

Operator overloading. If a new operation is defined for an operator

then the compiler will decide about the execution of this operation at

compile time depending upon the operands of that operator.

 Only existing operators in an OOP language can be

overloaded. The basic operation of an operator cannot be changed by

Operator overloading and the syntax rules of the operators are also

followed when they are overloaded.

All OOP languages do not support Operator overloading. For

example, Operator overloading is not supported directly in JAVA.

If linking a function call to its corresponding function body

or function definition is performed by the compiler at the time of

compilation then it is termed as static binding. Compile-time

polymorphism is executed by static binding.

 Run-time Polymorphism is associated with Inheritance.

When both a base class and its derived class contain a function with

same function prototypes and an object of the derived class is used to

call that function then the function in the derived class will be called

by overriding the function available in the base class. It is termed as

function overriding.

 The concept of Virtual function is used to implement

Runtime Polymorphism in OOP. In C++, functions available in a

base class are declared as Virtual function by using ‘virtual’

keyword so that at runtime these functions can be overridden by the

corresponding function with same function prototype that is

available as member function in a derived class. In C++, a Virtual

function can be overridden when it is called by using a base class

reference or a pointer that point to or refer a derived class object.

In Java, ‘virtual’ keyword is not available and it is not

required to declare a function as Virtual function because all

172

instance functions in Java are by default Virtual functions except

static, final, and private functions.

 In C++, if a virtual function is declared in a base class but its

functionality is not defined then it is termed as Pure virtual function.

The functionality of a Pure virtual function must be defined in the

derived class of that base class or it has to be declared again as a

Pure virtual function in that derived class.

 In Java, the concept of Pure virtual function is realized by

Abstract method. In Java, an Abstract method is also a method which

is declared in a class but its functionality is not defined in that class.

The functionality of an Abstract method must be defined in the

derived class of the class where the Abstract method is declared or it

must be again declared as Abstract in that derived class. In Java,

‘abstract’ keyword is used to declare a method as Abstract method.

 In C++, if a class contains one or more Pure virtual functions

then that class is termed as Abstract class. In Java, a base class can

be declared as Abstract class by using the keyword, ‘abstract’.

Instantiation of object of an Abstract class is not possible. In Java, if

a class holds any abstract method then that class must be declared as

abstract class.

If the linking of a function call to its appropriate function

body is performed at run-time then it is termed as Dynamic binding.

In case of function overriding using virtual function, all required

information to call the appropriate member function of the derived

class is recognized at run time only. So, Dynamic binding enables

function overriding using virtual function in OOP.

ANSWERS TO CHECK YOUR PROGRESS

1.

(a) (iii) Same name for multiple variables.

(b) (i) Function overloading

(c) (ii) Function overriding using virtual function

(d) (iii) virtual function

(e) (ii) Operator overloading

(f) (i) Static binding

(g) (iii) virtual

173

(h) (iv) All of the above

(i) (i) Pure virtual function

(j) (iii) Abstract

(k) (ii) Dynamic binding

5.9 POSSIBLE QUESTIONS

1) Define Polymorphism. How Polymorphism is useful in

OOP? Write down the different types of Polymorphism.

2) Define Function overloading. Give example.

3) Explain Operator overloading.

4) Explain virtual function?

5) Explain Function overriding.

6) What is Pure virtual function? Give example.

7) Explain Abstract class. Give example.

5.10 REFERENCES AND SUGGESTED READINGS

1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering

C++. Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++.

Tata McGraw-Hill, 2006

3) Jana, Debasish. Java and object-oriented programming

paradigm. PHI Learning Pvt. Ltd., 2005.

4) Schildt, Herbert. Java: the complete reference. McGraw-Hill

Education Group, 2014.

---×---

174

UNIT 4: EXCEPTION HANDLING

Unit Structure:

4.1 Introduction

4.2 Objectives

4.3 Introduction to Exception Handling

4.4 Exception Handling Model

 4.4.1 Try-Block

 4.4.2 Throw-Block

 4.4.3 Catch-Block

4.5 Exception Handling in Constructor

4.6 Exception Handling in Destructor

4.7 Handling Uncaught Exceptions

4.8 Exceptions in Class Templates

4.9 Summing Up

4.10 Answers to Check Your Progress

4.11 Possible Questions

4.12 References and Suggested Readings

4.1 INTRODUCTION

 A reliable software application must provide an efficient

error handling and fault tolerant mechanism so that it can handle

any anomalies and unexpected situations occurred during program

execution like occurrence of error due to inappropriate input data,

occurrence of any anomaly due to the use of any technique that is

not appropriate to handle a new set of input data, occurrence of

anomalies due to any defect occurred in the associated hardware

component etc. In programming languages like C++ and Java,

concept of Exception Handling is provided for implementing

efficient error handling and fault tolerant mechanism in a software

application. In this unit, we are going to discuss about Exceptions

and Exception Handling in Object Oriented Programming (OOP).

175

4.2 OBJECTIVES

 After reading this unit, you are expected to be able to learn:

 What is Exception and Exception Handling in

Object Oriented Programming (OOP)?

 About Exception Handling Model.

 About Exception Handling in constructor and

destructor.

 How to handle Uncaught Exceptions?

 About Exceptions in class template.

4.3 INTRODUCTION TO EXCEPTION HANDLING

 An exception can be defined as an anomaly or an

unexpected condition or an error that can be occurred at the run-

time of a program and it can disrupt the normal execution flow of

that program. In general, exceptions can be categorized into two

types that are synchronous exception and asynchronous exceptions.

 Synchronous exceptions are those exceptions that are

occurred due to any inappropriate input data or due to the use of

any method in the program that is not appropriate for a new set of

input data. For example, runtime errors occurred due to the

overflow and underflow conditions, dividing any number by zero

etc.

 On the other hand, Asynchronous exceptions are not

occurred due to any part of the corresponding program. These

exceptions are occurred due to some external events that are not

controlled by the program. For example, occurrence of errors due

to any defect occurred in the corresponding hardware components.

 In programming languages like C++, Java etc., a facility is

provided to handle Synchronous exceptions and this facility is

termed as Exception handling. Exception handling can be used to

detect exceptions and handle them before their occurrence so that

they cannot disrupt the normal execution flow of the corresponding

program. The part of a program that is written to handle probable

exceptions is termed as Exception handler. When an exception is

occurred during the program execution then the corresponding

176

Exception hander is called to handle that exception. The job of an

Exception handler is to catch the exceptions occurred at the time of

program execution and then provides possible solutions to the

exceptions or if required, terminates the program execution in a

graceful manner.

The advantages of Exception handling are presented in the

following points.

 Exception handling mechanism helps to avert system

failures and crashes. So, Exception handling mechanism

can play an important role to develop software that is

efficient in case of fault tolerance and avoidance.

 Exception handling mechanism separates the code to handle

errors from the normal code in a program. As a result,

readability of the program will be improved and

maintainability of the program will be easier.

 Exception handling mechanism can be used to provide

appropriate error messages to detect errors occurred in a

system.

 Exception handling mechanism can also be used to confirm

appropriate resource management in a system.

 Another advantage of Exception handling mechanism is that

group of related errors may be handled by applying a single

Exception handler.

4.4 EXCEPTION HANDLING MODEL

 In case of a programming language, Exception handling is

implemented using the Exception handling model. In C++, the

Exception handling model is composed of three exception handling

constructs. These three constructs are try, throw and catch.

Program 4.1: C++ program to demonstrate the Exception

Handling mechanism.

#include<iostream.h>

#include<conio.h>

177

int main()

{

 int data[100];

 inti =0,N_data;

cout<<"\n Enter the number of values to be entered=\n";

cin>>N_data;

try{// try block

if(N_data>100)

 throw N_data;// throw exception

cout<<"\n Enter data into the array::";

 while(i<N_data)

 {

cout<<"\n Enter "<<i+1<<"th data=";

cin>>data[i];

 i++;

 }

cout<<"\n The data available in the array are:";

 for(i =0;i<N_data;i++)

 {

cout<<"\t"<<data[i];

 }

 }

catch(int excep1)// catch block

{

cout<<"\n Exception: Input value is larger than the Array Size";

}

getch();

return(0);

}

Outputs of the program:

 Output1:

Enter the number of values to be entered= 5

 Enter 1th data=45

Enter 2th data=7

Enter 3th data=12

Enter 4th data=11

178

Enter 5th data= 22

The data available in the array are:45 7 12 11 22

Output2:

Enter the number of values to be entered=120

 Exception: Input value is larger than the Array Size

 Two outputs of the program are presented above. From

output1, it is observed that there is no exception raised in the try

block and the program is executed in its normal program flow. But

from output2, it is observed that an exception is thrown from the

try block as the input value as the number of values to be entered

into the array is larger than the corresponding array size.

4.4.1 Try

 A try block in a program is a group of programming

statements that may raise run-time errors or exceptions. The try-

block is used to handle exceptions or run-time errors. When an

exception is raised in a try block then the program flow will be

changed by transferring the program control to the appropriate

exception handler associated with the try block. If there is no

handler available then the corresponding program will call the

function ‘terminate ()’. If no exception is raised in the try block

then the normal program flow will not be interrupted. In C++, the

group of statements in a try block is enclosed by braces ({}) and

the try block is started with the keyword, ‘try’. The syntax of the

try block in C++ is presented as follows.

 try

 {

 //Group of statements that may raise exceptions

 }

 As an example, Program 4.1 can be considered to observe

the use of try block.

4.4.2 Throw

 The throw construct is used inside functions and try blocks

to throw exceptions if runtime-errors are occurred during execution

179

of the programming statements available in a function or a try

block. So, the throw construct is used to indicate the occurrence of

a run-time error or any unexpected condition during the execution

of a block of programming statements. The basic syntax to use

throw construct in C++ is presented as follows.

 throw exceptionObj ;

 In the above syntax, ‘throw’ is a C++ keyword and

‘exceptionObj’ is an object or a built-in type expression.

 In Program 4.1, throw construct is used to throw an

exception with an integer argument.

 In C++, an exception handler can rethrow a caught

exception by invoking the throw construct without any arguments.

If an exception is rethrown by the corresponding catch block then

the same catch block or any other catch block available in the same

group will not catch that rethrown exception. Only the matching

catch block available outside the try-catch group can catch the

rethrown exception. The syntax for rethrow an exception is

presented as follows.

 try

 {

 // Statements in the try block

 throw exceptionObj ;// Throws an exception

 }

 catch (TypeExceptionexceptionObj)

 {

 // Statements in the catch block

 throw; // Rethrow the exception

 }

 In the above syntax, ‘TypeException’ is the type of the

exception class.

 In C++, the throw construct can be used to specify a list of

exceptions that may be raised directly or indirectly bya function.

The syntax for this use of throw construct is presented as follows.

returnType functionName([Argument list])

throw(TypeExceptionobj1, TypeExceptionobj2….)

 {

180

 // Function body

 }

 In C++, the throw construct can also be used to specify that

no exceptions will be occurred in a function. If any exception

occurs in that function then the library function ‘abort ()’ is

invoked to issue an error message and terminate the corresponding

program. The syntax to use the throw construct to specify that no

exceptions can be occurred in a function is presented as follows.

 returnType functionName([Argument list]) throw()

 {

 // Function body

 }

4.4.3 Catch

 The catch block in the exception handling mechanism is

responsible for providing the exception handler for matching

exceptions. A catch block catches matching exceptions and handles

the exceptions with the appropriate exception handler. When an

exception is thrown inside a try block then immediately the

program control is transferred to the appropriate catch block to

handle that exception. The catch block is written immediately after

the try block. Multiple catch blocks can be provided in a program

where each block will be executed only for the matching

exceptions. A catch block is enclosed by braces ({ }) and the catch

block is started with the keyword, ‘catch’. The syntax of the catch

block in C++ is presented as follows.

 catch (TypeException exceptionObj)

 {

 // Body of the exception handler

 }

 In the above syntax, ‘TypeException’ is the type of the

exception class object or a built-in type.

 As an example, Program 4.1 can be considered to observe

the use of catch block.

181

 In C++, one single catch block can be used to handle all the

exceptions that may be raised in the try block. The syntax of

writing such a catch block is presented as follows.

 catch(…)

 {

 // Body of the exception handler

 }

 In the above syntax, catch block with three dots(…) can

handle all the exceptions that may be raised in the try block.

4.5 EXCEPTION HANDLING IN CONSTRUCTOR

Exceptions may also be thrown by a constructor of a class

when any unexpected condition or run-time error occurred. When an

exception is raised in a constructor then the corresponding object

may not be created fully and in this situation, the destructor is

invoked to release the partially allocated resources that are allocated

during the process of object creation. This process of invoking the

destructor is termed as stack unwinding. In C++, if an exception is

raised and the program flow is changed then destructors are called

for all the objects that are created from the starting point of the try-

block.

In inheritance, when an exception is raised in a base class

constructor then constructors of the corresponding derived classes

will not be invoked. If exceptions are raised in the constructors of

both the base class and its derived class then the exception handler of

the derived class will be executed before the exception handler of

the base class.

Exception handling in constructors provides proper release of

resource allocations if any unexpected condition or run-time error

occurs during the execution of a constructor. If a constructor throws

an exception the exception handling mechanism also ensures that the

corresponding program remains in a valid state after the occurrence

of the exception.

182

Program 4.2 C++ program to demonstrate exception handling in

constructor.

#include<iostream.h>

#include<conio.h>

class Search_Array

{

 private:

 int data[100], i, N_data, S_data, flag;

 public:

 Search_Array(int N,int S);//Constructor declaration

 void readArray();

 void searchData();

};

Search_Array::Search_Array(intN,int S)

{

if(N>100)

throw N;// Throw exception from the constructor

N_data=N;

S_data=S;

flag=0;

}

void Search_Array::readArray()

{

i =0;

cout<<"\n Enter data into the array::";

while(i<N_data)

 {

cout<<"\n Enter "<<i+1<<"th data=";

cin>>data[i];

 i++;

 }

}

void Search_Array::searchData()

{

for(i =0;i<N_data;i++)

 {

if(S_data == data[i])

183

 {

cout<<"\n"<<S_data<<" is avaialble at "<<i+1<<"th position";

flag=1;

 }

 }

if(flag==0)

cout<<"\n"<<S_data<<" is not available in the array";

}

int main()

{

 try{

Search_ArraysA1(120,45);

sA1.readArray();

sA1.searchData();

 }

 catch(int excep1)

 {

 cout<<"\n Exception: Input value is larger than the Array Size";

 }

 getch();

 return(0);

 }

Output of the program:

Exception: Input value is larger than the Array Size

In the above program, the constructor is called with two

integer values that are 120 and 45 where 120 is the number of values

to be entered into the array and 45 is the data that will be searched in

the array. So, from the output, it is observed that an exception is

raised from the constructor as 120 is greater than the size of the array

which is the data member of the corresponding object.

184

4.6 EXCEPTION HANDLING IN DESTRUCTOR

In C++, throwing exceptions from destructors should be

performed in special cases only and exception handling should be

carefully performed. In general, raising exceptions from destructors

should be avoided as it may lead to some undesirable situations. For

example, throwing exceptions from destructors may cause memory

leaks if the deallocation of the corresponding object is not performed

in the correct way. In C++, if an exception is thrown from a

destructor during run-time stack unwinding when another exception

is already being handled then C++ will terminate the corresponding

program by calling ‘std::terminate()’.

If it is necessary to throw exception from a destructor then it

must be ensured that the exceptions will be caught and handled

inside the destructor itself.

4.7 HANDLING UNCAUGHT EXCEPTIONS

If an exception is thrown in a program but there is no matching

catch block or exception handler available for handling that

exception then this exception will be uncaught. In this situation,

necessary actions have to be performed on the occurrence of such

uncaught exceptions. In C++, four built-in functions are used to

handle the uncaught exceptions. These four functions are

(a) ‘unexpected()’, (b) ‘set_unexpected()’, (c)‘terminate ()’ and

(d)‘set_terminate()’.

 ‘unexpected()’: When an exception is raised in a program

but it is not listed in the corresponding exception

specification then the function ‘unexpected()’ is called. By

default, ‘unexpected()’ calls the function ‘terminate ()’.

 ‘set_unexpected()’: The function ‘set_unexpected()’ can

be used to include a function that will be invoked when an

exception is occurred but it is not listed in the

corresponding exception specification and this function

performs the necessary actions to handle that exception.

 ‘terminate ()’:The function ‘terminate()’ performs the

necessary actions in the process of terminating a program

185

on the occurrence of uncaught exceptions in that program.

By default, ‘terminate ()’ calls the function ‘abort ()’ and

‘abort ()’ will immediately terminate the corresponding

program execution.

 ‘set_terminate()’:The function ‘set_terminate()’ can be

used to include a function that will be invoked when

uncaught exceptions are raised in a program. This function

performs the necessary actions in the process of terminating

the corresponding program due to the occurrence of

uncaught exceptions.

Program 4.3: C++ program to demonstrate the use of

‘set_terminate()’ to handle uncaught exception.

#include<iostream.h>

#include<conio.h>

class Search_Array

{

private:

int data[100], S_data;

int i, N_data, flag;

public:

Search_Array(int N,int S);

void readArray();

void searchData();

};

Search_Array::Search_Array(intN,int S)

{

if(N>100)

throw N;

N_data=N;

S_data=S;

flag=0;

}

void Search_Array::readArray()

{

 i=0;

186

cout<<"\n Enter data into the array::";

while(i<N_data)

 {

cout<<"\n Enter "<<i+1<<"th data=";

cin>>data[i];

 i++;

 }

}

void Search_Array::searchData()

{

for(i=0;i<N_data;i++)

 {

if(S_data == data[i])

 {

cout<<"\n"<<S_data<<" is avaialble at "<<i+1<<"th position";

flag=1;

 }

 }

if(flag==0)

cout<<"\n"<<S_data<<" isnot available in the array";

}

void UcExceptionHandler() // Exception handler for uncaught exception

{

cout<<"\n Exception: Input value is larger than the Array Size";

abort();

}

int main()

{

std::set_terminate(UcExceptionHandler); // For uncaught exception

 try{

Search_ArraysA1(102,45);

sA1.readArray();

sA1.searchData();

}

 catch(char excep1)

 {

 cout<<"\n Exception: 'char' type data is Invalid";

 }

187

 getch();

 return(0);

 }

Output of the program:

Exception: Input value is larger than the Array Size

 This application has requested the Runtime to terminate it in an

unusual way.

 Please contact the application’s support team for more

information.

In Program 4.3, an exception is thrown from the

constructor with an integer argument. But no catch block is

available for exceptions thrown with integer argument in the

program. So, if any exception is thrown from the constructor then it

will be uncaught. In that situation, an exception handler

(‘UcExceptionHandler()’) is defined in the program and

‘set_terminate()’ is used to invoked it if any uncaught exception is

occurred. From the output of the program, it is observed that an

uncaught exception is raised and as a result

‘UcExceptionHandler()’ is invoked.

Program 4.4: C++ program to demonstrate the use of

‘set_unexpected()’ to handle the exception that is not listed in

the exception specification.

#include<iostream.h>

#include<conio.h>

class Search_Array

{

private:

int data[100], S_data , i, N_data, flag;

public:

Search_Array(intN,int S)throw(); // Constructor that will not

throw any exception

void readArray();

void searchData();

188

};

Search_Array::Search_Array(intN,int S) throw()

{

if(N>100)

throw N; // Throws exception that is not specified

N_data=N;

S_data=S;

flag=0;

}

void Search_Array::readArray()

{

 i=0;

cout<<"\n Enter data into the array::";

 while(i<N_data)

 {

cout<<"\n Enter "<<i+1<<"th data=";

cin>>data[i];

 i++;

 }

}

void Search_Array::searchData()

{

for(i=0;i<N_data;i++)

 {

if(S_data == data[i])

 {

cout<<"\n"<<S_data<<" is available at "<<i+1<<"th position";

flag=1;

 }

 }

if(flag==0)

cout<<"\n"<<S_data<<" isnot available in the array";

}

void UexExceptionHandler() // Exception handler for

unspecified exception

{

cout<<"\n Exception: Input value is larger than the Array Size";

189

}

int main()

{

std::set_unexpected(UexExceptionHandler); //For unspecified exception

 try{

Search_ArraysA1(102,45);

sA1.readArray();

sA1.searchData();

 }

 catch(int excep1)

 {

 cout<<"\n Exception: Wrong Input";

 }

 getch();

 return(0);

 }

Output of the program:

Exception: Input value is larger than the Array Size

 This application has requested the Runtime to terminate it in an

unusual way.

 Please contact the application’s support team for more

information.

In Program 4.4, the constructor of the class,

‘Search_Array’ is specified with ‘throw()’ that no exception will be

thrown from it. But it is observed that it throws exception when the

value of N is greater than 100. Such unspecified exception is

handled in this program by the user-defined exception

handler,‘UexExceptionHandler()’ and‘set_unexpected()’ is used to

install it in the program. From the output of the program, it is

observed that an unspecified exception is raised from the

constructor and as a result ‘UexExceptionHandler()’ is invoked.

190

4.8 EXCEPTIONS IN CLASS TEMPLATES

In C++, exception handling in class template is performed in

the same way that is used in the normal exception handling. Let us

consider the following C++ program to understand clearly about the

exception handling in class template.

Program 4.5: C++ program to demonstrate the Exception

handling in class template.

#include<iostream.h>

#include<conio.h>

template <class T>// Class template

class Search_Array

{

private:

 T data[100];

 int i, N_data, flag;

public:

 Search_Array(int N)

 {

if(N>100)

throw N;// Throw exception

 N_data=N;

 flag = 0;

 }

 void readArray();

 void searchData(T S_data);

};

template<class T>

void Search_Array<T>::readArray()

{

 i=0;

cout<<"\n Enter data into the array::";

 while(i<N_data)

 {

 cout<<"\n Enter "<<i+1<<"th data=";

 cin>>data[i];

191

 i++;

 }

}

template<class T>

void Search_Array<T>::searchData(T S_data)

{

for(i=0;i<N_data;i++)

 {

 if(S_data == data[i])

 {

 cout<<"\n"<<S_data<<" is avaialble at "<<i+1<<"th

position";

 flag=1;

 }

 }

if(flag==0)

 cout<<"\n"<<S_data<<" isnot available in the array";

}

int main()

{

try{// try block

 Search_Array<int> sA1(120);

 sA1.readArray();

 sA1.searchData(20);

 }

catch(intexcep){// catch block

cout<<"\n Exception: Input value is larger than the Array Size";

 }

 getch();

 return(0);

 }

Output of the program:

 Exception: Input value is larger than the Array Size";

192

CHECK YOUR PROGRESS

1. Choose the correct option

(a) An exception is a______.

(i) Compile time error

(ii) Run time error

(iii) Syntax error

(iv) None of the above

(b) Which of the following is an example of Synchronous

exception?

(i) Dividing any number by zero

(ii) Runtime errors occurred due to the overflow and

underflow conditions

(iii) Unexpected situation due to the failure of a

hardware component

(iv) Both (i) and (ii)

(c) Which of the following is not an exception handling

construct in C++ programming language?

(i) try

(ii) catch

(iii) terminate

(iv) throw

(d) A ____ block in a program is a group of programming

statements that may raise exceptions during program

execution.

(i) try

(ii) catch

(iii) throw

 (iv) None of the above

(e) A exception handler is located in a ______block.

(i) try

(ii) catch

(iii) throw

(iv) None of the above

193

(f) The ____ construct is used to throw exceptions.

 (i) try

 (ii) catch

 (iii) throw

 (iv) None of the above

(g) We can use _____ to specify that no exception will be

raised in a function.

(i) throw(0)

(ii) throw(NULL)

(iii) throw(“No Exception”)

(iv) throw()

(h) It is not recommended to raise exception from ____.

(i) Constructor

(ii) Destructor

(iii) Friend function

(iv) None of the above

(i) Which of the library function is used to install a function

to handle an uncaught exception?

(i) terminate()

(ii) unexpected()

(iii) set_terminate()

(iv) None of the above

(j) Which of the library function is used to register a function

to handle an unspecified exception?

(i)set_unexpected()

(ii) unexpected()

(iii) set_default()

(iv) None of the above

4.9 SUMMING UP

 An exception is an anomaly or an unexpected condition or

an error that can be occurred at the run-time of a program

and it can change the normal execution flow of that

program.

194

 Synchronous exceptions are raised due to any inappropriate

input data or due to the use of any method in the program

that is not appropriate for a new set of input data.

 Asynchronous exceptions are raised due to some external

events that are not controlled by the program.

 Exception handling mechanism is used to catch exceptions

and handle them before their occurrence so that they cannot

disrupt the normal execution flow of the corresponding

program.

 Exception handler is the part of a program written to handle

probable exceptions. The job of an Exception handler is to

catch the exceptions occurred at the time of program

execution and then provides possible solutions to the

exceptions or if required, terminates the program execution

in a graceful manner.

 Exception handling mechanism helps to avert system

failures and crashes. Exception handling mechanism

separates the code to handle errors from the normal code in

a program. Exception handling mechanism can be used to

provide appropriate error messages to detect errors occurred

in a system.It can also be used to confirm appropriate

resource management in a system. Group of related errors

may be handled by applying a single Exception handler.

 In C++, the Exception handling model is composed of three

exception handling constructs. These three constructs are

try, throw and catch.

 A try block in a program is a group of programming

statements that may raise run-time errors or exceptions.

 The throw construct is used inside functions and try blocks

to throw exceptions if runtime-errors are occurred during

execution of the programming statements available in a

function or a try block.

 In C++, an exception handler can rethrow a caught

exception by invoking the throw construct without any

arguments.

195

 The catch block in the exception handling mechanism is

responsible for providing the exception handler for

matching exceptions.

 When an exception is occurred in a constructor then the

corresponding object may not be created fully and then the

destructor is invoked to release the partially allocated

resources. In inheritance, when an exception is raised in a

base class constructor then constructors of the corresponding

derived classes will not be invoked. If exceptions are raised

in the constructors of both the base class and its derived class

then the exception handler of the derived class will be

executed before the exception handler of the base class.

 Exception handling in constructors provides proper release of

resource allocations if any unexpected condition or run-time

error occurs during the execution of a constructor.

 Throwing exception from destructor is not recommended as

it may lead to some undesirable situations. But if it is

required to throw exception from a destructor then the

exceptions should be caught and handled inside the

destructor itself.

 In C++, ‘unexpected()’, ‘set_unexpected()’, ‘terminate ()’

and ‘set_terminate()’ are the built-in functions used to

handle uncaught exceptions..

 In C++, exception handling in class template is same with

the normal exception handling.

4.10ANSWERS TO CHECK YOUR PROGRESS

1.

(a). (ii) Run time error

(b). (iv) Both (i) and (ii)

(c). (iii) terminate

(d). (i) try

(e). (ii) catch

(f).(iii) throw

 (g).(iv)throw()

 (h). (ii) Destructor

196

 (i). (iii) set_terminate()

 (j). (i)set_unexpected()

4.11 POSSIBLE QUESTIONS

1) What is Exception? How Exceptions are handled in C++?

2) Write down the advantages of Exception handling mechanism.

3) Explain the Exception handling model in C++ programming

language.

4) How uncaught exceptions are handled in C++?

5) What happens when exceptions are raised in constructors?

6) Why it is not recommended to raise exceptions from

destructor?

4.12 REFERENCES AND SUGGESTED READINGS

1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering

C++. Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++.

Tata McGraw-Hill, 2006

3) Jana, Debasish. Java and object-oriented programming

paradigm. PHI Learning Pvt. Ltd., 2005.

4) Schildt, Herbert. Java: the complete reference. McGraw-Hill

Education Group, 2014.

---×---

197

UNIT 1: INTRODUCTION TO FUNCTIONAL

PROGRAMMING LANGUAGES

UNIT STRUCTURE

1.1 Introduction

1.2 Objectives

1.3 Principles of Functional Programming

1.3.1 Function Prototype

1.3.2 Function Definition

1.3.3 Function call

1.4 Function parameters

1.5 Scope and environment of a variable

1.6 Recursive Functions

1.7 Virtual Functions

1.8 Introduction to LISP

1.8.1 Debugging in CL

1.8.2 Developing Programs in CL

1.8.3 Functions in CL

1.8.4 Named Functions

1.9 Summing up

1.10 Answer To Check Your Progress

1.11 Possible Questions

1.12 References and Suggested readings

1.1 INTRODUCTION

It is difficult to implement a large program although all the

algorithms are available. To implement those types of program,

program must be split into a number of subprograms with the help

of functions. In this unit we will discuss about the principles of

functional programming and its components. Here we will also

discuss different parameter passing mechanism of a function in C++

and implementation of virtual functions. Finally we will discuss the

198

concept of LISP (LISt Processing) and implementation of it in

different situations

1.2 OBJECTIVES

After going through this unit learner will able to

 Understand the concept of Functional programming.

 Learn about different parameter passing mechanisms in C++.

 Understand the concept of scope of a variable in a function.

 Learn about the recursive functions.

 Understand the concept of LISP and its implementation

1.3 PRINCIPLES OF FUNCTIONAL PROGRAMMING

A set of program that can be processed independently is known as

function. In a large program a repeated group of instructions can

arrange as a function. Functions are independent because the

variable names within the function are local to that function.

Parameters plays a vital role between the calling and called function.

The use of functions makes easier to implement a complex program.

The advantages of functional programming are as follows

 Modular programming

 Easy to debug

 Reducing the amount of work

 Due to the code reusability, size of the program is reduced

 Divide-and-conquer principle

Different components are required for constructing or working with

functions. Every function has the following components

 Function prototype or function declaration

 Function parameter

 Function definition

 Function call

 Return statement

199

The Figure 1.1 shows the structure of a function

void fun1(int x, int y); Function prototype

…………………………..

………………………….. formal parameter

void fun1(int x, int y) function definition

{

……………………

…………………… body of the function

……………………

}

void main()

{

…………………………

………………...............

fun1(a,b); function call

………………………….

…………………………… actual parameter

}

Figure 1.1 components of a function

1.3.1 Function Prototype

Function prototype provides the following information to the

compiler

 The name of the function

 The type of the returned value (by default the returned value

is integer).

 The types of arguments that must be supplied in a call to the

function.

Prototype is the key components added to the C++ function. When a

function call is encountered, the compiler checks the function call

with the function prototype for the correct use of the arguments. If

any violation is found, compiler will inform the user about that

violence.

A function prototype is a declaration statement which has the

following syntax

return_value function_name(argument1,argument2,……….

 ,argument n);

200

 The return_value specifies the data-type of the value in the return

statement. The function can return any data-type and if there is no

any return value it can be placed with “void” before the function

name.

1.3.2 Function Definition

The function itself is referred to as function definition. The first line

of the function definition is known as function declarator and it is

followed by the function body. The body of the function is enclosed

in braces, C++ allows the definition to be placed anywhere in the

program. The prototype declaration is optional, if the function

defined before its invocation. The definition of a function can be

defined as follows

 int big(int p, int q) function declarator

 {

if (p > q)

 return p; function body

else

return q;

 }

1.3.3Function call

A function call is specified by the function name followed by the

arguments which is enclosed in parentheses and it will be terminated

by a semicolon. A function can be call as follows

r = big (x,y)

The call statement causes the control to be transferred to the first

statement in the function body and after execution of the function

body the control is returned to the statement following the function

call.

201

1.4 FUNCTION PARAMETERS

The parameter in the function call is known as the actual parameters

and the parameters in the function declarator are known as the

formal parameters.

 r = big(x,y)

Here passes the parameter x and y to big(). The parameters p and q

are formal parameters. When a function call is made, it will

establish a communication between actual and formal parameters.

The value of the variable x is assigned to p and the value of the

variable y is assigned to q. Functions can be categorized into two

categories one is function that do not have return value and the other

is function with return value.

Here the return value of the function big() is assigned to the local

variable “r” in the main() function. The Figure 1.2 shows the

function big () returning a value to the caller.

 Caller Callee

Figure 1.2 Function returning a value

The process of passing multiple parameters is similar to passing a

single parameter. The value of the first actual parameter in the caller

is assigned to the first formal parameter in the called function and

the value of the second actual parameter is assigned to the second

formal parameter in the called function.

void main()

{

 ………………

 ………………

 r = big (x, y);

 ……………….

……………….

}

int big (p, q)

{

if (p > q)

return p;

else

return q;

 }

202

1.4.1 Parameter Passing

It is a mechanism for communication of data and information

between caller and called functions. C++ supports three types of

parameter passing mechanism

 Pass by value

 Pass by Address

 Pass by reference(only in C++)

In case of parameter passing the following conditions must be

satisfied for a function call

 The number of parameters in the function call and in the

function declaration must be the same

 The data type of the each parameter in the function call must

be the same with the corresponding parameter in the function

declaration.

 Pass by value

Pass by value is the default mechanism of parameter passing

technique. Pass-by-value mechanism does not change the contents

of the argument in the calling function even if these arguments

changes in the called function. Because the content of the actual

parameter in a caller function is copied to the formal parameter in

the callee or called function.

 Pass by Address

In pass by address mechanism the address of the variable is passed

instead of passing the values of the variables. Here the address of

the argument is copied into a memory location. The de-referencing

operator is used in the called function for this purpose.

203

 Pass by Reference

Pass by reference has the functionality of pass-by-pointer but it uses

the syntax of call by value. In pass by reference the function body

and the call mechanism is similar to that of a call by value but it is

actually a call by pointer. In the function declaration parameters

which are to be received by reference must be preceded by the “&”

operator. Here any modification done to these operators will also be

reflected in the actual parameters.

The following points are important about the reference parameters

 Reference parameters always refer to variable and it can

never be null.

 A reference can never be changed once it is established.

 There is no any explicit requirement to difference the

memory address and accessing the actual value for a

reference.

1.4.2 Default arguments

A function call should specify all the arguments used in the function

definition. In case of C++, if one or more arguments are omitted the

function take the default values for the omitted arguments. It will be

done by providing the default values in the function prototype. The

parameters without default value are placed first and those with

default values are placed later. To establish a default value, the

function prototype or the function definition must be used. The

compiler checks the function prototype and declarator with the

arguments in the function call and then it will provide default values

to those arguments. The default arguments must be known to the

compiler prior to the invocation of a function. It will reduce the

complexity of passing arguments at point of function call.

204

1.5 SCOPE AND ENVIRONMENT OF A VARIABLE

In a program, every variable has some memory associated with it.

Allocation of memory for a variable is released at different

situations in the program. For example the allocation memory for

the local variable is defined within a function is released when the

function starts execution and released as the function return a value.

A variable declared outside the all the function is known as the

global variable. It will be accessed in the entire life-span of the

program. The period of time during which the memory is associated

with the variable is known as the extent of the variable. Consider the

following function

void function1()

 {

 int i;

 i=5;

}

Declaring the variable “i” as integer means deciding the memory

location occupied by the variable “i”. The memory for this type of

local variable is allocated in the program stack when the function is

invoked. Here the memory allocated for “i” is released when the

function is exit or terminated and the memory space is available for

future use. Identifier defined in a function is not accessible outside

the function that means their extent is limited of that function. Let us

take the following example

void function1()

{

int i;

i = 5;

}

void main()

{

205

 i = 10

 function1 ();

 i = 20;

}

When the program is compiled, the statements i=10 and i=20 will

lead a compilation errors. Here “i” is not visible inside the main()

function. The identifier “i” is only valid inside the function1(). The

region of a source code where the identifier is visible is known as

the scope of the identifier. In the above program the scope of the

variable “i”is within the function1() only.

1.6 RECURSIVE FUNCTIONS

Scientific operations may also be expressed using recurrence

relations. In C++ allows the programmers to express these types of

relations in special function is known as the recursive functions.

Recursive function is a function that contains a function call to

itself. The recursive function for computing the factorial of a

number can be expressed as follows

fact (n) = � 1 �� � = 0
� ∗ �
��� − 1�, ��ℎ������ �

Recursion revolves around a function recalling itself. In a recursive

function there must be one function call to itself. Two important

conditions which must be satisfied by any recursive function are as

follows

 Each time a function calls to itself it must be nearer to

solution of the problem.

 There must a condition for stopping the process of

computation.

1.7 VIRTUAL FUNCTIONS

In C++, polymorphism refers the form of a member function that

can be changed at runtime. The function that can be changed at the

runtime is known as the virtual function and the class that contains

206

the virtual function is known as the polymorphic class. The objects

of the polymorphic class are addressed by the pointer and respond

differently for the same message at the runtime. Types of

polymorphism in C++ are shown in the Figure 1.3.

Figure 1.3. Types of polymorphism in C++

To realizing the polymorphism, function overloading and operator

overloading features are implemented in C++. Polymorphism can

also be implemented in C++ through dynamic binding mechanism.

Compile time polymorphism can be achieved by two ways one is

function overloading and other is operator overloading. Function

overloading can be implemented by invoking function whose

signature is similar with the arguments specified in the function call

statement. Again the operator overloading is implemented by

allowing operators to operate on some user-defined data-type with

the same interface as that of the standard data types. Function call

can be bound to the actual function either at the compile time or at

runtime. Resolving a function call at compile time is known as static

binding and resolving a function call at run time is known as

dynamic binding. In C++, dynamic binding is achieved by using the

virtual function. It allows programmer to declare functions in a base

class which can be defined in the each derived class. The syntax of

defining a virtual function in a class is shown as follows

Polymorphism

Compile Time Run-Time

Function

Overloading

Operator

Overloading

Virtual

Functions

207

class student

{

 public:

……………….. Keyword

………………..

virtual Return Type Function Name(arguments)

{

…………………

…………………

}

…………………….

};

The keyword “virtual” provides a mechanism for defining the

virtual function. The virtual keyword is used with the functions

which are to be bound dynamically when we declaring the member

function in the base class. It is recommended that a virtual function

should be defined in the public section of a class. When virtual

function is declared in the public section of a class it allows

deciding which function to be used at runtime. In most of the cases

virtual functions are defined with a null-body that means it has no

definition. In such situation the functions in the base class are

similar to do-nothing or dummy functions. These functions are

called pure virtual function. The syntax of defining pure virtual

function is as follows

class student

{

public:

 ……………….

 ………………..

virtual Return Type Function Name (arguments) = 0;

…………………

208

………………….

};

A class containing pure virtual functions cannot be used to define

any objects. Such type of classes is called abstract class.

Check Your Progress-I

1. Multiple Choice Questions

(i) A set of program that can be processed independently is

known as

(a) Array

(b) String

(c) Function

(d) Structure

(ii) In C++, the first line of the function definition is known

as

(a) function declaratory

(b) Function prototype

(c) First line

(d) Function heading

(iii) The parameter in the function call is known as the

(a) Formal parameter

(b) Actual parameter

(c) Default parameter

(d) Null parameter

(iv) Default mechanism of parameter passing technique is

known as

(a) Call by address

(b) Call by reference

(c) Call by array

(d) Call by value

(v) A variable declared outside the all the function is known

as

(a) Global variable

(b) Local variable

(c) default variable

(d) Null variable

209

2. State True or False

(i) C++ allows the function definition to be placed anywhere in the

program.

(ii) The process of passing multiple parameters is different to

passing a single parameter.

(iii) A reference can never be changed once it is established.

(iv) The class that contains the virtual function is known as the

polymorphic class.

(v) Resolving a function call at compile time is known as dynamic

binding.

1.8 INTRODUCTION TO LISP

LISP high level programming language after FORTRAN. Lisp was

invented by John McCarthy in 1958 and it was first implemented by

Steve Russell on an IBM 704 computer. CL(Common Lisp)

originated during the 1980 and 1990s. LISP is serves as common

language and it can be easily extended for specific implementation.

It is depends on the machine specific characteristics.

Some of the features of common LISP are as follows

 It is machine-independent

 It allow programs dynamically

 It provides high level debugging and advanced object-

oriented programming.

 It provides a complete I/O library and extensive control

structures.

 Automatic memory management/ Garbage collection

 Portability: CL programs are especially portable.

 Standard Features: CL contains many built in features.

Features such as full-blown symbol tables and package

systems, hash tables etc. which are required in significant

development of other languages.

CL is different from other languages due to its unique syntax and

development mode. It allows programmer to make changes and test

the codes immediately in an incremental manner. A more powerful

210

way to developing with CL is running it in a powerful text editors.

One of the popular text editors for running a CL program is GNU

Emacs. One advantages of this editor is that the editor keeps a

history of the entire session. All items can be easily recalled

according to the requirement of the programs.

To start Emacs, type the following lines

emacs

or

gnuemacs

then start a Unix shell within emacs by typing M-x shell. Now type

lisp

inside this shell’s window to start a CL session .

To shut down a session, exit CL by typing

(excl:exit)

Exit from the shell by typing

exit

Implementation of CL supports IDE. This will provide a visual

layout and some design capabilities for the user interface for

application development.

1.8.1 Debugging in CL

CL provides an advanced debugging and error-handling capabilities.

For this reason CL programs are very rarely crash in a fatal manner.

Stop To Consider

GNU Emacs comes pre-installed with all Linux systems. Emacs

distributions and documentation are available from

http://www.gnu.org

211

A break occurs when CL programs detected any errors. It will print

an error message and presents the user with one or more possible

restart actions. The debugger is itself a CL Command Prompt but it

has some additional functionality. Some of the common debugger

commands are as follows

reset returns to the top level

pop returns one level up

continue continues execution after a break or an error.

zoom Views the current Function call

up Moves current pointer up one frame in the stack

down Moves the current pointer down one frame in the stack

help Describes all the debugger commands

1.8.2 Developing Programs in CL

The development session includes the text editor with appropriate

customizations and a CL process with any standard code loaded into

it. While any programmer certainly developed an application for the

top base of CL, then the programmer must be worked in the layered

fashion. In top of the layer consists of some standard tools or

libraries. In general CL packages and Macros must be defined

before they can be used and referenced. One of the strong points of

CL is its flexibility in working with the other environments. The

following are the different ways in which CL can integrate with

other language and environments.

(i) Interfacing with the Operating System

(ii) Foreign Function Interface

(iii) Interfacing with Corba

(iv) Interfacing with Windows (COM, DLL, DDE)

(v) Code generation into other languages

212

CL uses the generalized prefix notation. One of the frequent actions

in a CL program is call a function. In most of the cases it is done by

writing an expression with names of the function, followed by its

arguments. Let us take the following example

(+ 2 2)

In the above example the function name followed by the symbol

“+”, followed by the arguments of two 2s. When the expression is

evaluated it returns the value 4. One of the important things about

LISP is the simplicity and consistency of its syntax.CL supports a

full range of floating-point decimal numbers and true ratios. As we

get the numbers the native data type which will simply evaluate to

them when entered at the top level in an expression. Function

arguments of a CL are evaluated in order from left to right and in

the final stage they are passed to the function for the evaluation.

1.8.3 Functions in CL

Function is the basic building block of CL. The way to defining the

named functions in CL is with macro defun (Definition of a

function). Once the function has been defined with defun,

programmer can call it like other function by writing it in

parentheses with its arguments.

1.8.4 Named Functions

 It is important to understand that a function is actually a kind of

object separated from any symbol with it must be associated.

Programmer can call actual Function-object in a symbol’s function-

slot. This process is shown as following

 (symbol-function ’+)

 #<Function +>

213

Functional arguments themselves are Function-objects in CL. The

optional arguments to a function must be specified after any

required arguments. The optional argument is identified by the

symbol “&optional” in the argument list. Each optional argument

can be either a symbol or a list of containing a symbol and an

expression which will return a default values. In case of symbol the

default value is taken to be NIL.

1.9 SUMMING UP

 A set of program that can be processed independently is known

as function and it is independent because the variable names

within the function are local to that function.

 Prototype is the key components added to the C++ function.

When a function call is encountered, the compiler checks the

function call with the function prototype for the correct use of

the arguments.

 The first line of the function definition is known as function

declarator and it is followed by the function body.

Check Your Progress-II

3. State True or False

(i) LISP is serves as common language and it can be easily

extended for specific implementation.

(ii) LISP does not allow programmer to make changes and test

the codes.

(iii) A break occurs when CL programs detected any errors.

(iv) CL is not flexible in working with the other environments.

(v) CL implementation supports IDE.

214

 A function call is specified by the function name followed by

the arguments which is enclosed in parentheses and it will be

terminated by a semicolon.

 The parameter in the function call is known as the actual

parameters and the parameters in the function declarator are

known as the formal parameters.

 Functions can be categorized into two categories one is function

that do not have return value and the other is function with

return value.

 The process of passing multiple parameters is similar to passing

a single parameter.

 Pass by value is the default mechanism of parameter passing

technique.

 Pass-by-value mechanism does not change the contents of the

argument in the calling function even if the arguments changes

in the called function

 Global variable will be accessed in the entire life-span of the

program and the period of time during which the memory is

associated with the variable is known as the extent of the

variable.

 A recursive function is function that contains a function call to

itself.

 The function that can be changed at the runtime is known as the

virtual function and the class that contains the virtual function is

known as the polymorphic class.

 Polymorphism can be implemented in C++ through dynamic

binding mechanism.

 Compile time polymorphism can be achieved by two ways one

is function overloading and other is operator overloading.

215

 .Resolving a function call at compile time is known as static

binding and resolving a function call at run time is known as

dynamic binding.

 LISP high level programming language after FORTRAN and it

was invented by John McCarthy in 1958.

 CL is different from other languages due to its unique syntax

and development mode and it allows programmer to make

changes and test the codes immediately in an incremental

manner.

 While any programmer certainly developed an application for

the top base of CL, then the programmer must be worked in the

layered fashion.

 The way to defining the named functions in CL is with macro

defun and once the function has been defined with defun,

programmer can call it like other function by writing it in

parentheses with its arguments.

 Functional arguments themselves are Function-objects in CL.

The optional arguments to a function must be specified after

any required arguments.

 The optional argument is identified by the symbol “&optional”

in the argument list.

1.10 ANSWER TO CHECK YOUR PROGRESS

1.(i) (C) (ii) (a) (iii) (b) (iv)(d) (v)(a)

2. (i) True (ii) False (iii) True (iv) True (v) False

3.(i) True (ii) False (iii) True (iv)False (v)True

1.11 POSSIBLE QUESTIONS

1. What are the advantages of functional programming?

2. Explain the components of a function?

3. What is function prototype?

216

4. Differentiate between function definition and function

declaration

5. Explain the different types of parameters in a function.

6. What is parameter passing in a function? Explain the

different ways of parameter passing mechanism.

7. What is a scope of a variable? Explain with a suitable

example.

8. What is recursive function?

9. What is virtual function? Explain its syntax.

10. What is dynamic binding? How is it achieved?

11. What is LISP? Explain its features.

12. How is function implemented in LISP?

1.12 REFERENCES AND SUGGESTED READINGS

 Venugopal, K. R., Buyya, R., & Ravishankar, T. (2010).

Mastering C++. Tata McGraw Hill Education Private

Limited.

 T.W. Pratt and M. V. Zelkowitz: Programming Languages:

Design and Implementation; PHI.

 Ravi Sathi, Programming Languages, Concepts and

Constructs, Pearson Education, Asia, LPE

 B. Stroustrup, The C++ Programming Language, Addison

Wesley Publishing Company, 1995.

 Cooper Jr, D. J. (2003). Basic Lisp Techniques.

---×---

217

UNIT 2: FUNCTIONAL PROGRAMMING IN C++

Unit Structure:

2.1 Introduction

2.2 Objectives

2.3 Structure and Components of Function in C++

2.3.1 Function Declaration

2.3.2 Function Definition

2.3.3 Function Call

2.3.4 Parameters

2.4 Polymorphic Function in C++

2.4.1 Function Overloading in C++

2.4.2 Operator Overloading in C++

2.4.3 Function Overriding in C++

2.5 Inline Function

2.6 Recursive Function in C++

2.7 Summing Up

2.8 Answers to Check Your Progress

2.9 Possible Questions

2.10 References and Suggested Readings

2.1 INTRODUCTION

We have already learnt about functional programming in the

earlier unit. A function in C++ is a group of C++ statements that

will perform a specific computational task. Different library

functions are already available in C++ library. In C++, programmers

can also define own functions as per their requirements. A C++

program can be developed to solve a computational problem by

using different library functions and writing multiple user-defined

functions as per requirements where each function will perform a

specific job. In this unit, functional programming in C++ will be

discussed.

218

2.2 OBJECTIVES

After going through this unit, we will be able to learn:

 About the structure and components of functions in

C++.

 About polymorphic functions in C++.

 About Inline function in C++.

 About Recursive function in C++.

2.3 STRUCTURE AND COMPONENTS OF FUNCTION

 IN C++

 The structure of a function in C++ is composed of the

following components.

 Function Declaration

 Function Definition

 Function Call

 Parameters

 Let us consider the following C++ program to understand the

structure of function in C++ programming.

Program 2.1: C++ program with a function that will display all the

prime numbers available within an input range and the function will

return the total number of prime numbers that are displayed.

#include<iostream.h>

#include<conio.h>

int printPrimeNumbers(int, int); // Function Declaration

int main()

{

 int start, end, totalPrime;

 cout<<"\n Enter the start value of the range=";

 cin>>start;

 cout<<"\n Enter the end value of the range=";

 cin>>end;

 if((start >= 1) && (start < end))

 {

219

 cout<<"\nPrime numbers within "<<start<<" and "<<end<<" :\n";

totalPrime = printPrimeNumbers(start, end); // Function Call

cout<<"\n Total number of displayed Prime numbers= ";

 cout<<totalPrime;

 }

 else

 cout<<”\n Wrong Input”;

 getch();

 return(10);

}

int printPrimeNumbers(int s, int e) //Function Definition

{

 int countPrime = 0, i, j, flag;

 for(i = s+1; i<e; i++)

 {

 j = 2;

 flag = 1;

 while(j <= i/2)

 {

 if(i%j == 0)

 {

 flag = 0;

 break;

 }

 j++;

 }

 if(flag==1)

 {

 cout<<"\t"<<i;

 countPrime++;

 }

 }

return(countPrime);/*Returns total number of available

Prime numbers */

 }

220

Output:

Enter the start value of the range= 2

Enter the end value of the range= 10

Prime numbers within 2 and 10 :

3 5 7

Total number of displayed Prime numbers= 3

2.3.1 Function Declaration

The function declaration is also referred as function

prototype. The function declaration of a C++ function is a statement

used to notify the compiler about the presence and format of the

function in a C++ program. Before using a function in a C++

program, its declaration has to be written in that program. The

function declaration of a function consists of the return type,

function name and data-types of the parameters that will be passed

into that function. If the function will not return any value then the

return type of its function declaration will be ‘void’.

For example: In Program 2.1, function declaration of the

function,‘printPrimeNumbers(int, int)’ is written as:

int printPrimeNumbers(int, int);

In this statement, the return type is ‘int’ and it means that the

function will return an integer value. The function name is

‘printPrimeNumbers’. Finally, the parameter type list includes two

‘int’ data types.

2.3.2 Function Definition

 We have already learnt that each function performs a

specific task. The function definition of a C++ function includes a

block of C++ statements to perform its job. A Function Definition of

a C++ function consists of the return type, the function name,

parameters with their data types and a block of C++ statements.

When a function is called then its block of statements is executed.

For example: In Program 2.1, the following function

definition is used where ‘s’ and ‘e’ are the parameters passed into

the function, printPrimeNumbers(). So, two integer values will be

passed into the function.

int printPrimeNumbers(int s, int e) //Function Definition

221

{

 int countPrime = 0, i, j, flag;

 for(i = s+1; i<e; i++)

 {

 j = 2;

 flag = 1;

 while(j <= i/2)

 {

 if(i%j == 0)

 {

 flag = 0;

 break;

 }

 j++;

 }

 if(flag==1)

 {

 cout<<"\t"<<i;

 countPrime++;

 }

 }

 return(countPrime); /*Returns total number of available

Prime numbers */

 }

This function definition will display all the prime numbers

available within the integer values passed through the parameters,

‘s’ and ‘e’. The above function definition also returns the total

number of prime numbers that are displayed by it.

2.3.3 Function Call

Function call statement is used when a library or a user

defined function is required to be executed in a C++ program to

perform a specific task provided by that function. A function call

statement includes the function name followed by the parentheses, ‘(

)’. If the function requires any data to perform its job then required

data can be passed into the function through parameters. In the

function call statement, parameters can be passed inside the

parentheses, ‘()’.

For example: In Program 2.1, the function call statement is

written as:

222

totalPrime = printPrimeNumbers(start, end);

In this statement, the function, ‘printPrimeNumbers’ is

called and two integer values are passed into it through the

parameters, ‘start’ and ‘end’. When this function call statement is

executed then the block of C++ statements of the user-defined

function, ‘printPrimeNumbers’ will be executed and an integer

value will be returned which will be stored in the variable,

‘totalPrime’.

2.3.4 Parameters

A parameter passed into a C++ function is actually a variable

to store the required data that will be used by the function to

perform its job. Any number of parameters can be passed into a

function as per requirement. Parameters in case of C++ function can

be categorized into two types that are Actual parameters and Formal

parameters. Parameters used in the function call statement are called

as Actual parameters. On the other hand, parameters used in the

function definition are called as Formal parameters.

For example: In Program 2.1, ‘start’ and ‘end’ are the

Actual parameters as they are used in the function call statement. On

the other hand, ‘s’ and ‘e’ are the Formal parameters as they are

used in the function definition.

2.4 POLYMORPHIC FUNCTION IN C++

We have already learnt about Polymorphism in an earlier

chapter. In this unit, we are going to discuss the implementation of

different types of polymorphic functions in C++. In C++,

polymorphic functions can be implemented by function overloading,

operator overloading and function overriding.

2.4.1 Function Overloading in C++

 In C++, multiple functions with same function name can be

defined in a program where functionalities of each function are

different from each other. It is referred as function overloading in

C++. In this process, both the number of parameters and type of the

parameters cannot be same among the functions with same name.

Let us consider the following C++ program (Program 2.2) to

understand the implementation of function overloading in C++.

223

Program 2.2: C++ program to show Function Overloading

#include<iostream.h>

#include<conio.h>

// Function prototypes for the overloaded functions

int average(int,int,int);

float average(float, float, float);

int average(int [],int);

int main()

{

int num1,num2,num3,avg;

int arrNum[200],i, N;

float rnum1,rnum2,rnum3,ravg;

cout<<"\n Enter three Integer numbers::";

cin>>num1>>num2>>num3;

avg=average(num1,num2,num3); /*‘average()’ with three

 ‘int’ type parameters will be called*/

cout<<"\n Average of the three Integer numbers is="<<avg;

cout<<"\n\n Enter three Real numbers::";

cin>>rnum1>>rnum2>>rnum3;

ravg=average(rnum1,rnum2,rnum3); /* ‘average()’ with

three‘float’ type parameters will be called*/

cout<<"\n Average of the three Real numbers is="<<ravg;

cout<<"\n\n Enter the total number of data to be stored in the array=";

cin>>N;

if(N>200)

cout<<"\n Wrong input";

else

{

cout<<"\n Enter "<<N<<" number of integer numbers into the array::";

for(i =0;i<N;i++)

{

 cout<<"\nEnter "<<i+1<<"th data into the array=";

 cin>>arrNum[i];

}

avg=average(arrNum,N); /*‘average()’ with one integer

array and one ‘int’ type parameter will be called*/

cout<<"\n\n Average of the numbers stored in the array is="<<avg;

}

return(0);

224

}

int average(int N1,int N2,int N3)

{

return((N1+N2+N3)/3);

}

float average(float N1,float N2,float N3)

{

return((N1+N2+N3)/3);

}

int average(intarrNum[],int N)

{

int i,total=0;

for(i =0;i<N;i++)

{

total+=arrNum[i];

}

return(total/N);

}

Output of the program:

Enter three Integer numbers::34 67 87

Average of the three Integer numbers is=62

 Enter three Real numbers::33.5 8.54 91.2

 Average of the three Real numbers is=44.413334

Enter the total number of data to be stored in the array=5

Enter 5 number of integer numbers into the array::

Enter 1th data into the array=5

Enter 2th data into the array=8

Enter 3th data into the array=12

Enter 4th data into the array=56

Enter 5th data into the array=89

Average of the numbers stored in the array is=34

225

 In Program 2.2, three functions with same name (‘average’)

are defined and from the program, following points are observed.

 ‘int average(int, int, int);’ is the function prototype of the

first function with function name, ‘ average’. Three integer

numbers are passed into this function and it will return the

average of these three integer numbers. So, to call this

function, three ‘int’ type parameters must be passed into the

function call.

 ‘float average(float, float, float);’ is the function prototype of

the second function with function name, ‘ average’. Three

real numbers are passed into this function and it will return

the average of these three real numbers. So, to call this

function, three ‘float’ type parameters must be passed into

the function call.

 ‘int average(int [], int);’ is the function prototype of the third

function with function name, ‘ average’. One integer array

and one integer number are passed into this function. The

integer number represents the total number of integer

numbers stored in the integer array. This function will return

the average of the integer numbers stored in the integer

array. So, to call this function, two ‘int’ type parameters has

to be passed into the function call where the first parameter

will be an array.

2.4.2 Operator Overloading in C++

 We have already learnt about operator overloading in an

earlier unit. In this chapter, we are going to discuss the

implementation of operator overloading in C++ programming. In

C++ programming, additional operation can be defined for an

operator and it is termed as operator overloading. Operator

overloading can be implemented in C++ by defining special member

functions or friend functions in a class.

 In C++, following syntax is used to define a special member

function for operator overloading where ‘returnType’ is the type of

the data that will be returned from the operator overloading function,

‘operator’ is a C++ keyword, ‘operatorSymbol’ is the symbol that

represent the operator and ‘[Parameter List]’ is the list of parameters

that may be passed into the function depending upon the

requirement.

226

return Type operator operator Symbol ([Parameter List])

{

 // C++ statements to define additional operation for the

operator

}

Let us consider the following C++ program to overload --

(Decrement) operator which is a unary operator. In case of

overloading a unary operator using special member function, no

parameter is required to be passed into the operator overloading

function.

Program 2.3: C++ program to overload -- (Decrement) operator

include <iostream.h>

class Decrement

{

private:

 int Num;

public:

Decrement()

 {

Num = 0 ;

 }

 void Input();

 void Display();

 void operator --(); /* Function prototype of the special

member function for Operator overloading */

} ;

void Decrement :: Input()

{

 cout<< "\n Enter an integer number = ";

 cin>>Num;

}

void Decrement :: Display()

227

{

 cout<< "\n The value in Num = " <<Num;

}

void Decrement :: operator --() /* Special member function for

Operator overloading*/

{

 Num = Num -5;

}

int main()

{

Decrement D1;

 D1.Input();

D1.Display();

--D1;

cout<<”\n After decrementing the object D1:\n”;

D1.Display();

 return(0);

}

Output of the above program:

Enter an integer number = 34

The value in Num = 34

 After decrementing the object D1:

The value in Num = 29

 In the above C++ program (Program 2.3), operator

overloading is performed on the decrement operator (--). The

decrement operator is overloaded to decrement the object of the class

‘Decrement’ where the value of the variable ‘Num’ associated with

an object is decremented by 5.

Let us consider the following C++ program to overload

Subtraction (-) operator using special member function. As

Subtraction (-) operator is a binary operator, at least one parameter is

required to be passed into the special member function for

overloading the operator.

228

Program 2.4: C++ program to overload -(Subtraction) operator

using special member function

include <iostream.h>

class complexNumber

{

private:

float rl,img;

public:

void readComplex();

void displayComplex();

complexNumber operator -(complexNumber);

};

void complexNumber::readComplex()

{

cout<< "\n Enter the Real part of the Complex Number = ";

cin>>rl;

cout<< "\n Enter the Imaginary part of the Complex Number = ";

cin>>img;

}

void complexNumber :: displayComplex()

{

if(img==0)

cout<<rl<< " + 0i";

else

{

if(img<0)

 {

if(img== -1)

 cout<<rl<< " - i";

else

 cout<<rl<< " - " << -1*img<< "i";

}

else

{

229

if(img==1)

cout<<rl<< " + " << "i";

else

cout<<rl<< " + " <<img<< "i";

}

}

}

complexNumber complexNumber:: operator -(complexNumber CN)

{

complexNumber tempCN;

tempCN.rl = rl - CN.rl;

tempCN.img = img - CN.img;

return(tempCN);

}

int main()

{

complexNumber compN1 , compN2 , compNSub;

cout<< "\n Enter the First Complex Number:";

compN1.readComplex();

cout<< "\n Enter the Second Complex Number:";

compN2.readComplex();

compNSub = compN1-compN2;

cout<< "\n First Complex Number is =";

compN1.displayComplex();

cout<< "\n Second Complex Number is =";

compN2.displayComplex();

cout<< "\n Subtraction of the two Complex Number =";

compNSub.displayComplex();

return(0);

}

Output of the above program:

Enter the First Complex Number:

Enter the Real part of the Complex Number = 7

Enter the Imaginary part of the Complex Number = 9

Enter the Second Complex Number:

Enter the Real part of the Complex Number = 2

Enter the Imaginary part of the Complex Number = 3

First Complex Number is =7 + 9i

230

Second Complex Number is =2 + 3i

Subtraction of the two Complex Number =5 + 6i

 In the above program (Program 2.4), Subtraction (-)

operator is overloaded to perform subtraction operation between two

objects of the class, ‘complexNumber’. It is observed that each

object of the class, ‘complexNumber’ represents a complex number.

So, subtraction operation on two complex numbers is implemented

by overloading Subtraction (-) operator in this program.

 In C++, when a non-member function is declared as friend

inside a particular class using ‘friend’ keyword then it is referred as a

friend function to that class. A friend function to a class can access

the private members of that class. Operator overloading can be

implemented using friend function. In case of overloading unary

operators using friend function, one parameter must be passed to the

operator overloading function and in case of overloading binary

operators, two parameters are required to be passed into the operator

overloading function. The syntax of friend function declaration in a

class is presented as follows.

friend returnType operator operatorSymbol([Parameter List]);

 Let us consider the following C++ program to understand the

operator overloading using friend function.

Program 2.5: C++ program to overload Subtraction (-) operator

using friend function

include <iostream.h>

class complexNumber

{

 private:

 float rl, img;

 public:

 void readComplex();

 void displayComplex();

 /* Friend function declaration to overload Subtraction (-)

operator. */

231

 friend complexNumber operator -(complexNumber,complexNumber);

};

void complexNumber::readComplex()

{

 cout<< "\n Enter the Real part of the Complex Number = ";

 cin>>rl;

 cout<< "\n Enter the Imaginary part of the Complex Number = ";

 cin>>img;

}

void complexNumber :: displayComplex()

{

 if(img==0)

 cout<<rl<< " + 0i";

 else

 {

 if(img<0)

 {

 if(img== -1)

 cout<<rl<< " - i";

 else

 cout<<rl<< " - " << -1*img<< "i";

 }

 else

 {

 if(img==1)

 cout<<rl<< " + " << "i";

 else

 cout<<rl<< " + " <<img<< "i";

 }

 }

}

//Friend function definition to overload Subtraction (-) operator.

complexNumber operator -(complexNumber CN1, complexNumber CN2)

{

232

 complexNumber tempCN;

 tempCN.rl = CN1.rl - CN2.rl;

 tempCN.img = CN1.img - CN2.img;

 return(tempCN);

}

int main()

{

 complexNumber compN1 , compN2 , compNSub;

 cout<< "\n Enter the First Complex Number:";

 compN1.readComplex();

 cout<< "\n Enter the Second Complex Number:";

 compN2.readComplex();

 compNSub = compN1-compN2;

 cout<< "\n First Complex Number is =";

 compN1.displayComplex();

 cout<< "\n Second Complex Number is =";

 compN2.displayComplex();

 cout<< "\n Subtraction of the two Complex Number =";

 compNSub.displayComplex();

 return(0);

}

Output of the above program:

Enter the First Complex Number:

Enter the Real part of the Complex Number = 3

Enter the Imaginary part of the Complex Number = 7

Enter the Second Complex Number:

Enter the Real part of the Complex Number =8

Enter the Imaginary part of the Complex Number = 2

First Complex Number is =3 + 7i

Second Complex Number is = 8 + 2i

Subtraction of the two Complex Number = -5 + 5i

 In the above program (Program 2.5), Subtraction (-)

operator is overloaded using friend function to perform subtraction

operation between two objects of the class,‘complexNumber’. It is

observed that each object of the class,‘complexNumber’ represents a

complex number. So, subtraction operation on two complex numbers

is implemented by overloading Subtraction (-) operator using friend

233

function in this program. It is also observed that two objects of the

class,‘complexNumber’ is required to pass as parameters into the

friend function for overloading the Subtraction operator.

 In C++, the following operators cannot be overloaded by

using friend function.

1. ->

2. ()

3. []

4. =

In C++, all operators cannot be overloaded. Following

operators cannot be overloaded in C++.

1. . (dot operator)

2. :: (Scope resolution operator)

3. ?:

4. *

5. sizeof()

2.4.3 Function Overriding in C++

In C++, a member function of a base class can be overridden

by a member function of its derived class. It is referred as function

overriding. In this process, the member function in the base class is

declared as virtual function by using ‘virtual’ keyword in C++.A

virtual function and the function which override it are exactly same

in respect of their names, number of parameters and types of

matching parameters. But both the function performs different tasks.

Let us consider the following C++ program to understand the

implementation of function overriding in C++.

Program 2.6: C++ program to show function overriding

#include<iostream.h>

class student

{

private:

char sName[200],sAddress[300],sCourse[50];

 int rollNo;

public:

 virtual void inputInfo();

virtual void displayInfo();

234

};

void student::inputInfo()

{

cout<<"\n\n Enter Student Information::";

cout<<"\n Enter student's name=";

gets(sName);

cout<<"\n Enter student's address=";

gets(sAddress);

cout<<"\n Enter the course of the student=";

gets(sCourse);

cout<<"\n Enter student's roll number=";

cin>>rollNo;

}

void student::displayInfo()

{

cout<<"\n\n Entered Student Information::";

cout<<"\n Stduent Name=";

cout<<sName;

cout<<"\n Student Address=";

cout<<sAddress;

cout<<"\n The course of the Student=";

cout<<sCourse;

cout<<"\n Student Roll Number=";

cout<<rollNo;

}

class examination: public student

{

private:

int markPaper1, markPaper2, markPaper3, markPaper4;

float markTotal, per;

public:

void inputInfo();

void displayInfo();

};

void examination::inputInfo()

{

cout<<"\n\n Enter Marks obtained in the Examination::";

235

cout<<"\n Enter marks obtained in Paper1=";

cin>>markPaper1;

cout<<"\n Enter marks obtained in Paper2=";

cin>>markPaper2;

cout<<"\n Enter marks obtained in Paper3=";

cin>>markPaper3;

cout<<"\n Enter marks obtained in Paper4=";

cin>>markPaper4;

markTotal= markPaper1+markPaper2+markPaper3+markPaper4;

per=markTotal/4;

}

void examination::displayInfo()

{

cout<<"\n\n Student's Examination Information::";

cout<<"\n Marks obtained in Paper1=";

cout<<markPaper1;

cout<<"\n Marks obtained in Paper2=";

cout<<markPaper2;

cout<<"\n Marks obtained in Paper3=";

cout<<markPaper3;

cout<<"\n Marks obtained in Paper4=";

cout<<markPaper4;

cout<<"\n Total marks obtained=";

cout<<markTotal;

cout<<"\n Obtained Percentage=";

cout<<per;

}

int main()

{

student *S,St;

examination Ex;

 S=&St;

 S->inputInfo();

S->displayInfo();

 S=&Ex;

 S->inputInfo();

S->displayInfo();

return(0);

}

236

Output of the program:

Enter Student Information::

Enter student's name=Sarat Das

Enter student's address= Guwahati, Assam

Enter the course of the student=M.Sc.IT

Enter student's roll number=1

Entered Student Information::

Stduent Name=Sarat Das

Student Address=Guwahati, Assam

The course of the Student=M.Sc.IT

Student Roll Number=1

Enter Marks obtained in the Examination::

Enter marks obtained in Paper1=78

Enter marks obtained in Paper2=67

Enter marks obtained in Paper3=76

Enter marks obtained in Paper4=90

Student's Examination Information::

Marks obtained in Paper1=78

Marks obtained in Paper2=67

Marks obtained in Paper3=76

Marks obtained in Paper4=90

Total marks obtained=311

Obtained Percentage=77.75

 In the above program (Program 2.6), ‘student’ is a base class

and ‘examination’ is a derived class. ‘student’ contains two virtual

functions that are ‘virtual void inputInfo()’ and ‘virtual void

displayInfo()’. Both these functions are overridden by ‘void

inputInfo()’ and ‘void displayInfo()’ respectively that are defined in

the derived class, ‘examination’. It is observed that a pointer to

‘student’ class is used to refer an object of ‘examination’ class so

that it can be used to override the virtual functions at runtime.

2.5 INLINE FUNCTION

We have already learnt about the advantages and

disadvantages of writing user-defined functions in C++

237

programming. The main drawback of writing functions is that

overhead will be involved in each function call due to the movement

of the program control from the function call statement to the

function statements and from the function to the function call

statement. In C++, the concept of Inline function is provided as a

solution to this problem. In case of an inline function, the function

call is replaced with the actual programming statements of the

function at compile time. As a result, the overhead associated with

the function call will not occur. But use of Inline functions may

increase the code size of a program. So, the concept of Inline

functions should be used for the functions that contain small number

of programming statements. In C++, ‘inline’ keyword is used to

define an Inline function. The syntax of writing Inline function is

presented as follows.

inline returnType function_Name([Parameter list])

{

 // C++ programming statements

}

Let us consider the following C++ program to understand the

implementation of Inline function.

Program 2.7: C++ program to show the use of Inline function.

#include<iostream.h>

#include<conio.h>

inline int square(int N)// Inline Function

{

 return(N*N);

}

int main()

{

int edge;

cout<<"\n Enter the length of an edge in a cube=";

cin>>edge;

cout<<"\n The surface area of the cube is="<< 6*square(edge);

return(0);

}

238

Output of the program:

Enter the length of an edge in a cube= 2

The surface area of the cube is= 24

2.6 RECURSIVE FUNCTION IN C++

We already learnt that when a function contains a function

call statement to call itself then this type of function is termed as

Recursive function. Let us consider the following C++ program to

understand the implementation of recursive function in C++

programming.

Program 2.7: C++ program to implement Binary Search

algorithm using recursive function.

#include <iostream.h>

class binarySearch

{

 private:

 int data[200];

 public:

 void readData(int);

 void displayData(int);

 int bSearch(int,int,int);

};

void binarySearch::readData(intnData)

{

int i;

for(i =0;i<nData;i++)

{

cout<<"\n Enter "<<i+1<<"th data::";

cin>>data[i];

 }

}

void binarySearch::displayData(intnData)

{

239

 int i;

 for(i =0;i<nData;i++)

 {

 cout<<"\t"<<data[i];

}

}

int binarySearch::bSearch(int startIndex, int endIndex, int srcData)

{

int mid;

if (startIndex>endIndex)

return -1;

else

{

 int mid = startIndex+(endIndex-startIndex) / 2;

if (data[mid] == srcData)

return mid;

if (data[mid] >srcData)

return bSearch(startIndex, mid - 1, srcData); /* Recursive

function call*/

 else

 return bSearch(mid + 1, endIndex, srcData); /* Recursive

function call */

 }

}

int main()

{

binarySearch B1;

int N, index, srcData;

cout<<"\n Enter the number of data to be stored in the array::";

cin>>N;

240

if(N>200)

cout<<"\n Wrong Input";

else

{

 B1.readData(N);

 cout<<"\n Enter the data to be searched=";

 cin>>srcData;

 cout<<"\n Elements in the array are::\n";

 B1.displayData(N);

 index = B1.bSearch(0, N-1, srcData);

 if (index == -1)

 cout<<"\n Searched data is not available in the array";

 else

 cout<<"\n Searched data is available in the array at the

subscript value "<<index;

 }

return 0;

}

Output of the program:

 Enter the number of data to be stored in the array:: 6

Enter 1th data:: 12

Enter 2th data:: 45

Enter 3th data:: 78

Enter 4th data:: 90

Enter 5th data:: 167

Enter 6th data:: 201

Enter the data to be searched= 90

Elements in the array are::

 12 45 78 90 167 201

Searched data is available in the array at the subscript value 3

In the above C++ program (Program 2.7), Binary search

algorithm is implemented using the recursive function, ‘int

bSearch(int, int, int)’. This function is a member function of the

class, ‘binarySearch’.

241

CHECK YOUR PROGRESS

1. Choose the correct option

 (a) Which of the following is not a main

component of C++ functions?

 (i) Function Prototype

 (ii) Parameters

 (iii) Function call

 (iv) None of the above

(b) Which of the following is not related to

polymorphic functions in C++ programming?

 (i) Function overloading

 (ii) virtual function

 (iii) inline function

 (iv) None of the above

(c) In C++, operator overloading can be

performed by using_____.

 (i) Special member function

 (ii) Friend function

 (iii) virtual function

 (iv) Both (i) and (ii)

(d) Which of the following operator cannot be

overloaded in C++ programming?

 (i) ::

 (ii) new

 (iii) ++

 (iv) %

(e) If a function calls itself then it is termed

as____.

 (i) Virtual function

 (ii) Recursive function

 (iii) Inline function

 (iv) None of the above

242

2.7 SUMMING UP

 A function in C++ is composed of the following

components.

 Function Declaration

 Function Definition

 Function Call

 Parameters

 The function declaration of a C++ function is a statement

used to inform the compiler about the presence and format of

the function in a C++ program.

 The function definition of a C++ function includes a group

of C++ statements to perform its job.

 Function call statement is used when a library or a user

defined function is required to be executed in a C++ program

to perform a specific task provided by that function.

 A parameter passed into a C++ function is a variable to store

the required data that will be used by the function to perform

its job.

 Parameters used in the function call statement are called as

Actual parameters and parameters used in the function

definition are called as Formal parameters.

 In C++, polymorphic functions can be implemented by

function overloading, operator overloading and function

overriding.

 In C++, multiple functions with same function name can be

defined in a program where functionalities of each function

are different from each other.

 In C++, Operators can be overloaded by defining special

member functions or friend functions in a class.

 In C++, a member function of a base class can be overridden

by a member function of its derived class.

 In case of an inline function, the function call is replaced

with the actual programming statements of the function at

compile time.

 We already learnt that when a function contains a function

call statement to call itself then this type of function is

termed as Recursive function.

243

2.8 ANSWERS TO CHECK YOUR PROGRESS

1.

(a) (iv) None of the above

(b) (iii) inline function

(c) (iv) Both (i) and (ii)

(d) (i) ::

(e) (ii) Recursive function

2.9 POSSIBLE QUESTIONS

1. Explain about the structure of functions in C++

programming.

2. How operators can be overloaded in C++ programming?

Explain with examples.

3. Explain function overloading in C++ programming. Give

example.

4. Explain function overriding in C++ programming. Give

example.

5. What is Inline function? How Inline function can be useful

in C++ programming?

6. What is Recursive function? Write a C++ program to

demonstrate the use of Recursive function.

2.10 REFERENCES AND SUGGESTED READINGS

1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering

C++. Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++.

Tata McGraw-Hill, 2006

---×---

244

UNIT 3: LOGIC PROGRAMMING LANGUAGES - I

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Review of Predicate Logic

 3.3.1 Proposition Calculus

 3.3.2 Predicate Calculus

3.4 Logic as a language for problem solving

3.5 Facts, rules, queries and deductions, sentence structure

3.6 General structure and computational behavior of logic

programs

3.7 Summing Up

3.8 Answers to Check Your Progress

3.9 Possible Questions

3.10 References and Suggested Readings

3.1 INTRODUCTION

The base of logic programming is in structuring programs as sets of

sentences expressed in symbolic logic. With its inherent design,

logic programming efficiently handles queries by finding their truth

value and giving choices that satisfies the query specifications.

Logic programming shows useful in natural language processing,

database management, and predictive analysis—that are all gaining

energy with global digital transformation. This makes logic

programming an important language for many programmers.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand Mathematical Logic as a basis for logic

programming

245

 Explain the basic terms used in logic programs and its syntax

and structure

 Analyze the computational behavior of logic programs

3.3 REVIEW OF PREDICATE LOGIC

One component of mathematical logic is proposition calculus

which works with statements with values true and false and is

therefore related with analysis of propositions. And the other part is

predicate calculus which works with the predicates which are

propositions having variables.

3.3.1Proposition Calculus

A number of words making a complete grammatical structure

having a sense and meaning and also mean an assertion in logic or

mathematics is known as a sentence. This assertion can be of two

types - declarative and non-declarative. A Proposition or

Statement is a declarative sentence that is either true or false. For

example, "Three plus three three equals six." and "Three plus three

equals seven." are both statements: the first because it is true and the

second because it is false. Similarly, "x + y > 1" is not a statement

because for some values of x and y the sentence is true, but for

others it is false. For example, if x = 1 and y = 2, the sentence is

true, if x = -3 and y = 1, it is false. The truth or falsity of a statement

is known as its truth value. Since only two possible truth values are

accepted, therefore, this logic is sometimes called two-valued logic.

Questions, exclamations and commands are not considered as

propositions. For examples, let us consider the following sentences:

 (a) The sun rises in the north.

 (b) 2 + 4 = 6

 (c) (5, 6) ⊂ (7, 6, 5)

 (d) Close the door.

 The sentences (a), (b) and (c) are statements, the first is false

and second and third are true.

(d) is a question, not a declarative sentence, hence it is not a

statement.

246

It is usual to represent simple statements by letters p, q, r, ..., called

proposition variables. (Note that generally a real variable is

represented by the symbol x. This means that x is not a real number

but can take a real value. Similarly, proposition variable is not a

proposition but can be replaced by a proposition). Propositional

variables can only assume two values, true or false. There are also

two propositional constants, T and F, that represent true and false,

respectively. If p denotes the proposition "The sun sets in the west ",

then instead of saying the proposition "The sun sets in the north" is

false, one can simply say the value of p is F.

A proposition consisting of only a single propositional variable or a

single propositional constant is called an atomic (primary,

primitive) proposition or simply proposition; that is they cannot be

further subdivided. A proposition found from the grouping of two or

more propositions by means of logical operators or connectives of

two or more propositions or by negating a single proposition is

referred to molecular or composite or compound proposition.

The words and phrases (or symbols) used to form compound

propositions are known as connectives. There are five basic

connectives called Negation, Conjunction, Disjunction, Implication

or Conditional, and Equivalence or Biconditional. The following

symbols are considered as connectives.

Symbol

used

Connective

words

Natural of the

Compound statement

formed by the

connective

Symbolic

form

¬, ~ ,┐ not Negation ~p

∧ And Conjunction p ∧ q

∨ or Disjunction P ∨ q

⇒, if...then Implication (or

Conditional)

p ⇒ q

⇔ , <--> if and only

if

Equivalence (or Bi-

conditional)

p ⇔ q

3.3.2 Predicate Calculus

The propositional calculus does not let us represent many of the

statements that we use in mathematics, computer science and in

everyday life. In fact, Predicate calculus is a generalization of

247

propositional calculus. It includes all the components of

propositional calculus- propositional variables and constants. Thus,

Predicate calculus is important for several reasons-this has

application in expert system, in database and also basis for the

Prolog language.

 Actually, a part of a declarative sentence describing the

properties of an object or relation among objects is called a

predicate. For example, consider two propositions:

 Jadu is a bachelor.

 Shyam is a bachelor.

 Here, both Jadu and Shyam has the same property of being

bachelor. In the propositional calculus we do not have symbolic

representation of "is a bachelor" since this phrase, or predicate, is

not a sentence. We can replace the two propositions by a single

proposition ‘x is a bachelor'. By replacing x by Jadu, Shaym (or by

any other name), we can obtain many propositions. In logic,

predicates can be derived by removing any nouns from a statement.

Predicates are symbolised by a capital letter and the names of

individuals or objects in general by small letters. Here, the sentence"

x is a bachelor" is symbolised as P (x), where x is a predicate

variable. When concrete values are substituted in place of x

(predicate Variable), a statement obtains. P (x) is also known as a

propositional function, because each choice of x produces a

proposition P(x) that is either true or false. Therefore, a predicate is

a sentence that contains a finite number of variables and becomes a

proposition when specific values are substituted for the variables.

The domain (universe of discourse or simply universe) of a

predicate variable is the set of all possible values that may be

substituted in place of variables. For example, the domain for P (x):

"x is a bachelor", can be considered as the set of all human names.

Universal Quantifier-One clear way to change predicates into

statements is to allocate specific values to their variables. Another

way to get statements from predicates is to add quantifiers.

Quantifiers are words that mean quantities such as some, few, many,

all, none and indicate how often a certain statement is true.

The phrase "for all" (denoted by ∀) is called the universal quantifier.

For example, consider the sentence "All human beings are mortal".

 Let P(x) represents "x is mortal".

248

 Then the above sentence can be written as

 (∀x∈ U) P(x)or∀ x P(x) …. (1)

where U is the Universe of discourse representing the set of all

human beings. ∀x represent each of the following phrases, since

they have essentially the same

 for all x

 for every x

 for each x

The statement (1) is known as a universal statement. Here, the

expression P (x) by itself is an open sentence and therefore has no

truth value. However ∀ x P(x) does have a truth value and is

assigned truth values as below:

 ∀x P(x) is true if P (x) is true for every x in U;

 ∀xP(x) is false, if and only if, P(x) is false for at least one x

in U.

A value for which P(x) is false is said to be a counter

example to the universal statement.

Existential Quantifier-The phrase “there exists” (denoted

by ∃) is called the existential quantifier. For example,

consider the sentence:

 “There exists x such that x² = 5”. This sentence can be

written as:

 (∃x∈ R) P(x) or∃ x P(x) .,..(2)

where P(x) “x²=5”.

∃x represents each of the following phrases:

There exists an x

There is an x

For some x

There is at least one x

The statement (2) is called an existential statement. ∃x P(x)

has these truth values,

∃x P(x) is true if P(x) is true for at least one x in U.

∃x P(x) is false if P(x) is false for every x in U.

 In particular, If {x: x ∈ P(x)} ≠ Φ then∃ x P(x) is true otherwise∃

x P(x) is false.

When the quantifiers are used, one should specify the

universe of discourse. If the universe of discourse is changed,

the truth value may change. For example: R(x): x² = 3

249

If the universe of discourse is the set of all integers, then ∃xR(x)

is false. If the universe of discourse is the set of all real numbers,

then∃∃x R(x) is true.

Stop to Consider

Unlike propositional logic, which deals with simple true/false

statements, predicate logic introduces predicates, variables,

constants, and quantifiers. These elements help in modeling real-

world problems that involve multiple objects and their interactions.

3.4 LOGIC AS A LANGUAGE FOR PROBLEM SOLVING

Logic is related with methods of reasoning. The Greek philosopher

and scientist Aristotle (384–322 BC) is known as the first person to

have studied logical reasoning. Logical reasoning is the soul of

mathematics and is therefore an important starting point for study

of discrete mathematics. Logic, among other things, has given

theoretical basis for many areas of computer science such as digital

logic design, automata theory, and computability and artificial

intelligence etc.

The primary language for logic programming is Prolog, although

there are many others, those have been implemented.

Key feature of Prolog is – it is "algorithm free" programming i.e.

the programmer specifies what the output is supposed to be, NOT

how to find it.

Application domains for logic programming

1. prototyping

2. natural language processing (parsing)

3. database querying

4. AI research

 symbolic computation

 theorem proving

 expert system

5. parallel programming

250

3.5 FACTS, RULES, QUERY, DEDUCTION AND SENTENCE

STRUCTURE

Relations-A relation is a function that returns Boolean value (also called

a predicate)

A relation can be represented by a table of values that make the predicate

true. For example, < can be represented by:

0 1

0 2

.

.

.

.

.

.

1 2

1 3

.

.

.

.

.

.

Prolog uses relations completely - there are no other kinds of

functions or procedures. On the other hand, any function can be changed

to a relation by adding an extra parameter to represent the result. For

example, consider an append function that takes two lists and returns a

list (which is the concatenation of the two argument lists). Then the

relation append(A, B, C) is true if A, B and C are lists such that

appending A and B yields C. As tuples/rows in a table, ([1, 2], [2, 3], [1,

2, 2, 3]) is in append, while ([1,2],[2,3],[1,3]) is not.

Let us consider the following Prolog program, which states

mother and father relations:

mother (radhika, juhi).

mother (radhika, tarun).

mother(juhi, joey).

father (bijoy, juhi).

father(bijoy, tarun).

father (tarun, ani).

For example, the rule mother(radhika, juhi). ismeant to indicate that

radhika is the mother of juhi. This code specifies the relations in the

same way that tables would.

251

Given these definitions (i.e. after loading the file containing these

definitions), the Prolog interpreter can answer yes/no questions about

these relations. The query:

father(bijoy, tarun).

will cause the interpreter to return yes, while the query:

father (bijoy, ani).

will cause the interpreter to return no.

Note that queries are always typed in at the interpreter prompt - they can

never be contained in files.

Rules-For the given mother and father relations previously specified,

rules can be used to specify more interesting relations. For example:

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father (X, Y).

is a pair of rules that specifies that X is a parent of Y if X is the mother

or father of Y. In Prolog, variables always start with uppercase letters,

while identifiers beginning with lowercase letters represent data (atoms).

More example rules:

grandparent (X, Y) :- parent (X, Z) , parent(Z, Y).

ancestor (X, Y) :- parent(Z, Y),

ancestor(X, Y) :- parent(Z, Y), ancestor(X, Z)

The general form of a rule is:

P :- Q 1 ,Q 2 ,...,Q n

Where P and Qi can be references to relations (or variables or constants).

Logically, a rule of this form means :

Q 1 ^ Q 2 ^...^ Q n => P

English interpretation : if Q1, Q2…..Qn are true, then P is true

Prolog interpretation: to prove P, it is sufficient to prove Q1, Q2…..Qn

This style of rule is known as a Horn clause, and is executed

comparatively efficiently. A sequence of rules with the same L.H.S.:

P :- Q 1 ,Q 2 ,...,Qn

P :- K 1 ,K 2 ,...,Km

Is equivalent to :

(Q 1 ^ Q 2 ^...^ Q n => P) v (K1 ^ K2 ^...^ Km => P)

Example :

parent (X, Y) :- mother (X, Y).

parent (X, Y) :- father(X, Y).

English: X is a parent of Y if X is the mother of Y or if X is the father of

Y.

Example (list membership) :

mem(X, [Y | Z]) :- X = Y.

252

mem(X, [Y | Z]) :- mem(X, Z).

[Y | Z] is used in Prolog as list notation –where Y is the first element of

the list, and Z is the rest of the list. So these two rules specify that X is a

member of the list [Y | Z] if X is equal to Y (the first element), or X is

member of the list Z. This is same as the usual recursive definition,

except that there is no base case. Prolog uses the Closed World

Assumption - if something can't be proven using the rules in the

program, then it must be false. Hence the query:

mem (X, []).

will cause the interpreter to return no, because it can't be proven using

the rules for mem above. (Note that [] is the empty list.)

A rule with no R.H.S., i.e.:

P.

is an assertion that P is true - nothing needs to be proven to show it. Such

a rule is called a fact. Facts are often used for defining simple relations

(see mother and father relations given above).

Example (list membership again):

mem (X, [X,Z]).

mem (X, [Y|Z]) :- mem(X, Z).

Note carefully the use of pattern matching in the fact.

Queries-A query is a question about a relation that is given to the

Prolog interpreter. Recall that queries must be typed at the interpreter

prompt - they can never be contained in files.

Given either of the previous definitions of mem, the query:

mem(a, [2, b, a]).

returns yes, meaning true or provable.

The query:

mem(a, [2, b]).

returns no, meaning false, fail or not provable.

If a query contains variables, Prolog will try to find values for the

variables that make the query true (provable) For example, the query:

mem (X, [2, b, a]).

returns X = 2, which makes the query provable. Clicking the Next button

(or entering a; in the Windows version) will cause Prolog to look for

more solutions (more values of X that make the query true).

Entering the query:

mem(2, X).

and then clicking the Next button repeatedly (or entering ; repeatedly)

will cause the sequence:

253

X = [2 | _].

X = [_, 2 | _].

X =[_, _, 2 I _].

X = [_, _, _, 2 | _].

and so on. _is a special anonymous (unnamed) variable with the property

that any occurrence of _ is assumed to be a unique variable name. I.e.: X

= [_, _, _, 2 | _] does NOT mean that the first 3 elements of the list are

required to all be the same.

Relations are more flexible than functions - some or all arguments can be

variables (unspecified)

More Examples-A program to append lists:

append ([], Y, Z).

append ([H | X], Y, Z) :- append (X, Y, Z2), Z= [H | Z2].

Note that this is a recursive definition: appending the empty list

with any list just gives that list (base case), while for a nonempty list,

just append all of the list except the first element with the other list, and

then stick the first element on the front of the result. The second rule can

also be given as:

append([H |X], Y, [H | Z]) :- append(X, Y, Z).Again, queries can omit

some or all arguments:

append ([a, b], [c], X).

returns X = [a, b, c].. while:

append ([a, b], X, [a, b, c]).

returns X = [c].

append can be used to define other interesting relations. A list A is a

prefix of another list B if A can be appended with some other list to

produce B:

prefix(A, B) :- append (A, _, B) .

The variable _ is used above because the value of that variable doesn't

matter - only that some value for it exists. A list A is a suffix of another

list B if some other list can be appended with A to produce B:

suffix(A, B) :- append(_ , A, B).

Relations/terms can be used to represent data structures. For example,

binary search trees of numbers can be represented by two terms: empty

and node (L, D, R), where L. is the left subtree, D is the (numeric) data

and R is the right subtree. For this given representation, standard tree

operations can be defined using rules:

/* relation to check whether some value occurs in the tree */

isin(K, node(_, K,_)).

254

isin(K, node (L, D,R)) :- K <D,isin (K, L).

isin(K, node (L, D,R)) :- K >D,isin (K, R).

/* adding a node at the proper position in the tree */

insert(K, empty, node (empty, K, empty)).

insert(K, node (L, D, R),node (L2, D, R)) :- K <D,insert (K, L, L2) .

insert(K, node (L, D, R),node (L, D, R2)):-K >D,insert (K, R, R2) .

Therefore in Prolog, deduction is obtained through a system of facts,

rules, and queries that form the base of its sentence structure. Facts

represent known truths, rules establish relationships between facts, and

queries allowing asking questions that the system uses to deduce answers.

The key to this process is the use of predicates and unification.

Unification-

Prolog uses a process known as unification to match patterns and find

solutions. Unification tries to find bindings for variables in the query that

make the query true based on the facts and rules.

Deduction-

When a query is asked, Prolog searches through its knowledge base (facts

and rules) and uses unification to deduce the answer. If the query can be

made true through a group of facts and rules, the interpreter deduces the

solution.

Example:

Let us consider the following Prolog program:

father(ram, sanu).

mother(mala, sanu).

parent(X, Y) :- father(X, Y).

parent(X, Y) :- mother(X, Y).

If query ?- parent(ram, sanu). Prolog will:

1. Match the query with the head of the first rule parent(X, Y)

:- father(X, Y)..

2. Unify X with ram and Y with sanu.

3. Check if father(ram, sanu) is a fact (which it is).

4. Return "true" because the query can be deduced to be true.

255

3.6 GENERAL STRUCTURE AND COMPUTATIONAL

BEHAVIOR OF LOGIC PROGRAM

Prolog Syntax-The fundamental unit of Prolog syntax is the term.

A simple term is a number, a variable or an atom- a string

beginning with a lower case letter. A compound term is an atom

followed by a parenthesized list of terms.

e.g.: mem (a, [a, b]).

In a compound term, the atom (mem in this example) is called a

functor, and the parenthesized terms are called arguments.

In EBNF:

<term> --><sterm> | <cterm>

<sterm> --><variable> | <atom>|<number>

<cterm -->’<atom>’(‘<term> {, <term>}’)’

A rule is either a fact or a term to be concluded from other terms. A

fact is just a term:

<rule> --><fact>|<term>:- <term> {, <term>}.

<fact> --><term>.

In the second form, the term on the LH.S.is called the head or goal

of the rule, and the terms on the R.H.S. are called subgoals_. A fact

is just a goal.

A query is óne more terms ending with a period.

<query>--><term>{, <term>}.

The terms in a query are also called goals.

Prolog programs gets executed through a process known as

resolution, where a query is compared against rules and facts in the

program. The Prolog engine attempts to find a solution by unifying

the query with facts and rules, essentially creating a "proof" that the

query is true. This process includes backtracking if a path to a

solution isn't found, allowing the engine to explore alternative path.

Backtracking-If the goals of multiple rules match the current

subgoal, each of those rules can be tried (in order). When

backtracking occurs (because the current choice of a rule failed), the

interpreter:

 goes back to the most recent point where it had a choice of

rules

 restores the subgoal list and substitutions to their values at

that point

This form

because t

Applying

branch in

by perfor

depth firs

For exam

 / * 1 */ i

/ * 2 */ is

/ * 3 */ is

and query

isin(3, no

The searc

256

 chooses the next rule

 continues executing

is form of backtracking is called chronological

cause the most recent rule choice is always changed

plying rules and backtracking forms a search tre

nch in the tree results from backtracking. Prolog a

 performing a depth first search in this tree. In fac

pth first because the backtracking is chronological.

r example, consider the rules for isin (numbered for

 1 */ isin(K, node(_, K, _)).

 2 */ isin(K, node(L, D, R)) :- K < D, isin(K, L).

 3 */ isin(K, node(L, D, R)) :- K > D, isin(K, R).

d query:

n(3, node(empty, 2, node(empty, 3, empty))).

e search tree (also called the resolution tree) for thi

logical backtracking,

hanged.

rch tree, where each

olog answers a query

 In fact, the search is

gical.

red for reference):

for this query is:

Asking for another solution j

Cuts and Negation-A cut

succeeds. As a side effect,

point.

P :-Q1, Q2, … , Qm , ! , Qm+2

After Qm succeeds for th

(alternative rule application

considered.

Cuts do not posses any logi

efficiency .Cuts can be us

below:

* 1 */ not(X):- X, !, fail.

* 2 */ not(X):- X,

Now, if X succeeds, then th

keeps the second rule from b

never reached, so the interpr

succeeds.

Examples:

Sto

A logic program is a kind of d

domain of the program and

achieve. It emphasizes on what

to achieve the desired goals.

257

ution just causes backtracking

A cut (written !) is a subgoal that always

ffect, it prevents backtracking past a certain

m+2 , … , Qn.

for the first time, no other possibilities

cations for) P, Q1 , Q2 , …. , Qm are ever

y logical interpretation -they are used just for

be used to implement negations as shown

hen the definition of not fails because the cut

from being reached. If X fails, then the cut is

interpreter backtracks to the second case and

Stop to Consider

nd of declarative program in that it describes the

 and the goals the programmer would like to

n what is true and what is wanted rather than how

258

CHECK YOUR PROGRESS

1. Assign a truth value for each of the following:

i) 5<5 ∨ 5<6

ii) 5 x 4 = 21∨ 9+7 =17

iii) 6+4 =10 ∨ 0>2

iv) (∀x ∈ Z) x2=x

v) (∃x ∈ Z) x2=x

2. Fill in the blanks with correct answer:

i) A ___________is a function that returns Boolean value

also called a predicate.

ii) A fact is a rule with no________.

iii) A ______is a question about a relation that is given to the

Prolog interpreter.

iv) ________occurs when the current choice of a rule fails.

v) A ________ is a subgoal that always succeeds.

3.7 SUMMING UP

Logic programming can significantly improve data-driven

architectures by providing a declarative and knowledge-driven

approach to data processing and analysis. It has ability to represent

complex relationships and perform logical reasoning that can help

obtaining meaningful information from vast amounts of data.

3.8 ANSWERS TO CHECK YOUR PROGRESS

1. i) True ii) False iii) True iv) False v) True

2. i) relation ii) R.H.S iii) query iv) Backtracking v) cut (!)

3.9 POSSIBLE QUESTIONS

1. Why Logic is considered as language for problem solving.

Explain.

2. Discuss the basic terms used in Logic programming.

259

3. Describe the general structure and computational behavior of

logic program.

4. What is Backtracking. Give example.

5. State the use of cut in logic programming.

3.10 REFERENCES AND SUGGESTED READINGS

 Programming in Prolog: Using TheIso Standard William F.

Clocksin.

 The Art of Prolog: Advanced Programming Techniques Leon

Sterling.

 Adventure in Prolog Dennis Merritt.

---×---

260

UNIT 4: LOGIC PROGRAMMING LANGUAGES - II

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Unification algorithm

 4.3.1 Conditions for unification

 4.3.2 Unify Algorithm

4.4 Procedural interpretation of Logic

4.5 Algorithmic view of logic program execution

4.6 A brief introduction to PROLOG

 4.6.1 Installing SWI Prolog on Windows

 4.6.2 Prolog Syntax and Programming

4.7 Summing Up

4.8 Answers to Check Your Progress

4.9 Possible Questions

4.10 References and Suggested Readings

4.1 INTRODUCTION

Prolog is a logic programming language. It has significant role in

artificial intelligence. Not like many other programming languages,

intentionally Prolog is a declarative programming language. In

prolog programming, logic is expressed as relations (called as Facts

and Rules). The main part of a prolog program lies at the logic being

applied. Formulation or Computation is carried out by executing a

query over these relations.

4.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand unification process used in prolog program

 Explain procedural and logical interpretation of a prolog

program

 Install and do programming in PROLOG

261

4.3 UNIFICATION ALGORITHM

When a rule is applied, the current subgoal is unified against the

rule’s goal. The result of unification is substitution (set of values for

variables) that make the subgoal and the goal identical. For

example:

isin(3, node(empty, 3, empty))unifies with:

isin(K, node(L, K, R))

producing the substitution {K—>3, L—>empty, R—>empty}

Example:

mem(3, [1, 2, 3])

unifies with:

mem(X, [Y | Z])

producing the substitution {X—>3, Y—>1, Z—> [2, 3]}

In the presentation of the Prolog interpreter algorithm, “matches”

really means “unifies with”.

When a rule is used, unification between the current subgoal in the

subgoal list and the goal of the rule takes place, and the resulting

substitution is applied to the rest of the subgoal list. Applying a

substitution implies replacing the variables in the subgoals with the

values for those variables specified in the substitution.

Stop to Consider

Unification is a process of making two different logical atomic

expressions identical by finding a substitution. Unification depends

on the substitution process. It takes two literals as in put and makes

them identical using substitution. Let Ψ1 and Ψ2 be two atomic

sentences and � be a unifier such that, Ψ
1
�= Ψ

2
�, then it can be

expressed as UNIFY (Ψ
1

, Ψ
2

).Substitution θ = {Anil/y}

is a unifier for these atoms and applying this substitution, and both

expressions will be identical.

The UNIFY algorithm is used for unification, which takes two

atomic sentences and returns a unifier for those sentences (If any

exist).Unification is a key component of all first-order inference

algorithms. It returns fail if the expressions do not match with each

other.

262

4.3.1 Conditions for unification

Following are some basic conditions for unification:

 Predicate symbol must be same, atoms or

expression with different predicate symbol can

never be unified.

 Number of Arguments in both expressions must be identical.

 Unification will fail if there are two similar variables present

in the same expression.

 4.3.2 UNIFY Algorithm

Step 1: If Ψ1 or Ψ2 is a variable or constant, then:

a) If Ψ1or Ψ2 are identical, then return NIL.

b) Else if Ψ1is a variable,

a. Then if Ψ1occurs in Ψ2,then

return FAILURE

b. Else return {(Ψ2/Ψ1)}.

c) Else if Ψ2 is a variable,

a. If Ψ2 occurs in Ψ1 then return

FAILURE,

b. Else return {(Ψ1/Ψ2)}.

d) Else return FAILURE.

Step 2: If the initial Predicate symbol in Ψ1 and Ψ2 are not same,

then return FAILURE.

Step 3: IF Ψ1 and Ψ2 have a different number of arguments, then

return FAILURE.

Step 4: Set Substitution set (SUBST) to NIL.

Step 5: For i=1 to the number of elements in Ψ1.

a) Call Unify function with the ith element of Ψ1

and ith element of Ψ2, and put the result into S.

b) If S=failure then returns Failure

c) If S≠NIL then do,

a. Apply S to the remainder of

both L1 and L2.

b. SUBST=APPEND(S, SUBST).

Step.6: Return SUBST.

Prolog programs can be read as statements in logic, or as programs

to be executed.

263

Stop to Consider

Prolog stands for programming in logic. In the logic programming

paradigm, prolog language is most widely available. Prolog is a

declarative language, which means that a program consists of data

based on the facts and rules (Logical relationship) rather than

computing how to find a solution. A logical relationship describes

the relationships which hold for the given application. The first

Prolog was' Marseille Prolog', which is based on work by

Colmerauer. The major example of fourth-generation programming

language is prolog. It supports the declarative programming

paradigm.In1981, a Japanese computer Project of 5
th

 generation was

announced. After that, it was adopted- Prolog as a development

language.

4.4 PROCEDURAL INTERPRETATION OF LOGIC

Prolog interpreter must decide:

● what order to consider the goals of a query in

● what order to consider rules in

● what order to consider subgoals of a rule in

Logically these decisions have no consequence, but practically

ordering effects efficiency and also whether a solution is obtained or

infinite “looping” occurs.

Prolog interpreters:

● consider goals in a query from left to right

● consider rules by order in the program (using the first rule that

“matches” a goal)

● consider subgoals in a rule from left to right.

The Prolog interpreter algorithm:

To solve a query Q1, Q2, …. ,Qn.

Start with subgoal list Q1,Q2,..,Qn

While the subgoal list is not empty do choose the leftmost subgoal Qi

If some rule’s goal “matches” Qi then choose the first rule G:-

K1,K2,….Km such that G “matches” Qi

Replace Qi by K1,K2,…Km in the subgoal list

Else if backtracking is possible then backtrack

264

Else

fail endif

end loop

succeed

where fail implies that the interpreter answers no, and succeed implies

that the interpreter answers yes.

Notes:

● the subgoal list only shrinks when facts are used. Hence, put

facts before other rules with the same goal in programs.

● leftmost subgoals of rules are applied first. Hence, the “most

restrictive”(quickest to fail) subgoals should always be put first. For

example, in the rule:

Isin (K, node (L, D, R)):- K < D, isin (K, L).

K<D is the first subgoal because it is quick to evaluate, and there is no

reason to execute is in (K, L) ifK<D fails.

4.5 ALGORITHMIC VIEW OF LOGIC PROGRAM

EXECUTION

As previously discussed, subgoals of à rule are implicitly conjoined,

multiple rules with the same goal are disjoined, and the :- operator is

a reverse implication, so that:

P:-Q1,Q2….,Qn

P:- K1,K2,..., Km:

is equivalent to:

(Q1 Λ Q2 Λ.... Λ Qn => P)

V (K1 Λ K2 Λ… Λ Km => P)

In a Prolog rule, all variables appearing in the goal are universally

quantified. Variables that appear only in subgoals are existentially

quantified."

Examples:

grándparent (A, B) :- parent (A, C), parent (C,B).

means : Ɐ A,B Ǝ C such that parent (A, C) Λ parent (C, B) =>

grandparent (A,B)

265

Stop to Consider

In prolog program, we usually declare some facts. These facts

comprises the Knowledge Base of the system. We can query against

the Knowledge Base. We get output/result as positive if our query is

already in the knowledge Base or it is implied by Knowledge Base,

or else we get output as negative. So, Knowledge Base can be

considered similar to database against which we can query. Prolog

facts are expressed in distinct pattern. Facts include entities and their

relation.

4.6 A BRIEF INTRODUCTION TO PROLOG

Prolog is a logic-based programming language that is extensively

used in artificial intelligence, natural language processing, and

expert systems. Some other applications of PROLOG are:

 Specification Language

 Robot Planning

 Machine Learning

 Problem Solving

 Intelligent Database retrieval

 Automated Reasoning

4.6.1 Installing SWI Prolog on Windows:

Below are the steps in brief to install SWI Prologon

Windows:

• Step1:Visitswi-prolog.orgwebsiteusinganywebbrowser.

• Step2:ClickonDownloadwhichisadjacent

toHome,dropdownlist will appear then

click on SWI-Prolog.

• Step3:Newwebpagewillopen,clickonStablerelease.

• Step4:Downloadbinaries

• Step5:Installbinaries

Inte

Follow th

Step 1:

Step 2:

list will a

266

Interface to write Prolog code is:

llow the below steps to install SWI Prolog on Wind

p 1: Visit swi-prolog.org website using any web b

p 2: Click on Download which is adjacent to Ho

t will appear then click on SWI-Prolog.

 Windows:

 web browser.

 to Home, dropdown

267

Step 3: New webpage will open, click on Stable release.

Step 4: After clicking on stable release new webpage will open

which will contain stable versions of prolog for different platforms.

Under binaries there are two stable releases for windows, first is

SWI-Prolog 8.4.0-1 for Microsoft Windows (64 bit) and the other is

SWI-Prolog 8.4.0-1 for Microsoft Windows (32 bit). Click on the

one as per your system configuration. Lets take the one for 64-bit

operating system.

268

Step 5. After clicking on SWI-Prolog 8.4.0-1 for Microsoft

Windows (64 bit), a new webpage will open, check on I understand

checkbox to make the download link active. Then click on the

download link, downloading of the executable file will start shortly.

It is a small 11.9 MB file that will hardly take a minute.

269

Step 6: Now check for the executable file in downloads in your

system and run it.

Step 7: It will prompt confirmation to make changes to your system.

Click on Yes.

270

Step 8: Setup screen will appear, click on Next.

Step 9: The next screen will be of License Agreement, click on I

Agree.

Step 10: After it there will be screen of installing options so check

the box for Add swipl to the system path for all users, and also

271

check the box for create a desktop icon and then click on the Next

button.

Step 11: The next screen will be of installing location so choose the

drive which will have sufficient memory space for installation. It

needed only a memory space of 50 MB.

272

Step 12: Next screen will be of choosing Start menu folder so don’t

do anything just click on Next Button.

Step 13: This last screen is of choosing components, all components

are already marked so don’t change anything just click on Install

button.

273

Step 14: After this installation process will start and will hardly take

a minute to complete the installation.

Step 15: Click on Finish after the installation process is complete

274

Step 16: SWI Prolog is successfully installed on the system and an

icon is created on the desktop.

Step 17: Run the software and see the interface.

How to run a SWI-PROLOG program: 1. Open the SWI-Prolog

application installed on your system. A GUI as shown below will

appear:

2. Select of the “File” option and click “new”

3. A new GUI will appear, write a simple Swi-prolog program and

save (ctrl + s) the file with .pl extension.

4. Now to run the swi-progra

step-1. Under the “file” me

saved file and run the progra

4.6.2 Prolog Syntax and Progra

Hello World Program

•After running the SWI prolo

directly from the console.

•To do so, we have to write t

write('Hello World’).

Note: After each line, you ha

that the line has ended.

Write codes in Files

•Now create one file (test.pl)

main :-write('This is sampl

write(' This program is wri

•Now let’s run the code.

•To run it, we have to write t

275

program, go back to the interface as shown in

le” menu click on “consult” and select the

program.

Programming

I prolog, we can write hello world program

write the command as follows:

you have to use one period (.) symbol to show

est.pl) and write the code as follows:

sample Prolog program’),

 is written into test.pl file’).

write the file name as follows: [test].

276

•After that, type

man.

Define facts in Prolog

•We can define fact as an explicit relationship between objects, and

properties these objects might have.

•So facts are unconditionally true in nature.

•Suppose we have some facts as given below:

Rules

•We can define rule as an implicit relationship between objects.

•So facts are conditionally true.

•So when one associated condition is true, then the predicate is also

true.

•Suppose we have some rules as given below:

Rules Prologcommand

Lili is happy if she dances. happy(lili):-dances(lili).

Tom is hungry if he is

searching for food.

hungry(tom):-

search_for_food(tom).

Jack and Bili are friends if

both of them love to play

cricket.

friends(jack,bili):-

lovesCricket(jack),lovesCri

cket(bili).

Ryan will go to playif school

is closed, and he is free.

goToPlay(ryan):-

isClosed(school),free(ryan).

Suppose a clause is like : P :-Q;R.

•This can also be written as

Facts Prolog command

Tom is a cat cat (tom).

Jahir loves to eat Pasta love_to_eat (jahir,pasta).

Hair is black of_color (hair,black).

Mahmuda loves to play games love_to_play_games (mahmuda).

Jahangir is lazy. Lazy (Jahangir).

277

P :-Q.

P :-R.

•Suppose a clause is like : P :-(Q,S);(R,T).

•This can also be written as

P :-Q,S.

P :-R,T.

Queries

•Queries are some questions on the relationships between objects

and object properties.

•So question can be anything, as given below:

•So according to these queries, Logic programming language can

find the answer and return them.

Rules

Rules Prologcommand

Is tom a cat? cat(tom).

Does Jahir love to

eat pasta?

loves_to_eat(jahir,pasta).

Is Lili happy? happy(lili).

Will Ryan go to

play?

go_to_play(rayan).

Lets implement in Prolog

•Knowledge base

sing_a_song(ananya).

listens_to_music(rohit).

listens_to_music(ananya) :-sing_a_song(ananya).

happy(ananya) :-sing_a_song(ananya).

happy(rohit) :-listens_to_music(rohit).

plays_guitar(rohit) :-listens_to_music(rohit).

Get answer

•Suppose we want to see the members who plays guitar, we can use

one variable in our query.

278

•The variables should start with uppercase letters.

plays_guitar(X).

Relations

•In Prolog programs, it specifies relationship between objects and

properties of the objects.

•Suppose, there’s a statement,

•“Amit has a bike”, then we are actually declaring the ownership

relationship between two objects —

•one is Amit and the other is bike.

•If we ask a question, “Does Amit own a bike?”, we are actually

trying to find out about one relationship.

•There are various kinds of relationships, of which some can be

rules as well.

•A rule can find out about a relationship even if the relationship is

not defined explicitly as a fact.

We can define a brother relationship as follows:

Two person are brothers, if,

•They both are male.

•They have the same parent.

Now consider we have the below phrases:

•parent(sudip, piyus).

•parent(sudip, raj).

•male(piyus).

•male(raj).

•brother(X,Y) :-parent(Z,X), parent(Z,Y),male(X),

male(Y),X\==Y.

Try this in Prolog

•female(pam).

•female(liz).

•female(pat).

•female(ann).

•male(jim).

•male(bob).

•male(tom).

•male(peter).

279

•parent(pam,bob).

•parent(tom,bob).

•parent(tom,liz).

•parent(bob,ann).

•parent(bob,pat).

•parent(pat,jim).

•parent(bob,peter).

•parent(peter,jim).

•mother(X,Y):-parent(X,Y),female(X).

•father(X,Y):-parent(X,Y),male(X).

•sister(X,Y):parent(Z,X),parent(Z,Y),female(X),X\==Y.

•brother(X,Y):-parent(Z,X),parent(Z,Y),male(X),X\==Y.

•grandparent(X,Y):-parent(X,Z),parent(Z,Y).

•grandmother(X,Z):-mother(X,Y),parent(Y,Z).

•grandfather(X,Z):-father(X,Y),parent(Y,Z).

•wife(X,Y):-parent(X,Z),parent(Y,Z),female(X),male(Y).

•uncle(X,Z):-brother(X,Y),parent(Y,Z).

Strings of characters enclosed in single quotes.

•This is useful if we want to have an atom that starts with a capital

letter.

•By enclosing it in quotes, we make it distinguishable from

variables:

•‘Ramiz’

•‘Majharul’

•‘Kamrun'

Anonymous Variables in Prolog

•Anonymous variables have no names.

•The anonymous variables in prolog is written by a single

underscore character ‘_’.

•And one important thing is that each individual anonymous

variable is treated as different.

•They are not same.

•Now the question is, where should we use these anonymous

variables?

•Suppose in our knowledge base we have some facts —“jim hates

tom”, “pat hates bob”.

280

•So if tom wants to find out who hates him, then he can use

variables.

•However, if he wants to check whether there is someone who hates

him, we can use anonymous variables.

•So when we want to use the variable, but do not want to reveal the

value of the variable, then we can use anonymous variables.

Comparison Operators

Comparison operators are used to compare two equations or states.

Following are different comparison operators:

Operator Meaning

X >Y X is greater than Y

X <Y X is less thanY

X>=Y X is greater than or equal to Y

X=<Y X is lessthan or equal toY

X=:=Y the X and Y values are equal

X =\=Y the X and Y values arenotequal

Arithmetic Operator

Arithmetic operators are used to perform arithmetic operations.

There are few different types of arithmetic operators as follows:

Operator Meaning

+ Addition

- Subtraction

* Multiplcation

/ Division

** Power

281

// Integerdivision

mod Modulus

Example program

calc :-X is 100 + 200, write('100 + 200 is ‘),write(X),nl,

Y is 400 -150,write('400 -150 is '),write(Y),nl,

Z is 10 * 300,write('10 * 300 is '),write(Z),nl,

A is 100 / 30,write('100 / 30 is '),write(A),nl,

B is 100 // 30,write('100 // 30 is '),write(B),nl,

C is 100 ** 2,write('100 ** 2 is '),write(C),nl,

D is 100 mod 30,write('100 mod 30 is '),write(D),nl.

Loops in Prolog

•Loop statements are used to execute the code block multiple times.

•In general, for, while, do-while are loop constructs in programming

languages (like Java, C, C++).

•Code block is executed multiple times using recursive predicate

logic.

•There are no direct loops in some other languages, but we can

simulate loops with few different techniques.

Example

count_to_10(10) :-write(10),nl.

count_to_10(X) :-

write(X),nl,

Y is X + 1,

count_to_10(Y).

Loop

•Now create a loop that takes lowest and highest values.

•So, we can use the between () to simulate loops.

•Example:

count_down(H,L) :-

between(L, H, Y),

Z is H –Y+1,

write(Z), nl.

count_up(L, H) :-

between(L, H, Y),

write(Y), nl.

282

Decision Statements

•The decision statements are If-Then-Else statements.

•So when we try to match some condition, and perform some task,

then we use the decision making statements.

•The basic usage is as follows:

•If is true, Then , Else

•Example:

gt(X,Y) :-X >= Y,write(X),write(' is greater or equal'), write(Y).

gt(X,Y) :-X <Y,write(Y),write(' is greater'), write(X).

Conjunction & Disjunction

•Conjunction (AND logic) can be implemented using the comma (,)

operator.

•Disjunction (OR logic) can be implemented using the semi-colon

(;) operator.

Lists in Prolog

•The list is a simple data structure that is widely used in non-

numeric programming.

•List consists of any number of items, for example, red, green, blue,

white, dark.

•It will be represented as, [red, green, blue, white, dark].

•The list of elements will be enclosed with square brackets.

•A list can be either empty or non-empty.

•In the first case, the list is simply written as a Prolog atom, [].

•In the second case, the list consists of two things as given below:

•The first item, called the headof the list;

•The remaining part of the list, called the tail.

Now, let us consider we have a list, L = [a, b, c].

•If we write Tail = [b, c] then we can also write the list L as

L = [a | Tail].

•Here the vertical bar (|) separates the head and tail parts.

283

Operations on list

Opeartion Defintion

Membership Checking During this operation, we can verify

whether a given element is member

of specified list or not?

Length Calculation With this operation, we can find the

length of a list.

Concatenation Concatenation is an operation which

is used to join/add two lists.

Delete Items This operation removes the specified

element from a list.

Append Items Append operation adds one list into

another (as an item).

Insert Items This operation inserts a given item

into a list.

List Member

•To design this predicate, we can follow these observations.

•X is a member of L if either:

•X is head of L, or

•X is a member of the tail of L

•Program

list_member(X,[X|_]).

list_member(X,[_|TAIL]) :-list_member(X,TAIL).

Length Calculation

•This is used to find the length of list L.

•We will define one predicate to do this task.

•Suppose the predicate name is list_length(L,N).

•This takes L and N as input argument.

284

•This will count the elements in a list L and instantiate N to their

number.

•As was the case with our previous relations involving lists, it is

useful to consider two cases:

•If list is empty, then length is 0.

•If the list is not empty, then L = [Head|Tail], then its length is 1 +

length of Tail.

•Program

•list_length([],0).

•list_length([_|TAIL],N) :-list_length(TAIL,N1), N is N1 + 1.

Concatenation:

•Concatenation of two lists means adding the list items of the second

list after the first one.

•So if two lists are [a,b,c] and [1,2], then the final list will be

[a,b,c,1,2].

•So to do this task we will create one predicate called list_concat(),

that will take first list L1, second list L2, and the L3 as resultant list.

•There are two observations here.

•If the first list is empty, and second list is L, then the resultant list

will be L.

•If the first list is not empty, then write this as [Head|Tail],

concatenate Tail with L2 recursively, and store into new list in the

form, [Head|NewList].

•Program

list_concat([],L,L).

list_concat([X1|L1],L2,[X1|L3]) :-list_concat(L1,L2,L3).

Delete from List

•Suppose we have a list L and an element X, we have to delete X

from L.

•So there are three cases:

•If X is the only element, then after deleting it, it will return empty

list.

•If X is head of L, the resultant list will be the Tail part.

•If X is present in the Tail part, then delete from there recursively.

•Program

list_delete(X, [X], []).

list_delete(X,[X|L1], L1).

list_delete(X, [Y|L2], [Y|L1]) :-list_delete(X,L2,L1).

285

Append into List

•Appending two lists means adding two lists together, or adding one

list as an item.

•Now if the item is present in the list, then the append function will

not work.

•So we will create one predicate namely, list_append(L1, L2, L3).

•The following are some observations:

•Let A is an element, L1 is a list, the output will be L1 also, when

L1 has A already.

•Otherwise new list will be L2 = [A|L1].

•Program

list_member(X,[X|_]).

list_member(X,[_|TAIL]) :-list_member(X,TAIL).

list_append(A,T,T) :-list_member(A,T),!.

list_append(A,T,[A|T]).

Insert into List:

•This method is used to insert an item X into list L, and the resultant

list will be R.

•So the predicate will be in this form list_insert(X, L, R).

•So this can insert X into L in all possible positions.

•If we see closer, then there are some observations.

•If we perform list_insert(X,L,R), we can use list_delete(X,R,L), so

delete X from R and make new list L.

•Program

list_delete(X, [X], []).

list_delete(X,[X|L1], L1).

list_delete(X, [Y|L2], [Y|L1]) :-list_delete(X,L2,L1).

list_insert(X,L,R) :-list_delete(X,R,L).

Experiment 1

•Write a prolog program to calculate the sum of two numbers.

Program:

sum(X,Y):-

S is X+Y,

format('The sum is '),

write(S).

286

Experiment 2

•Write a prolog program to find the maximum of two numbers.

Program:

max(X,Y):-

X=Y, write('both are equal').

max(X,Y):-

X>Y, Z is X, write('Maximum is '), write(Z),nl.

max(X,Y):-

X<Y, Z is Y, write('Maximum is '), write(Z),nl.

Experiment 3

•Write a prolog program to calculate the factorial of a given number.

Program:

factorial(0,1).

factorial(N,F):-

N>0,

N1 is N-1,

factorial(N1,F1),

F is N*F1.

Experiment 4

•Write a prolog program to calculate the nth Fibonacci number.

Program:

fibo(S,N,F):-

F>0,

Y is S+N,

write(S),write(', '),

F1 is F-1,

fibo(N,Y,F1).

Experiment 5

•Write a prolog program, insert_nth(item, n, into_list, result) that

asserts that result is the list into_listwith item inserted as the nth

element into every list at all levels.

Program:

insert_nth(L,1,Y,[L|Y]).

insert_nth(L,P,[X|Y],[X|N]):-

287

P>0,

P1 is P -1,

insert_nth(L,P1,Y,N).

Experiment 6

•Write a Prolog program to remove the nth item from a list

Program:

delete(1,[H|T],T).

delete(N,[H|T],[H|Y]):-

N>0,

N1 is N-1,

delete(N1,T,Y).

Experiment 7

•Write a Prolog program to implement append for two lists

Program:

append([],L,L).

append([X|M],N,[X|Q]):-

append(M,N,Q).

Experiment 8

•Write a Prolog program to implement palindrome (List).

Program:

append([],L,L).

append([X|M],N,[X|Q]):-

append(M,N,Q).

palind([]):-write('palindrome').

palind([_]):-write('palindrome').

palind(L) :-

append([H|T], [H], L),

palind(T)

;

write('Not a palindrome').

Experiment 9

•Write a Prolog program to implement max(X,Y,Max) so that Max

is the greater of two numbers X and Y.

288

Program:

max(A,B,Max):-

A>=B,

Max is A;

A<B,

Max is B.

Example Pprograms:

1. Program that check the given input is animal or not.

289

2. Program to check given input belongs to a family or not.

3. Program to add student.

290

Check Your Progress

 1. State True or False for the following statements:

i) The result of unification is substitution that does not make

the subgoal and the goal identical.

ii) The subgoal list only shrinks when facts are used.

iii) Rightmost subgoals of rules are applied first.

iv) In a Prolog rule, all variables appearing in the goal are

existentially quantified.

v) Variables in a Prolog rule, that appear only in subgoals are

universally quantified.

4.7 SUMMING UP

PROLOG is a declarative programming language. That means it

allows the programmer to specify the rules and facts about a

problem domain, and after that Prolog interpreter will use these

rules and facts to automatically infer solutions to problems. Prolog

is deeply used in artificial intelligence, symbolic computation, and

natural language processing.

4.8 ANSWERS TO CHECK YOUR PROGRESS

1. i) False ii) True iii) False iv) False v) False

4.9 POSSIBLE QUESTIONS

1. Discuss unification in Logic programming. Give examples.

2. State i) Procedural and ii) Logical interpretation of a PROLOG

program.

3. Briefly explain PROLOG program execution.

291

4.10 REFERENCES AND SUGGESTED READINGS

 The Art of Prolog: Advanced Programming Techniques 2nd

Printing Edition by Leon Sterling

 Other resources online: Learn Prolog Now!

 swi-prolog is an popular, high quality and well

supported open source Prolog implementation. There

are tutorials on the site.

---×---

