

(1)

M.Sc.-IT-19-I-1046GAUHATI UNIVERSITY

Institute of Distance and Open Learning

First Semester

M.Sc.-IT
(under CBCS)

Paper: INF-1046

MATHEMATICAL FOUNDATIONS OF

COMPUTER SCIENCE

Contents:

BLOCK I: DISCRETE MATHEMATICAL STRUCTURES AND

 MATHEMATICAL LOGIC

Unit 1 : Congruence, Permutation and Combination with Repetition

Unit 2 : Sets

Unit 3 : Relations

Unit 4 : Boolean Algebra

Unit 5 : Algebraic Structures

Unit 6 : Propositional Calculus I

Unit 7 : Propositional Calculus II

Unit 8 : Predicated Calculus

BLOCK II: GRAPH THEORY

Unit 1 : Introduction to Graph

Unit 2 : Paths and Circuits I

Unit 3 : Paths and Circuits II

Unit 4 : Trees

Unit 5 : Graph Representation

BLOCK III: AUTOMATA THEORY

Unit 1 : Introduction to Languages and Grammar

Unit 2 : Introduction to Finite Automata

Unit 3 : Regular Sets and Regular Expressions

Unit 4 : Context Free Language

Unit 5 : PDA and Chomsky Normal Forms

(2)

Contributors:

Mr. Tabiruddin Ahmed (Block I : Units- 1 & 4)
Asstt. Prof., Dept. of BCA
K.C. Das Commerce College, Guwahati, Assam

Dr. Khurshid Alam Borbora (Block I: Units- 2 & 3)
Assistant Professor, GUIDOL

Dr. Hillol Kanti Bhattacharjee (Block I : Unit- 5)
Asstt. Prof., Dept. of Computer Science
NERIM, Guwahati, Assam

Mr. Harekrishna Deka (Block I : Units- 6 & 7)
Asstt. Prof., HCB School of Science and Technology
KKHSOU, Assam

Dr. Hemen Dutta (Block I: Unit- 8)
Asstt. Prof., Dept. of Mathematics
Gauhati University, Assam

Dr. Santanu Acharjee (Block II : Unit- 1)
Asstt. Prof., Dept. of Mathematics
Gauhati University, Assam

Ms. Manasi Hazarika (Block II : Unit- 2)
Asstt. Prof., Dept. of Computer Science and Engineering
Assam Don Bosco University, Guwahati, Assam

Dr. Sonia Sarmah (Block II : Unit- 3)
Asstt. Prof., Dept. of Computer Applications
Assam Don Bosco University, Guwahati, Assam

Dr. Utpal Barman (Block II : Unit- 4)
Asstt. Prof., Dept. of Computer Science and Engineering
GIMT, Guwahati, Assam

Dr. Pranab Das (Block II : Unit- 5)
Asstt. Prof. (Sr.), Dept. of Computer Applications
Assam Don Bosco University, Guwahati, Assam

Dr. Tapashi Kashyap Das (Block III : Unit- 1)
Asstt. Prof., HCB School of Science and Technology
KKHSOU, Assam

Mr. Mridul Suklabaidya (Block III : Units- 2, 3, 4 & 5)
Teaching Associate, Department of Computer Science
Gauhati University, Assam

Content Editor:

Prof. Bipan Hazarika

Dept. of Mathematics, Gauhati University

Course Coordination:

Prof. Dandadhar Sarma Director, IDOL, Gauhati University
Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Cover Page Designing:

Bhaskar Jyoti Goswami IDOL, Gauhati University

May, 2022

© Copyright by IDOL, Gauhati University. All rights reserved. No part of this
work may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Institute of Distance and Open Learning, Gauhati
University by the Director, and printed at Gauhati University Press, Guwahati-
781014.

BLOCK I:

DISCRETE MATHEMATICAL

STRUCTURES AND

MATHEMATICAL LOGIC

1 | P a g e

Space for learners: UNIT 1: CONGRUENCE, PERMUTATION

AND COMBINATION WITH

REPETITION

Unit Structure:

1.1 Introduction
1.2 Unit Objectives
1.3 Congruence
1.4 Properties of Congruence
 1.4.1 Power Rule of Congruence
 1.4.2 Cancellation Rule of Congruence
1.5 Least Residues
1.6 Modular Arithmetic
1.7. Application of Power rule of Congruence
1.8 Permutation
 1.8.1 Factorial Representation
 1.8.2 Fundamental Principle of Counting (Multiplication

Principle)
 1.8.3 Permutation with Repetition
 1.8.4 Permutation when all objects are not distinct objects
 1.8.5 Circular Permutation
 1.8.6 Restricted Permutation
1.9 Combination
 1.9.1 Restricted Combination
1.10 Summing Up
1.11 Answers to Check Your Progress
1.12 Possible Questions
1.13 References and Suggested Readings

2 | P a g e

Space for learners: 1.1 INTRODUCTION

In this unit, you will learn about a useful way of comparing the
remainder of two integers, called congruence. You will also learn
various properties of congruence with their proof like Addition
rule of congruence, Multiplication rule of congruence, Power rule
of congruence and Cancellation rule of congruence. You will also
learn how Power rule can be used to check the divisibility of
certain large numbers. Again, you will learn the concept of Least
Residues and Modular Arithmetic with some examples.

In the middle part, you will learn a very familiar concept of
Mathematics, Permutation, i.e., how a number of objects can be
arranged in a definite order taking some or all at a time. You will
learn Factorial Notation with some examples, which is mostly
used in Permutation as well as Combination. Again, the concept of
Fundamental principle of Counting is explained here with some
examples. We can also learn how we arrange n different objects
taking r at a time if some objects repeats, i.e., Permutation with
repetition with some examples. You will also learn how n objects
can be arranged if the objects are distinct objects. Again, you will
learn the arrangement of n distinct objects around a fix circle
where Clockwise and Anticlockwise orders are different as well as
same with some examples. Again, you can see the how certain
restrictions can be imposed on Permutation, i.e., Restricted
Permutation and some examples of it.

In the latter part, you will learn another very familiar concept of
Mathematics, called Combination, i.e., the selection of all or part
of a set of objects without regard to the order in which objects are
selected with various examples. You will again learn the concept
of Restricted Combination, i.e., how Combination can be made if
there are certain restriction.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the concept of Congruence

 Know the Properties of Congruence

 Know the concept of Least Residues

3 | P a g e

Space for learners:  Know Modular Arithmetic

 Define Permutation

 Understand the Concept of Factorial Notation

 Know the fundamental concept of Counting

 Learn Permutation with repetition

 Learn Permutation of n objects if the objects are distinct

 Learn the concept of Circular Permutation

 Learn the concept of Restricted Permutation

 Learn the concept of Combination

 Learn the concept of Restricted Combination

1.3 CONGRUENCE

Definition1: Let n be a positive integer. Two integers a and b are
congruent modulo n if they each have the same remainder on
division by n. If a and b are congruent modulo n, then it is written
symbolically as

 a ≡ b (mod n).

For example, 19 and 12 are congruent modulo 7; that is,

19 ≡ 12 (mod 7)

 because 19 and 12 each have remainder 5 on division by 7.

 Also, −8 and 10 are congruent modulo 6; that is,

 −8 ≡ 10 (mod 6),

because −8 and 10 each have remainder 4 on division by 6.

Definition 2: Let n be a fixed integer. Two integers a and b are
said to be congruent modulo n if n│a-b i.e., if a-b is divisible by n.

 For example, 3 and 24 are said to be congruent modulo 7, because
(3-24)= -21, which is divisible by 7.

Therefore, 3 ≡ 24 (mod 7).

Again, if a and b are not congruent modulo n, then the difference
between a and b is not an integer multiple of n; that is, a − b is not
divisible by n.

4 | P a g e

Space for learners: For example, 4 and 6 are not congruent modulo 5,because 4-6 = -
2,which is not divisible by 5.

Illustrative Example:

List all integers x in the range 1 < x < 100 that satisfy x ≡ 3 (mod
7).

Solution:

 Given,

 x ≡ 3 (mod 7)

 i.e. 7│ x-3

 i.e. x-3= 7k, k ∈ Z

 i.e. x=3+7k ………………(1)

 Therefore,

 1 <3+7k <100

 -2 < 7k< 97.

From this we obtain the values of k as
0,1,2,3,4,5,6,7,8,9,10,11,12,13.

Now, putting the values of k in equation (1), we get the values of
x=3,10,17,24,31,38,45,52,57,66,73,80,87 and 94.

1.4 PROPERTIES OF CONGRUENCE

1. a ≡ a (mod n)

2. if a ≡ b (mod n) then b ≡ a (mod n)

3. if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n)

4. Addition Law of Congruence

 If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n)

 5. Multiplication Law of Congruence

 If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

6. For any integers a, b, and c

 (a) If a ≡ b (mod n), then a + c ≡ b + c (mod n).

 (b) If a ≡ b (mod n), then ca ≡ cb (mod n).

Proof (1): For any integer a and any fixed positive integer n,

5 | P a g e

Space for learners: We have a-a=0, which is divisible by n

 Therefore, n│(a-a),since 0 is divisible by any integer.

 Therefore a ≡ a mod n.

 For example, 5 ≡ 5(mod 7), because 5-5=0 is divisible by 7.

Proof (2): Let, a ≡ b (mod n), then, n|(a − b).

Therefore, n|(−1)(a – b)

Or, n|(b − a).

 Therefore, b ≡ a (mod n).

So, if a ≡ b (mod n) then b ≡ a (mod n).

 For example, if 3≡ 18 (mod 5), then 18 ≡ 3 (mod 5), because 3-
18 = -15 and 18-3=15, both -15 and 15 are divisible by 5.

Proof (3): Let a ≡ b (mod n).

 Then, n|(a−b)………………………………………………….(1)

Again,

 Let, b ≡ c (mod n).

 Then, n|(b−c)…………………………………………………(2)

From equation (1) & (2), we get,

 n|(a − b + b− c) [by Linear Combination
Theorem]

 or n|(a − c).

 Thus, a ≡ c mod n.

Therefore, if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n)

For example, we consider

 7 ≡ 12 (mod 5) [Because 7-12=-5,which is
divisible by 5]

 and 12 ≡ 22(mod 5) [Because 12-22=-10,which is
divisible by 5]

Now, clearly we can say that

 7 ≡ 22 (mod 5) [Because 7-22=-15,Which is
divisible by 5]

Proof (4): Let, a ≡ b (mod n).

6 | P a g e

Space for learners: Then, a-b is divisible by n
…………………………………………………(1)

And, c ≡ d (mod n).

Then, c − d are divisible by
n……………………………………………(2)

From equation (1) & (2) we get,

 (a − b) + (c − d) is divisible by n.

But, (a − b) + (c − d) = (a + c) − (b + d).

So, (a + c) − (b + d) is divisible by n.

 Therefore, a + c ≡ b + d (mod n).

So, if a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n).

For example,

 We know that,

 19 ≡ 1 (mod 18) and 37 ≡ 1 (mod 18),

 so, by the addition rule of congruence,

 19 + 37 ≡ 1 + 1 ≡ 2 (mod 18).

Or 56 ≡ 2 (mod18).

Proof (5): Let, a≡ b(mod n).

Then, a-b is divisible by n

 Then, (a-b)c is also divisible by
n………………………………………(1)

And c ≡ d (mod n).

Then, c-d is divisible by n

Then, (c-d)b is also divisible by
n……………………………………..(2)

From equation (1) & (2),

 (a-b)c+(c-d)b is also divisible by n

But, (a − b)c + (c − d)b = ac – bd.

So, ac − bd is divisible by n.

Hence, ac ≡ bd (mod n).

Hence, If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

7 | P a g e

Space for learners: For Example,

 17 ≡ −2 (mod 19)

 and 14 ≡ −5 (mod 19).

 Therefore,

 17 × 14 ≡ (−2) × (−5) ≡ 10 (mod 19) [By Multiplication
rule of Congruence]

Or , 238≡10 (mod19).

1.4.1 Power Rule for Congruences

If a ≡ b (mod n), and m is a positive integer, then a m ≡ b m (mod
n).

For example, suppose you wish to find the least residue
(remainder) of 195 modulo 9. Since 19 ≡ 1 (mod 9), it follows that
195 ≡ 1 5 ≡ 1 (mod 9), so the least residue is 1. This is a
particularly simple application of the power rule.

1.4.2 Cancellation Rule of Congruence

If ca≡ cb (mod n) then a ≡ b (mod n/d) where d=gcd(c,n)

For example,

Consider, 33 ≡ 15 (mod 9)

Now, 3*11≡3*5(mod 9)

 11 ≡ 5 (mod 3), by cancellation law of congruence. [since, gcd of
3 and 9 is 3]

Again, by same law we can write -35≡ 45(mod 8)

 As -7≡ 9(mod 8)

1.5 LEAST RESIDUES

The least residue of a modulo n is the remainder r that you obtain
when you divide a by n. The integer r is one of the numbers 0, 1, .
. . , n − 1, and it satisfies a ≡ r (mod n).

 For example, the least residue of −33 modulo 7 is 2

 Because, −33 = 7 × (−5) + 2

8 | P a g e

Space for learners: 1.6 MODULAR ARITHMETIC

Modular arithmetic is the application of the usual arithmetic
operations – namely addition, subtraction, multiplication and
division – for congruences. Addition, subtraction and
multiplication are often simpler to carry out in modular arithmetic
than they are normally, because you can use congruences to
reduce large numbers to small numbers.

Examples:

1. Find the least residue of 67+68 modulo 6

2. Find the least residue of 17*14 modulo 19

Solution1: We know that,

67≡1 (mod 6) [Because 67-1=66, is divisible by
6]…………………(1)

 68≡2 (mod 6) [Because 68-2=66,is divisible by
6]………………….(2)

 From equation (1) & (2),

 67+68≡ 1+2 (mod 6) [By Addition rule of congruence]

 Or 135≡ 3(mod 6) [135-3=132,is divisible by 6].

Therefore, the least residue of 67+68 modulo 6 is 3

Solution 2: We know that,

17 ≡ −2 (mod 19) [Because 17-(-2)=19,is divisible by
19]……………..(1)

 14 ≡ −5 (mod 19) [Because 14-(-5)=19,is divisible by
19]………………(2)

 From equation (1) & (2),

 17*14≡ (-2)*(-5) ≡10 (mod 19) [By Multiplication Law of
congruence].

 Therefore, the least residue of 17*14 modulo 19 is 10.

9 | P a g e

Space for learners: 1.7 APPLICATION OF POWER LAW OF

CONGRUENCE

Example 1: Find the remainder when 25 100 + 11 5 00 is divided by
3.

Example 2: Show that 3 1000 + 3 is divisible by 28.

Solution1:

We know that, 25 ≡ 1 (mod 3).

 Therefore, 25100≡ 1100(mod 3) [By Power rule of Congruence]

Therefore, 25100 ≡ 1 (mod 3)……………………….(1)

 Again, 11 ≡ -1 (mod 3).

 Therefore, 11500 ≡ (-1)500(mod 3) [By Power rule of Congruence]

 Therefore,11500 ≡ 1 (mod 3)………………………(2)

 From equation (1) & (2),

 25100 +11500 ≡2 (mod 3) [By addition
law of Congruence]

 Therefore, the remainder is 2.

 Solution 2: We know that, 3 3 = 27 ≡ -1 (mod 28).

Therefore, (33)333 ≡ (-1)333 (mod 28) [By power rule of
Congruence]

 Therefore, 3999 ≡ -1 (mod 28).

 31000=3999.3 ≡ -1.3 (mod 28) [By Properties 6(b)]

Therefore, 31000 ≡ -3(mod 28
)……………………………………….(1)

 Again,

 3 ≡ 3 (mod 28
)………………………………………(2)

From equation (1) & (2),

 31000 + 3 ≡ -3+3 ≡ 0 (mod 28) [By
addition rule of Congruence]

Therefore, 31000 + 3 ≡ 0 (mod 28).

So, the remainder when we divide 31000+3 by 28 is 0

10 | P a g e

Space for learners: Hence, we can say that 31000 +3 is divisible by 28.

1.8 PERMUTATION

A permutation is an arrangement in a definite order of a number of
objects taken some or all at a time.

The number of permutations of n different objects taken r at a
time, where 0 < r ≤ n and the objects do not repeat is n (n – 1) (n –
2) . . . (n – r + 1), which is denoted by n ProrP(n,r)

npr= �!

(���)!
where 0 ≤ r ≤ n

1.8.1 Factorial Representation

The notation n! represents the product of first n natural numbers,
i.e., the product 1 × 2 × 3 × . . . × (n – 1) × n is denoted as n!. We
read this symbol as ‘n factorial’.

 Thus, 1 × 2 × 3 × 4 . . . × (n – 1) × n = n!

 1 = 1!

 1 × 2 = 2!

CHECK TO YOUR PROGRESS

1. Which of the following congruences are true?
(a) 11 ≡ 26 (mod 5) (b) 9 ≡ −9 (mod 5)
(c) 28 ≡ 0 (mod 7) (d) −4 ≡ −18 (mod 7)
(e) −8 ≡ 5 (mod 13) (f) 38 ≡ 0 (mod 13
(2). Determine the integers in between 50 and 100 which are
congruent to 1 modulo 4.
(3). List all integers x in the range 1 ≤ x ≤ 100 that satisfy x ≡ 7 (
mod 17).
(4). Find the least residues of the following integers modulo 10.
(a) 17 (b) 50 (c) 6 (d) −1 (e) −38
(5). Find the least residues of the following integers modulo 7.
(a) 3 × 6 (b) 22 × 29 (c) 51 × 74
(6).Show that 220-1 is divisible by 41
(7). What is the remainder when 3 5555 is divided by 80?

11 | P a g e

Space for learners: 1× 2 × 3 = 3!

 1 × 2 × 3 × 4 = 4!

We define 0! = 1

Again,

5! = 5 × 4! = 5 × 4 × 3! = 5 × 4 × 3 × 2! = 5 × 4 × 3 × 2 × 1!

Example 1. Evaluate (a) 3! (b) 2! + 4! (c) 2! ×3!

Solution: (a) 3! = 3×2×1= 6

 (b) 2! = 2×1 = 2

4! = 4×3× 2×1 = 24

 Therefore, 2! + 4! = 2 + 24 = 26

(c) 2! × 3! =2 ×6= 12

Example 2: Find the value of (a) np0 (b) np1 (c) npn (d) 6p3

Solution 2(a)

We know that

 npr= �!

(���)!

Therefore,

 np0= �!

(���)!

 = �!

(�)!

 =1

So, np0= 1. Similarly 5p0= 7p0=1.

2. (b) We know that,

npr= �!

(���)!

⇒np1= �!

(��
)!

 = �∗(��
)!

(��
)!

12 | P a g e

Space for learners: = n

So, np1= n, similarly 5p1= 5, 6p1= 6.

2(c) We know that

npr= �!

(���)!

 npn= �!

(���)!

 = �!

�!

 = n! [since, 0! = 1]

Therefore, npn= �!. Similarly,5p5= 5! , 7p7= 7!

2 (d): We know that,

 npr= �!

(���)!

��, 6p3= �!

(���)!

 =�!

�!

 =�×�×�×�!

�!

 =6×5×4

 =120

Example 3:

(a) Prove that npr = n-1pr +r.n-1pr-1
(b) �ind the value of n,if np7= 42× np5
(c) ���� �ℎ� !"#��$ � �$np5 :np3 = 2:1

Solution 3(a):

%&� = n-1pr + r.n-1pr-1

 =
(��
)!

(��
��)!
 + r× (��
)!

{(��
)�(��
)}!
 [Since, npr= �!

(���)!
]

 = (��
)!

(����
)!
 + r×(��
)!

(���)!

 = (��
)!

(����
)!
 + r× (��
)!

(���)×(����
)!
 [Since, n!=n×(n-1)!]

13 | P a g e

Space for learners: = (��
)!

(����
)!
(1+ �

���
)

 = (��
)!

(����
)!
× �

���

 = �!

(���)!

 = npr

 =L.H.S

&��)�,npr =
n-1pr + r.n-1pr-1

3(b):
 Given,
np7= 42× np5

⇒ �!

(��*)!
=42× �!

(���)!

⇒

(��*)!
= �+

(���)!

⇒ (n-5)! =42×(n-7)!

⇒ (n-5)(� − 6)(� − 7)! = 42 × (� − 7)!

⇒ (n-5)(n-6)= 42

⇒ (n-5)(n-6)=7×6

⇒ (n-5)=7 or (n-6)=6

⇒ n=12

The required value of n is 12

Solution:3(c):

Given,

np5 : np3 = 2:1

⇒ �!

(���)!
 : �!

(���)!
 =2:1

⇒
1!

(123)!
1!

(124)!

 =+

⇒ �!

(���)!
× (���)

�!
 =+

14 | P a g e

Space for learners: ⇒ (���)!

(���)!
 = 2

⇒ (���)(���)(���)!

(���)!
 =2

⇒ (n-3)(n-4)=2

⇒ (n-3)(n-4)=2×1

⇒ n-3=2 or n-4 =1

⇒ n=5

1.8.2 Fundamental Principle of Counting

(Multiplication Principle)

“If an event can occur in m different ways, following which
another event can occur in n different ways, then the total number
of occurrences of the events in the given order is m×n.”

Example1: How many 3-digit numbers can be formed with the
digits 1,4,7,8 and 9 if the digits are not repeated?

Example2: There are 4 books on fairy tales, 5 novels and 3 plays.
In how many ways can you arrange these so that books on
fairy tales are together, novels are together and plays are
together and in the order, books on fairy tales, novels and
plays.

Solution 1:

 Three digit numbers will have units, ten’s and hundred’s place.

 Out of 5 given digits any one can take the unit’s place.

 This can be done in 5 ways. ... (i)

 After filling the unit’s place, any of the four remaining digits
can take the ten’s place.

 This can be done in 4 ways. ... (ii)

 After filling in ten’s place, hundred’s place can be filled from
any of the three remaining digits.

 This can be done in 3 ways. ... (iii)

15 | P a g e

Space for learners: ∴ By counting principle, the number of 3 digit numbers = 5×4×3 =
60

Solution2:

There are 4 books on fairy tales and they have to be put together.

 They can be arranged in 4! ways.

 Similarly, there are 5 novels.

 They can be arranged in 5! ways.

 And there are 3 plays.

 They can be arranged in 3! ways.

 So, by the counting principle all of them together can be
arranged in 4! ×5!× 3! ways = 17280 ways.

CHECK TO YOUR PROGRESS

8 (a). Evaluate:
 (i) 6! (ii) 7! (iii) 7! + 3! (iv) 6! × 4!
8 (b). Which of the following statements are true?

(i) 2!× 3! = 6! (ii) 2! + 4! = 6! (iii) 4! - 2! = 2!
9.Find the value of
(!) 15p4 (b) 11p5 (c) 9p0
10.Find the value of n if 2* 9pn = 10pn
11. ���� �ℎ�7!"#� �$ 8 �$18pr-1:

17pr-1 =9:7
12. Find the value of r if 5*4pr =6 *5pr-1

13.How many words of 4 letters with or without meaning can be
formed from the letters of the word RICE.
14.Without repetition how many 4 digits numbers can be formed
with the digits 1,3,5,7,9.

16 | P a g e

Space for learners: 1.6.3 Permutation with Repetition

The number of permutations of n different objects taken r at a
time, where repetition is allowed, is nr.

Example1: Find the number of 4 digit numbers that can be formed
using the digits 1, 2, 4, 5, 7, 8 when repetition is allowed.

Example2: Ten different letters of an alphabet are given. Words
with 5 letters are formed from these letters. Find the number of
words which have at least one letter repeated.

Example3: How many numbers lying between 100 and 1000 can
be formed with the digits 0, 1, 2, 3, 4, 5, if the repetition of the
digits is not allowed?

Solution1:

The number of 4 digit numbers that can be formed using the digits
1, 2, 4, 5, 7, 8 when repetition is allowed = 6 4 = 1296

Solution 2:

The number of 5 letter words using ten different letters when
repetition is allowed = 105

Again,

The number of 5 letter words using ten different letters when
repetition is not allowed=10p5

9ℎ�8�$�8�, �ℎ�number of 5 letter words using ten different letters
in which at least one

letter repeated = 105-10p5 = 100000 − 30240 = 69760

Solution3:

Every number between 100 and 1000 is a 3-digit number. We,
first, have to count the permutations of 6 digits taken 3 at a time.

This number would be 6p3.

But, these permutations will include those also where 0 is at the
100’s place. For example, 092, 042. . .etc. are such numbers which
are actually 2-digit numbers and hence the number of such
numbers has to be subtracted from 6p3 to get the required number.
To get the number of such numbers, we fix 0 at the 100’s place
and rearrange the remaining 5 digits taking 2 at a time. This
number is 5p2 .

17 | P a g e

Space for learners: So, the required number is = 6p3 −5p2

= 100

1.8.4 Permutations when all the Objects are Not

Distinct Objects

The number of permutations of n objects, where p1 objects are of
one kind, p2 are of second kind, ..., pk are of kth kind and the rest,

if any, are of different kind is �!

=
! =+!……..=?!

Example1: How many words can be formed with the letters of the
words COMMITTEE?

Example2: In how many ways can 4 red, 3 yellow and 2 green
balls be arranged in a row if the balls of the same colour are
indistinguishable?

Solution1:

Here, there are 9 objects (letters) of which there are 2M’s, 2 T’s, 2
E’s and rest are all different.

 Therefore, the required number of arrangements = @!

+!+!+!
=

@×A×*×�×�×�×�×+×

+×+×+

 =9× 7 × 6 × 5 × 4 × 3 × 2 × 1

=45360

Solution2:

Total no of balls=9

So, out of 9 balls, 4 balls are red, 3 balls are yellow and 2 balls are
green.

Therefore, the total no of arrangements= @!

�! �! +!

 =@×A×*×�×�×�!

�!×�×+

 =@×A×*×�

+

=9×4×7×5

=1260

18 | P a g e

Space for learners: 1.8.5 Circular Permutation

Circular Permutation is the total number of ways in which n
distinct objects can be arranged around a fix circle.

 It is of two types

 Case1- Clockwise and Anticlockwise orders are different.

 Here, the number of circular permutations of n dissimilar
things is (n −1)!

 Case2- Clockwise and Anticlockwise orders are same.

 Here, the number of circular permutations of n things is

+
[(n-1)!]

Example1: Find the number of ways of arranging 7 persons
around a circle.

Example2: Find the number of ways of arranging 6 boys and 6
girls around a circular table so that (i) all the girls sit together (ii)
no two girls sit together iii) boys and girls sit alternatively

Example3: Find the number of ways of arranging 6 red roses and
3 yellow roses of different sizes into a garland. In how many of
them (i) all the yellow roses are together (ii) no two yellow roses
are together

Solution1:

Number of persons, n = 7

∴ The number of ways of arranging 7 persons around a circle = (n
- 1)! = 6! = 720

Solution2:

(i) Treat all the 6 girls as one unit. Then we have 6 boys
and 1 unit of girls. They can be arranged around a
circular table in 6! Ways. Now, the 6 girls can be
arranged among themselves in 6! Ways.

∴The number of required arrangements = 6! × 6! = 720 ×
720 = 5,18,400

(ii) First arrange the 6 boys around a circular table in 5!
ways. Then we can find 6 gaps between them. The 6
girls can be arranged in these 6 gaps in 6! ways.

∴The number of required arrangements = 5! × 6!= 120×720
= 86,400

19 | P a g e

Space for learners:

(iii) The arrangements of boys and girls sit alternatively
in same as the arrangements of no two girls sit
together or arrangements of no two boys sit
together.

 First arrange the 6 girls around a circle table in 5!
ways.

 Then we can find 6 gaps between them.

The 6 boys can be arranged in these 6 gaps in 6!
ways.

∴The number of required arrangements = 5! × 6! =
120× 720 = 86,400

Solution3:

Total number of roses = 6 + 3 = 9

∴ The number of ways of arranging 6 red roses and 3 yellow roses
of different sizes into a garland

 =

+
[(9-1)!

 =

+
(8!)

 =

+
×40320

 =20160

(i) Treat all the 3 yellow roses as one unit. Then we have 6
red roses and one unit of yellow roses.

They can be arranged in garland form in (7 - 1)! = 6! ways.

Now, the 3 yellow roses can be arranged among themselves in
3! ways. But in the case of garlands, clockwise arrangements
look alike.

∴The number of required arrangements =

+
×6! ×3!

 =

+
×720 ×6

 =2160

20 | P a g e

Space for learners:

(ii) First, arrange the 6 red roses in garland form in 5!
ways.

(iii) Then we can find 6 gaps between them. The 3 yellow
roses can be arranged in these 6 gaps in 6p3 ways. But
in the case of garlands, clock-wise and anti-clockwise
arrangements look alike.

∴The number of required arrangements=

+

× 5! ×6p3

 =

+
×120×6×5×4

=7200

1.8.6 Restricted Permutation

Permutation with some specific restrictions is called restricted
permutations. Following are some Permutation corresponding to
some common restrictions.

 The number of permutation of n different things taken r of them at
a time in which k particular things

 (a) Never Occur is = n-kpr

 (b) Always occur is n-kpr-k ×rpk

 (c) Are placed in some specific places in
n-kpr-k

Example1:How many wprds can be formed with the letters of the word EQUATION taking 5 at a

time if

 (a) None of words contains Q,U and T

 (b) A and O occur In each word

Example2: How many arrangements of the letters of the word
‘BENGALI’ can be made (i) if the vowels are never together. (ii)
if the vowels are to occupy only odd places.

Solution1:

 (a) There are 8 letters in the word EQUATION. If none of the
words contain the 3 letters Q,U and T, then there will be remain 8-
3=5 letters.

 So, the permutation will be the arrangement of these 5 letters.

Therefore, the required no of words = 5p5 =120

21 | P a g e

Space for learners: (b)Since, A and O are always present, So any two of the 5 gaps are to be filled up by the two letters

A and O, Which can be done in
5p2 ways. After filling 2 of the 5 gaps, the remaining 5-2=3 gaps

can be filled up by the 3 letters from the remaining 8-2=6 letters, which will be filled in
6p3 ways.

Therefore, the required no of words=
6p3 ×5p2 =2400

Solution 2:

(i) Considering vowels a, e, i as one letter, we can arrange 4+1
letters in 5! Ways in each of which vowels are together.

 These 3 vowels can be arranged among themselves in 3!
ways.

∴ Total number of words = 5! × 3! = 120 × 6 = 720

(ii) There are 4 odd places and 3 even places.

 3 vowels can occupy 4 odd places in 4p3 ways

And 4 constants can be arranged in 4p4 ways.

∴Required number of words =4p3 ×4p4

 =24×24

 =576

1.9 COMBINATION

A combination is a selection of all or part of a set of object
without regard to the order in which objects are selected.

The number of combinations of n things taken r at a time is

denoted by nCr and it is defined by nCr =
�!

(���)! �!
For 0≤ r ≤n

1.9.1 Restricted Combination

If there are certain restrictions on Combination like a particular
object occurring always and occurring never, then it is called
Restricted Combination.

The numbers of Combinations of n different things taking r of
them at a time if x particular things are

 (i) Always included is n-xCr-x

 (ii) Always excluded is n-xCr

Example1:

22 | P a g e

Space for learners: Show That

(a) nC0=1

 (b) ncr= npr/r!

 (c) nc1=n

 (d) ncr=ncn-r

 (e) ncr+ncr-1=n+1c r

Solution:

 (a) LHS= nC0

= �!
(���)! �!

 [nCr =
�!

(���)! �!
]

 = �!

�!

 [0!=1]

=1

=RHS

(b) LHS=nCr

= �!
(���)! �!

 =npr/r! [Since, nPr =
�!

(���)!
]

 =RHS

(c) LHS=
 nC1

= �!
(��
)!×
!

 [since, nCr=
�!

(���)! �!
]

=�×(��
)!
(��
)!×

 =n

 =RHS

(d) LHS= nCr

= �!
(���)!× �!

 = �!
(���)!×B��(���)C!

 =nCn-r

23 | P a g e

Space for learners: =RHS

(e) LHS= nCr+ nCr-1

 = �!
(���)! �!

+ �!
(���E
)!(��
)!

 = �!
(���)! �(��
)!

+ �!
(���E
)(���)!(��
)!

 =
�!

(���)! (��
)!
(

�
+

���E
)

 =
�!

(���)! (��
)!
(���E
E�

�(���E
)
)

 =
(�E
)×�!

 �×(��
)!(���E
)×(���)!

 = (�E
)!

�!×(���E
)!

 = (�E
)!

 �!×(�E
��)!

 =n+1C r

 =RHS
Example2:

 (a) Find the value of 9C7

 (b) If 12Cr = 12Cr+2 find the value of r

 (c) If nC3 ÷ nC2 =8,find the value of n.

 (d) If nPr =110 and nCr=55,find the value of r

Solution:

(a) 9C7

= @!

(@�*)!× *!

= @!

+!× *!

=@×A×*!

+×*!

=@×A

+

 =36

(b) Given

24 | P a g e

Space for learners:
12Cr=12Cr+2

⇒ 12F12-r=12Fr+2 [���)�,ncr=ncn-r]

⇒ 12 − 8 = 8 + 2[�$ n)r=n)s �ℎ�� 8 = I] ⇒ 28 = 10

 ⇒ 8 = 5

(c) Given,
 nC3÷nF2=8

⇒ �!
(���)!×�!

÷ �!
(��+)!×+!

 =8 ⇒ �!
(���)!×�!

×
(��+)!×+!

�!
= 8 ⇒

(��+)!×+!
(���)!×�!

= 8

⇒
(� − 2) × (� − 3)! × 2

(� − 3)! × 6
= 8 ⇒

(� − 2)
3

= 8

⇒ (� − 2) = 24 ⇒ � = 26

(d)

Given,

nPr =110

 Again, nCr=55

We know that,

nPr= nCr× 8!

⇒ 110 = 55 ∗ 8!

⇒ 8! =
110
55

⇒ 8! = 2

9ℎ�8�$�8�, 8 = 2

25 | P a g e

Space for learners:

LMNOPQRS: A group consists of 4 girls and 7 boys. In how many
ways can a team of 5 members be selected if the team has (i) no
girl ? (ii) at least one boy and one girl ? (iii) at least 3 girls ?

Solution:

(i) Since, the team will not include any girl, therefore, only boys
are to be selected. 5 boys out of 7 boys can be selected in 7 C5
ways.

Therefore, the required number of ways =7C5

 =
*!

(*��)!×�!
= *!

+!×�!

=
7 × 6 × 5!

2 × 5!

 =
7 × 6

2
= 21

(UU)Since, at least one boy and one girl are to be there in every
team. Therefore, the team can consist of

 (a) 1 boy and 4 girls (b) 2
boys and 3 girls

 (c) 3 boys and 2 girls (d) 4
boys and 1 girl.

 CHECK TO YOUR PROGRESS

15.Find the value of n if np4=30*nc5

16. V$ nF6∶n-3C3= 91: 4, $��� �ℎ� !"#� �$ �?

17. If nC9=nC8 , find nC17 .

18.Verify each of the following statement :

 (i) 5c2 =5c3

 (ii) 4C3 ×3c2=12c6

 (iii) 4C2+ 4 C3 =8c5

(iv) 10c2 + 10c3=11c3

26 | P a g e

Space for learners:

 1 boy and 4 girls can be selected in 7 C1 ×
4 C4 ways.

 2 boys and 3 girls can be selected in 7 C2 ×
4 C3 ways.

 3 boys and 2 girls can be selected in 7 C3 ×
4 C2 ways.

 4 boys and 1 girl can be selected in 7C4 ×
4C1 ways.

Therefore,

the required number of ways = 7 C1 × 4 C4 + 7 C2 × 4 C3 + 7 C3 × 4
C2 + 7C4 × 4C1

= 7 + 84 + 210 + 140

 = 441

(iii) Since, the team has to consist of at least 3 girls, the team can
consist of

(a) 3 girls and 2 boys. Or (b) 4 girls and 1 boy.

Note that the team cannot have all 5 girls, because, the group has
only 4 girls

3 girls and 2 boys can be selected in 4 C3 × 7 C2 ways.

 4 girls and 1 boy can be selected in 4 C4 × 7 C1 ways

 Therefore, the required number of ways = 4 C3 × 7 C2 + 4 C4 × 7 C1

 = 84+7

= 91

LMNOPQRY: A question paper consists of 10 questions divided
into two parts A and B. Each part contains five questions. A
candidate is required to attempt 6 questions in all of which at least
2 should be from part A and at least 2 from part B. In how many
ways can the candidate select the questions if he can answer all
questions equally well?

27 | P a g e

Space for learners: Solution: The candidate has to select six questions in all of which
at least two should be from Part A and two should be from Part B.
He can select questions in any of the following ways:

 Part A Part B

 (i) 2 4

 (ii) 3 3

 (iii) 4 2

If the candidate follows choice (i), the number of ways in which
he can do so is

5C2 × 5C4 =10 × 5 =50

If the candidate follows choice (ii), the number of ways in which
he can do so is

5C3 × 5C3= 10 × 10 = 100

Similarly, if the candidate follows choice (iii), then the number of
ways in which he can do so is

5C4 × 5C2= 5 × 10 = 50

Therefore, the candidate can select the question in 50 + 100
+ 50 = 200 ways

Example5:

In how many ways can a selection of 4 persons be made from 10
persons such that one particular person is always (i) included (ii)
excluded

Solution: This is the example of Restricted Combination.

(i) The number of ways of selecting 4 persons from 10 persons
such that a particular person is always included is = 9C3

=
9!

6! × 3!
=

9 × 8 × 7 × 6!
6! × 6

 = 84

(ii) The number of ways of selecting 4 persons from 10 persons
such that a particular person is always excluded is = 9C4

=
9!

5! × 4!
 =

9 × 8 × 7 × 6 × 5!
5! × 4 × 3 × 2 × 1

= 126

28 | P a g e

Space for learners: Example 6: A committee of 5 members is to be formed from 6 male teachers and 4 female teachers.

How many ways the committee be formed if there be at least one female teacher in the committee?

Solution:

The possible selections are as follows:

 1 4c1×6F4

 2
4c2×6F3

 3
4c3×6F2

 4
4c4×6F1

Therefore, the total no of Selections

4c1×6F4+4c2×6F3+4c3×6F2+4c4×6F1

= �!

�!×
!
× �!

�!×+!
 + �!

+!×+!
× �!

�!×�!
 + �!

!×�!
× �!

�!×+!
 + �!

�!×�!
× �!

�!×
!

= 4 × �×�

+
 + �×�

+
× �×�×�

�×+×

 + 4 × �×�

+
 + 1× 6 = 60 + 6 × 20 +

60 + 6 = 246

1.10 SUMMING UP

 Two integers a and b are congruent modulo n if they each
have the same remainder on division by n.

 If a ≡ b (mod n), and m is a positive integer, then a m ≡ b m
(mod n) can be termed as the power rule of congruence.

 The least residue of a modulo n is the remainder r that you
obtain when you divide a by n.

 Addition, subtraction and multiplication are often simpler to
carry out in modular arithmetic than they are normally,
because you can use congruences to reduce large numbers to
small numbers.

 Permutation is an arrangement in a definite order of a
number of objects taken some or all at a time.

 The number of permutations of n different objects taken r at a
time, where repetition is allowed, is nr

29 | P a g e

Space for learners:  Circular Permutation is the total number of ways in which n
distinct objects can be arranged around a fix circle.

 Permutation with some specific restrictions is called restricted
permutations.

 A combination is a selection of all or part of a set of object
without regard to the order in which objects are selected. If
there are certain restrictions on Combination like a particular
object occurring always and occurring never, then it is called
Restricted Combination.

1.11 ANSWERS TO CHECK YOUR PROGRESS

1(!)98#�

(k)�!"I�

())98#�

(d) True

(e) True

(f) False

2. n-=52, 56, 60,……….. .96

3. X=7, 24, 41,58,75,92

4(a) Since, 17 = 1 × 10 + 7, the least residue is 7.

(b) Since, 50 = 5 × 10 + 0, the least residue is 0.

(c) Since, 6 = 0 × 10 + 6, the least residue is 6.

(d) Since, −1 = (−1) × 10 + 9, the least residue is 9.

(e) Since, −38 = (−4) × 10 + 2, the least residue is 2.

5(a) 3 × 6 ≡ 18 ≡ 4 (mod 7) So the least residue is 4.

(b) 22 × 29 ≡ 1 × 1 ≡ 1 (mod 7),So the least residue is 1

(c) 51 × 74 ≡ 2 × 4 ≡ 8 ≡ 1 (mod 7),so least residue is 1

6. We have, 32 ≡ -9 (mod 41)

30 | P a g e

Space for learners: ⇒ 25≡ −9(m�� 41)

⇒ (25)2≡ (−9)2(m�� 41) [no p�q�8 8#"�] rs!��, (−9)2 =
81 ≡ −1 (m�� 41)

�. �. , (25)2≡ (−1)(m�� 41)

 ��m�"!8"o, {(25)2}2≡ (−1)2(m�� 41)[no t�q�8 8#"�]

�. �. , 220≡ 1(m�� 41)

7. We notice that 3 4 = 81 ≡ 1 (mod 80).

 That is, we have 3 4 ≡ 1 (mod 80)

By power rule of Congruence,

 (3 4) 1388 ≡1 (mod80). [I��)�,3 5555 = (3 4)
1388. 3 3]

 Therefore, (3 4) 1388. 33≡33 (mod80).

 Therefore, 35555≡27 (mod80).

 So, the required remainder is 27

8(a) (i) 720

(ii) 5040

(iii) 5046

(iv) 17280

8(b) (i) False

 (ii)False

 (iii) False

9 (a) 32760

 (b) 55440

(c) 1

 10. n=5

11. r=5

31 | P a g e

Space for learners: 12. r=8, 3

13.24

14. 120

15. 8

16. 15

17. 1

18(i) True

(ii) False

(iii) False

(iv) True

1.12 POSSIBLE QUESTIONS

Question1: Find the least residue of 1492 (mod 4), (mod 10) .

Question2 : Does 33x ≡ 12 (mod 6) imply 11x ≡ 4 (mod 6) ? Why
?

Question3: What is the remainder when 250 �I �� ���� ko 7?

u#�I����4: Find the least residue of 116 modulo 9.

Question5: Check whether 4 and 6 are congruent modulo 5 or
not?

Question6. Every integer a is congruent modulo 1 to every integer
b. State True or False.

Question 7: If nPr =nPr+1 and nCr=nCr-1, find the value of n and r.

Question 8: If nCr-1 =36,nCr=84 and nCr+1=126,find the value of n
and r?

Question 9: How many numbers less than 1000 can be formed
using the digits 0,1,2,3,4,5,6 if repetition of digits being allowed?

Question 10: In how many ways can 3 boys and 4 girls be
arranged so that no two boys will be side by side?

32 | P a g e

Space for learners: Question 11: Find the number of numbers greater than 4000 which
can be formed using the digits 0, 2, 4, 6, 8 without repetition.

Question 12: 9 different letters of an alphabet are given. Find the
number of 4 letter words that can be formed using these 9 letters
which have (i) no letter repeated (ii) atleast one letter repeated.

Question 13: Find the number of ways of arranging the letters of
the word.

(a) INDEPENDENCE (b) MATHEMATICS

Question 14: In how many ways 6 books be put into 5 bags?

Question 15: How many ways 3 students can be selected from 50
students?

Question 16: In how many ways can the letters in the word
ENGINEERINGis arranged such that no two E’s are together?

Question 17: A cricket team consisting of 11 players is to be
selected from 6 bowlers and 8 batsman including at least 4
bowlers. In how many ways can this be done?

Question 18: There are 5 black and 6 red balls in a bag. How many
selection can be made taking 2 black and 3 red balls?

1.12 REFERENCES AND SUGGESTED

READINGS

 Permutation and Combination by Ramesh Chandra
 http:// www.wikipedia.org
 http://mathworld.wolfram.com

33 | P a g e

Space for learners:

UNIT 2: SETS

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Definition of Sets

2.4 Operations of Sets

2.5 Summing Up

2.6 Answers to Check Your Progress

2.7 Possible Questions

2.8 References and Suggested Readings

2.1 INTRODUCTION

In mathematics, a set is a collection of elements. The elements that

make up a set can be any kind of mathematical objects: numbers,

symbols, points in space, lines, other geometrical shapes, variables,

or even other sets. The set with no element is the empty set; a set

with a single element is a singleton. A set may have a finite number

of elements or be an infinite set. Two sets are equal if and only if

they have precisely the same elements.

Sets are ubiquitous in modern mathematics. Indeed, set theory, more

specifically Zermelo–Fraenkel set theory, has been the standard way

to provide rigorous foundations for all branches of mathematics

since the first half of the 20th century.

The concept of a set emerged in mathematics at the end of the 19th

century. The German word for set, Menge, was coined by Bernard

Bolzano in his work Paradoxes of the Infinite.

A set is a gathering together into a whole of definite, distinct objects

of our perception or our thought—which are called elements of the

set.

Bertrand Russell called a set a class: "When mathematicians deal

with what they call a manifold, aggregate, Menge, ensemble, or

some equivalent name, it is common, especially where the number

34 | P a g e

Space for learners: of terms involved is finite, to regard the object in question (which is

in fact a class) as defined by the enumeration of its terms, and as

consisting possibly of a single term, which is in that case is the

class."

2.2 UNIT OBJECTIVES

This unit will give you about the

 idea of set

 definition of sets

 representation sets

 operations of sets

 questions and answers for your progress

2.3 DEFINITIONS OF SETS

Set - Definition

A set is an unordered collection of different elements. A set can be

written explicitly by listing its elements using set bracket. If the

order of the elements is changed or any element of a set is repeated,

it does not make any changes in the set.

Some Example of Sets

• A set of all positive integers

• A set of all the planets in the solar system

• A set of all the states in India

• A set of all the lowercase letters of the alphabet

Representation of a Set

Sets can be represented in two ways −

• Roster or Tabular Form

• Set Builder Notation

Roster or Tabular Form

The set is represented by listing all the elements comprising it. The

elements are enclosed within braces and separated by commas.

35 | P a g e

Space for learners:

Example 1 Set of vowels in English alphabet, A={a,e,i,o,u}.

Example 2 Set of odd numbers less than 10, B={1,3,5,7,9}.

Set Builder Notation

The set is defined by specifying a property that elements of the set

have in common. The set is described as A={x:p(x)}A={x:p(x)}

Example 1 The set {a,e,i,o,u}{a,e,i,o,u} is written as

A={x:x is a vowel in English alphabet}.

Example 2 The set {1,3,5,7,9} is written as

B={x:1≤x<10 and (x%2)≠0}.

If an element x is a member of any set S, it is denoted by x∈S and if

an element y is not a member of set S, it is denoted by y∉S.

Example If S={1,1.2,1.7,2},1∈S, but 1.5∉S.

Some Important Sets

N − the set of all natural numbers = {1,2,3,4,.....}

Z − the set of all integers = {.....,−3,−2,−1,0,1,2,3,.....}

Z+ − the set of all positive integers

Q − the set of all rational numbers

R − the set of all real numbers

W − the set of all whole numbers

Cardinality of a Set

Cardinality of a set S, denoted by |S|, is the number of elements of

the set. The number is also referred as the cardinal number. If a set

has an infinite number of elements, its cardinality is ∞.

Example − |{1,4,3,5}|=4,|{1,2,3,4,5,…}|=∞|. If there are two sets X

and Y,

• |X|=|Y| denotes two sets X and Y having same cardinality. It

occurs when the number of elements in X is exactly equal to the

number of elements in Y. In this case, there exists a bijective

function ‘f’ from X to Y.

• |X|≤|Y| denotes that set X’s cardinality is less than or equal to

set Y’s cardinality. It occurs when number of elements in X is

36 | P a g e

Space for learners: less than or equal to that of Y. Here, there exists an injective

function ‘f’ from X to Y.

• |X|<|Y| denotes that set X’s cardinality is less than set Y’s

cardinality. It occurs when number of elements in X is less than

that of Y. Here, the function ‘f’ from X to Y is injective

function but not bijective.

• If |X|≤|Y| and |X|≥|Y| then |X|=|Y|. The sets X and Y are

commonly referred as equivalent sets.

Types of Sets

Sets can be classified into many types. Some of which are finite,

infinite, subset, universal, proper, singleton set, etc.

Finite Set

A set which contains a definite number of elements is called a finite

set.

Example − S={x|x∈N and 70>x>50}

Infinite Set

A set which contains infinite number of elements is called an infinite

set.

Example − S={x|x∈N and x>10}

Subset

A set X is a subset of set Y (Written as X⊆Y) if every element of X

is an element of set Y.

Example 1 Let, X={1,2,3,4,5,6} and Y={1,2}. Here set Y is a

subset of set X as all the elements of set Y is in set X. Hence, we can

write Y⊆X.

Example 2 − Let, X={1,2,3} and Y={1,2,3}. Here set Y is a subset

(Not a proper subset) of set X as all the elements of set Y is in set X.

Hence, we can write Y⊆X.

Proper Subset

The term “proper subset” can be defined as “subset of but not equal

to”. A Set X is a proper subset of set Y (Written as X⊂Y) if every

element of X is an element of set Y and |X|<|Y|.

37 | P a g e

Space for learners: Example − Let, X={1,2,3,4,5,6} and Y={1,2}. Here set Y⊂X since

all elements in Y are contained in X too and X has at least one

element is more than set Y.

Universal Set

It is a collection of all elements in a particular context or application.

All the sets in that context or application are essentially subsets of

this universal set. Universal sets are represented as U.

Example: We may define U as the set of all animals on earth. In this

case, set of all mammals is a subset of U, set of all fishes is a subset

of U, set of all insects is a subset of U, and so on.

Empty Set or Null Set

An empty set contains no elements. It is denoted by ∅. As the

number of elements in an empty set is finite, empty set is a finite set.

The cardinality of empty set or null set is zero.

Example − S={x|x∈NS={x|x∈N and 7<x<8}=∅

Singleton Set or Unit Set

Singleton set or unit set contains only one element. A singleton set is

denoted by {s}.

Example − S={x|x∈N, 7<x<9}= {8}

Equal Set

If two sets contain the same elements they are said to be equal.

Example − If A={1,2,6} and B={6,1,2}, they are equal as every

element of set A is an element of set B and every element of set B is

an element of set A.

Equivalent Set

If the cardinalities of two sets are same, they are called equivalent

sets.

Example If A={1,2,6} and B={16,17,22}, they are equivalent as

cardinality of A is equal to the cardinality of B. i.e. |A|=|B|=3.

Disjoint Set

Two sets A and B are called disjoint sets if they do not have even

one element in common. Therefore, disjoint sets have the following

properties –

38 | P a g e

Space for learners: • n(A∩B)=∅

• n(A∪B)=n(A)+n(B)

Example Let, A={1,2,6} and B={7,9,14}, there is not a single

common element, hence these sets are overlapping sets.

Venn Diagrams

Venn diagram, invented in 1880 by John Venn, is a schematic

diagram that shows all possible logical relations between different

mathematical sets.

Examples

Venn Diagram in case of two elements

Where;

X = number of elements that belong to set A only

Y = number of elements that belong to set B only

Z = number of elements that belong to set A and B both (AB)

W = number of elements that belong to none of the sets A or B

From the above figure, it is clear that

n(A) = x + z ;

n (B) = y + z ;

n(A ∩ B) = z;

n (A ∪ B) = x +y+ z.

Total number of elements = x + y + z + w

39 | P a g e

Space for learners: Venn Diagram in case of three elements

Where,

W = number of elements that belong to none of the sets A, B or C

Example 1: In a college, 200 students are randomly selected. 140

like tea, 120 like coffee and 80 like both tea and coffee.

How many students like only tea?

How many students like only coffee?

How many students like neither tea nor coffee?

How many students like only one of tea or coffee?

How many students like at least one of the beverages?

Solution: The given information may be represented by the

following Venn diagram, where T = tea and C = coffee.

Number of students who like only tea = 60

40 | P a g e

Space for learners: Number of students who like only coffee = 40

Number of students who like neither tea nor coffee = 20

Number of students who like only one of tea or coffee = 60 + 40 =

100

Number of students who like at least one of tea or coffee = n (only

Tea) + n (only coffee) + n (both Tea & coffee) = 60 + 40 + 80 = 180

Example 2: In a survey of 500 students of a college, it was found

that 49% liked watching football, 53% liked watching hockey and

62% liked watching basketball. Also, 27% liked watching football

and hockey both, 29% liked watching basketball and hockey both

and 28% liked watching football and basket ball both. 5% liked

watching none of these games.

How many students like watching all the three games?

Find the ratio of number of students who like watching only football

to those who like watching only hockey.

Find the number of students who like watching only one of the three

given games.

Find the number of students who like watching at least two of the

given games.

Solution:

n(F) = percentage of students who like watching football = 49%

n(H) = percentage of students who like watching hockey = 53%

n(B)= percentage of students who like watching basketball = 62%

n (F ∩ H) = 27% ; n (B ∩ H) = 29% ; n(F ∩ B) = 28%

Since 5% like watching none of the given games so, n (F ∪ H ∪ B)

= 95%.

Now applying the basic formula,

95% = 49% + 53% + 62% -27% - 29% - 28% + n (F ∩ H ∩ B)

Solving, you get n (F ∩ H ∩ B) = 15%.

Now, make the Venn diagram as per the information given.

41 | P a g e

Space for learners:

Note: All values in the Venn diagram are in percentage.

Number of students who like watching all the three games = 15 % of

500 = 75.

Ratio of the number of students who like only football to those who

like only hockey = (9% of 500)/(12% of 500) = 9/12 = 3:4.

The number of students who like watching only one of the three

given games = (9% + 12% + 20%) of 500 = 205

The number of students who like watching at least two of the given

games=(number of students who like watching only two of the

games) +(number of students who like watching all the three

games)= (12 + 13 + 14 + 15)% i.e. 54% of 500 = 270.

CHECK YOUR PROGRESS

Q1 :Which of the following are sets? Justify our answer.

(i) The collection of all months of a year beginning with the

letter J.

(ii) The collection of ten most talented writers of India.

(iii) A team of eleven best-cricket batsmen of the world.

(iv) The collection of all boys in your class.

(v) The collection of all natural numbers less than 100.

(vi) A collection of novels written by the writer Munshi Prem

Chand.

42 | P a g e

Space for learners: (vii) The collection of all even integers.

(viii) The collection of questions in this Chapter.

(ix) A collection of most dangerous animals of the world.

Q2. Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol

or in the blank spaces:

(i) 5…A (ii) 8…A (iii) 0…A

(iv) 4…A (v) 2…A (vi) 10…A

Q3 :Write the following sets in the set-builder form:

(i) (3, 6, 9, 12) (ii) {2, 4, 8, 16, 32}

(iii) {5, 25, 125, 625} (iv) {2, 4, 6 …}

(v) {1, 4, 9 … 100}

Q4. Which of the following are examples of the null set

(i) Set of odd natural numbers divisible by 2

(ii) Set of even prime numbers

(iii) {x:x is a natural numbers, x < 5 and x > 7 }

(iv) {y:y is a point common to any two parallel lines}

Q5. Which of the following sets are finite or infinite

(i) The set of months of a year

(ii) {1, 2, 3 ...}

(iii) {1, 2, 3 ... 99, 100}

(iv) The set of positive integers greater than 100

(v) The set of prime numbers less than 99

Q6. State whether each of the following set is finite or

infinite:

(i) The set of lines which are parallel to the x-axis

(ii) The set of letters in the English alphabet

(iii) The set of numbers which are multiple of 5

(iv) The set of animals living on the earth

(v) The set of circles passing through the origin (0, 0)

43 | P a g e

Space for learners: Q7. In the following, state whether A = B or not:

(i) A = {a, b, c, d}; B = {d, c, b, a}

(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18}

(iii) A = {2, 4, 6, 8, 10}; B = {x: x is positive even integer and x

≤ 10} (iv) A = {x: x is a multiple of 10}; B

= {10, 15, 20, 25, 30 ...}

Q8. Are the following pair of sets equal? Give reasons.

(i) A = {2, 3}; B = {x: x is solution of 2
x + 5x + 6 = 0}

(ii) A = {x: x is a letter in the word FOLLOW}; B = {y: y is a

letter in the word WOLF}

2.4 OPERATIONS OF SETS

A set is defined as a collection of objects. Each object inside a set is

called an 'Element'. A set can be represented in three forms. They

are statement form, roster form, and set builder form. Set operations

are the operations that are applied on two more sets to develop a

relationship between them. There are four main kinds of set

operations which are:

1. Union of sets

2. Intersection of sets

3. Complement of a set

4. Difference between sets/Relative Complement

Before we move on to discuss the various set operations, let us recall

the concept of Venn diagrams as it is important in understanding the

operations on sets. A Venn diagram is a logical diagram that shows

the possible relationship between different finite sets. It looks as

shown below.

Basic Set Operations:

44 | P a g e

Space for learners:

Now that we know the concept of a set and Venn diagram, let us

discuss each set operation one by one in detail. The various set

operations are:

Union of Sets

For two given sets A and B, A∪B (read as A union B) is the set of

distinct elements that belong to set A and B or both. The number of

elements in A ∪ B is given by n(A∪B) = n(A) + n(B) − n(A∩B),

where n(X) is the number of elements in set X. To understand this

set operation of the union of sets better, let us consider an example:

If A = {1, 2, 3, 4} and B = {4, 5, 6, 7}, then the union of A and B is

given by A ∪ B = {1, 2, 3, 4, 5, 6, 7}.

Intersection of Sets

For two given sets A and B, A∩B (read as A intersection B) is the

set of common elements that belong to set A and B. The number of

elements in A∩B is given by n(A∩B) = n(A)+n(B)−n(A∪B), where

n(X) is the number of elements in set X. To understand this set

operation of the intersection of sets better, let us consider an

example: If A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the

intersection of A and B is given by A ∩ B = {3, 4}.

Set Difference

The set operation difference between sets implies subtracting the

elements from a set which is similar to the concept of the difference

between numbers. The difference between sets A and B denoted as

A − B lists all the elements that are in set A but not in set B. To

understand this set operation of set difference better, let us consider

an example: If A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the

difference between sets A and B is given by A - B = {1, 2}.

Complement of Sets

The complement of a set A denoted as A′ or Ac (read as A

complement) is defined as the set of all the elements in the given

universal set(U) that are not present in set A. To understand this set

operation of complement of sets better, let us consider an example:

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {1, 2, 3, 4}, then the

complement of set A is given by A' = {5, 6, 7, 8, 9}.

45 | P a g e

Space for learners:

The above image shows various set operations with the help of Venn

diagrams which makes it more clear. When the elements of one set

B completely lie in the other set A, then B is said to be a proper

subset of A. When two sets have no elements in common, then they

are said to be disjoint sets. Now, let us explore the properties of the

set operations that we discussed.

Properties of Set Operations:

The properties of set operations are similar to the properties of

fundamental operations on numbers. The important properties on set

operations are stated below:

Commutative Law - For any two given sets A and B, the

commutative property is defined as,

A ∪ B = B ∪ A

This means that the set operation union of two sets is commutative.

A ∩ B = B ∩ A

This means that the set operation intersection of two sets is

commutative.

Associative Law - For any three given sets A, B and C the

associative property is defined as,

46 | P a g e

Space for learners: (A ∪ B) ∪ C = A ∪ (B ∪ C)

This means the set operation union of sets is associative.

(A ∩ B) ∩ C = A ∩ (B ∩ C)

This means the set operation intersection of sets is associative.

De-Morgan's Law - The law states that for any two sets A and B,

we have (A ∪ B)' = A' ∩ B' and (A ∩ B)' = A' ∪ B'

A ∪ A = A

A ∩ A = A

A ∩ ∅ = ∅

A ∪ ∅ = A

A ∩ B ⊆ A

A ∪ B ⊆ A

Important Notes on Set Operations:

Set operation formula for union of sets is n(A∪B) = n(A) + n(B) −

n(A∩B) and set operation formula for intersection of sets is n(A∩B)

= n(A)+n(B)−n(A∪B).

The union of any set with the universal set gives the universal set

and the intersection of any set A with the universal set gives the set

A.

Union, intersection, difference, and complement are the various

operations on sets.

The complement of a universal set is an empty set U′ = ϕ. The

complement of an empty set is a universal set ϕ′ = U.

CHECK YOUR PROGRESS

9. Let A={1,2,3,4} and let B={3,4,5,6} . Then: find A∩B, A∪B

A−B and AC

10. Let A={y,z} and let B={x,y,z} . Then: find A∩B, A∪B,

A−B, and AC

11. If A = {2, 3, 4, 5} B = {4, 5, 6, 7} C = {6, 7, 8, 9} D

= {8, 9, 10, 11}, find

47 | P a g e

Space for learners: (a) A ∪ B

(b) A ∪ C

(c) B ∪ C

(d) B ∪ D

(e) (A ∪ B) ∪ C

(f) A ∪ (B ∪ C)

(g) B ∪ (C ∪ D)

12. If A = {4, 7, 10, 13, 16, 19, 22} B = {5, 9, 13, 17, 20}

C = {3, 5, 7, 9, 11, 13, 15, 17} D = {6, 11, 16, 21} then find

(a) A - C

(b) D - A

(c) D - B

(d) A - D

(e) B - C

(f) C - D

(g) B - A

(h) B - D

(i) D - C

(j) A - B

(k) C - B

(l) C - A

2.5 SUMMING UP

 A set can be written explicitly by listing its elements using set

bracket. If the order of the elements is changed or any element of

a set is repeated, it does not make any changes in the set.

 Sets can be represented in two ways − Roster or Tabular Form,

Set Builder Notation

48 | P a g e

Space for learners:  Cardinality of a set S, denoted by |S|, is the number of elements

(cardinal number) of the set. If a set has an infinite number of

elements, its cardinality is ∞.

 A set which contains a definite number of elements is called a

finite set. A set which contains infinite number of elements is

called an infinite set.

 A set X is a subset of set Y (Written as X⊆Y) if every element

of X is an element of set Y. A Set X is a proper subset of set Y

(Written as X⊂Y) if every element of X is an element of set Y

and |X|<|Y|.

 Universal set is a collection of all elements in a particular

context or application. The cardinality of empty set or null set is

zero. Singleton set or unit set contains only one element.

 If two sets contain the same elements they are said to be equal. If

the cardinalities of two sets are same, they are called equivalent

sets. Disjoint sets do not have even one element in common.

5. Set operations are the operations applied on two more sets to

develop a relationship between them. There are four main kinds

of set operations: Union of sets, Intersection of sets,

Complement of a set, Difference between sets/Relative

Complement.

2.6 ANSWERS TO CHECK YOUR PROGRESS

Answer 1:

(i) The collection of all months of a year beginning with the letter J

is a well-defined collection of objects

because one can definitely identify a month that belongs to this

collection.

Hence, this collection is a set.

(ii) The collection of ten most talented writers of India is not a well-

defined collection because the criteria for

determining a writer's talent may vary from person to person.

Hence, this collection is not a set.

(iii) A team of eleven best cricket batsmen of the world is not a well-

defined collection because the criteria for

49 | P a g e

Space for learners: determining a batsman's talent may vary from person to person.

Hence, this collection is not a set.

(iv) The collection of all boys in your class is a well-defined

collection because you can definitely identify a boy

who belongs to this collection.

Hence, this collection is a set.

(v) The collection of all natural numbers less than 100 is a well-

defined collection because one can definitely

identify a number that belongs to this collection.

Hence, this collection is a set.

(vi) A collection of novels written by the writer Munshi Prem Chand

is a well-defined collection because one can

definitely identify a book that belongs to this collection.

Hence, this collection is a set.

(vii) The collection of all even integers is a well-defined collection

because one can definitely identify an even

integer that belongs to this collection.

Hence, this collection is a set.

(viii) The collection of questions in this chapter is a well-defined

collection because one can definitely identify a

question that belongs to this chapter.

Hence, this collection is a set.

(ix) The collection of most dangerous animals of the world is not a

well-defined collection because the criteria

for determining the dangerousness of an animal can vary from

person to person.

Hence, this collection is not a set.

Answer 2:

(i) 5 A

(ii) 8 A

(iii) 0 A

(iv) 4 A

50 | P a g e

Space for learners: (v) 2 A

 (vi) 10 A

Answer 3:

(i) {3, 6, 9, 12} = {x: x = 3n, n N and 1 ≤ n ≤ 4}

(ii) {2, 4, 8, 16, 32}

It can be seen that 2 = 21, 4 = 22, 8 = 23, 16 = 24, and 32 = 25.

{2, 4, 8, 16, 32} = {x: x = 2n, n N and 1 ≤ n ≤ 5}

(iii) {5, 25, 125, 625}

It can be seen that 5 = 51, 25 = 52, 125 = 53, and 625 = 54.

{5, 25, 125, 625} = {x: x = 5n, n N and 1 ≤ n ≤ 4}

(iv) {2, 4, 6 …}

It is a set of all even natural numbers.

{2, 4, 6 …} = {x: x is an even natural number}

(v) {1, 4, 9 … 100}

It can be seen that 1 = 12, 4 = 22, 9 = 32 …100 = 102.

{1, 4, 9… 100} = {x: x = n2, n N and 1 ≤ n ≤ 10}

Answer 4:

(i) A set of odd natural numbers divisible by 2 is a null set because

no odd number is divisible by 2.

(ii) A set of even prime numbers is not a null set because 2 is an

even prime number.

(iii) {x: x is a natural number, x < 5 and x > 7} is a null set because a

number cannot be simultaneously less

than 5 and greater than 7.

(iv) {y: y is a point common to any two parallel lines} is a null set

because parallel lines do not intersect. Hence,

they have no common point.

Answer 5:

(i) The set of months of a year is a finite set because it has 12

elements.

51 | P a g e

Space for learners: (ii) {1, 2, 3 …} is an infinite set as it has infinite number of natural

numbers.

(iii) {1, 2, 3 …99, 100} is a finite set because the numbers from 1 to

100 are finite in number.

(iv) The set of positive integers greater than 100 is an infinite set

because positive integers greater than 100 are

infinite in number.

(v) The set of prime numbers less than 99 is a finite set because

prime numbers less than 99 are finite in number.

Answer 6:

(i) The set of lines which are parallel to the x-axis is an infinite set

because lines parallel to the x-axis are infinite

in number.

(ii) The set of letters in the English alphabet is a finite set because it

has 26 elements.

(iii) The set of numbers which are multiple of 5 is an infinite set

because multiples of 5 are infinite in number.

(iv) The set of animals living on the earth is a finite set because the

number of animals living on the earth is finite

(although it is quite a big number).

(v) The set of circles passing through the origin (0, 0) is an infinite

set because infinite number of circles can pass

through the origin.

Answer 7:

(i) A = {a, b, c, d}; B = {d, c, b, a}

The order in which the elements of a set are listed is not significant.

A = B

(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18} It can be seen that 12 A

but 12 B.

A ≠ B

(iii) A = {2, 4, 6, 8, 10}

B = {x: x is a positive even integer and x ≤ 10}

= {2, 4, 6, 8, 10}

52 | P a g e

Space for learners: Therefore, A = B

Answer 8:

(i) A = {2, 3}; B = {x: x is a solution of x2 + 5x + 6 = 0}

The equation x2 + 5x + 6 = 0 can be solved as:

x(x + 3) + 2(x + 3) = 0 (x + 2)(x + 3) = 0

x = -2 or x = -3

A = {2, 3}; B = {-2, -3}

A ≠ B

(ii) A = {x: x is a letter in the word FOLLOW} = {F, O, L, W}

B = {y: y is a letter in the word WOLF} = {W, O, L, F}

The order in which the elements of a set are listed is not significant.

A = B

Answer 9:

A∩B={3,4}

A∪B={1,2,3,4,5,6}

A−B={1,2}

AC={all real numbers except 1,2,3 and 4}

Answer 10: A∩B={y,z} A∪B={x,y,z}A−B=∅
c
A ={everything

except y and z}

Answer 11:

(a) {2, 3, 4, 5, 6, 7}

(b) {2, 3, 4, 5, 6, 7, 8, 9}

(c) {4, 5, 6, 7, 8, 9}

(d) {4, 5, 6, 7, 8, 9, 10, 11}

(e) {2, 3, 4, 5, 6, 7, 8, 9}

(f) {2, 3, 4, 5, 6, 7, 8, 9}

(g) {4, 5, 6, 7, 8, 9, 10, 11}

Answer 12:

(a) {4, 10, 16, 19, 22}

(b) {6, 11, 21}

53 | P a g e

Space for learners: (c) {6, 11, 16, 21}

(d) {4, 7, 10, 13, 19, 22}

(e) {20}

(f) {3, 5, 7, 9, 13, 15, 17}

(g) {5, 19, 17, 20}

(h) {5, 9, 13, 17, 20}

(i) {6, 16, 21}

(j) {4, 7, 10, 16, 19, 22}

(k) {3, 7, 11, 15}

(l) {3, 5, 9 11, 15, 17}

2.7 POSSIBLE QUESTIONS

1. If A = {2, 3, 4, 5} B = {4, 5, 6, 7} C = {6, 7, 8, 9}

D = {8, 9, 10, 11}, find

(a) A ∪ B

(b) A ∪ C

(c) B ∪ C

(d) B ∪ D

(e) (A ∪ B) ∪ C

(f) A ∪ (B ∪ C)

(g) B ∪ (C ∪ D)

2. If A = {4, 6, 8, 10, 12} B = {8, 10, 12, 14} C = {12, 14, 16} D =

{16, 18}, find

(a) A ∩ B

(b) B ∩ C

(c) A ∩ (C ∩ D)

(d) A ∩ C

(e) B ∩ D

(f)(A ∩ B) ∪ C

(g) A ∩ (B ∪ D)

54 | P a g e

Space for learners: (h) (A ∩ B) ∪ (B ∩ C)

(i) (A ∪ D) ∩ (B ∪ C)

3. If A = {4, 7, 10, 13, 16, 19, 22} B = {5, 9, 13, 17, 20}

C = {3, 5, 7, 9, 11, 13, 15, 17} D = {6, 11, 16, 21} then find

(a) A - C

(b) D - A

(c) D - B

(d) A - D

(e) B - C

(f) C - D

(g) B - A

(h) B - D

(i) D - C

(j) A - B

(k) C - B

(l) C - A

4. If A and B are two sets such that A ⊂ B, then what is A∪B?

5. Find the union, intersection and the difference (A - B) of the

following pairs of sets.

(a) A = The set of all letters of the word FEAST

 B = The set of all letters of the word TASTE

(b) A = {x : x ∈ W, 0 < x ≤ 7}

 B = {x : x ∈ W, 4 < x < 9}

(c) A = {x | x ∈ N, x is a factor of 12}

 B = {x | x ∈ N, x is a multiple of 2, x < 12}

(d) A = The set of all even numbers less than 12

 B = The set of all odd numbers less than 11

(e) A = {x : x ∈ I, -2 < x < 2}

 B = {x : x ∈ I, -1 < x < 4}

55 | P a g e

Space for learners: (f) A = {a, l, m, n, p}

 B = {q, r, l, a, s, n}

6. Let X = {2, 4, 5, 6} Y = {3, 4, 7, 8} Z = {5, 6, 7, 8}, find

(a) (X - Y) ∪ (Y - X)

(b) (X - Y) ∩ (Y - X)

(c) (Y - Z) ∪ (Z - Y)

(d) (Y - Z) ∩ (Z - Y)

7. Let ξ = {1, 2, 3, 4, 5, 6, 7} and A = {1, 2, 3, 4, 5} B = {2, 5, 7}

show that

(a) (A ∪ B)' = A' ∩ B'

(b) (A ∩ B)' = A' ∪ B'

(c) (A ∩ B) = B ∩ A

(d) (A ∪ B) = B ∪ A

8. Let P = {a, b, c, d} Q = {b, d, f} R = {a, c, e} verify that

(a) (P ∪ Q) ∪ R = P ∪ (Q ∪ R)

(b) (P ∩ Q) ∩ R = P ∩ (Q ∩ R)

2.8 REFERENCES AND SUGGESTED READINGS

 Descriptive Set Theory by David Marker.

 Set Theory by Burak Kaya

 Set Theory Some Basics And A Glimpse Of Some Advanced

Techniques

 Lectures On Set Theory

 Set Theory by Anush Tserunyan

 An Introduction To Set Theory

 Set Theory for Computer Science

 The Axioms of Set Theory.

56 | P a g e

Space for learners: UNIT 3: RELATIONS

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Types of relation

3.3 Closure properties of relations

3.4 Equivalence of relations

3.5 Partial order of relations

3.6 Introduction to function

3.7 Summing Up

3.8 Answers to Check Your Progress

3.9 Possible Questions

3.10 References and Suggested Readings

3.1 INTRODUCTION

In mathematics, a binary relation over sets X and Y is a subset of the

Cartesian product X × Y; that is, it is a set of ordered pairs (x, y)

consisting of elements x in X and y in Y. It encodes the common

concept of relation: an element x is related to an element y, if and

only if the pair (x, y) belongs to the set of ordered pairs that defines

the binary relation. A binary relation is the most studied special case

n = 2 of an n-ary relation over sets 1X , ...,
nX , which is a subset of

the Cartesian product 1X × ... ×
nX .[1][2]

An example of a binary relation is the "divides" relation over the set

of prime numbers {\displaystyle \mathbb {P} }\mathbb {P} and the

set of integers {\displaystyle \mathbb {Z} }\mathbb {Z} , in which

each prime p is related to each integer z that is a multiple of p, but

not to an integer that is not a multiple of p. In this relation, for

instance, the prime number 2 is related to numbers such as −4, 0, 6,

10, but not to 1 or 9, just as the prime number 3 is related to 0, 6,

and 9, but not to 4 or 13.

Binary relations are used in many branches of mathematics to model

a wide variety of concepts. These include, among others:

57 | P a g e

Space for learners: the "is greater than", "is equal to", and "divides" relations in

arithmetic;

the "is congruent to" relation in geometry;

the "is adjacent to" relation in graph theory;

the "is orthogonal to" relation in linear algebra.

A function may be defined as a special kind of binary relation.

Binary relations are also heavily used in computer science.

A binary relation over sets X and Y is an element of the power set of

X × Y. Since the latter set is ordered by inclusion (⊆), each relation

has a place in the lattice of subsets of X × Y. A binary relation is

either a homogeneous relation or a heterogeneous relation depending

on whether X = Y or not.

Since relations are sets, they can be manipulated using set

operations, including union, intersection, and complementation, and

satisfying the laws of an algebra of sets. Beyond that, operations like

the converse of a relation and the composition of relations are

available, satisfying the laws of a calculus of relations, for which

there are textbooks by Ernst Schröder,[4] Clarence Lewis, and

Gunther Schmidt. A deeper analysis of relations involves

decomposing them into subsets called concepts, and placing them in

a complete lattice.

In some systems of axiomatic set theory, relations are extended to

classes, which are generalizations of sets. This extension is needed

for, among other things, modeling the concepts of "is an element of"

or "is a subset of" in set theory, without running into logical

inconsistencies such as Russell's paradox.

The terms correspondence, dyadic relation and two-place relation

are synonyms for binary relation, though some authors use the term

"binary relation" for any subset of a Cartesian product X × Y

without reference to X and Y, and reserve the term

"correspondence" for a binary relation with reference to X and Y.

3.2 UNIT OBJECTIVES

In going through this unit, you will be able to:

 learn about the relations.

 learn types of relations

58 | P a g e

Space for learners:  understand closure properties of relations

 know the equivalence and partial order of relations

 know the basis of functions.

3.3 TYPES OF RELATION

Binary Relation

Let P and Q be two non- empty sets. A binary relation R is defined

to be a subset of P x Q from a set P to Q. If (a, b) ∈ R and R ⊆ P x Q

then a is related to b by R i.e., aRb. If sets P and Q are equal, then

we say R ⊆ P x P is a relation on P e.g.

(i) Let A = {a, b, c}

B = {r, s, t}

Then R = {(a, r), (b, r), (b, t), (c, s)} is a relation from A to B.

(ii) Let A = {1, 2, 3} and B = A

R = {(1, 1), (2, 2), (3, 3)} is a relation (equal) on A.

Example: If a set has n elements, how many relations are there from

A to A.

Solution: If a set A has n elements, A x A has n2 elements. So, there

are 2n2 relations from A to A.

Example: If a set A = {1, 2}. Determine all relations from A to A.

Solution: There are 22= 4 elements i.e., {(1, 2), (2, 1), (1, 1), (2, 2)}

in A x A. So, there are 24= 16 relations from A to A. i.e.

1. {(1, 2), (2, 1), (1, 1), (2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (1, 1)},

{(1, 2), (2, 2)},

2. {(2, 1), (1, 1)},{(2,1), (2, 2)}, {(1, 1),(2, 2)},{(1, 2), (2, 1), (1

, 1)}, {(1, 2), (1, 1),

3. (2, 2)}, {(2,1), (1, 1), (2, 2)}, {(1, 2), (2, 1), (2, 2)}, {(1, 2), (

2, 1), (1, 1), (2, 2)} and ∅.

Domain and Range of Relation

Domain of Relation: The Domain of relation R is the set of

elements in P which are related to some elements in Q, or it is the set

of all first entries of the ordered pairs in R. It is denoted by DOM

(R).

59 | P a g e

Space for learners: Range of Relation: The range of relation R is the set of elements in

Q which are related to some element in P, or it is the set of all

second entries of the ordered pairs in R. It is denoted by RAN (R).

Example:

1. Let A = {1, 2, 3, 4}

2. B = {a, b, c, d}

3. R = {(1, a), (1, b), (1, c), (2, b), (2, c), (2, d)}.

Solution:

DOM (R) = {1, 2}

RAN (R) = {a, b, c, d}

Complement of a Relation

Consider a relation R from a set A to set B. The complement of

relation R denoted by R is a relation from A to B such that

 R = {(a, b): {a, b) ∉ R}.

Example:

1. Consider the relation R from X to Y

2. X = {1, 2, 3}

3. Y = {8, 9}

4. R = {(1, 8) (2, 8) (1, 9) (3, 9)}

Q. Find the complement relation of R.

Solution:

X x Y = {(1, 8), (2, 8), (3, 8), (1, 9), (2, 9), (3, 9)}

 Now we find the complement relation R from X x Y

 R = {(3, 8), (2, 9)}

Representation of Relations

Relations can be represented in many ways. Some of which are as

follows:

1. Relation as a Matrix: Let P = [a1,a2,a3,.......am] and Q =

[b1,b2,b3......bn] are finite sets, containing m and n number of

elements respectively. R is a relation from P to Q. The relation R can

be represented by m x n matrix M = [Mij], defined as

60 | P a g e

Space for learners:










Rbaif

Rbaif
M

ii

ii

ij
),(,1

),(,0

Example

1. Let P = {1, 2, 3, 4}, Q = {a, b, c, d} and R = {(1, a), (1,

 b), (1, c), (2, b), (2, c), (2, d)}.

The matrix of relation R is shown as fig:

2. Relation as a Directed Graph: There is another way of picturing

a relation R when R is a relation from a finite set to itself.

Example

1. A = {1, 2, 3, 4}

2. R = {(1, 2) (2, 2) (2, 4) (3, 2) (3, 4) (4, 1) (4, 3)}

3. Relation as an Arrow Diagram: If P and Q are finite sets and R

is a relation from P to Q. Relation R can be represented as an arrow

diagram as follows.

Draw two ellipses for the sets P and Q. Write down the elements of

P and elements of Q column-wise in three ellipses. Then draw an

arrow from the first ellipse to the second ellipse if a is related to b

and a ∈ P and b ∈ Q.

61 | P a g e

Space for learners:

Example

1. Let P = {1, 2, 3, 4}

2. Q = {a, b, c, d}

3. R = {(1, a), (2, a), (3, a), (1, b), (4, b), (4, c), (4, d)

The arrow diagram of relation R is shown in fig:

4. Relation as a Table: If P and Q are finite sets and R is a relation

from P to Q. Relation R can be represented in tabular form.

Make the table which contains rows equivalent to an element of P

and columns equivalent to the element of Q. Then place a cross (X)

in the boxes which represent relations of elements on set P to set Q.

Example

1. Let P = {1, 2, 3, 4}

2. Q = {x, y, z, k}

3. R = {(1, x), (1, y), (2, z), (3, z), (4, k)}.

The tabular form of relation as shown in fig:

62 | P a g e

Space for learners: Composition of Relations

Let A, B, and C be sets, and let R be a relation from A to B and let S

be a relation from B to C. That is, R is a subset of A × B and S is a

subset of B × C. Then R and S give rise to a relation from A to C

indicated by R◦S and defined by:

1. a (R◦S)c if for some b ∈ B we have aRb and bSc. is,

2. R ◦ S = {(a, c)| there exists b ∈ B for which (a, b) ∈ R and (b,

 c) ∈ S}

The relation R◦S is known the composition of R and S; it is

sometimes denoted simply by RS.

Let R is a relation on a set A, that is, R is a relation from a set A to

itself. Then R◦R, the composition of R with itself, is always

represented. Also, R◦R is sometimes denoted by R2. Similarly, R3 =

R2◦R = R◦R◦R, and so on. Thus Rn is defined for all positive n.

Example: Let X = {4, 5, 6}, Y = {a, b, c} and Z = {l, m, n}.

Consider the relation R1 from X to Y and R2 from Y to Z.

 R1 = {(4, a), (4, b), (5, c), (6, a), (6, c)}

 R2 = {(a, l), (a, n), (b, l), (b, m), (c, l), (c, m), (c, n)}

Find the composition of relation (i) R1 o R2 (ii) R1o R1
-1

Solution:

(i) The composition relation R1 o R2 as shown in fig:

63 | P a g e

Space for learners:

R1 o R2 = {(4, l), (4, n), (4, m), (5, l), (5, m), (5, n), (6, l), (6, m), (6,

n)}

(ii) The composition relation R1o R1
-1 as shown in fig:

Composition of Relations and Matrices

There is another way of finding R◦S. Let MR and MS denote

respectively the matrix representations of the relations R and S.

Then

Example

Let P = {2, 3, 4, 5}. Consider the relation R and S on P defined by R

 = {(2, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5), (5, 3)}

S = {(2, 3), (2, 5), (3, 4), (3, 5), (4, 2), (4, 3), (4, 5), (5, 2), (5, 5)}.

1. Find the matrices of the above relations.

2. Use matrices to find the following composition of the relatio

n R and S.

3. (i)RoS (ii)RoR (iii)SoR

Solution: The matrices of the relation R and S are a shown in fig:

64 | P a g e

Space for learners:

(i) To obtain the composition of relation R and S. First multiply

MR with MS to obtain the matrix MR x MS as shown in fig:

The non zero entries in the matrix MR x MS tells the elements related

in RoS. So,

Hence the composition R o S of the relation R and S is

R o S = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (4, 2), (4, 5), (5, 2), (5, 3),

 (5, 4), (5, 5)}.

(ii) First, multiply the matrix MR by itself, as shown in fig

Hence the composition R o R of the relation R and S is

R o R = {(2, 2), (3, 2), (3, 3), (3, 4), (4, 2), (4, 5), (5, 2), (5, 3), (5, 5)

}

(iii) Multiply the matrix MS with MR to obtain the matrix MS x

MR as shown in fig:

65 | P a g e

Space for learners:

The non-zero entries in matrix MS x MR tells the elements related in

S o R.

Hence the composition S o R of the relation S and R is

S o R = {(2, 4) , (2, 5), (3, 3), (3, 4), (3, 5), (4, 2), (4, 4), (4, 5), (5, 2)

, (5, 3), (5, 4), (5, 5)}.

More on Types of Relations

1. Reflexive Relation: A relation R on set A is said to be a reflexive

if (a, a) ∈ R for every a ∈ A.

Example: If A = {1, 2, 3, 4} then R = {(1, 1) (2, 2), (1, 3), (2, 4), (3,

3), (3, 4), (4, 4)}. Is a relation reflexive?

Solution: The relation is reflexive as for every a ∈ A. (a, a) ∈ R, i.e.

(1, 1), (2, 2), (3, 3), (4, 4) ∈ R.

2. Irreflexive Relation: A relation R on set A is said to

be irreflexive if (a, a) ∉ R for every a ∈ A.

Example: Let A = {1, 2, 3} and R = {(1, 2), (2, 2), (3, 1), (1, 3)}. Is

the relation R reflexive or irreflexive?

Solution: The relation R is not reflexive as for every a ∈ A, (a, a) ∉

R, i.e., (1, 1) and (3, 3) ∉ R. The relation R is not irreflexive as (a, a)

∉ R, for some a ∈ A, i.e., (2, 2) ∈ R.

3. Symmetric Relation: A relation R on set A is said to be

symmetric iff (a, b) ∈ R ⟺ (b, a) ∈ R.

Example: Let A = {1, 2, 3} and R = {(1, 1), (2, 2), (1, 2), (2, 1), (2,

3), (3, 2)}. Is a relation R symmetric or not?

Solution: The relation is symmetric as for every (a, b) ∈ R, we have

(b, a) ∈ R, i.e., (1, 2), (2, 1), (2, 3), (3, 2) ∈ R but not reflexive

because (3, 3) ∉ R.

66 | P a g e

Space for learners: Example of Symmetric Relation:

1. Relation ⊥r is symmetric since a line a is ⊥r to b, then b is ⊥r

to a.

2. Also, Parallel is symmetric, since if a line a is ∥ to b then b is

also ∥ to a.

Antisymmetric Relation: A relation R on a set A is antisymmetric

iff (a, b) ∈ R and (b, a) ∈ R then a = b.

Example: Let A = {1, 2, 3} and R = {(1, 1), (2, 2)}. Is the relation R

antisymmetric?

Solution: The relation R is antisymmetric as a = b when (a, b) and

(b, a) both belong to R.

Example: Let A = {4, 5, 6} and R = {(4, 4), (4, 5), (5, 4), (5, 6), (4,

6)}. Is the relation R antisymmetric?

Solution: The relation R is not antisymmetric as 4 ≠ 5 but (4, 5) and

(5, 4) both belong to R.

5. Asymmetric Relation: A relation R on a set A is called an

Asymmetric Relation if for every (a, b) ∈ R implies that (b, a) does

not belong to R.

6. Transitive Relations: A Relation R on set A is said to be

transitive iff (a, b) ∈ R and (b, c) ∈ R ⟺ (a, c) ∈ R.

Example: Let A = {1, 2, 3} and R = {(1, 2), (2, 1), (1, 1), (2, 2)}. Is

the relation transitive?

Solution: The relation R is transitive as for every (a, b) (b, c) belong

to R, we have (a, c) ∈ R i.e, (1, 2) (2, 1) ∈ R ⇒ (1, 1) ∈ R.

Note 1: The Relation ≤, ⊆ and / are transitive, i.e., a ≤ b, b ≤ c

then a ≤ c

(ii) Let a ⊆ b, b ⊆ c then a ⊆ c

(iii) Let a/b, b/c then a/c.

Note 2: ⊥r is not transitive since a ⊥r b, b ⊥r c then it is not true

that a ⊥r c. Since no line is ∥ to itself, we can have a ∥ b, b ∥ a but

a ∦ a.

Thus ∥ is not transitive, but it will be transitive in the plane.

67 | P a g e

Space for learners: 7. Identity Relation: Identity relation I on set A is reflexive,

transitive and symmetric. So identity relation I is an Equivalence

Relation.

Example: A= {1, 2, 3} = {(1, 1), (2, 2), (3, 3)}

8. Void Relation: It is given by R: A →B such that R = ∅ (⊆ A x B)

is a null relation. Void Relation R = ∅ is symmetric and transitive

but not reflexive.

9. Universal Relation: A relation R: A →B such that R = A x B (⊆

A x B) is a universal relation. Universal Relation from A →B is

reflexive, symmetric and transitive. So this is an equivalence

relation.

CHECK YOUR PROGRESS

1. The given figure shows a relationship between the sets P and

Q. write this relation

(i) in set-builder form (ii) in roster form. What is its domain

and range?

2. Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by

{(a, b): a, b ∈A, bis exactly divisible by a}.

(i) Write R in roster form

(ii) (ii) Find the domain of R

(iii) (iii) Find the range of R.

3. Determine the domain and range of the relation R defined by

R = {(x, x+ 5): x ∈{0, 1, 2, 3, 4, 5}}.

4. Which of the following relations are functions? Give

reasons. If it is a function, determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

68 | P a g e

Space for learners: (ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

(iii) {(1, 3), (1, 5), (2, 5)}

3.4 CLOSURE PROPERTIES OF RELATIONS

Consider a given set A, and the collection of all relations on A. Let P

be a property of such relations, such as being symmetric or being

transitive. A relation with property P will be called a P-relation. The

P-closure of an arbitrary relation R on A, indicated P (R), is a P-

relation such that

R ⊆ P (R) ⊆ S

(1) Reflexive and Symmetric Closures: The next theorem tells us

how to obtain the reflexive and symmetric closures of a relation

easily.

Theorem: Let R be a relation on a set A. Then:

o R ∪ ∆A is the reflexive closure of R

o R ∪ R-1 is the symmetric closure of R.

Example:

Let A = {k, l, m}. Let R is a relation on A defined by R = {(k, k), (k

, l), (l, m), (m, k)}.

Find the reflexive closure of R.

Solution: R ∪ ∆ is the smallest relation having reflexive property,

Hence,

RF = R ∪ ∆ = {(k, k), (k, l), (l, l), (l, m), (m, m), (m, k)}.

Example: Consider the relation R on A = {4, 5, 6, 7} defined by

R = {(4, 5), (5, 5), (5, 6), (6, 7), (7, 4), (7, 7)}

Find the symmetric closure of R.

Solution: The smallest relation containing R having the symmetric

property is R ∪ R-1,i.e.

RS = R ∪ R-1 = {(4, 5), (5, 4), (5, 5), (5, 6), (6, 5), (6, 7), (7, 6), (7,

4), (4, 7), (7, 7)}.

69 | P a g e

Space for learners: (2) Transitive Closures: Consider a relation R on a set A. The

transitive closure R of a relation R of a relation R is the smallest

transitive relation containing R.

Recall that R2 = R◦ R and Rn = Rn-1 ◦ R. We define

The following Theorem applies:

Theorem1: R* is the transitive closure of R

Suppose A is a finite set with n elements.

R* = R ∪R2 ∪.....∪ Rn

Theorem 2: Let R be a relation on a set A with n elements. Then

Transitive (R) = R ∪ R2∪.....∪ Rn

Example: Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A =

{1, 2, 3}. Then R2 = R◦ R = {(1, 3), (2, 3), (3, 3)} and R3 = R2 ◦ R =

{(1, 3), (2, 3), (3, 3)} Accordingly,

Transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)}

Example: Let A = {4, 6, 8, 10} and R = {(4, 4), (4, 10), (6, 6), (6,

8), (8, 10)} is a relation on set A. Determine transitive closure of R.

Solution: The matrix of relation R is shown in fig:

Now, find the powers of MR as in fig:

70 | P a g e

Space for learners:

Hence, the transitive closure of MR is MR
* as shown in Fig (where

MR
* is the ORing of a power of MR).

Thus, R* = {(4, 4), (4, 10), (6, 8), (6, 6), (6, 10), (8, 10)}.

Note: While ORing the power of the matrix R, we can eliminate

MRn because it is equal to MR* if n is even and is equal to MR3 if n

is odd.

3.5 EQUIVALENCE OF RELATIONS

Equivalence Relations

A relation R on a set A is called an equivalence relation if it satisfies

following three properties:

1. Relation R is Reflexive, i.e. aRa ∀ a∈A.

2. Relation R is Symmetric, i.e., aRb ⟹ bRa

71 | P a g e

Space for learners: 3. Relation R is transitive, i.e., aRb and bRc ⟹ aRc.

Example: Let A = {1, 2, 3, 4} and R = {(1, 1), (1, 3), (2, 2), (2, 4),

(3, 1), (3, 3), (4, 2), (4, 4)}.

Show that R is an Equivalence Relation.

Solution:

Reflexive: Relation R is reflexive as (1, 1), (2, 2), (3, 3) and (4, 4) ∈

R.

Symmetric: Relation R is symmetric because whenever (a, b) ∈ R,

(b, a) also belongs to R.

Example: (2, 4) ∈ R ⟹ (4, 2) ∈ R.

Transitive: Relation R is transitive because whenever (a, b) and (b,

c) belongs to R, (a, c) also belongs to R.

Example: (3, 1) ∈ R and (1, 3) ∈ R ⟹ (3, 3) ∈ R.

So, as R is reflexive, symmetric and transitive, hence, R is an

Equivalence Relation.

Note1: If 1R and 2R are equivalence relation then 1R ∩ 2R is also an

equivalence relation.

Example: A = {1, 2, 3}

 1R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

 2R = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}

 1R ∩ 2R = {(1, 1), (2, 2), (3, 3)}

Note2: If 1R and 2R are equivalence relation then 1R ∪ 2R may or

may not be an equivalence relation.

Example: A = {1, 2, 3}

 1R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

 2R = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}

 1R ∪ 2R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}

Hence, Reflexive or Symmetric are Equivalence Relation but

transitive may or may not be an equivalence relation.

Inverse Relation

72 | P a g e

Space for learners: Let R be any relation from set A to set B. The inverse of R denoted

by 1R is the relations from B to A which consist of those ordered

pairs which when reversed belong to R that is:

1R = {(b, a): (a, b) ∈ R}

Example: A = {1, 2, 3}

 B = {x, y, z}

Solution: R = {(1, y), (1, z), (3, y)

 1R = {(y, 1), (z, 1), (y, 3)}

 Clearly 11)(R = R

Note1: Domain and Range of 1R is equal to range and domain of

R.

Example: R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (3, 2)}

 1R = {(1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (2, 3)}

Note2: If R is an Equivalence relation then 1R is always an

Equivalence relation.

Example: Let A = {1, 2, 3}

 R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

 1R = {(1, 1), (2, 2), (3, 3), (2, 1), (1, 2)}

 1R is a Equivalence Relation.

Note3: If R is a Symmetric Relation then 1R =R and vice-versa.

Example: Let A = {1, 2, 3}

 R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3), (3, 2)}

 1R = {(1, 1), (2, 2), (2, 1), (1, 2), (3, 2), (2, 3)}

Note 4: Reverse Order of Law   111   STTS 

  1111   RSTTSR  .

73 | P a g e

Space for learners: 3.5 PARTIAL ORDER OF RELATIONS

A relation R on a set A is called a partial order relation if it satisfies

the following three properties:

1. Relation R is Reflexive, i.e. aRa ∀ a∈A.

2. Relation R is Antisymmetric, i.e., aRb and bRa ⟹ a = b.

3. Relation R is transitive, i.e., aRb and bRc ⟹ aRc.

Example: Show whether the relation (x, y) ∈ R, if, x ≥ y defined on

the set of +ve integers is a partial order relation.

Solution: Consider the set A = {1, 2, 3, 4} containing four +ve

integers. Find the relation for this set such as R = {(2, 1), (3, 1), (3,

2), (4, 1), (4, 2), (4, 3), (1, 1), (2, 2), (3, 3), (4, 4)}.

Reflexive: The relation is reflexive as for every a ∈ A. (a, a) ∈ R, i.e.

(1, 1), (2, 2), (3, 3), (4, 4) ∈ R.

Antisymmetric: The relation is antisymmetric as whenever (a, b) and

(b, a) ∈ R, we have a = b.

Transitive: The relation is transitive as whenever (a, b) and (b, c) ∈

R, we have (a, c) ∈ R.

Example: (4, 2) ∈ R and (2, 1) ∈ R, implies (4, 1) ∈ R.

As the relation is reflexive, antisymmetric and transitive. Hence, it is

a partial order relation.

Example: Show that the relation 'Divides' defined on N is a partial

order relation.

Solution:

Reflexive: We have a divides a, ∀ a∈N. Therefore, relation 'Divides'

is reflexive.

Antisymmetric: Let a, b, c ∈N, such that a divides b. It implies b

divides a iff a = b. So, the relation is antisymmetric.

Transitive: Let a, b, c ∈N, such that a divides b and b divides c.

Then a divides c. Hence the relation is transitive. Thus, the relation

being reflexive, antisymmetric and transitive, the relation 'divides' is

a partial order relation.

74 | P a g e

Space for learners: Example3: (a) The relation ⊆ of a set of inclusion is a partial

ordering or any collection of sets since set inclusion has three

desired properties:

1. A ⊆ A for any set A.

2. If A ⊆ B and B ⊆ A then B = A.

3. If A ⊆ B and B ⊆ C then A ⊆ C

(b) The relation ≤ on the set R of real no that is Reflexive,

Antisymmetric and transitive.

(c) Relation ≤ is a Partial Order Relation.

n-Ary Relations

By an n-ary relation, we mean a set of ordered n-tuples. For any set

S, a subset of the product set Sn is called an n-ary relation on S. In

particular, a subset of S3 is called a ternary relation on S.

Partial Order Set (POSET):

The set A together with a partial order relation R on the set A and is

denoted by (A, R) is called a partial orders set or POSET.

Total Order Relation

Consider the relation R on the set A. If it is also called the case that

for all, a, b ∈ A, we have either (a, b) ∈ R or (b, a) ∈ R or a = b, then

the relation R is known total order relation on set A.

Example: Show that the relation '<' (less than) defined on N, the set

of +ve integers is neither an equivalence relation nor partially

ordered relation but is a total order relation.

Solution:

Reflexive: Let a ∈ N, then a < a

⟹ '<' is not reflexive.

As, the relation '<' (less than) is not reflexive, it is neither an

equivalence relation nor the partial order relation.

But, as ∀ a, b ∈ N, we have either a < b or b < a or a = b. So, the

relation is a total order relation.

Equivalence Class

Consider, an equivalence relation R on a set A. The equivalence

class of an element a ∈ A, is the set of elements of A to which

element a is related. It is denoted by [a].

75 | P a g e

Space for learners: Example: Let R be an equivalence relations on the set A = {4, 5, 6,

7} defined by

 R = {(4, 4), (5, 5), (6, 6), (7, 7), (4, 6), (6, 4)}.

Determine its equivalence classes.

Solution: The equivalence classes are as follows:

 {4} = {6} = {4, 6}

 {5} = {5}

 {7} = {7}.

Circular Relation

Consider a binary relation R on a set A. Relation R is called circular

if (a, b) ∈ R and (b, c) ∈ R implies (c, a) ∈ R.

Example: Consider R is an equivalence relation. Show that R is

reflexive and circular.

Solution: Reflexive: As, the relation, R is an equivalence relation.

So, reflexivity is the property of an equivalence relation. Hence, R is

reflexive.

Circular: Let (a, b) ∈ R and (b, c) ∈ R

 ⇒ (a, c) ∈ R (∵ R is transitive)

 ⇒ (c, a) ∈ R (∵ R is symmetric)

Thus, R is Circular.

Compatible Relation

A binary relation R on a set A that is Reflexive and symmetric is

called Compatible Relation.

Every Equivalence Relation is compatible, but every compatible

relation need not be an equivalence.

Example: Set of a friend is compatible but may not be an

equivalence relation.

Friend Friend

a → b, b → c but possible that a and c are not friends.

76 | P a g e

Space for learners: 3.6 INTRODUCTION TO FUNCTION

Functions

It is a mapping in which every element of set A is uniquely

associated at the element with set B. The set of A is called Domain

of a function and set of B is called Co domain.

Domain, Co-Domain, and Range of a Function:

Domain of a Function: Let f be a function from P to Q. The set P is

called the domain of the function f.

Co-Domain of a Function: Let f be a function from P to Q. The set Q

is called Co-domain of the function f.

Range of a Function: The range of a function is the set of picture of

its domain. In other words, we can say it is a subset of its co-domain.

It is denoted as f (domain).

1. If f: P → Q, then f (P) = {f(x): x ∈ P} = {y: y ∈ Q | ∃ x ∈ P,

such that f (x) = y}.

Example: Find the Domain, Co-Domain, and Range of function.

1. Let x = {1, 2, 3, 4}

2. y = {a, b, c, d, e}

3. f = {(1, b), (2, a), (3, d), (4, c)

77 | P a g e

Space for learners:

Solution:

Domain of function: {1, 2, 3, 4}

Range of function: {a, b, c, d}

Co-Domain of function: {a, b, c, d, e}

Functions as a Set

If P and Q are two non-empty sets, then a function f from P to Q is a

subset of P x Q, with two important restrictions

1. ∀ a ∈ P, (a, b) ∈ f for some b ∈ Q

2. If (a, b) ∈ f and (a, c) ∈ f then b = c.

Note1: There may be some elements of the Q which are not related

to any element of set P.

2. Every element of P must be related with at least one element of Q.

Example: If a set A has n elements, how many functions are there

from A to A?

Solution: If a set A has n elements, then there are nn functions from

A to A.

Representation of a Function

The two sets P and Q are represented by two circles. The function f:

P → Q is represented by a collection of arrows joining the points

which represent the elements of P and corresponds elements of Q

Example: Let X = {a, b, c} and Y = {x, y, z} and f: X → Y such

that

f= {(a, x), (b, z), (c, x)}

Then f can be represented diagrammatically as follows

78 | P a g e

Space for learners:

Example: Let X = {x, y, z, k} and Y = {1, 2, 3, 4}. Determine

which of the following functions. Give reasons if it is not. Find

range if it is a function.

a. f = {(x, 1), (y, 2), (z, 3), (k, 4)

b. g = {(x, 1), (y, 1), (k, 4)

c. h = {(x, 1), (x, 2), (x, 3), (x, 4)

d. l = {(x, 1), (y, 1), (z, 1), (k, 1)}

e. d = {(x, 1), (y, 2), (y, 3), (z, 4), (z, 4)}.

Solution:

1. It is a function. Range (f) = {1, 2, 3, 4}

2. It is not a function because every element of X does not

relate with some element of Y i.e., Z is not related with any element

of Y.

3. h is not a function because h (x) = {1, 2, 3, 4} i.e., element x

has more than one image in set Y.

4. d is not a function because d (y) = {2, 3} i.e., element y has

more than image in set Y.

Types of Functions

Injective (One-to-One) Functions: A function in which one

element of Domain Set is connected to one element of Co-Domain

Set.

79 | P a g e

Space for learners: Surjective (Onto) Functions: A function in which every element of

Co-Domain Set has one pre-image.

Example: Consider, A = {1, 2, 3, 4}, B = {a, b, c} and f = {(1, b),

(2, a), (3, c), (4, c)}.

It is a Surjective Function, as every element of B is the image of

some A

Note: In an Onto Function, Range is equal to Co-Domain.

Bijective (One-to-One Onto) Functions: A function which is both

injective (one to - one) and surjective (onto) is called bijective (One-

to-One Onto) Function.

Example: Consider P = {x, y, z} Q = {a, b, c} and f: P → Q such

that

 f = {(x, a), (y, b), (z, c)}

The f is a one-to-one function and also it is onto. So it is a bijective

function.

Into Functions: A function in which there must be an element of

co-domain Y does not have a pre-image in domain X.

Example: Consider, A = {a, b, c}

 B = {1, 2, 3, 4} and f: A → B such that

80 | P a g e

Space for learners: f = {(a, 1), (b, 2), (c, 3)}

 In the function f, the range i.e., {1, 2, 3} ≠ co-domain of Y

i.e., {1, 2, 3, 4}

Therefore, it is an into function

One-One Into Functions: Let f: X → Y. The function f is called

one-one into function if different elements of X have different

unique images of Y.

Example: Consider, X = {k, l, m} Y = {1, 2, 3, 4} and f: X → Y

such that

 f = {(k, 1), (l, 3), (m, 4)}

The function f is a one-one into function

Many-One Functions: Let f: X → Y. The function f is said to be

many-one functions if there exist two or more than two different

elements in X having the same image in Y.

Example: Consider X = {1, 2, 3, 4, 5} Y = {x, y, z} and f: X → Y

such that

 f = {(1, x), (2, x), (3, x), (4, y), (5, z)}

81 | P a g e

Space for learners: The function f is a many-one function

Many-One Into Functions: Let f: X → Y. The function f is called

the many-one function if and only if is both many one and into

function.

Example: Consider X = {a, b, c} Y = {1, 2} and f: X → Y such

that

 f = {(a, 1), (b, 1), (c, 1)}

As the function f is a many-one and into, so it is a many-one into

function.

Many-One Onto Functions: Let f: X → Y. The function f is called

many-one onto function if and only if is both many one and onto.

Example: Consider X = {1, 2, 3, 4} Y = {k, l} and f: X → Y such

that

 f = {(1, k), (2, k), (3, l), (4, l)}

The function f is a many-one (as the two elements have the same

image in Y) and it is onto (as every element of Y is the image of

some element X). So, it is many-one onto function

82 | P a g e

Space for learners:

Identity Functions

The function f is called the identity function if each element of set A

has an image on itself i.e. f (a) = a ∀ a ∈ A.

It is denoted by I.

Example: Consider, A = {1, 2, 3, 4, 5} and f: A → A such that

. f = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}.

The function f is an identity function as each element of A is

mapped onto itself. The function f is a one-one and onto

Invertible (Inverse) Functions

A function f: X → Y is invertible if and only if it is a bijective

function.

Consider the bijective (one to one onto) function f: X → Y. As f is a

one to one, therefore, each element of X corresponds to a distinct

element of Y. As f is onto, there is no element of Y which is not the

image of any element of X, i.e., range = co-domain Y.

The inverse function for f exists if f-1 is a function from Y to X.

Example: Consider, X = {1, 2, 3}

 Y = {k, l, m} and f: X→Y such that

83 | P a g e

Space for learners: f = {(1, k), (2, m), (3, l)

The inverse function of f is shown in fig:

Compositions of Functions

Consider functions, f: A → B and g: B → C. The composition of f

with g is a function from A into C defined by (gof) (x) = g [f(x)] and

is defined by gof.

 To find the composition of f and g, first find the image of x

under f and then find the image of f (x) under g.

Example: Let X = {1, 2, 3}

. Y = {a, b}

. Z = {5, 6, 7}.

Consider the function f = {(1, a), (2, a), (3, b)} and g = {(a, 5), (b,

7)} as in figure. Find the composition of gof.

84 | P a g e

Space for learners:

Solution: The composition function gof is shown in fig:

(gof) (1) = g [f (1)] = g (a) = 5, (gof) (2) = g [f (2)] = g (a) = 5

(gof) (3) = g [f (3)] = g (b) = 7.

Example: Consider f, g and h, all functions on the integers, by f (n)

=n2, g (n) = n + 1 and h (n) = n - 1.

Determine (i) hofog (ii) gofoh (iii) fogoh.

Solution:

(i) hofog (n) = n + 1,

 hofog (n + 1) = (n+1)2

h [(n+1)2] = (n+1)2 - 1 = n2 + 1 + 2n - 1 = n2 + 2n.

(ii) gofoh (n) = n - 1, gof (n - 1) = (n-1)2

 g [(n-1)2] = (n-1)2 + 1 = n2 + 1 - 2n + 1 = n2 - 2n + 2.

(iii) fogoh (n) = n - 1

 fog (n - 1) = (n - 1) + 1

 f (n) = n2.

Note:

o If f and g are one-to-one, then the function (gof) (gof) is also

one-to-one.

o If f and g are onto then the function (gof) (gof) is also onto.

85 | P a g e

Space for learners: o Composition consistently holds associative property but does

not hold commutative property.

3.7 SUMMING UP

 A binary relation R between two non-empty sets P and Q is

defined to be a subset of P x Q from a set P to Q.

 Domain of relation R is the set of elements in P which are related

to some elements in Q, or it is the set of all first entries of the

ordered pairs in R. Range of relation R is the set of elements in

Q which are related to some element in P, or it is the set of all

second entries of the ordered pairs in R.

 Relations can be represented in terms of matrix, Directed Graph,

Table or Arrow Diagram.

 Relations may be of type reflexive, irreflexive, symmetric,

asymmetric or transitive relations.

 A relation R on a set A is called an equivalence relation if R is

reflexive, symmetric and transitive.

 A relation R on a set A is called a partial order relation if R is

Reflexive, Antisymmetric and transitive.

 The set A together with a partial order relation R on the set A

and is denoted by (A, R) is called a partial order set or POSET.

 A binary relation R on a set A is called circular if (a, b) ∈ R and

(b, c) ∈ R implies (c, a) ∈ R.

 A mapping in which every element of set A is uniquely

associated with the element of set B is called function. The set of

A is called Domain of a function and set of B is called Co

domain.

 Functions are of types injective, surjective, bijective and into and

many more.

3.8 ANSWERS TO CHECK YOUR PROGRESS

Answer 1:

According to the given figure, P = {5, 6, 7}, Q = {3, 4, 5}

86 | P a g e

Space for learners: (i) R = {(x, y): y = x- 2; x ∈P} or R = {(x, y): y = x- 2 for x= 5, 6, 7}

(ii) R = {(5, 3), (6, 4), (7, 5)}

Domain of R = {5, 6, 7}

Range of R = {3, 4, 5}

Answer 2:

A = {1, 2, 3, 4, 6}, R = {(a, b): a, b ∈A, bis exactly divisible by a}

(i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3),

(3, 6), (4, 4), (6, 6)}

(ii) Domain of R = {1, 2, 3, 4, 6}

(iii) Range of R = {1, 2, 3, 4, 6}

Answer 3:

R = {(x, x+ 5): x ∈{0, 1, 2, 3, 4, 5}}

∴ R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}

∴Domain of R = {0, 1, 2, 3, 4, 5}

Range of R = {5, 6, 7, 8, 9, 10}

Answer 4:

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the

given relation having their unique images, this

relation is a function.

Here, domain = {2, 5, 8, 11, 14, 17} and range = {1}

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the

given relation having their unique images, this

relation is a function.

Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6,

7}

87 | P a g e

Space for learners: (iii) {(1, 3), (1, 5), (2, 5)}

Since the same first element i.e., 1 corresponds to two different

images i.e., 3 and 5, this relation is not a function.

3.9 POSSIBLE QUESTIONS

Short answer type questions:

1. Which of these is not a type of relation?

a) Reflexive

b) Surjective

c) Symmetric

d) Transitive

2. An Equivalence relation is always symmetric.

a) True

b) False

3. Which of the following relations is symmetric but neither

reflexive nor transitive for a set A = {1, 2, 3}.

a) R = {(1, 2), (1, 3), (1, 4)}

b) R = {(1, 2), (2, 1)}

c) R = {(1, 1), (2, 2), (3, 3)}

d) R = {(1, 1), (1, 2), (2, 3)}

4. Which of the following relations is transitive but not reflexive for

the set S={3, 4, 6}?

a) R = {(3, 4), (4, 6), (3, 6)}

b) R = {(1, 2), (1, 3), (1, 4)}

c) R = {(3, 3), (4, 4), (6, 6)}

d) R = {(3, 4), (4, 3)}

88 | P a g e

Space for learners: 5. Let R be a relation in the set N given by R={(a,b): a+b=5, b>1}.

Which of the following will satisfy the given relation?

a) (2,3) ∈ R

b) (4,2) ∈ R

c) (2,1) ∈ R

d) (5,0) ∈ R

6. Which of the following relations is reflexive but not transitive for

the set T = {7, 8, 9}?

a) R = {(7, 7), (8, 8), (9, 9)}

b) R = {(7, 8), (8, 7), (8, 9)}

c) R = {0}

d) R = {(7, 8), (8, 8), (8, 9)}

7. Let I be a set of all lines in a XY plane and R be a relation in I

defined as R = {(I1, I2):I1 is parallel to I2}. What is the type of

given relation?

a) Reflexive relation

b) Transitive relation

c) Symmetric relation

d) Equivalence relation

8. Which of the following relations is symmetric and transitive but

not reflexive for the set I = {4, 5}?

a) R = {(4, 4), (5, 4), (5, 5)}

b) R = {(4, 4), (5, 5)}

c) R = {(4, 5), (5, 4)}

d) R = {(4, 5), (5, 4), (4, 4)}

9. (a,a) ∈ R, for every a ∈ A. This condition is for which of the

following relations?

a) Reflexive relation

89 | P a g e

Space for learners: b) Symmetric relation

c) Equivalence relation

d) Transitive relation

10. (21 ,aa) ∈R implies that),(12 aa ∈ R, for all 1a , 2a ∈A. This

condition is for which of the following relations?

a) Equivalence relation

b) Reflexive relation

c) Symmetric relation

d) Universal relation

Long answer type questions:

1. Let A = {1, 3, 5, 7} and B = {p, q, r}. Let R be a relation from A

into B defined by R = {(1, p), (3, r), (5, q), (7, p), (7, q)} find the

domain and range of R.

2. Let A = {2, 4, 6} and B = {x, y, z}.

State which of the following are relation from A into B

 (i) R₁ = {(2, x), (y, 4), (6, z)}

 (ii) R₂ = {(4, y) (y, 4)}

 (iii) R₃ = {(2, x) (4, y) (6, z)}

3. Let A = {3, 4, 5, 6} B = {1, 2, 3, 4, 5, 6} Let R = {(a, b) : a ∈ A, b

∈ B and a < b}.

Write R in the roster form. Find its domain and range.

4. Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Let R be A relation on A

defined by R = {a, b} : a ∈ A, b ∈ A, a is a multiple of b}. Find R,

domain of R, range of R.

5. Determine the range and domains of the relation R defined by R =

{(x - 1), (x + 2) : x ∈ (2, 3, 4, 5)}

6. Let A = {1, 2, 3, 4, 5, 6} Define a relation R from A to A by R

{(x, y) : y = x + 2}

 • Depict this relation using an arrow diagram.

 • Write down the domain and range of R

90 | P a g e

Space for learners: 7. The adjoining figure shows a relation between the set A and B.

Write this relation in

find domain and range

 (i) Set builder form.

 (ii) Roster form.

 (iii) Find domain and range.

8. If A = {1, 4, 9, 16} and B = {1, 2, 3} Let R be a relation 'is square

of’ from A to B.

Find R domain and range of R.

9. Let A = {3, 4, 5} and B = {6, 8, 9, 10, 12}. Let R be the relation

'is a factor of' from A to B. Find R.

10. Adjoining figure shows relation between A and B. Write relation

in

Range of a set

 (i) Set builder form.

 (ii) Roster form.

 (iii) Find domain and range of R.

3.10 REFERENCES AND SUGGESTED READINGS

 Sets Relations Functions – by Gunther Gedia.

 Sets Relations Functions A programmed unit in modern

mathematics – by Myra McFadden.

91 | P a g e

Space for learners:  Concrete on the relation and function – by Jane Tennitope.

 Set theory – Charles C Printer.

 Naïve set theory – Paul Halmour.

92 | P a g e

Space for learners: UNIT 4: BOOLEAN ALGEBRA

Unit Structure:

 4.1 Introduction

 4.2 Unit Objectives

 4.3 Boolean Algebra

 4.4 Principle Of Duality

 4.5 Properties of Boolean Algebra

 4.5.1 Theorem(Uniqueness of the complement)

 4.6 Boolean Expression

 4.6.1 Minimization of Boolean expression

 4.7 Boolean Function

 4.8 Conjunction Operation

 4.9 Disjunction Operation

 4.10 Complementation

 4.11 Definition of Literal

 4.12 Fundamental Product or Minterm

 4.13: Definition of Maxterm

 4.14: Canonical Form or Normal form

 4.14.1: Sum of Minterms (SOM) / Sum of Products (SOP)

/ Disjunctive Normal Form (DNF)

 4.14.2: Rules to Convert output expression into SOM

 4.14.3: Product of Maxterms (POM) / Product of Sums

(POS) / Conjunctive Normal Form (CNF)

 4.14.4: Rules to convert output expression into POM

 4.15: Application of Boolean Algebra

 4.16: Summing Up

 4.17: Answers to Check Your Progress

 4.18: Possible Questions

 4.19: References and Suggested Readings

93 | P a g e

Space for learners: 4.1 INTRODUCTION

In this unit we will learn Boolean algebra which was developed by

George Boole (1815-1864) a logician, to examine a given set of

propositions (statements) with a view to checking their logical

consistency and simplifying them by removing redundant statements

or clauses. He used symbols to represent simple propositions.

Compound propositions were expressed in terms of these symbols

and connectives. Again, we will learn various properties of Boolean

algebra with their proof. We will learn Boolean expression and

Principle of Duality, how we can convert one Boolean expression to

another. We will learn how we can simplify various Boolean

expressions by using the Boolean properties.

We will learn Boolean function, literals, Minterms and Maxterm.

Again, We will learn the truth table of Conjunction and Disjunction

operation. we will learn the two most important canonical forms of

Boolean algebra, Sum of Minterms (SOM) and Product of Maxterm

(POM). We will learn how to write the simplified output expression

of an Boolean function in SOM and POM form by using Boolean

Identities as well as truth table. And finally we will learn the

application of Boolean Algebra.

4.2 UNIT OBJECTIVES

 After going through this unit, you will be able to:

 define Boolean algebra

 know about duality principle of Boolean algebra

 Know various properties of Boolean algebra with proof

 define Boolean expression and how to simplify it

 define literal, Minterm and Maxterm.

 define Boolean function

 define Conjunction, Disjunction and Complement operation

 define the canonical form SOM and POM

 know how to convert output expression into SOM and POM

 know the application of Boolean Algebra

94 | P a g e

Space for learners: 4.3 BOOLEAN ALGEBRA

Definitions: A non-empty set B with two binary operations ∨ and ∧,

a unary operation ′, and two distinct elements 0 and I is called a

Boolean Algebra if the following axioms holds for any elements a,

b, c ∈ B

[B1]: Commutative Laws:

 a ∨ b = b ∨ a and a ∧ b = b ∧ a

[B2]: Distributive Law:

 a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨

c)

[B3]: Identity Laws:

 a ∨ 0 = a and a ∧ I = a

[B4]: Complement Laws:

a ∨ a′ = I and a ∧ a′ = 0

We shall call 0 as zero element, 1 as unit element and a′ the

complement of a.

We denote a Boolean Algebra by (B, ∨ , ∧ , ~, 0, I)

Example 1. Let,D6 = {1, 2, 3, 6} has four element. Define ∨ , ∧ and

′ on D6 by a ∨ b = lcm(a, b) , a ∧ b = gcd(a, b) and a′ = 6/a . Then D6

is a Boolean Algebra with 1 as the zero element and 6 as the unit

element.

Solution :

We prepare the following tables for the operations ∨ , ∧ , ′

Table for operation (∨)

∨ 1 2 3 6

1 1 2 3 6

2 2 2 6 6

3 3 6 3 6

6 6 6 6 6

Table for operation (∧)

∧ 1 2 3 6

1 1 1 1 1

2 1 2 1 2

95 | P a g e

Space for learners: 3 1 1 3 3

6 1 2 3 6

Table for operation (')

' 1 2 3 6

 6 3 2 1

we observe that all the entries in the tables are element of D6 .

Therefore ‘∨ ’ and ‘∧ ‘ are binary operations on set D6 . Also , ‘ ‘ ‘ is

a unary operation on D6 .

we observe the following properties -

Commutativity :

The entries in the composition tables for ∨ and ∧ are symmetric

about the diagonal starting from the upper left corner. Therefore, ∨

and ∧ are commutative binary operations on D6.

Distributivity :

From the composition tables of ∨ and ∧ , we have

 1∨ (2 ∧ 3) = 1 ∨ 1 = 1 and (1∨ 2)∧ (1∨3) = 2 ∧ 3 =1

 1 ∨ (2∧ 3) = (1∨2) ∧(1 ∨3)

Similarly,

1 ∨ (2∧6) = (1 ∨2) ∧ (1∨6)

1 ∨ (3∧6) = (1∨3) ∧ (1∨6)

 2∨ (3∧6)= (2∨3) ∧ (2∨6)etc.

Thus, ∨is distributive over ∧

Also,

 1 ∧(2 ∨ 3) = 1 ∧ 6 = 1 and (1∧2) ∨ (1 ∧3) = 2 ∧ 3 =1

 1 ∧(2∨3) = (1∧2) ∨ (1 ∧3)

Similarly,

 1 ∧(2∨6) = (1 ∧2) ∨ (1∧6)

1 ∧ (3∨6) = (1∨3) ∧(1∨6)

2∧ (3∨6)= (2∧3)∨ (2∧6)etc.

Thus, ∧ is distributive over ∨ .

Existence of identity elements :

96 | P a g e

Space for learners: For binary operation ‘∨’ , we observe that the first row of the

composition table coincides with the top most row and the first

column coincides with the left most column. These two intersect at

1. so, 1 is the identity element for ‘∨’ . Similarly, 6 is the identity

element for ‘∧ ‘.

 Thus, 1 and 6 are respectively the zero and unit element.

Complement laws :

 we have, 1∨ 1 =1 ∨6 = 6, 2 ∨ 2 = 2 ∨3 = 6, 3∨3 = 3∨2 =6, 6∨6

=6∨1=6 1∧1=1∧6=1, 2∧ 2=2∧3=1, 3∧3 =3∧2=1, 6∧6 =6∧1=1

 1= 6/1 =6, 2 = 6/2 =3, 3 = 6/3 =2 , 6 = 6/ 6 =1

Thus , the set D6 with the given binary operations and a unary

operation satisfies all the axioms of Boolean algebra. Hence , (D6 ,

‘∨ ‘ , ‘∧’ , ‘ ‘ ‘) is a Boolean algebra .

4.4 PRINCIPLE OF DUALITY

By the dual of a proposition concerning a Boolean algebra B, we

mean the proposition obtained by substituting ∨ for ∧, ∧for V, 0 for

1, and 1 for 0, i.e., by exchanging ∧ and V, and exchanging 0 and.

Any pair of expression satisfying this property is called Dual

expression. Again, this characteristics of Boolean algebra is called

the Principle of Duality.

For example, The dual of x∧ (y∨z) = (x∧Y) V (x∧Z) is xV (y∧Z) =

(xVY) ∧ (xVZ), and vice versa.

4.5 PROPERTIES OF A BOOLEAN ALGEBRA

1. Idempotent Laws: (i) a ∨ a = a

(ii) a ∧ a = a

2. Boundedness Laws: (i) a ∨ I = I

(ii) a ∧ 0 = 0

3. Absorption Laws: (i) a ∨ (a ∧ b) = a

(ii) a ∧ (a ∨ b) = a

4. Associative Laws: (i) (a ∨ b) ∨ c = a ∨ (b ∨ c)

(ii) (a ∧ b) ∧ c = a ∧ (b ∧ c)

97 | P a g e

Space for learners: 5.De Morgan’s Law: (i) (a ∨ b)′ = a′ ∧ b′

(ii) (a ∧ b)′ = a′ ∨ b′.

6.(i) (a ∨ b) = (a′ ∧ b′)′ (ii) (a ∧ b) = (a′ ∨

b′)′

7. (i) a ∧(a′ ∨ b)=(a ∧ b) (ii) a ∨ (a′ ∧

b)=(a ∨ b)

Proof: It is sufficient to prove first part of each law since second part

follows from the first by principle of duality.

 1. (i). We have

 a = a ∨ 0 (by identity law in a Boolean algebra)

 = a ∨ (a ∧ a′) (by complement law)

 = (a ∨ a) ∧ (a ∨ a′) (by distributive law)

 = (a ∨ a) ∧ I (complement law)

 = a ∨ a (identity law) ,

1(ii). We know that,

a = a∧ 1(by identity law in a Boolean algebra)

 =a∧(a∨ a′) (by complement law)

 =(a∧a) ∨(a∧ a′) (by distributive law)

= (a∧a) ∨ 0 (complement law)

 =(a∧a) (identity law)

2(i) : We have

 a ∨ I = (a ∨ I) ∧ I (identity law)

 = (a ∨ I) ∧ (a ∨ a′) (complement law)

 = a ∨ (I ∧ a′) (Distributive law)

 = a ∨ a′ (identity law)

 = I (complement law).

98 | P a g e

Space for learners: 2(ii) it is the dual of 2(ii)

 3(i): we note that

 a ∨ (a ∧ b) = (a ∧ I) ∨ (a ∧ b) (identity law)

= a ∧ (I ∨ b) (distributive law)

= a ∧ (b ∨ I) (commutativity)

 = a ∧ I (Identity law)

 = a (identity law)

3(ii) it is the dual of 3(i)

4(i) Let,

 L = (a ∨ b) ∨ c R = a ∨ (b ∨ c)

 Then a ∧ L = a ∧ [(a ∨ b) ∨ c]

= [a ∧ (a ∨ b)] ∨ (a ∧ c) (distributive Law)

= a ∨ (a ∧ c) (absorption law)

= a (absorption law)

And

 a ∧ R = a ∧ [a ∨ (b ∨ c)]

 = (a ∧ a) ∨ (a ∧ (b ∨ c)] (distributive

law)

 = a ∨ (a ∧ (b ∨ c)] (idempotent law)

 = a (absorption Law)

Thus a∧ L = a ∧ R and so, by duality, a ∨ L = a ∨ R .

 Further, a′ ∧ L = a′ ∧ [(a ∨ b) ∨ c]

 = [a′ ∧ (a ∨ b)] ∨ (a′ ∧ c)

(distributive law)

99 | P a g e

Space for learners: = [(a′ ∧ a) ∨ (a′ ∧ b)] ∨ (a′ ∧ c)

(distributive law)

= [0∨ (a′ ∧ b)] ∨ (a′ ∧ c) (complement Law)

 = (a′ ∧ b)] ∨ (a′ ∧ c) (Identity

law)

 = a′ ∧ (b ∨ c) (distributive

law)

On the other hand

 a′ ∧ R = a′ ∧ [a ∨ (b ∨ c)]

 = (a′ ∧ a) ∨ [a′ ∧ (b ∨ c)]

(distributive law)

 = 0 ∨ [a′ ∧ (b ∨ c)] (complement

law)

 = a′ ∧ (b ∨ c)] (identity law)

 Hence a′ ∧ L = a′ ∧ R and so by duality a′ ∨ L

= a′ ∨ R

 Therefore ,

 L = (a ∨ b) ∨ c

 = 0 ∨ [(a ∨ b) ∨ c] = 0 ∨ L (identity law)

 = (a ∧ a′) ∨ [(a ∨ b) ∨ c]

 = (a ∧ a′) ∨ L (complement law)

 = (a ∨ L) ∧ (a′ ∨ L) (distributive law)

 = (a ∨ R) ∧ (a′ ∨ R) (using A ∨ L = a ∨ R and a′ ∨ L = a′ ∨ R]

 = (a ∧ a′) ∨ R (distributive law)

= 0 ∨ R (complement law)

 = R (identity law)

 Hence, (a ∨ b) ∨ c = a ∨ (b ∨ c)

100 | P a g e

Space for learners: 4(ii). It is the dual of 4(i)

5(i) . we have

 (a ∨ b) ∨ (a′ ∧ b′) = (b ∨ a) ∨ (a′ ∧ b′) (commutative)

 = b ∨ (a ∨ (a′ ∧ b′))

(associative)

 = b ∨ [(a ∨ a′ ∧ (a ∨ b′)]

(distributive)

 = b ∨ [I ∧ (a ∨ b′) (complement)

 = b ∨ (a ∨ b′) (identity)

 = b ∨ (b′ ∨ a) (commutative)

 = (b ∨ b′) ∨ a (associative law)

 = I ∨ a (complement law)

 = I (Identity law)

 Also, (a ∨ b) ∧ (a′ ∧ b′) = [(a ∨ b) ∧ a′] ∧ b′

(associativity)

 = [a ∧ a′) ∨ (b ∧ a′)] ∧ b′ (distributive law)

= [0 ∨ (b ∧ a′)] ∧ b′ (complement)

 = (b ∧ a′) ∧ b′ (identity)

 = b ∧ b′ ∧ a′

= 0 ∧ a′

 = 0

 Hence , a′ ∧ b′ is complement of a ∨ b,

 i.e. (a ∨ b)′ = a′ ∧ b′.

5(ii).It is the dual of 5(i)

6(i) We know that,

101 | P a g e

Space for learners: (a ∨ b)′ = a′ ∧ b′ [By De Morgan’s Law]

 (a∨b)′′ = (a′∧ b′) ′. [Taking

Complement on both sides]

 (a∨b) = (a′∧ b′) ′[Since, a′′ = a]

 6(ii). It is the dual of 6(i)

7(i)

 LHS= a ∧ (a′ ∨ b)

 = (a ∧ a′) ∨ (a ∨ b) [By Distributive Law]

 = 0∨ (a ∨ b) [By Complement Law]

 = (a ∨ b) [Since, 0 ∨ x=x]

 =RHS

7(ii) is the dual of 7(i)

4.5.1 Theorem

Uniqueness of the complement: If x∨y=1 and x∧ y=0, then y=x′.

Proof. We know that,

 y = y ∨ 0 [Since, x∨ 0=x]

= y ∨ (X∧X′)[by Complement law B4]

 = (y∨ x) ∧ (y ∨ x′) [by Distributive law B2]

 = (x ∨ y) ∧ (y∨ x′) [by Commutative Laws B1]

 = 1∧(y∨x′)[by hypothesis]

 = (yVx′) ∧ 1[by Commutative Laws B1]

 = y∨ x′ [Since, x∧1=x]

Again, x′ = x′∨ 0 [Since, x∨ 0=x]

= x′∨ (x∧y) [by hypothesis]

= (x′∨ x) ∧ (x′∨ y) [by Distributive law B2]

 = (x∨ x′) ∧ (x′∨ y) [by Commutative Laws B1]

102 | P a g e

Space for learners: = 1 ∧ (x′∨ y) [by Complement law B4]

= (x′∨ y) ∧1 [By Complement law B4]

= (x′∨ y) [since, x∧ 1=x]

= (y ∨ x′) [by Commutative Laws B1]

= y [Already proved that y=y ∨ x′]

Hence, If x ∨ y=1 and x ∧ y= 0, then y = x′.

4.6 BOOLEAN EXPRESSION

CHECK TO YOUR PROGRESS

1.Find the duals of the following Boolean Expression

(a) x∨ y (b) (a ∨ b) ∨ c = a ∨ (b ∨ c) (c) a ∧(a′ ∨

b)=(a ∧ b)

(d) (a ∧ b)′ = a′ ∨ b′

2. Let D30 = { 1 , 2 , 3 , 5 , 6 , 10 , 15 , 30 } be the set of all divisors

of 30 and let ∨ and ∧ be two operations on B as defined below : a

∨ b = L C M of a and b ,a ∧ b = GCD of a and b. Also , for each

a B , let us define a = 30/a Then , show that (D30 , ∨ , ∧ , ‘) is

a Boolean algebra.

3.Let D8 = { 1 , 2 , 4 , 8 } , be the of all divisors of 8 and let ∨ and

∧ be two operations be defined on D8 as follows : a ∨ b = L C M of

a and b, a ∧ b = GCD of a and b, a = 8/a show that (D8 , ∨,∧ , ‘) is

not a Boolean algebra

4. Let B = {  , {1}, {2} , { 1,2} } = power set of set{1,2}. Show

that (B,  , , ‘) is a Boolean algebra.

5.Let B={  , {1}, {2}, {3} , { 1,2} , { 1,3} , {2,3} , {1,2,3} }=

power set of set {1,2,3} . Show that(B,  , , ‘) is a Boolean

algebra.

103 | P a g e

Space for learners: Let (A, ∧, ∨,’) be a Boolean algebra. Then expression involving

members of A and the operations ∧,∨ and complementation are

called Boolean expression or Boolean Polynomials.

 Let x1, x2,…, xn be a set of n variables (or letters or symbols). A

Boolean Polynomial (Boolean expression, Boolean form or Boolean

formula) p(x1, x2, …., xn) in the variables x1, x2, …., xn is defined

recursively as follows:

 1. The symbols 0 to 1 are Boolean polynomials

 2. x1, x2, …., xn are all Boolean polynomials

3. if p(x1, x2, …., xn) and q(x1, x2, …., xn) are two Boolean

polynomials, then

p(x1, x2, …., xn) ∨ q(x1, x2, …., xn) and p(x1, x2, …., xn) ∧ q(x1, x2,

…., xn) are also Boolean polynomials.

4. If p(x1, x2, …., xn) is a Boolean polynomial, then

 (p(x1, x2, …., xn))′ is also Boolean polynomials

5. There are no Boolean polynomials in the variables x1, x2, …., xn

other than those obtained in accordance with rules 1 to 4.

For example, for variables x, y and z ,

 the expressions p1(x, y, z) = (x ∨ y) ∧ z

 p2 (x, y, z) = (x ∨ y′) ∨ (y ∧ 1)

 p3(x, y, z) = (x ∨ (y′ ∧ z)) ∨ (x ∧ (y ∧

1)) are Boolean expressions.

Note:A Boolean expression of n variables there may or may not

contain all the n variables.

4.6.1 Minimization of Boolean Expression

1.Simplify the following Boolean Expression

 (a)(A′∧B′∧C′) ∨(A′∧B∧C′)∨ (A∧B′∧C′)∨(A∧B∧C′)

 (b) (A∧B) ∨ (A∧C) ′ ∨ [(A∧B′∧C) ∧ (A∧B)∨ C]

Solutions:

1. (a)

(A′∧B′∧C′) ∨(A′∧B∧C′)∨ (A∧B′∧C′)∨(A∧B∧C′)

104 | P a g e

Space for learners: = [(A′ ∧ C′) ∧(B′ ∨ B)] ∨ [(A ∧ C′) ∧ (B′ ∨ B)] [Distributive

law]

= [(A′ ∧ C′) ∧ 1] ∨ [(A ∧ C′) ∧ 1] [Since, B′ ∨ B =1]

= (A′ ∧ C′) ∨ (A ∧ C′) [Since A ∧ 1= A]

= C′ ∧(A′ ∨ A) [Distributive law]

= C′ ∧ 1 [Since, B′ ∨ B =1]

= C′ [Since A ∧ 1= A]

1. (b)

(A∧B) ∨ (A∧C) ′ ∨ [(A∧B′∧C) ∧ (A∧B)∨ C]

= (A∧B) ∨ (A∧C) ′ ∨ (A∧B′∧C ∧ A∧B)∨ (A∧B′∧C∧ C)

= (A∧B) ∨ (A′ ∨ C′) ∨ 0 ∨ (A∧B′∧C) [By De Morgans law and

B∧B′=0,C∧C=C]

=(A∧B) ∨ (A′ ∨ C′) ∨ (A∧B′∧C)

= (A∧B) ∨ (A′ ∨ C′) ∨(B′∧C) [Since, A∨ (A∧B)=A∨ B]

= A′ ∨ (A∧B) ∨ C′ ∨(C ∧ B′)

 = A′ ∨ B ∨ C′ ∨ B′

= A′ ∨ C′ ∨ 1 [since, B ∨ B′=1]

= A′ ∨ 1 [Since, C′ ∨ 1 =1]

 =1

4.7 BOOLEAN FUNCTION

Each Boolean expression represents a Boolean function. Any

function specifying a Boolean expression is called a Boolean

function.

Let, B={0,1}.Then Bn={ (x1,x2,……..xn)| xi∈ B for 1≤ � ≤ � } is the

set of all possible n-tuples of 0s and 1s.The variable x is called a

Boolean variable if it assumes values only from B,that is,if its only

possible values are 0 and 1. A function from Bn to B is called a

Boolean function of degree n.

Thus if f(x,y)=x∧y,then f is the Boolean function and x∧y is the

boolean expression (or the value of the function f)

105 | P a g e

Space for learners: 4.8 CONJUNCTION (∧) OPERATION

The Conjunction or Boolean product of two variables x and y, which

is denoted by xy or x∧y gives a value 1 when both x and y have the

value 1 and the value 0 otherwise.

4.9 DISJUNCTION (∨) OPERATION

The Disjunction or Boolean sum of two variables x and y, which is

denoted by x+y or x∨y gives a value 1 when either x or y or both has

the value 1 and the value 0 otherwise

4.10 COMPLEMENTATION (′)

It is an expression with the value 1 when x has the value 0 and the

value 0 when x has the value 1.

Examples1: Find the values of Boolean function f(x,y)=x∧y′

Examples2: Find the values of Boolean function f(x, y, z)=(x∧y) ∨

z′

Solution1:It is a Boolean function of two variables. The values are

displayed in the table given below

X y y′ f(x,y)= x∧y′

1 1 0 0

1 0 1 1

X y x ∧y

0 0 0

0 1 0

1 0 0

1 1 1

X y x ∨y

0 0 0

0 1 1

1 0 1

1 1 1

106 | P a g e

Space for learners: 0 1 0 0

1 1 O 0

 Solution2: It is a Boolean function of 3 variables. The values are

displayed in the table given below:

X y z x∧y z′ f(x,y,z)=(x∧y) ∨

z′

1 1 1 1 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 0 0 1 1

0 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 0

0 0 0 0 1 1

4.11 DEFINITION OF LITERAL

 A literal is a Boolean variable or complemented variable such as x,

x′, y, y′, and so on.

4.12 FUNDAMENTAL PRODUCT OR MINTERM

A fundamental product is a literal or a product of two or more literal

in which no two literals involve the same variable. Fundamental

product is also called a minterm or complete product.

 A minterm in n variable is a product of n literals in which each

variable is represented by the variable itself or its complement.

A minterm of the Boolean variables x1,x2,…xn is a Boolean product

y1∧ y2∧ y3….∧yn, where yi=xi or yi=x′i

 For example, for a 3 variable Boolean function there are 8 nos

of possible minterms, which are

 x ∧y ∧z, x′ ∧ y ∧ z, x ∧ y ′∧ z, x ∧ y ∧ z′

 x ∧ y′ ∧ z′ x′ ∧ y ∧ z′ x′ ∧ y′ ∧ z x′∧ y′∧ z′

4.13 DEFINITION OF MAXTERM

107 | P a g e

Space for learners: A maxterm in n variable is a sum of n literals in which each variable

is represented by the variable itself or its complement.

A maxterm of the Boolean variables x1, x2,… xn is a Boolean sum

y1∨ y2∨ y3….∨yn, where yi=xi or yi=x′i

For example, for a 3 variable Boolean function there are 8 nos of

possible maxterms, which are

x ∨ y ∨ z, x′ ∨ y ∨ z, x ∨ y ′∨ z, x ∨ y ∨ z′

x ∨ y′ ∨ z′ x′ ∨ y ∨ z′ x′ ∨ y′ ∨ z x′∨ y′∨ z′

4.14 CANONICAL FORM OR NORMAL FORM

A Boolean function can be uniquely described by its truth table or

in one of the canonical forms.Two dual canonical forms are-

(1) The sum of Minterms(SOM) or Sum of Product(SOP) or

Disjunctive normal form(DNF)

 (2) The Product of Maxterm or Product of Sum(POS) or

Conjunctive Normal form(CNF)

4.14.1 Sum of Minterms (SOM) / Sum of Products

(SOP) / Disjunctive Normal Form (DNF)

A Boolean function(expression) is said to be in Disjunctive normal

form in n variables x1,x2,……..xn if it can be written as join(Sum) of

terms of the type f1(x1) ∧f2(x2) ∧……fn(xn) where fi(xi) or x′i for all

i=1,2,….n and no two terms are same. Also 1 and 0 are said to be in

disjunctive normal form.

 Here, f1(x1) ∧f2(x2) ∧……fn(xn) are called minterms or minimal

polynomials.

For example, (x ∧ y ∧ z�) ∨ (x ∧ y′ ∧ z�) ∨ (x′ ∧ y ∧ z�) is a Boolean

expression in SOM form.

108 | P a g e

Space for learners: 4.14.2 Rules for Converting Output Expression into

SOM

There are two ways by which we can convert the output expression

in SOM form-

First Way

(a) Examine each term in the given logic function. Retain if it is a

minterm; continue to examine the next term in the same manner.

(b) Check for variables that are missing in each product, which is not

a minterm. Multiply(∧) the product by (x∨ x′) term, for each

variable x that is missing.

(c) Multiply(∧) all the products and eliminate the redundant term.

Second Way: Procedure for obtaining the output expression in SOM

from a truth table:

1. Give a product term for each input combination in the table,

containing an output value of 1.

2. Each product term contains its input variables in either

complemented or uncomplemented form.

3.All the product terms are Summed (∨)together in order to produce

the final SOM expression of the output.

�������

∶ ���� �ℎ� ��� � !"�#�$� %$& �ℎ� %'�(��$� %(, *, +)

= (∨ y) ∧ z′

Solution: We will find the SOM expansion of f(x, y, z)= (∨ y) ∧

z′ in two ways.

First way: By using Boolean identities

Given,

f(x,y,z)= (∨ y) ∧ z′

 = (∧ z�) ∨ (y ∧ z�) [Distributive law]

 = (∧ 1 ∧ z�) ∨ (1 ∧ y ∧ z�) [Identity law]

 = [∧ (y ∨ y�) ∧ z�)] ∨ [(x ∨ x�) ∧ y ∧ z�)] [complement

law]

109 | P a g e

Space for learners: = (x ∧ y ∧ z�) ∨ (x ∧ y′ ∧ z�) ∨ (x ∧ y ∧ z�) ∨ (x′ ∧ y ∧

z�) [Distributive law]

 =(x ∧ y ∧ z�) ∨ (x ∧ y′ ∧ z�) ∨ (x′ ∧ y ∧ z�) [By

idempotent law]

Second Way:

we can construct the sum of Minterm expansion by determining the

values of for all possible values of the variables x, y and z.

X Y Z x∨
 y

z′ f(x, y, z)=(∨
y) ∧ z′

Minterm

1 1 1 1 0 0

1 1 0 1 1 1 x ∧ y ∧ z�

1 0 1 1 0 0

1 0 0 1 1 1 x ∧ y′ ∧ z�

0 1 1 1 0 0

0 1 0 1 1 1 x′ ∧ y ∧ z�

0 0 1 0 0 0

0 0 0 0 1 0

Now, the Sum of Product expansion of f is the Boolean Sum(∨) of

the three minterms corresponding to the three rows of the table that

give the value 1 for the function.

Therefore, f(x, y, z)= (x ∧ y ∧ z�) ∨ (x ∧ y′ ∧ z�) ∨ (x′ ∧ y ∧ z�)

Example1. Convert the function into SOM form

[(x∧ y′) ∨ z′] ∧ (x′∨ z) ′

Solution:

[(x∧ y′) ∨ z′] ∧ (x′∨ z) ′

= [(x ′∨ y′ ′) ∨ z′] ∧ (x′∨ z) ′ [By De Morgan’s Law]

= [(x ′∨ y ∨ z′] ∧ (x′∨ z) ′ [Since, y′ ′=y]

= [(x ′∨ y ∨ z′] ∧ (z∨ x′) ′ [By Commutative law]

 = [(x ′∨ y ∨ z′] ∧ (z′∧ x′′) [By De Morgan’s Law]

 = [(x ′∨ y ∨ z′] ∧ (z′∧ x) [since x′ ′=x]

 = (x ′∧ z′∧ x) ∨ (y ∧ z′∧ x) ∨ (z′∧ z′∧ x) [By distributive

law]

= 0 ∨ (y ∧ z′∧ x) ∨ (z′∧ z′∧ x) [since x ∧ x′=0]

=0 ∨ (y ∧ z′∧ x) ∨ (z′∧ x) [Since z′∧ z′ = z′, Idempotent Laws]

110 | P a g e

Space for learners: = (x ∧ y ∧ z′) ∨ (z′∧ x) [Since 0 ∨ a=a]

 = (x ∧ y ∧ z′) ∨[(z′∧ x) ∧ 1] [Since, a ∧ 1=1]

 =(x ∧ y∧ z′) ∨ [(z′∧ x)∧ (y ∨ y′)] [Since, a ∨ a′= 1]

= (X∧ y∧ z′) ∨[(z′∧ x∧ y) ∨ (z′∧ x∧ y′)] [By distributive law]

= (x ∧ y ∧ z′) ∨[(x∧ z′∧ y) ∨ (x∧z′∧ y′)]

 =(x ∧ y ∧ z′) ∨ (x∧ y′∧ z′)

4.14.3 Product of Maxterms (POM) / Product of Sums

(POS) / Conjunctive Normal Form (CNF)

A Boolean function(expression) is said to be in Conjunctive normal

form in n variables x1,x2,……..xn if it can be written as

meet(Product) of terms of the type f1(x1) ∨f2(x2) ∨……fn(xn) where

fi(xi) or x′i for all i=1,2,….n and no two terms are same.Also 1 and 0

are said to be in disjunctive normal form.

 Here, f1(x1) ∨f2(x2) ∨……fn(xn) are called Maxterms or maximal

polynomials

For example,

(x ∨ y ∨ z�) ∧ (x ∨ y′ ∨ z�) ∧ (x′ ∨ y ∨ z�) is a boolaen expression in

POM form

4.14.4 Rules for Converting the Output Expression into

POM

There are two ways by which we can convert the output expression

in POM form

First Way

(a) Examine each term in the given logic function. Retain if it is a

Maxterm; continue to examine the next term in the same manner.

(b) Check for variables that are missing in each sum, which is not a

maxterm. Add (x∧x′) to the sum term,for each variable x that is

missing.

(c) Expand the expression using the distributive property and

eliminate the redundant term.

Second Way

111 | P a g e

Space for learners: The procedure for obtaining the output expression of a Boolean

function in POM form from a truth table.

(a) Give a sum term for each input combination in the table,which

has an output value 0.

(b) Each sum terms contains all its input variables in complemented

or uncomplemented form. If the input variable is 0, then it appears in

an uncomplemented form; if the input variable is 1, it appears in the

complemented form.

(c) All the sum terms are AND operated (∧) together to obtain

the final POM expression.

Example: Convert the function in POM form

 Y=A∨ (B′ ∧C)

Solution:

First way:

 Here,

 Y=A∨ (B′ ∧C)

 = (A∨ B′) ∧ (A ∨C) [By Distributive law]

=(A∨ B′ ∨ 0) ∧ (A ∨C∨ 0) [Since a∨ 0 = a]

 =[A∨ B′ ∨ (C ∧ C′)] ∧ [A ∨ C ∨ (B ∧ B�)] [Since, a ∧ a′ = 0]

= (A∨ B′ ∨ C) ∧ (A∨ B′ ∨ C′) ∧ (A ∨ C ∨ B) ∧ (A ∨ C ∨ B′) [

Distributive law]

 = (A ∨ B ∨ C) ∧ (A∨ B′ ∨ C) ∧ (A ∨ B′ ∨ C′) [Since, A ∧ A = A]

Second Way:

A B C B′ B′ ∧C Y=A∨ (B′ ∧C) Maxterm

0 0 0 1 0 0 (A∨ B∨ C)

0 0 1 1 1 1

0 1 0 0 0 0 (A∨ B′ ∨ C)

0 1 1 0 0 0 (A∨B′ ∨ C′)
1 0 0 1 0 1

1 0 1 1 1 1

1 1 0 0 0 1

1 1 1 0 0 1

From the truth table, we have seen that for the given 3-input function

we find the Y value is 0 for the input combinations 000,010 and 011

112 | P a g e

Space for learners: and their corresponding Maxterms are (A∨ B∨ C) , (A∨ B′ ∨

 C) and(A∨B′ ∨ C′)

Therefore, the required POM form is

(A ∨ B ∨ C) ∧ (A∨ B′ ∨ C) ∧ (A ∨ B′ ∨ C′)

4.15 APPLICATION OF BOOLEAN ALGEBRA

Boolean algebra is useful in designing switching circuits.

Subsequently we will use Boolean algebra to design logic circuits

for logical and arithmetic operations performed by processors.

Boolean Algebra of Switching circuits:

 Let B={ 0 ,1}, where 0 and 1 denote the two mutually exclusive

states , off and on, of a switch respectively .

 Let the operations of connecting the switches in parallel and

connecting the switches in series be denoted by + and . respectively.

 Let 0 =1 and 1=0. Then, [B , ∨ , ∧ , ‘] is a Boolean algebra,

known as the Boolean algebra of switching circuits

The composition tables for the above operations are given below:

CHECK TO YOUR PROGRESS

6.Simplify the following Boolean Expression

(a) (A∨ B∨ C) ∧ (A ∨ B� ∨ C′) ∧ (A∨ B∨ C′) ∧ (A∨ B′ ∨ C)

(b) (A ∧ B) ∨ (B∧ B) ∨ C∨ B′

(c) A∨ (A′ ∧ B) ∨ (A′ ∧ B′ ∧ C) ∨ (A′ ∧ B′ ∧ C′ ∧ D)

7. Obtain the Canonical SOM expression for the function

Y(A,B)= A∨ B

8. Obtain the Canonical SOM expression for the function

Y(A,B,C)= A∨ (B∧ C)

9. Obtain the Canonical POM expression for the function

 Y(A,B,C)= (A∨ B′) ∧ (B∨ C) ∧ (A∨ C′)

10. Obtain the Canonical POM expression for the function

 F(x,y,z)= (X∨ Z) ∧ Y

113 | P a g e

Space for learners:

∧ 0 1

0 0 1

 1 1 1

'

0 1

 1 0

Boolean switching circuit: An arrangement of wires and switches

formed by the repeated use of a combination of switches in parallel

and series is called a Boolean switching circuit.

Equivalent switching circuits: Two switching circuits A and B, are

said to be equivalent, denoted by A ~B if both are in the same state

for the same states of their constituent switches. Thus, two switching

circuits are said to be equivalent if and only if their corresponding

Boolean functions are equal. This happens when their Boolean

function have the same value, o or 1, for every possible assignment

of the values o and 1 to their variables

4.16 SUMMING UP

 A non-empty set B with two binary operations ∨ and ∧, a unary

operation ′, and two distinct elements 0 and 1 is called a Boolean

Algebra if commutative, distributive, identity and complement

properties hold for any elements a, b, c ∈ B.

 By the dual of a proposition concerning a Boolean algebra B, we

mean the proposition obtained by substituting ∨ for ∧, ∧for V, 0

for 1, and 1 for 0, i.e., by exchanging ∧ and V, and exchanging 0

and. Any pair of expression satisfying this property is called

Dual expression.

∨ 0 1

0 0 1

 1 1 1

114 | P a g e

Space for learners:  Let (A, ∧, ∨,’) be a Boolean algebra. Then expression involving

members of A and the operations ∧, ∨ and complementation are

called Boolean expression or Boolean Polynomials.

 Any function specifying a Boolean expression is called a

Boolean function. A literal is a Boolean variable or

complemented variable such as x, x′, y, y′, and so on.

 A minterm in n variable is a product of n literals in which each

variable is represented by the variable itself or its complement. A

maxterm in n variable is a sum of n literals in which each

variable is represented by the variable itself or its complement.

 Boolean algebra is useful in designing switching circuits.

Subsequently we will use Boolean algebra to design logic

circuits for logical and arithmetic operations performed by

processors.

4.17 ANSWERS TO CHECK YOUR PROGRESS

1. (a) x∧ y (b) (a ∧ b) ∧ c = a ∧ (b ∧ c)

 (c) a ∨ (a′ ∧ b)=(a ∨ b)

 (d) (a ∨ b)′ = a′ ∧ b′

2. The given operations on D30 satisfy the following properties:

(a) Closure properties

Let, a and b be any two arbitrary elements of D30. Then, each one of

a and b is a divisor of 30, that means LCM of a and b is a divisor of

30 and HCF of a and b is a divisor of 30.

So, for all a and b,

 (a∨b)  D30 and (a∧ b) D30 .

So, D30 is closed for each of the operations ∨and ∧

(b) Commutative laws:

 Let, a and b be any two arbitrary elements of D30

Then, LCM of a and b= LCM of b and a

So, for all a, b D30,a∨b = b∨a,

 And, HCF of a and b=HCF of b and a

So, for all a, b D30,a∧b = b∧a

115 | P a g e

Space for learners: Hence, the given Boolean algebra follows Commutative law

 (c). Associative laws:

 Let a, b, c be arbitrary elements of B.

 (i) LCM [{LCM (a, b)} and c] = LCM [a and

{LCM (b, c)}]

(a ∨ b) ∨ c = a∨ (b ∨c) for all a, b, c  D30

 (ii) HCF [{HCF (a, b)} and c] = HCF [a and {HCF (b, c)}]

(a∧b) ∧c =a∧ (b ∧c) for all a, b, c  D30

So, it follows the Associative law

(d). Distributive laws:

 Let a and b be any two arbitrary elements of D30

 Then, we know that HCF is distributive over LCM, and LCM is

distributive over HCF

 (i) a∧ (b∨ c) = (a∧b) ∨ (a∧c) for all a, b, c  D30 .

[Distributive law of HCF over LCM]

 (ii) a∨ (b∧ c) = (a∨b) ∧ (a∨c) [distributive law of LCM

over HCF]

(e). Existence of identity elements

 Clearly, 1 D30 and 30  D30

Such that (i) a∨1 = LCM (a and 1) = a for all a D30

 . (ii) a ∧30=HCF(a and 30)=a for all  D30

This shows that 1 is the identity element for ∨ and 30is the identity

element for ∧

 (f). Existence of complement

 For each a  D30

Let us define its complementa30/a

Then, we have (i) (a ∨ a)=LCM (a, 30/a) =30

 (ii) a∧ a =HCF(a, 30/a)=1

 Now,{1 30 and 30 1};{2 15 and 15 2}; { 3 10

and 10 3};{5 6 and 6 5}.

 Thus, each a D30 has its complement a in B.

116 | P a g e

Space for learners: Hence, (D30 , ∨ , ∧ , ‘ ,) is a Boolean algebra.

3, 4, 5: TRY YOURSELF

6. (a) A 6(b) 1 6(c) A∨ B ∨ C ∨ D

7. (A ∧ B) ∨(A∧ B) ∨(A∧B)

8. (A∧ B ∧C)∨(A∧ B ∧ C) ∨ (A ∧ B∧ C)∨ (A∧ B ∧C)

9. (A∨ B∨ C) ∧ (A ∨ B∨ C) ∧ (A ∨ B ∨ C) ∧ (A∨ B ∨ C) ∧

(A ∨ B ∨ C)

10. (X∨Y∨Z ) ∧ (X∨Y∨Z) ∧ (X∨ Y∨Z) ∧ (X∨ Y∨Z)

4.18 POSSIBLE QUESTIONS

1. Find a Boolean product of the variables x, y and z or their

complement that has the value 1 if and only if

 (a) x=y=0,z=1 (b) x=0,y=1,z=0 (c) x=0, y=z=1 (d)

x=y=z=0

2. Find the sum of product expansion of the function f(x,y,z)=x

3. With the values of truth table express the values of the following

Boolean Function

 (a) F(x,y,z)=(x ∧ y) ∨ (xyz) (b) F(x,y,z)=(x∧y)∨(y∧z)

4. With the help of the truth table of Conjunction and Disjunction

Operation verify De Morgan’s Laws.

5. Using identities of Boolean algebra show that

(x∧ y ) ∨ (y ∧ z ) ∨ (x ∧ z) =(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z )

4.19 REFERENECS AND SUGGESTED READINGS

 Lattices and Boolean Algebra first concept, Second Edition By

Vijay K Khanna

 Discrete Mathematical Structures with Application to Computer

Science by J.P Tremblay & R. Manohar.

117 | P a g e

Space for learners: UNIT 5: ALGEBRAIC STRUCTURES

Unit Structure:

5.0 Introduction

5.1 Unit Objectives

5.2 Group: Theorem and Properties

5.3 Basic Terms and their Definitions

5.4Cancellation laws in a Group

5.4.1 Permutation Group and its definition

5.5 Sub Group

5.5.1 Theorem and properties of sub-group

5.6 Definition of Ring and their Properties

5.7 Definition of Field and its Theorem

5.8 Definition of Homomorphism

5.8.1 Homomorphism of a group

5.8.2 Kernel of Homomorphism

5.9 Vector space and its properties

5.9.1 Linear Dependence and Linear Independence of

Vectors

5.10 Definition of basis and Dimension

5.10.1 Problem regarding Basis and dimension

5.11 Summing up

5.12 Answer to Check Your Progress

5.13 Possible Questions

5.14 References and Suggested Readings

5.0 INTRODUCTION

An algebraic structure consists of a non-empty set together with one

or more binary compositions which satisfies some postulates. An

Algebraic structure is the collection of any particular models of a

given set of axioms.If ∗ is a binary

118 | P a g e

Space for learners: operation on �. Then �� ,∗� is an algebraic structure.�� , + , . � is

an algebraic structure equipped with two operations

5.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the basics of group and its various properties.

 know the cancellation laws of groups

 define subgroups and various operations on subgroups

 understand the Lagrange’s Theorem

 understand ring and its operations

 give the definition of field

 understand the vector space

5.2 GROUP: THEOREM AND PROPERTIES

Group : A non empty set � , together with a binary composition ‘

∗’ (star) is said to form a group, if it satisfies the following

postulates

(i) Closure property:

 ∗ � ∈ � , for all
 , � ∈ �

(ii) Associativity:

�
 ∗ �� ∗
 =
 ∗ �� ∗
� ,for all
 , � ,
 ∈ �

(iii) Existence of identity:

There exists an unique element � ∈ � , called the identity

element of � such that

 ∗ � =
 = � ∗
 , for all
 ∈ �

(the element � is called the identity element)

(iv) Existence of inverse:

119 | P a g e

Space for learners: For every ∈ � , there exist
′ ∈ � (depending upon
) such

 that
 ∗
′ = � =
′ ∗
.

Note: (i) The group � with the binary operation ∗ is sometimes

denoted by <� ,∗>

(ii) In particular the group < � , +> is called an addition group ,

the binary operation being addition.

(iii) In particular the group < � , . > is called a multiplication group

,

the binary operation being multiplication.

5.2 Basic Terms and their definition

Commutative group (or Abelian group):

A commutative group is an order pair �� , ∗� where G is a

non-empty set and ∗ is a binary operation defined on � such that

 the following properties hold.

(i) Closure property:

 ∗ � ∈ � , for all
 , � ∈ �

(ii) Associativity:

 ∗ �� ∗
� = �
 ∗ �� ∗
 , for all
 , � ,
 ∈ �

(iii) Existence of identity:

There exist an element ∈ � , called the identity element of �

such that
 ∗ � =
 = � ∗
 , ∀
 ∈ � .

(iv) Existence of inverse:

For any ∈ � , ∃ an element
′ ∈ � (depending on
) such that

 ∗ � ′ = � = � ′ ∗
 , where
′ is called inverse of
.

(v) Commutativity:

120 | P a g e

Space for learners: The binary composition ∗ is commutative i.e. ∗ � = � ∗
 , ∀
 , � ∈
� .

Semi-Group: A non-empty set � together with binary composition

�. �

 is called a semi-group if

 . �� .
� = �
 . �� .
∀
 , � ,
 ∈ �

Note: Every group is a semi-group .

Monoid: A non-empty set � together with binary composition

which

 is associative and identity element exists is said to be a monoid.

Finite group and Infinite group:

If in a group , the set � has a finite number of distinct elements is

known as a finite group and if the number of elements of the set are

 infinite then it is known as an infinite group.

Order of a group:

The number of elements in a finite group is called the order of the

group and is denoted by ���� or |�|.

e.g: In the group � = �1 , −1 , � , −��

The order of group is ���� = 4.

Order of an element in a group (Period):

The order of an element
 in a group � is the least positive integer

�������� � such that
! = � , the identity element of � and we

 write ��
� = �.

If
! ≠ �∀ positive integer � then
 is said to be of infinite order

or of zero order.

Ex.1 Show that the set of integer # is a group with respect to the

121 | P a g e

Space for learners: operation of addition.

Solution: (i) Closure property:

We know that sum of two integer is also an integer i.e.
 + � ∈ # ,

 ∀
 , � ∈ #

Thus # is closed with respect to addition.

(ii) Associativity:

We know that addition of integers is an associative composition.

∴
 + �� +
� = �
 + �� +
∀
 , � ,
 ∈ #

(iii) Existence of identity :

The number 0 ∈ # , also we have 0 +
 =
 =
 + 0 ∀
 ∈ #

 ∴the integer 0 is an identity.

(iv) Existence of inverse:

For any
 ∈ # , then −
 ∈ #

 ∴
 + �−
� = 0 = �−
� +

∴ #is a group with respect to addition

i.e. < # , + >is a group.

5.2 Group : Theorem and Properties

1. Theorem: The identity element in a group is unique.

Proof: Let � be a group. If possible, let � and � ′ be two identity

element of a group �.

We have , �� ′ = � if � ′ is the identity

and �� ′ = � ′ if � is the identity.

But �� ′ is a unique element of G.

∴ �� ′ = � and �� ′ = � => � = � ′

122 | P a g e

Space for learners: Hence the identity element is unique.

2. Theorem: The inverse of each element of a group is unique.

Proof: Let
 be any element of a group � and let � be the identity

element. Suppose � and
 are two inverse of
 i.e.

�
 = � =
����and

 = � =

 ����

We have , ��
�
 = �
�∴ �
 = ��

=
������∴ ����&�� � '�

Also , ��

� = �����∴

 = ��

= �� = ���(�

But in a group composition is associative

∴ ��

� = ��
�
 => � =

Hence , inverse of an element of a group is unique .

3. Theorem: The inverse of product of two elements of a group is

the product of the inverse taken in

 the reverse order.

 OR

Prove that �
��)* = �)*
)*∀
 , � ∈ � , where �is a group.

Proof: Let
 and � be elements of �.

If
)* and �)* are inverse of
 and � respectively.

Then

)* = � =
)*

and ��)* = � = �)*� , where � is the identity element.

Now , �
����)*
)*� = +�
���)*,
)* -∵
/01/�� �/���
�

��/
�
 �(� 2

= +
���)*�,
)*��'
��/
�
 �(� '�

= +
�,
)*�∵ ��)* = ��

=

)*�∵
� =
�

123 | P a g e

Space for learners: = �

Also , ��)*
)*��
�� = �)*+
)*�
��, , by associativity

= �)*+�
)*
��,

= �)*�����∵
)*
 = ��

= �)*�

= � (∵ �)*� = �)

Thus , we have �
����)*
)*� = � = ��)*
)*��
��

∴by definition of inverse , we have

�
��)* = �)*
)*

Ex.2 Show that the set 3 of all natural numbers 3 is not a group

with respect to addition.

Solution: (i) Closure: Property:

We know that sum of two natural number is natural number.

∴ 3 is closed with respect to addition.

(ii) Associativity:

Also , addition of natural number is an associative composition.

(iii) Existence of identity :

But there exist no natural number � ∈ 3 such that � +
 =
 =
 +
�

 ∀
 ∈ 3

For addition , 0 is the identity but 0 ∉ 3

Hence , condition of existence of identity is not satisfied.

∴ 3 is not a group w.r.t. addition.

∴< 3 , +> is not a group .

124 | P a g e

Space for learners: 5.3 Cancellation laws

If
 , � ,
 are any elements of � then (i)
� =

 => � =

 (Left cancellation law)

(ii) �
 =

 => � =
 (Right cancellation law)

Proof: Let � be the identity

Since ,
 ∈ � =>there exist
)* ∈ � such that
)*
 = � =

)*

Now ,
� =

=>
)*�
�� =
)*�

� (multiplying both sides on left by
)*)

=> �
)*
�� = �
)*
�
 , by associativity

=> �� = �
�∵ a)*a = e�

=> � =
 (∵ � is the identity)

∴
� =

 => � =

Ex.1 Show that the cancellation laws do not hold in a semi-group.

Solution: Consider the set 7 of all 2 × 2 matrices over integers

under matrix multiplication , which forms a semi-group.

If we consider : = ;1 0
0 0< , = = ;0 0

0 2< and > = ;0 0
3 0< ∈ 7

Then , := = ;1 0
0 0< ;0 0

0 2< = ;0 0
0 0<

&:> = ;1 0
0 0< ;0 0

3 0< = ;0 0
0 0<

∴ := = :>

But , = ≠ >

∴ the cancellation laws do not hold in a semi-group

Ex.2 Prove that if for every element
 in a group � ,
@ = �

where � is the identity element of � then show that � is abelian.

125 | P a g e

Space for learners: Solution: Let � be a group such that
@ = �∀
 ∈ � where � is

 the identity element of �.

We are to show that � is abelian.

Let
 , � ∈ � then
� ∈ � and so

�
��@ = �

=> �
���
�� = �

=> �
���
���)* = ��)* [∵ �)* ∈ �]

=> �
��
���)*�
)* = �)*
)* [∵
)* ∈ �]

 => �
���
�
)*� = �)*
)*

=>
�� = �)*
)*

=>
� = �)*
)* (i)

Also ,
 ∈ � =>
@ = � , by hypothesis

=>
� = �

=> �

�
)* = �
)*+∵
)* ∈ �,

=>
�

)*� =
)*

∴
 =
)* (ii)

Similarly , � ∈ � => �@ = �

=> � = �)* (iii)

Using (ii) and (iii) we get from (i)

� = �

Thus ,
 , � ∈ � =>
� = �

So �is abelian.

5.3.1Permutation Group:

Let : be a finite set (may be finite or infinite) and �: : → : is

bijective mapping then C is called permutation group i.e.

126 | P a g e

Space for learners: D�:� = ��: : → :: � �� ��E�
 �(� 0
11��F�

The number of elements in the finite set C is known as the degree of

permutation.

Cycle or circular permutation:

Let ∝∈ C! , then H is called a cycle or circular permutation

if there exists

��* , �@ , … … , �J� such that H��*� = �@ ,

H��@� = �K , … … … … .. , H��J)*� = �J , H��J� = �* then

permutation is represented by H = ��*�@ … … … … �J�and H��� = �
for

all other � ∈ C!

5.4 Subgroup

Sub group: Let < � ,∗> be a group and L be a non-empty

 subset of �. Then L is called a subgroup �. Then L is called

a subgroup � if and only if L itself is a group under the binary

composition ‘∗’ defined on �.

The above definition can be written in full as follows:

Let < � ,∗> be a group and ⊆ � , L ≠ N. Then L is called a

subgroup of � if

(i) L is closed w.r.t. the binary composition ‘∗’ i.e.
 ∗ � ∈ L

∀
 , � ∈ L.

(ii) ‘∗’ is associative in L (which is obvious since � is group).

127 | P a g e

Space for learners: (iii) � ∈ L , where � is the identity element of � .

(iv) ∀
 ∈ L there exist
)* ∈ L such that
 ∗
)* = � =
)* ∗
 .

Ex.1 Show that a non-empty subset L of a group � is a subgroup

of � if and only , � ∈ L =>
�)* ∈ L .

Solution: Let � be a group and H be a non empty subset of �.

First we assume , L be a subgroup of � then L itself a group w.r.t.

the

 binary composition defined on � . We show that
 , � ∈ L =>

�)* ∈ L

Let , � ∈ L , since L is a group .

 � ∈ L => �)* ∈ L

Thus ,
 , � ∈ L =>
 , �)* ∈ L

=>
�)* ∈ L [since L is a group , so using closure property in H]

∴
 , � ∈ L =>
�)* ∈ L

Conversely let L be such that
 , � ∈ L =>
�)* ∈ L (i)

We show that L is a subgroup of �.

(I) Existence of identity:

Let � be the identity element of �.

Since , L is nonempty so there exists
 ∈ L

Taking � =
 in ��� , we see that

)* ∈ L => � ∈ L

∴ This shows the existence of identity in L

(II) Existence of inverse:

Let
 ∈ L , by (I) , � ∈ L

∴ � ∈ L ,
 ∈ L => �
)* ∈ L(using(i))

=>
)* ∈ L

Thus
 ∈ L =>
)* ∈ L

128 | P a g e

Space for learners: This shows the existence of the inverse of every element in L.

(III) Closure property:

Let
 , � ∈ L. Then by (II) , �)* ∈ L

Thus , a , b∈ L =>
��)*�)* ∈ L [by using (i)]

=>
� ∈ L

Thus ,
 , � ∈ L =>
� ∈ L

Which shows that L is closed with respect to the composition �.

(IV) Associativity:

Let
 , � ,
 ∈ L

Since ⊆ � ,
 , � ,
 ∈ �

Since , � is a group , we have

�
��
 =
��
�

Hence , associativity holds in L.

From (I) to (IV) , it follows that L itself a group with respect

 to composition �.

So , L is a subgroup of � .

Intersections of subgroups:

Theorem1. If L and O are two subgroups of a group � then

L ∩ O is a subgroup.

Proof: Let L and Obe two subgroups of a group �

We are to show that L ∩ O is a subgroup of G.

Since L and O are subgroups of � .

We have , L ⊆ � , O ⊆ � , � ∈ L , � ∈ O , where � is the

identity element of �.

129 | P a g e

Space for learners: => L⋂O ⊆ � and � ∈ L ∩ O

=> L ∩ O ⊆ � (i) &L ∩ O ≠ N(ii)

Finally , let � , ' ∈ L ∩ O then

� , ' ∈ L
�&� , ' ∈ O

Since , L is a subgroup of �,

� , ' ∈ L => �')* ∈ L

Similarly , � , ' ∈ O => �')* ∈ O

∴ �')* ∈ L&�')* ∈ O

=> �')* ∈ L ∩ O

Thus , � , ' ∈ L ∩ O => �')* ∈ L ∩ O (iii)

From (i) , (ii) and (iii) we see that

∴ L ∩ O is a subgroup of �.

5.4.1. Give an example to show that union of two subgroup of

a group may not be a subgroup of the group.

Solution: we consider the additive group < # , +> of all

integers. Let L = �2

 ∈ #⁄ � and O = �3
 ∕
 ∈ U� then

L ⊆ # , O ⊆ # and L ≠ N , O ≠ N (i)

Also , � , ' ∈ L => � = 2
 , ' = 2� , where
 , � ∈ #

=> � − ' = 2�
 − �� = 2
 , where
 =
 − � ∈ #

=> � − ' ∈ L (ii)

Similarly , � , ' ∈ O => � − ' ∈ O(iii)

From (i) , (ii) & (iii) we see that

∴ L and Oare subgroups of #.

Now , 2 ∈ L ⊆ L ∪ O&3 ∈ O ⊆ L ∪ O

=> 2 , 3 ∈ L ∪ O

130 | P a g e

Space for learners: But 2 + 3 = 5 ∉ L&2 + 3 = 5 ∉ O

=> 2 + 3 = 5 ∉ L⋃O

Hence , L ∪ O is not closed with respect to addition and

consequently L⋃O is not a subgroup of # .

Definition:

Coset: Let L be a subgroup of a group �. If
 ∈ � then the set

L
 = �ℎ
: ℎ ∈ L� is called the right coset of L in � generated by
.

Let L be a subgroup of a group. If
 ∈ � then the set
L =
 �
ℎ: ℎ ∈ L� is called the left coset of L in

� generated by
.

Note: Any two right (left) cosets of a subgroup are either disjoint or

Identical.

Lagrange’s Theorem:

Statement: The order of each subgroup of a finite group

is a divisor of the order of the group.

Proof: Let � be a finite group and /��� = �. Let L be a

subgroup of � then L is obviously finite. Let /�L� = 0.

We first show that /�
L� = 0∀
 ∈ �

We define �: L → L by ��ℎ� =
ℎ∀ℎ ∈ L

Then , ℎ* , ℎ@ ∈ L , ��ℎ*� = ��ℎ@� =>
ℎ* =
ℎ@

 => ℎ* = ℎ@ , by left cancellation

law.

 ∴ �is one-one .

Also , for an arbitrary element
ℎ ∈
L , we find ℎ ∈ L such

that ��ℎ� =
ℎ and so � is onto.

131 | P a g e

Space for learners: Thus , �: L →
L is bijection and consequently /�
L� =

 /�L� = 0 , ∀
 ∈ � … … … … . ���

Next , let > = �
L:
 ∈ ��

Since , � is finite, > is clearly a finite family .

Also , two distinct element of � may produce the same left

coset . So if �>� = Z , then 1 ≤ Z ≤ 0 .

Let > = �
*L ,
@L , … … … … … … . . ,
\L� , where

* ,
@ , … … … … ,
\ ∈ �

Clearly ,
]L ⊆ � for � = 1 , 2 , … … … , Z

=>∪]^*
\
]L ⊆ � … … … … . ����

Further , � ∈ � => �L =
_L , for some E , 1 ≤ E ≤ Z

=> � ∈ �L =
_L ⊆∪]^*
\
]L

=> � ∈∪]^*
\
]L

∴ � ⊆ ⋃]^*
\
]L … … … … … … … … … … �����

From (ii) & (ii) we get ,

� =∪]^*
\
]L … … … … . ��(�

Also , 1≤ � ≤ Z , 1 ≤ E ≤ Z, � ≠ E =>
]L ≠
_L

=>
]L ∩
_ = N(v)

Hence , the coset
*L ,
@L , … … … … ,
!L are mutually disjoint .

From (iv) we get ,

� = /��� = /`∪]^*
\
]La

= /�
*L� + /�
@L� + … … … . . +/�
\L�

= 0 + 0 + … … … … … … ..upto Z times (by (i))

= Z0

132 | P a g e

Space for learners: => �
0 = Z

=> b�c�
b�d� = Z , where Z is positive integers.

=> /�L�is a divisor of /��� .

Cyclic group: Let a group � is said to be cyclic if there exist

an element
 ∈ � such that every element � ∈ � is of the

 form =
! , where � is an integer. The element
 is then

called the generator of � and we can write � =<
 >.

e.g:- � = �1 , −1 , � , −��

= ��e , �@ , �* , �K�

∴ � =< � > is a cyclic group under multiplication .

Ex 5.4.2. Show that every cyclic group is abelian.

Solution: Let � =< � > be a cyclic group generated by
 ∈ �.

Let � , ' ∈ � be any elements .

Then � =
J , ' =
f for some integer g&�

∴ �' =
J
f

 =
Jhf

=
fhJ =
f
J = '�

∴ �' = '�

∴ � is abelian .

Ex.5.4.3 Show that a subgroup of a cyclic group is cyclic.

Solution: Let � =<
 > be a cyclic group generated by
 ∈ �

and L is any subgroup of �.

If L = ��� =< � > then clearly L is a cyclic group

Let L ≠ ���

133 | P a g e

Space for learners: and � ∈ L be any non-identity element .

=> � ∈ � , since L is a subgroup of �

=> � =
! for some integer

=> �)* =
)!

∴
! ,
)! ∈ L

Let 0 be the least positive integer such that
i ∈ L

We shall show that L =<
i > is a cyclic group generated by
i

Let � ∈ L

=> � ∈ � , since L is a subgroup of �

=> � =
! , for some integer

By division algorithm there exists integer j and g such that

� = 0j + g , where 0 ≤ g < |0| (i)

=> g = � − 0j

=>
J =
!)ik

=>
J =
!
)ik

=>
J =
!�
i�)k

∴
J ∈ L

∴ g = 0 , since 0 is the least positive integer such that
i ∈ L

From (i)=>

� = 0j

=>
! =
ik

=>
! = �
i�k

=> � = �
i�k

∴ L =<
i > is a cyclic subgroup.

CHECK YOUR PROGRESS

1. State whether true or false

(a) A non-empty subset L of a group �, which is closed under the

binary composition in � is a subgroup of �.

(b) If � is a group and L is a non-empty subset of �, then L will be

134 | P a g e

Space for learners:

5.5 Ring

Ring: A ring is an order triples < � , + , . > where � is a nonempty

set and + , . are two binary operation on � satisfying the

following

axioms .

[�*, Closure property for addition:

 , � ∈ � =>
 + � ∈ �∀
 , � ∈ �

[�@, Associativity for addition:

�
 + �� +
 =
 + �� +
�∀
 , � ,
 ∈ �

[�K, Existence of identity w.r.t. addition:

There exist an element 0 ∈ � , called the zero element of � such that

 + 0 =
 = 0 +
∀
 ∈ �

[�e, Existence of inverse w.r.t. addition:

For all ∈ � , there exist an element −
 ∈ � such that

 + �−
� = 0 = �−
� +

+�l, Commutative property for addition:

 + � = � +
∀
 , � ∈ �

135 | P a g e

Space for learners: +�m, Closure property for � . �:

. � ∈ � , ∀
 , � ∈ �

+�n,Associative property for � . �:

�
. ��.
 =
. ��.
� , ∀
 , � ,
 ∈ �

+�o,Distributive laws of �. � and �+�:

�
 + ��.
 =
.
 + �.

. �
 + �� =
.
 +
. �∀
 , � ,
 ∈ �

Ex.1 Give two examples of ring.

Solution: (i) We consider the set � of real numbers equipped

with two binary composition addition (+) and multiplication (.)

then it is easy to verify that < � , + , . > is a ring.

(ii) Let 7@ denotes the set of all 2 × 2 matrices of real numbers

. In 7@ we consider two binary operations , viz. addition (+) of

matrices and multiplication (.) of matrices then it is easy to verify

that �7@ , + , . � is a ring.

Ex.2.2 Prove that the set of matrices 7@ of order 2 × 2 form a

ring with respect to addition and multiplication.

Solution: Let : and = ∈ 7@. Then : and = are two 2 × 2

matrices and so : + =& AB are also 2 × 2 matrices.

∴ : + = ∈ 7@&:= ∈ 7@

This shows that 7@ is closed with respect to addition and

multiplication of matrices (i)

Since , both addition and multiplication of matrices are associative

we see that both the composition in 7@ are associative. (ii)

Also there exists 2 × 2 null matrix

136 | P a g e

Space for learners: � = ;0 0
0 0< such that for any 2 × 2 matrix : ∈ 7@ ,

: + 0 = : = 0 + :

This shows that 0 is the zero element of 7@ (iii)

Further if : ∈ 7@ where : = ;
**
*@

@*
@@

<

Then there exists a matrix

−: = ;−
** −
*@
−
@* −
@@

< ∈ 7@ such that : + �−:� = ;
**
*@

@*
@@

<

+ ;−
** −
*@
−
@* −
@@

< = ;0 0
0 0< = 0

Similarly , �−:� + : = 0

Therefore , : + �−:� = 0 = �−:� + :

This shows that – : is the inverse of : in 7@

Thus , every element of 7@ has inverse (iv)

Further addition of matrices is commutative and so the composition

 in 7@ is commutative(v)

Finally , by the distributive property of multiplication of matrices

over

 addition we have,

:�= + >� = := + :>

�= + >�: = =: + >:

∀: , = , > ∈ 7@ (vi)

From (i) to (vi) we see that 7@ is a ring with respect to addition

and multiplication of matrices .

Note : The ring � with two binary composition �+�and � . �

is sometimes denoted by �� , + , . �.

137 | P a g e

Space for learners: Commutative Ring:

A ring �� , + , . � is called a commutative ring if and only if for all

, � ∈ � ,
. � = �.
 .

Ring with unity:

If in a ring � there exists an element 1 ∈ � such that

1.
 =
 =
. 1 ∀
 ∈ �

then � is called a ring with unity element.

The element 1 is called the unity element of the ring.

2. Theorem: In a ring, the following results hold

(i)
. 0 = 0 = 0.
∀
 ∈ �

(ii)
. �−�� = �−
�. � = −
. �∀
 , � ∈ �

(iii) �−
�. �−�� =
. �

(iv)
. �� −
� =
. � −
.

(v) �� −
�.
 = �.
 −
.

Proof: (i) we have

. 0 =
�0 + 0�+∴ 0 = 0 + 0,

=>
. 0 =
. 0 +
. 0 +�'q�� &�� g��r �(�q
s,

=> 0 +
. 0 =
. 0 +
. 0 [since 0.
 ∈ �and 0 +
. 0 =
. 0]

=> 0 =
. 0 [sincr � is a group w.r.t. + ,therefore applying

 right cancellation law for addition in �,

Similarly , we have ,

0.
 = �0 + 0�.
 = 0.
 + 0.
 [by right distributive law]

=> 0 + 0.
 = 0.
 + 0.
+∴ 0 + 0.
 = 0.
,

=> 0 = 0.
 [using R.C.L. w.r.t. + in the group < � , + > ,

∴
. 0 = 0.
 = 0

138 | P a g e

Space for learners: (ii) From the existence of inverse it follows that

� + �−�� = 0

=>
. +� + �−��, =
. 0

=>
. � +
. �−�� = 0 [by the left distributive law and
. 0 = 0]

=> −
. � + +
. � +
. �−��, = −
. � + 0 [adding –
. � on the

left

of both sides]

=> +−
. � +
. �, +
. �−�� = −
. � [by associative law]

=> 0 +
. �−�� = −
. �

=>
. �−�� = −
. �

Similarly , we can prove

�−
�. � = −
�

∴
. �−�� = �−
�. � = −
. �

(iii) we know that

. �−�� = −. �
�� … … … . . �1�

Writing –
 for
 in (1) , we get

�−
�. �−�� = −+�−
�. �,

= −+−�
. ��, , since �−
�. � = −
. �

=
. � [∴ � is a group and inverse of the inverse

of an element is the element itself. −(−
 =
)]

∴ �−
�. �−�� =
. �

(iv) we have ,
. �� −
� =
. +� + �−
�,

=
. � +
. �−
�+ by left distributive law]

=
. � + +−
.
,+ ∴
. �−
� = �−
�.
 = −
.
]

=
. � −
.

139 | P a g e

Space for learners: (v) we have , �� −
�.
 = +� −
,.

= �.
 + �−
�.
� by right distributive law)

= �.
 + �−
.
� ∵ +�−
�.
 = −
.
,

= �.
 −
.

Theorem 2.2 A commutative ring is an integral domain if and only

if

 the cancellation law with respect to multiplication hold on it.

Proof: Let � be a commutative ring . First we assume that � is

an integral domain We are to show that the cancellation laws

hold in �.

Let
� =

 , where
 , � ,
 ∈ � ,
 ≠ 0

=>
� −

 = 0

=>
�� −
� = 0

∴either
 = 0 or � −
 = 0 [∵ �is an integral domain]

But
 ≠ 0 , � −
 = 0

=> � =

∴
� =

 => � =
 , which shows that left cancellationlaw

with respect to multiplication .

Similarly ,
 ≠ 0 , � ,
 ∈ � , �
 =

 => � =
 , which shows

the right cancellation law with respect to multiplication

∴the cancellation law holds in � .

Conversely , suppose that the cancellation law with respect to

 multiplication hold in � . We are to show that � is an integral

domain.

Let
 , � ∈ � such that
� = 0

140 | P a g e

Space for learners: Now ,
 ≠ 0 ,
� = 0

=>
� =
0

=> � = 0 [by left cancellation law w.r.t. multiplication hold in � ,

Similarly , � ≠ ,
� = 0

=>
� = 0� [by right cancellation law w.r.t. multiplication]

=>
 = 0

Hence ,
 , � ∈ � ,
� = 0 => either
 = 0 or � = 0

So , �is an integral domain .

Hence , commutative ring is an integral domain if and only if the

cancellation law with respect to multiplication hold on it.

Ex.3 Give an example of ring.

Solution: We consider the set of real number equipped with two

 binary composition addition (+) and multiplication (.) then it is

easy to verify that �� , + , . � is a ring .

Ex4. If � is a ring such that
@ =
∀
 ∈ � , prove that

(i)
 +
 = 0 ∀
 ∈ �

(ii)
 + � = 0 =>
 = �

(iii) � is commutative.

Solution: (i) Let
 ∈ � such that
@ =
 then by closure property ,

 +
 ∈ �

=> �
 +
�@ =
 +
 [by hypothesis]

=> �
 +
��
 +
� =
 +

=> �
 +
�
 + �
 +
�
 =
 +

=> �
@ +
@� + �
@ +
@� =
 +
 [by right distributive law]

=> �
 +
� + �
 +
� =
 +
�∵
@ =
�

141 | P a g e

Space for learners: => �
 +
� + �
 +
� = �
 +
� + 0

=>
 +
 = 0 [by right distributive law]

(ii) Let
 , � ∈ � such that
 + � = 0 then using (i)

 + � = 0 =
 +

=> � =
 [by left cancellation law]

∴
 = �

∴
 + � = 0 =>
 = �

(iii) Let
 , � ,
 ∈ � then
 + � ∈ �

and so by hypothesis , �
 + ��@ =
 + �

=> �
 + ���
 + �� =
 + �

=> �
 + ��
 + �
 + ��� =
 + �

=>
@ + �
 +
� + �@ =
 + � [by right distributive law]

=>
 + �
 +
� + � =
 + �

=> �
 +
� + � = � [by LCL]

=> �
 +
� = 0 [by RCL]

=> �
 =
�+by result (ii)]

∴
� = �
∀
 , � ∈ �

∴ � is commutative .

Zero divisor in a ring:

A non zero element ‘
’ in a ring � is called a (proper) zero divisor

if there exist another non zero elements ‘�’ in �such that
� = 0 .

Ex.5 Give an example of a ring with zero divisor.

Solution: We consider a ring 7@ of all 2 × 2 matrix over real

numbers

Let : = ;0 1
0 0< , = = ;2 0

0 0< ∈ 7@

142 | P a g e

Space for learners: Then : ≠ 0 , = ≠ 0

:= = ;0 1
0 0< ;2 0

0 0< = ;0 0
0 0< = 0

∴ 7@is a proper zero divisor

Integral domain:

A commutative ring � without proper zero divisor is called an

integral

domain i.e.
� = 0 ∀
 , � ∈ �

=>
 = 0 or � = 0

Ex.6 Give an example of a ring which is not an integral domain.

Solution: Let 7@ denote the set of all 2 × 2 matrices of realnumbers

then it is easy to verify that 7@ is a ring under matrix addition and

multiplication .

Now , let : = ;1 0
0 0< and = = ;0 0

0 1<

Then : ≠ 0 , = ≠ 0

But := = ;1 0
0 0< ;0 0

0 1< = ;0 0
0 0< = 0

∴ 7@ is not an integral domain

Ex.7 When is a ring said to be an integral domain ?

Solution: A ring < � , + , . >is said to be an integral domain

if thefollowing two properties are satisfied in .

(i) Commutative property of multiplicativity

� = �
∀
 , � ∈ �

(ii) Non existence of zero divisor:

 , � ∈ � ,
� = 0 =>either
 = 0 or � = 0

5.6 Field

143 | P a g e

Space for learners: Definition: A field is an order triple < t , + , . > where t is a

set containing atleast two elements and �+� , �. � are two binary

composition in t satisfying the following axioms :

(i) Closure property for addition :

 + � ∈ t∀
 , � ∈ t

(ii) Associativity for addition:

 + �� +
� = �
 + �� +
∀
 , � ,
 ∈ t

(iii) Existence of identity:

 There exist an element 0 ∈ t called the zero element of t

such that

 + 0 =
 = 0 +
∀
 ∈ t

(iv) Existence of additive inverse:

 For all
 ∈ t there exist an element −
 ∈ t such that

 + �−
� = �−
� +

(v) Commutativity for addition :

 + � = � +
∀
 , � ∈ t

(vi) Closure property for multiplication:

. � ∈ t∀
 , � ∈ t

(vii) Associativity for multiplication :

. ��.
� = �
. ��.
∀
 , � ,
 ∈ t

(viii) Distribution property of multiplication over addition:

. �� +
� =
. � +
.

�� +
�.
 = �.
 + �.
∀
 , � ,
 ∈ t

(iX) Existence of multiplicative identity:

144 | P a g e

Space for learners: There exist an element 1 ∈ t , called the unit element of t such

that

. 1 =
 = 1.
∀
 ∈ t

(x) Existence of multiplicative inverse for non zero elements of t:

 For every non zero element
 ∈ t there exist an element
)* ∈ t

such that
.
)* = 1 =
)*.

(xi) Commutativity for multiplication:

. � = �.
∀
 , � ∈ t

Alternate definition of Field:

A commutative ring with unity (having atleast two elements) in

which every non zero element has its multiplicative inverse (i.e. the

set of non zero element form a group under multiplication) is called

a

field.

Ex. 1 Show that every field is an integral domain but converse is not

true (i.e. integral domain may not be a field).

Solution: Let t be a field i.e. t is a commutative ring with unity ‘1’

in

which every non-zero element has its multiplicative inverse .

To show that t is an integral domain.

Let
 , � ∈ t such that
� = 0

We first assume that
 ≠ 0 since t is a field ,
)* exists i.e
)* ∈ t

such that

)* = 1 =
)*

So ,
� = 0

=>
)*�
�� =
)*�0� = 0

=> �
)*
�� = 0

145 | P a g e

Space for learners: => 1 � = 0 [1 being the unity element in t]

=> � = 0

Next , we assume that � ≠ 0 then �)* exists and so

� = 0

=> �
���)* = �0��)*

=>
���)*� = �0��)*

=>
�1� = 0 [∴1 being the unit element of t]

=>
 = 0

Thus ,
 , � ∈ t ,
� = 0 => either
 = 0 or � = 0

This shows that t is an integral domain

Hence every field is an integral domain.

Ex. 2 Show that every integral domain may not be a field.

Solution: We consider the ring < # , + , . > of integers with usual

addition and multiplication is an integral domain which is not a

 field. Since , the non-zero elements except ±1 have no

multiplicative

inverse in #.

Now , 2 ∈ # and 2 ≠ 0 but there exist no
*
@ ∈ # such that 2 . *

@ = 1 =
*
@ . 2

∴the non-zero element 2 ∈ # has no multiplicative inverse .

So , < # , + , . >is not a field .

5.7 Homomorphism of a group

5.7.1 Homorphism of Group

A mapping �: � → �vis said to be a homomorphism of � into �v if

��
�� = ��
����� ∀
 , � ∈ �

146 | P a g e

Space for learners: 5.7.2 Kernel of a Homomorphism

If � is a homomorphism of a group � into a group �v, then the set O

of all those elements of �which are mapped by �

5.8 Vector Space

Let �t , + , . � be field. The element of t is called scalars. The

element of w(any non-empty set) is called vectors. Then w is a

epace over the field t if

(I) �w , +�is abelian group

(II) External Composition in w over t i.e H
 ∈ w ,
 ∈ w , H ∈ t

(III) The two composition �+ , . � satisfy the following conditions

(a) H�
 + �� = H
 + H� ∀
 , � ∈ w

(b) �H + x�
 = H
 + x
 ∀ H ∈ t

 (IV) �Hx�
 = H�x
� ∀
 ∈ w , H , x ∈
w

 (V)1
 =
 ,1 is unity element of t

The w is a vector space over the field .

e.g. ℂ is a field of complex number and ℝ is a field of real number.

(i) ℂ�ℝ� is vector space, since ℝ ⊆ ℂ .

(ii) ℝ�ℂ� is not vector space.

5.8.1Linear Dependence and Linear Independence of vectors

Let w�t� be a vector space. A finite set �H*, H@, … … … … . . , H!� of

vectors of w is said to be linearly dependent if there exist scalars

*,
@ , … … … .. ,
! ∈ tnot all of them zero (some of them may be

zero) such that
H +
@H@ + … … … … … . +
!H! = 0 �. �

∑
]H]
!
]^| = 0 atleast one H] ≠ 0.

147 | P a g e

Space for learners: Some Important Result:

1. If two vectors are linearly dependent then one of them is a scalar

multiple of other the other

2. Asystem consisting of a single non-zero vector is always linearly

dependent.

5.8.2 Vector Subspaces:

Let w be a vector space over the field t and let } ⊆ w. Then }is

called a subspace of w if } itself is a vector space over t with

respect

to the operations of vector addition and scalar multiplication in w.

Result:

1. A subset }of a vector space w�t� is a subspace of V , if and

 only if ∀ H , x ∈ } and
 , � ∈ t =>
H + �x ∈ } .

5.9 Basis and Dimension of a vector space

Let w be a vector space over a field t. Then a subset = of w is called

 a basis of w if = is linearly independent over t and w =< = >

Number of elements in basis is called dimensions of vector space.

Linear Span

If C = �H* , H@ , HK , … … … … . , H!� from �t� . Set of all liner

 combination of vectors of C is known as linear span of C.

Finite dimensional vector space

A vector space w~ is said to be finite dimensional vector space if

there

exist a finite subset C of t such that =< = > .

If ℝ@�ℝ� is finite dimensional vector space. It is generated

148 | P a g e

Space for learners: by a finite set = = ��0 , 1� , �1 , 0�� then &�0`ℝ@�ℝ�a = 2

Example 5.9.1

Consider the vector space ℂ�ℝ� , find the basis and dimension.

Solution: Let ℂ = �H + �x: H , x ∈ ℝ�

2 + 3� = H. 1 + x. ������
g
/0���
 �/� /� �
����

= 2.1 + 3. �

∴ &�0`ℂ�ℝ�a = 2

Example 5.9.2

What is the dimension of ℝ�ℚ�?

Solution: ��0ℝ�ℚ� = ∞

5.11 SUMMING UP

 A non empty set , together with a binary composition ‘∗’ (star)

is said to form a group, if it satisfies closure property,

Associativity property, existence of identity and existence of

inverse properties.

 A commutative group is an ordered pair �� , ∗� having the

additional Commutativity property in addition to all four

properties of a group.

 If G be a group and H be a non-empty subset of �. Then L is

called a subgroup � if and only if L itself is a group under the

binary composition ‘∗’ defined on �.

 A ring is an order triples < � , + , . > where � is a nonempty set

and + , . are two binary operation on � satisfying the closure

property for addition, associativity for addition, existence of

identity w.r.t. addition, existence of inverse w.r.t. addition,

commutative property for addition, closure property for � . � ,

Associative property for � . � and Distributive laws of �. � and

�+�

149 | P a g e

Space for learners:  A non zero element ‘
’ in a ring � is called a (proper) zero

divisor if there exist another non zero elements ‘�’ in �such that

� = 0 .

 A commutative ring � without proper zero divisor is called an

integral domain

5.12 ANSWERS TO CHECK YOUR PROGRESS

1.(a) False (b) False 2. Cyclic 3. Sub-group

5.13 POSSIBLE QUESTIONS

Short Answer type Questions:

1. Define semi-group.

2. Give an example of a semi group which is not group.

3. Define zero divisor of a ring.

4. Give an example of a ring which is not an integral domain

5. Define basis of a vector space.

6. Define linearly independent of the vector space.

7. Define order of a permutation group.

8. Under what condition a ring is said to be an integral domain.

Long Answer type Question:

1. Show that identity element in a group is Unique.

2. Show that the set of all positive rational numbers forms an abelian

group under the composition defined by
 ∗ � = �
�/2�

3. Show that every group of prime order is cyclic.

4. Show that union of two subspace may not be a subspace.

5. Show that intersection of two subgroup is again a subgroup.

6. Prove that two vectors are linearly independent then one of them

is

150 | P a g e

Space for learners: scalar multiple of the other.

7. Show that the vectors �1 , 1 , 0 , 0� , �0 , 1 , −1 , 0� , �0 , 0 , 0 , 3�

in ℝe�ℝ�are linearly independent.

8. Give an example of a ring which is not a field.

9. Show that every transposition is always an odd permutation.

10. Show that every field is an integral domain.

5.14 REFERENCES AND SUGGESTED READINGS

Modern Algebra by. Vasistha , A . R ., Krishna Publication, India

2018

151 | P a g e

Space for learners: UNIT 6: PROPOSITIONAL CALCULUS-I

Unit Structure:

6.1 Introduction

6.2 Objectives

6.3 Proposition

6.3.1 Examples of proposition

6.4 Propositional variables

6.5 Truth Tables

6.6 Logical Connectives

6.6.1 Negation

6.6.2 Conjunction

6.6.3 Disjunction

6.6.4 Conditional Statements

6.6.5 Biconditional Statements

6.7 Summing Up

6.8 Answers to Check Your Progress

6.9 Possible Questions

6.10 References and Suggested Readings

6.1 INTRODUCTION

Mathematical logic is the science of reasons. Greek philosopher

Aristotle (381-322 BC) first introduced the concept of logical

reasoning. The mathematical logic compromise of two branches:(a)

Propositional calculus, (b) Predicate calculus. But in this course, our

discussion will restrict only propositional calculus. The branch of

logic that deals with propositions is called propositional calculus.

Propositional calculus is the study of the logical relationship

between propositions. Propositional calculus forms the basis of all

mathematical reasoning and it has many applications in computer

science like design of computing machines, artificial intelligence,

data structures for programming language etc.

152 | P a g e

Space for learners: 6.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define propositions and examples of propositions

 define truth tables about different propositions

 know about negation of a proposition

 know about conjunction, disjunction, conditional and bi-

conditional of two propositions

6.3 PROPOSITION

Definition:

A proposition (or statement) is a declarative sentence which is either

true or false but not both.

The truth or falsity of a proposition is called its truth value.

Notations:

(a) If a proposition is true then its

truth value is denoted by T

(b) If a proposition is false then its

truth value is denoted by F

We now define Simple propositions and Compound propositions.

A simple proposition is a statement or assertion that must be true or

false.

Many statements or propositions are constructed by combining one or more

propositions, new propositions called compound propositions are formed

existing propositions using logical connectives. A compound proposition is

a combination of simple propositions and hence, can be broken

down in primitive propositions.

6.3.1 Examples of proposition

ILLUSTRATION 1: Consider the following sentences

(i) New Delhi is the capital of India.

(ii) 7 is a prime number.

(iii) Every quadrilateral is a rectangle.

153 | P a g e

Space for learners: (iv) The earth is a planet.

(v) Three plus six is9.

(vi) The sun is a star.

(vii) Delhi is in America.

Each of the sentences

(i), (ii), (iv) & (v) is a true

declarative sentence and so

each of them is a

proposition.

Each of the sentences

(iii), (vi), (vii) is a false

declarative sentence and so

each of them is a proposition.

A l l t h e a b o v e

p r o p o s i t i o n s a r e

a t o m i c p r o p o s i t i o n s

ILLUSTRATION 2: Consider the following sentences:

i) Go to bed.

ii) Give me a glass of water.

iii) How are you?

iv) Where are you going?

v) May god bless you!

vi) May you livelong!

vii) � + 2 = 5

viii) � + � < 	

Sentences (i) & (ii) are imperative sentences, so they are not

propositions. Each of the sentences (iii) & (iv) is interrogative. So,

they cannot be propositions. Similarly, (v) & (vi) are also not

declarative sentences and hence not propositions. The expression

(vii) and (viii) are not propositions, since the variables in these

expressions have not been assigned values and hence, they are

neither true or false.

154 | P a g e

Space for learners:

CHECK YOUR PROGRESS

1.Define proposition.

2.Which of the following sentences are propositions? What are the

truth values of those that are propositions?

 (a) 3 + 4 = 7

 (b) 5 + 7 = 10

 (c) There are 35 days in a month.

 (d) � + 3 = 12

 (e)Answer these questions.

3.Write down the truth value of the following propositions:

(a) All the sides of a rhombus are equal in length.

(b) √3 is a rational number.

(c) The number 30 has four prime factors.

(d) Every square matrix is non-singular.

(e) 1 + √8 is an irrational number.

6.4 Propositional variables

Now we will abbreviate propositions by using propositional

variables. Each proposition will be represented by a propositional

variable. Propositional variables are usually

represented as lower-case letters, such as p, q, r, s, etc. The capital

letters A, B, C, ..., P, Q, ... with

the exception of T and F are also used. Each variable can take one of

two values: true or false.

Example 1: Consider the propositions

(i) Guwahati is in India.

(ii) 6 + 8 = 14

(iii) The sun is shining.

155 | P a g e

Space for learners: Now we can assign propositional variables p, q, r for the

propositions (i), (ii) and (iii).

 The propositions (i), (ii) and (iii) can be represented by

�: Guwahati is in India

�: 6 + 8 = 14

 And �: The sun is shining

6.5 Truth Tables

A table which gives the truth values of a compound proposition

in terms of its component parts is called a ‘Truth Table’. A truth

table consists of rows and columns. The initial columns are filled

with the possible truth values of the component parts and the last

column is filled with the truth values of the compound

proposition on the basis of the truth values of the component

parts written in the initial columns. If the compound proposition

is consisting of � component parts, then its truth table will

contain 2� rows.

A truth table displays the relationship between the truth values of

propositions.

Note: Truth tables are very useful in the determination of

propositions constructed from simple propositions.

6.6 Logical Connectives

Till now, we have considered simple or primary propositions

which are declarative sentences, each of which cannot be

expressed as a combination of more than one sentence. We

often combine simple(primary) propositions to form compound

propositions by using certain connecting words known as

logical connectives or logical operators. Primary statements are

combined by means of five logical connectives.

 Five Basic Logical Connectives

 Logical

Connectives

Name of the

Connectives

Symbols of the

connectives

156 | P a g e

Space for learners:

1 Not Negation (or Denial) ~

2 And Conjunction ∧

3 Or Disjunction ∨

4 If … then Conditional →

5 If and only if Biconditional ↔

Now we will discuss in details about these five logical connectives

which will allow us to build up compound propositions and their truth

values expressed in a tabular form, called Truth Table.

6.6.1 Negation

The denial of a proposition� is called its negation and is

written as ~�and read as ‘not �’. Negation of any proposition�

is formedbywriting“Itisnotthecasethat’’or“Itisfalsethat’’before

� or inserting in � the word “ not’’.

Let us consider the proposition

�: All integers are rational numbers.

The negation of this statement is:

~ �: It is not the case that all integers are rational numbers.

or

~ �: It is false that all integers are rational numbers.

or

~ �: It is not true that all integers are rational numbers.

Let us consider anotherthe proposition,

� : 7 >9

The negation of this statement is~�:~ (7>9) or~�:(7<9)

Truth Table of Negation: If the truth

value of “�’’ is T, then the truth value

of ~� is F. Also, if the truth value of

“�’’isF, then the truth value of ~� is T.

The truth table of for the negation of a proposition

157 | P a g e

Space for learners:

7

� ~�

T F

F T

Example 1: Write the

negation of the following

propositions:

 (i)√7is arational

 (ii)Every natural number is greater than zero.

 (iii)All primes are odd.

 (iv)All mathematicians are men.

Solution:

(i) Let �denote the given proposition i.e.,

�: is arational.

The negation of this proposition is given by

~�:It is not the case that √7 is arational.

 Or

~�: √7 is not arational.

 Or

~�:It is false that √7 is arational.

(ii)The negation of the given proposition is

It is false that every natural number is greater than 0.

or

There exists a natural number which is not greater than0.

(iii)The negation of the given proposition is

There exists a prime which is not odd.

or

158 | P a g e

Space for learners: Some primes are not odd.

or

At least one prime is not odd.

(iv)The negation of the given proposition is:

Some mathematicians are not men.

or

There exists a mathematician who is not man.

or

At least one mathematician is not man.

or

It is false that all mathematicians are me

CHECK YOUR PROGRESS

Q4. Why Logical Connectives are used?

Q5. Write the negation of the following propositions-

i) Bangalore is the capital of Karnataka.

ii) The Earth is round.

iii) The Sun is cold.

iv) Some even integers are prime.

v) Both the diagonals of a rectangle have the same length.

vi) 4 + 7 = 10

vii) Today is Monday

viii) If it snows, Samir does not drive the car.

6.6.2 Conjunction

The conjunction of two propositions � and � is the

proposition“� and �”which is denoted by� ∧ �.�,� are called the

components of � ∧ �.

Illustrative Examples:

(i) The conjunction of the propositions:

159 | P a g e

Space for learners: �:It is raining

�: 2 + 2 = 4 is

� ∧ �:It israining and 2 + 2 = 4.
(ii) Consider the proposition

 � : The Earth is round and the Sun is cold.

 Its components are:

 �: The Earth is round.

! : The Sun is cold.

Truth table: The statement

� ∧ � has the truth value

Twhenever both � and �

have the truth value T;

Otherwise, it has the truth

value F.

The truth table for conjunction of two propositions

P Q P∧ �

T T T

T F F

F T F

F F F

6.6.3 Disjunction

The disjunction of the two

propositions � and � is the

statement “� or �”, denoted by

� ∨ �. �,�are called the

components of � ∨ �.

Examples:

(i) Consider the compound proposition

 �: Two lines intersect at a point or they are parallel.

 The component propositions of are:

 � : Two lines intersect at a point.

! : Two lines are parallel.

(ii) Consider another proposition

160 | P a g e

Space for learners: �: 45 is a multiple of 4 or 6.

 Its component propositions are:

 �: 45 is a multiple of 4.

 !: 45 is a multiple of 6.

Truth table: The statement � ∨ �has the truth value F only when

both � and � have the truth value F, � ∨ � is true if either� is true

or � is true (or both � and � are true).

 Truth table for disjunction o f t w o

p r o p o s i t i o n s

P Q P∨Q

T T T

T F F

F T F

F F F

Example 2: Write the

component propositions of

the following compound

propositions and check

whether the compound

proposition is true or false.

i) 50 is a multiple of both 2and5.

(ii) Mumbai is the capital of Gujrat or Maharashtra.

(iii) A rectangle is a quadrilateral or a 5-sidedpolygon.

Solution:

i) The component

statements of

the given

statement are

�: 50 is

multiple of2

� : 50 is multiple of 5

161 | P a g e

Space for learners: We observe that both �and �are true statements.

Therefore, the compound statement � ∧ � is true.

ii) The components

proposition of

the given

proposition are

�:Mumbai is

the capital of

Gujrat.

�: Mumbai is the capital of Maharashtra.

We find that � is false and

� is true. Therefore, the

compound statement,� ∨
�is true.

iii) The component propositions are

�: A rectangle is a quadrilateral.

�: A rectangle is a 5-sided polygon.

We observe that � is

true and � is false.

Therefore, the compound

proposition� ∨ � is true.

CHECK YOUR PROGRESS

Q.6. Write the following propositions in symbolic form:

i) Pavan is rich and Raghav is not happy.

ii) Pavan is not rich and Raghav is happy.

iii) Naveen is poor but happy.

iv) Naveen is rich or unhappy

v) Naveen and Amal are both smart.

vi) It is not true that Naveen and Amal are both smart

vii) Naveen is poor or he is both rich and unhappy

vii) Naveen is neither rich nor happy.

Q.7. Write the component statements of the following compound

statements and find true values of the compound statements.

162 | P a g e

Space for learners: i) Delhi is in India and 2 + 2 =4.

ii) Delhi is in England and 2 + 2 =4.

iii) Delhi is in India and 2 + 2 = 5.

iv) Delhi is in England and 2 + 2 =5.

v) Square of an integer is positive or negative.

vi) The sky is blue and the grass is green.

vii) The earth is round or the sun is cold.

viii) All rational numbers are real and all real numbers are

complex.

ix) 25 is a multiple of 5 and8.

x) 125 is a multiple of 7or8.

6.6.4 Conditional Statements

If P and Q are any two statements, then the statement “if P, then

Q”, is called a conditional statement. It is denoted by P→Q.

Example: Let P:Amulya works hard.

 Q:Amulya will pass the examination.

Then P→Q: If Amulya works hard, then he will pass the

examination.

The statement P is called the antecedent and Q is called the

consequent in P→Q. The sign “→” is called the sign of implication.

The conditional statement P→Q can also be read as:

i) P only if Q

ii) Q if P

iii) Q provided that P

iv) P is sufficient for Q

v) Q is necessary conditions for P

vi) P implies Q

(vii) Q is implied by P.

163 | P a g e

Space for learners:

Truth table: If the antecedent P is true

and the consequent Q is false, then the

conditional statement P→Q is false,

otherwise it is true as given in the

following table.

The truth table for the

conditional P→Q

P Q P→Q

T T T

T F F

F T T

F F T

Example 3: Write each of the following statements in the form “If–

then”

i) You get job implies that your credentials are good.

ii) A quadrilateral is a

parallelogram if its

diagonals bisect each

other.

iii) To get A+ in the class,

it is necessary that

you do all the

exercises of the book.

Solution:

(i)The given statement can be

written as “If you get a job, then

your credentials are good.”

(ii) The given statement can be written as-

“If the diagonal of a

quadrilateral bisects

each other, then it is a

parallelogram”.

164 | P a g e

Space for learners:

P

T

S

F

P→S

F

(iii) The given statement can be written as

“If you are to get A+

in the class, then you

are to do all the

exercises of the

book”.

Example 4:

Writethefollowingconditionalstatemen

tsinsymbolicformand hence, find

truthvalues.

i) If 2 + 2 = 4, then Guwahati is inAssam

ii) If 2 + 2 = 4, then Guwahati is inBihar

iii) if 2 + 2 = 5, then Guwahati is inAssam

iv) If2+2=5,thenGuwahatiisinBihar

Solution:LetP: 2 + 2 =4

Q: Guwahati is in Assam

R: 2 + 2 =5

S: Guwahati is in Maharashtra

Then i) The given statement is P→Q

As P and Q have truth values T each, so P→Q has truth value T, i.e.,

the given conditional statement is true.

ii) The given statement

isP→S

So, the given statement

is false.

iii) The given statement

isR→Q

R Q R→Q

F T T

165 | P a g e

Space for learners:

R

F

S

F

R→S

T

So, the given statement

is true.

iv) The given statement

isR→S

So, the given statement

is true.

CHECK YOUR PROGRESS

Q.8. Write down the truth value of each of the following implication.

i) If 3 + 2 = 7, then Paris is the capital ofIndia.

ii) If 3 + 4 = 7, then 3 >7

iii) If 4 > 5, then 5 <6.

iv) If 7 > 3, then 6 <14

 v)If 7 > 3, then 14 > 9.

6.6.5 Biconditional Statements

If P and Q are any two statements,

then the statement ‘P if and only if Q’

is called a biconditional statement

which is denoted by P↔Q.‘P if and

only if Q’ is also abbreviated as “P iff

Q”.

The biconditional ‘P if and only if

Q’ is regarded as having the same

meaning as ‘if P, then Q and if Q,

then P’. So, the biconditional P↔Q

is the conjunction of the conditionals

P→Q and Q→P i.e., (P→Q) ∧

(Q→P) is same asP↔Q.

The statement P↔Q can also be read as

a) Q if and only if P

b) P implies Q and Q implies P

166 | P a g e

Space for learners: c) P is necessary and sufficient condition for Q

d) Q is necessary and sufficient condition for P

The truth table for the biconditional P↔Q

P Q P↔Q

T T T

T F F

F T F

F F T

Thus, the

biconditional P→Q is true

only when both P, Q have

identical truth values,

otherwise it is false.

Examples:

1.A triangle is equilateral if and only if it is

equiangular.

2.8 > 4 if and only if 8 – 4 is positive.

 3.2+2=4ifandonlyifitisraining.

 4.Two lines are parallel if and only if they have the

same slope.

Example 5:Write the truth value of each of the following

biconditional statements.

i)4 > 2 if and only if 0 < 4 – 2.

167 | P a g e

Space for learners: ii)3 < 2 if and only if 2 <1.

iii)3 + 5 > 7 if and only if 4 + 6 <10.

iv)2 + 5 = 7 if and only if Guwahati is in Assam.

Solution:i) L e t P: 4 >2

 Q: 0 < 4 – 2

Then, the given statement is P→Q.

Clearly, P is true and Q is true and therefore, P→Q is true.

Hence, the given statement is true, and its truth value is T.

(iv) Let P:

3 <2

Q: 2 <1

Then, the given statement is P→Q.

Clearly, P is false and Q is false and therefore, P→Q is true.

Hence, the given statement is true, and its truth value is T.

(v) Let P: 3 + 5 >7

Q: 4 + 6 < 10

Then, the given statement is P→Q.

Clearly, P is true and Q is false and therefore, P→Q is false.

Hence, the given statement is false and therefore, its truth value

is F.

(vi) Let P: 2+5=7

Q: Guwahati is in Assam

Then, the given statement is P→Q. As P is false, Q is true, the given

statement is false.

CHECK YOUR PROGRESS

Q.9.Write down the truth value of each of the following:

i) 3 + 5 = 8 if and only if 4 + 3 =7.

ii) 4 is even if and only if 1 is prime.

iii) 6 is odd if and only if 2 is odd.

iv) 2 + 3 = 5 if and only if 3 >5.

168 | P a g e

Space for learners: v) 4 + 3 = 8 if and only if 5 + 4 =10.

vi) 2 < 3 if and only if 3 <4.

6.7 SUMMING UP

 A primary proposition is a declarative sentence which cannot be

further broken down or analyzed into simpler sentences.

 New propositions can be formed from primary propositions

through the use of sentential connectives. The resulting

statements are called compound propositions.

 The sentential connectives are also called logical connectives.

These connectives are: NOT (negation), AND (conjunction), OR

(disjunction), IF– THEN (conditional), IF AND ONLY IF (Bi-

conditional).

 Truth tables have been introduced in the definitions of the

connectives.

 The statement P is called the antecedent and Q is called the

consequent in P → Q.

6.8 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No.1: A proposition is a declarative sentence which is

either True or False but not both.

Ans. to Q. No.2: (a) Proposition, T

 (b) Proposition, F

 (c) Proposition, F

 (d) Not proposition

 (e) Not proposition

Ans. to Q. No.3: (a) T (b) F (c) F (d) F (e) T

Ans. to Q. No.4: Logical connectives are used to form new

propositions or compound

propositions.

Ans. to Q. No.5: i) Bangalore is not the capital of Karnataka.

(ii) The earth is not round.

169 | P a g e

Space for learners: (iii)The sun is not cold.

(iv)No even integer is prime.

(v)There is at least one rectangle whose both diagonals do not

have the same length.

(vi)4 + 7 ≠ 10

(vii)Today is not Monday.

(viii)It snows and Samir drives the car.

Ans. to Q. No.6: i) P ∧~Q, where P: Pavan isrich

Q: Raghav is happy

ii) ~P ∧Q

iii) ~R ∧ H, where R: Naveen isrich

H: Naveen is happy

iv) R ∨~H

v) P ∧Q, where P: Naveen issmart

Q: Amal is smart

vi) ~ (P ∧Q)

vii) ~R ∨ (R∨~H), where R: Naveen isrich

R: Naveen is happy

viii) ~R ∧~H

Ans. to Q. No.7:

i) P: Delhi is inIndia

Q: 2 + 2 = 4

The compound statement is true.

(ii) P: Delhi in England

Q : 2 + 2 =4

The compound statement is false.

(iii) P:

Delhi is

in India

Q: 2 +

170 | P a g e

Space for learners: 2 =5

The compound statement is false.

(iv)P:

Delhi is in

England

Q: 2 + 2 =5

The compound statement is false.

(v)P: Square of an integer is positive

Q: Square of an integer is negative

The compound statement is true.

(vi)P: The sky is blue

Q: The grass is green

The compound statement is true.

(vii) P: The earth is round

 Q: The sun is cold

The compound statement is true.

(viii) P: All rational numbers are real

Q: All real numbers are complex.

The compound statement istrue.

(ix)P: 25 is a multiple of 5

Q: 25 is a multiple of8

The compound statement is false.

(x) P: 125 is a multiple of 7

Q: 125 is a multiple of8

The compound statement is false.

Ans. to Q. No.8: i) True, ii) False, iii) True, iv) False, v)True

Ans. to Q. No.9: i) True, ii) False, iii) True, iv) False, v) True,vi)

True.

6.9 POSSIBLE QUESTIONS

Q.1. Find out which of the following sentences are propositions and

which are not .Justify your answer.

171 | P a g e

Space for learners: i) The real number x is less than2.

ii) All real numbers are complex numbers.

iii) Listen to me, Ravi!

Q.2. Find the component propositions of the following and check

whether they are true ornot:

i) The sky is blue and the grass is green.

ii) The earth is round or the sun is cold.

iii) All rational numbers are real and all real numbers are

complex

iv) 25 is a multiple of 5 and8.

Q.3. Write the component propositions of each of the following

statements. Also, check whether the statements are true or not.

i) Sets A and B are equal if and only if

(A⊆BandB⊆A).

ii) |%|< 2 if and only if (a > –2 and a <2)

iii) △ABC is isosceles if and only if ∠B =∠C.

iv) 7 < 5 if and only if 7 is not a prime number.

v) ABC is a triangle if and only if AB + BC >AC.

Q.4.If P is true and Q is false, then find truth values of

5. Wh

at is

proposition? Explain with illustration.

6. What do you mean by propositional variables?

7. Discuss truth table with example.

8. What are logical connectives? Explain the logical connectives

with their corresponding truth tables.

9. Discuss how conditional statements are implemented using

propositions.

i) P ∧ (~Q), ii) ~P ∨ Q, iii) ~P → Q,

iv) P → (~Q), v) ~ (P → Q), iv) P ∧Q

172 | P a g e

Space for learners: 6.10 REFERENCES AND SUGGESTED READINGS

 Rao, G. S. S. Bhishma. Discrete Structures and Graph Theory.

SciTech Publications (India) PVT Ltd,2003

 Sharma, J.K. Discrete Mathematics. Macmillan Publishers India

Ltd,2011

 Balaji, G. Discrete Mathematics. Balaji Publishers,2015

 Singaravelu, A. &Jeyaraman, M.P. Discrete Mathematics.

Meenakshi Agency,2016

 Satyanarayana, B. & Prasad, K.S. Discrete Mathematics and

Graph Theory. PHI Learning Private Limited,2009

 Rao, G.S. Discrete Mathematical Structure. New Age

international (P) Limited,2009

 Singh, Y.N. Mathematical Foundation of Computer Science,

New Age international Publishers, 2005

 Lipschutz, S & Lipson, M.L. Schaum’s outline of Theory and

Problems of Discrete Mathematics, McGraw-Hill,2007

 Chandrasekaran, N &Umaparvathi, M. Discrete Mathematics,

PHI Learning Private Limited,2010

 Tremblay, J.P. & Manohar, Discrete Mathematical Structures

with Applications to Computer Science, Tata McGraw Hill

Education Private Limited,1997.

173 | P a g e

Space for learners:

UNIT 7: PROPOSITIONAL CALCULUS-II

Unit Structure:

7.1 Introduction

7.2 Unit Objectives

7.3 Statement (or Proposition) Formula

7.4 Tautology

7.5 Contradiction

7.6 Logical Equivalence

7.6.1 Equivalent Formulas

7.7 Tautological Implications

7.8 Two-State Devices

 7.9 Summing Up

 7.10 Answers to Check Your Progress

 7.11 Possible Questions

 7.12 References and Suggested Readings

7.1 INTRODUCTION

The notion of a proposition has already been introduced in the

previous unit. In this unit, we define statement formula. Also, we

define tautology and contradiction of statement formulas and discuss

equivalence of two statement formulas. In this unit, we will also

discuss tautological implication of two statement formulas and will

define the concept of two-state devices.

7.2 UNIT OBJECTIVES

After going through this unit, you will be able to

• define statement (or proposition) formulas

• define tautology and contradiction

• know about logical equivalence of two different

174 | P a g e

Space for learners: statement formulas

• know about some important equivalence formulas

7.3 STATEMENT FORMULA

Statements which do not contain any connective are called simple

or primary or atomic statements.On the other hand, the statements

which contain one or more primary statements and at least one

connective are called composite or compound statements.

For example, let P and Q be any two simple statements. some of

the compound statements formed by P and Q are–

~P, P ∨Q, (P ∨Q) ∧(~P), P ∨ (~P), (P∨~Q) ∧P.

statement variables P and Q. Therefore, P and Q are called

components of the statement formulas.

Definition:

A statement formula is an expression which is a string consisting of

propositional variables, parenthesis and connectives. Statement

formulas are constructed from simple propositions using logical

connectives.

An example of Statement formula is P∧ (Q ∨R)→ S.

A statement formula alone has no truth value. It has truth value

only when the statement variables in the formula are replaced by

definite statements and it depends on the truth values of the

statements used in replacing the variables.

The truth table of a statement formula (Proposition): Truth table

has already been introduced in the previous unit. In general, if there

are ‘n’ distinct components in a statement formula. We need to

consider 2n possible combinations of truth values in order to obtain

the truthtable.

For example, if any statement formula has two component

statements namely P and Q, then 22 possible combinations of

truthvalues must beconsidered.

Illustrative Examples:

Example 1. Construct the truth table for

(a) ~(� ∧ �) (b) (~�) ∨
(~�)

175 | P a g e

Space for learners:

 Solution:

(a) Truth table:

 P Q 	 ∧
 ~(∧
)

T T T F

T F F T

F T F T

F F F T

(b) Truth table:

P Q ~	 ~
 (~)
∨ (~
)

T T F F F

T F F T T

F T T F T

F F T T T

Example 2. Construct the truth table for

~� ∧ �

Solution:

Truth table

P Q ~	 ~	 ∧

T T F F

T F F F

F T T T

F F T F

Example 3: Construct the truth table for P → (Q →R).

176 | P a g e

Space for learners: Solution:P, Q and R are the three

statement variables that occur in this

formula P → (Q → R). There are 23 =

8 different sets of truth value

assignments for the variables P, Q and

R.

The following table is the truth table for P → (Q → R):

P Q R Q → R P → (Q

→ R)

T T T T T

T T F F F

T F T T T

T F F T T

F T T T T

F T F T T

F F T T T

F F F T T

Example 4: Construct the truth table for � ∧ (� ∨ �)

Solution:

Truth table

P Q 	 ∨
 	 ∧ (∨
)

T T T T

T F T T

F T T F

F F F F

Example 5: Construct the truth table for (� ∨ �) ∨ ~�

Solution:

P Q 	 ∨
 ~	 (∨
)
∨ ~	

T T T F T

T F T F T

F T T T T

F F F T T

CHECK YOUR PROGRESS

177 | P a g e

Space for learners: Q.1. Construct the truth tables for the followingformulas

a) ~ (~P ∧~Q)

b) (~P ∨ Q) ∧ (~Q ∨P)

c) (� ∧ �) → (� ∨ �)

d) �� ∧ (� → �)� → �

7.4 TAUTOLOGY

We have already defined truth table of a statement formula. In

general, the final column of a given formula contains both T and F.

There

aresomeformulaswhosetruthvaluesarealwaysToralwaysFregardless

of the truth value assignments to the variables. This situation

occurs because of the special construction of theseformulas.

Definition: A statement formula which is true regardless of the

truth values of the statements which replace the variables in it is

called a universally valid formula or a tautology or a logicaltruth.

A straight forward method to determine whether a given formula is a

tautology is to construct its truth table. In the table, if the column

below the statement formula contains T only, then it is a tautology.

The conjunction of two tautologies is also a tautology. Let us denote

by A and B two statement formulas which are tautologies. If we

assign any truth values of the variables of A and B, then the truth

values of both A and B will be T. Thus, the truth value of A ∧ B will

be T, so that A ∧ B will be atautology.

Example 6: Verify whether P v (~P) is a tautology.

Solution:

P ~	 	 ∨ ~	

T F T

F T T

As the entries in the last column are T, the given formula is a

tautology.

Example 7: Show that the proposition (� ∨ �) ↔ (� ∨ �)is

atautology.

Solution:

178 | P a g e

Space for learners: P Q 	 ∨

 ∨ 	 (∨
)
↔ (
 ∨)

T T T T T

T F T T T

F T T T T

F F F F T

The last column entries are T. Therefore, given formula is a

tautology.

Example 8: Verify whether (� → �) ∧ (� → �)is atautology.

Solution:

P Q 	 →

 → 	 (→
)
∧ (
 →)

T T T T T

T F F T F

F T T F F

All the entries in the resulting column are not T, hence the given

proposition is not a tautology.

Example 9: Show that the proposition (� ∧ ~Q) ∨ ~(� ∧ ~Q) is a

tautology.

Solution:

P Q ~� 	 ∧ ~� ~(
∧ ~�)

(∧ ~�)
∨ ~(∧ ~�)

T T F F T T

T F T T F T

F T F F T T

F F T F T T

As the entries in the last column are T, the given proposition is a

tautology.

179 | P a g e

Space for learners: Example 10: Verify that the proposition � ∨ ~(� ∧ Q) is a

tautology.

Solution:

P Q 	 ∧ � ~(∧ �) 	
∨ ~(∧ �)

T T T F T

T F F T T

F T F T T

F F F T T

As the entries in the last column are T, the given proposition is a

tautology.

CHECK YOUR PROGRESS

Q.2. Prove that the following are tautologies (using

truthtables):

a) Q ∨ (P ∧ ~Q) ∨ (~P ∧ ~Q)

b) (P → Q) ↔(~P ∨ Q)

c) ~ (P ∨Q) ∨ (~P ∧ Q) ∨P

Q.3. Show that �(~�) ∨ (~�)� ∨ �is a tautology.

7.5 CONTRADICTION

Definition: A statement formula which is false regardless of in the

truth values of the statements which replace the variables in it is

called a contradiction., if each entry in the final column of the truth

table of a statement formula is F only then it is called as

contradiction.

Clearly, the negation of a contradiction is a tautology. We may call a

statement formula which is a contradiction as identically false.

Example 11: Verifythat P ∧ (~P) is acontradiction.

Solution:

P ~P P ∧ (~P)

T F F

180 | P a g e

Space for learners: F T F

Since the last column has F

only, the statement formula is a

contradiction.

Example 12: Verify the statement (P ∧ Q) ∧~ (P vQ).

Solution:

P Q P ∧ Q P vQ ~ (P vQ) (P ∧ Q) ∧ ~ (P

vQ)

T T T T F F

T F F T F F

F T F T F F

F F F F T F

Since the truth value of (P ∧ Q) ∧ ~ (P vQ) is F, for all values of P

and Q, the proposition is a contradiction.

Example 13: Provethat, if A (p, q, ⋅⋅⋅) is a tautology, then ~A (p,

q,⋅⋅⋅) is a contradiction andconversely.

Solution:Since a tautology is always true, the negation of a

tautology is always false i.e. is a contradiction andvice-versa.

7.6 LOGICAL EQUIVALENCE

Two statement formulas A (P, Q, ...) and B (P, Q, ...) are said to be

logically equivalent or simply equivalent if they have identical

truth tables. In other words, corresponding to identical truth values

of P, Q, ... the truth

valuesofA&Bmustbesame.IfAandBareequivalent,weshallwriteA≡
B or A ⇔B.

Example 14: Show that P is equivalent to the following formulae.

(i)~~� (ii) � ∧ � (iii) � ∨ � (iv)

 � ∨ (� ∧ �) (v) � ∧ (� ∨ �)

181 | P a g e

Space for learners: Solution:

P Q ~	 ~~	 	
∧ 	

	
∨ 	

	
∧

	
∨ (
∧
)

	
∨

	
∧ (
∨
)

T T F T T T T T T T

T F F T T T F T T T

F T T F F F F F T F

F F T F F F F F F F

Here the 4th ,5th ,6th ,7th ,8th ,10th columns give the truth values of

the formulas. The columns 1,4,5,6,8,10 have the identical truth

values. Hence P is equivalent to all given formulas.

Example15:ProvethatP∨Q⇔~ (~P∧~Q)

Solution:

P Q P∨Q ~P ~Q ~P∧~Q ~

(~P∧~Q)

T T T F F F T

T F T F T F T

F T T T F F T

F F F T T T F

The truth table shows that P∨Qand ~ (~P∧~Q) have identical

truth value column. So, P∨Q⇔~ (~P∧~Q).

Example16: Prove that P → Q ⇔(~P ∨ Q)

Solution:

P Q P → Q ~P ~P ∨ Q

T T T F T

T F F F F

F T T T T

F F T T T

Here,columnsofP→Qand~P ∨ Qareidentical.

182 | P a g e

Space for learners: Hence, P →

Q ⇔(~P ∨

Q).

CHECK YOUR PROGRESS

Q.4.Explain the equivalence of propositions.

Q.5.Show the following equivalences using truth tablemethod:

a) ~(� → �) ⇔ � ∧ ~�

b) � ↔ � ⇔ (� → �) ∧ (� → �)

c) � → � ⇔ ~� → ~�

7.6.1 EQUIVALENT FORMULAS

Using respective truth tables, we can prove the following

equivalence:

Idempotent Laws (i) � ∨ � ⟺ �

(ii) � ∧ � ⟺ �

Associative Laws (i) (� ∧ �) ∧ � ⟺ � ∧
(� ∧ �)

(ii) (� ∨ �) ∨ � ⟺ � ∨
(� ∨ �)

Commutative Laws (i) � ∨ � ⟺ � ∨ �

(ii) � ∧ � ⟺ � ∧ �

De Morgan’s Laws (i) ~(� ∧ �) ⟺ ~� ∨ ~�

(ii) ~(� ∨ �) ⟺ ~� ∧ ~�

Distributive Laws (i) � ∧ (� ∨ �) ⟺ (� ∧
�) ∨ (� ∧ �)

183 | P a g e

Space for learners:

(ii) � ∨ (� ∧ �) ⟺ (� ∨
�) ∧ (� ∨ �)

Complement Laws (i) � ∧ ~� ⟺ �

(ii) � ∨ ~� ⟺ �

Dominance Laws (i) � ∨ � ⟺ �

(ii) � ∧ � ⟺ �

Identity Laws (i) � ∧ � ⟺ �

(ii) � ∨ � ⟺ �

Absorption Laws (i) � ∨ (� ∧ �) ⟺ �

(ii) � ∧ (� ∨ �) ⟺ �

Double negation Law ~(~�) = �

Contra positive Law � → � ⟺ ~� → ~�

Conditional as disjunction � → � ⟺ ~� ∨ �

Biconditional as conditional � ↔ � ⟺ (� → �) ∧ (� → �)

Exportation Laws � → (� → �) ⟺ (� ∧ �) → �

Check yourself the above formulas as an exercise by truth table

technique. Here, T and F respectively stands true statement and

false statement.

Replacement Process: Consider the formula A: P → (Q→R).The

formula Q→R is a part of the formula A. If we replace Q→R by an

equivalent formula ~Q∨R in A, we get another formula

B:P→(~Q∨R). We can easily verify that the formulas A and B are

equivalent to each other. This process of obtaining B from A is

known as the replacement process. Using the laws stated in 7.6.1,

184 | P a g e

Space for learners: we can also establish equivalence of statement formulas without

using truth tables.

Illustrative Examples:

Example 17: Provethat,(P→Q)∧(R→Q)⟺(P∧R)→Q

Solution: (P → Q) ∧ (R →Q)

⟺(~P ∨ Q) ∧ (~R ∨ Q)

⟺(~P∧~R)∨ Q [Distributive Law]

⟺~ (P ∨ Q)∨ Q [DeMorgan’s Law]

⟺(P∧R)→Q

Example18: Provethat,(~P∧(~Q∧R))∨(Q∧R)∨(P∧R)⟺R

Solution:

(~P∧(~Q∧R))∨(Q∧R)∨(P∧R)

⟺((~P ∧ ~Q)∧ R) ∨ ((Q ∨ P)∧ R) (Associative Law &

distributiveLaw)

⟺(~ (P∨Q)∧R)∨((Q∨P)∧R)

[DeMorgan’s Law]

⟺(~ (P∨Q)∨(P∨Q))∧R

(Distributive Law)

⟺T ∧RSince ~S ∨ S ⟺T

⟺R as T ∧ R ⟺R

Example 19: Show that � → (� → �) ⟺ � → (~Q ∨ �) ⟺
(~P ∧ �) ∨ �

Solution:� → (� → �)

⟺ � → (~Q ∨ �) [∵ � → � ⟺ ~P ∨ �]

⟺ ~P ∨ (~Q ∨ �) [∵ � → � ⟺ ~P ∨ �]

⟺ (~P ∨ ~Q) ∨ � [by Associative Law]

⟺ ~(P ∧ Q) ∨ � [By De Morgan’s Law]

Hence � → (� → �) ⟺ � → (~Q ∨ �) ⟺ (~P ∧ �) ∨ �

185 | P a g e

Space for learners: CHECK YOUR PROGRESS

Q.6. Provethat:

a) (P→Q)∧(R→Q)⟺(P∨R)→Q

b) (P∨Q)∧ ~(~P∧Q)⟺ P

c) (P →Q) →Q⟺ (P∨Q)

7.7 TAUTOLOGICAL OR LOGICAL IMPLICATIONS

Definition: A statement A is said to tautologically or logically

imply a statement B if and only if A→B is a tautology. In this case,

we write A→B, read as “A tautologically implies B” or “A

logically impliesB”. We shall denote this idea by A⟹B which is

read as “A implies B”’.

Note: Learner should be very cautious with the following four

notations:

(1) → means the connective conditional

(2) ↔ means the connective Biconditional

(3) ⟺ means equivalent

(4) ⟹ means tautological implications.

Let us Know

i) ⟹ is not connective,A⟹B is not a statement formula.

ii) A⟹B states that A→B is a tautology or A logically

implies B.

iii) A⟹B guarantees that B has the truth value T whenever

A has the truth value T.

iv) By constructing the truth table, we can determine A⟹B.

v) A⟺B if and only if A⟹B and B⟹A i.e., if each of two

formulas A and B tautologically or logically implies

the other, then A and B are equivalent.

Illustrative Examples:

Example 20: Show that (� ∧ �) ⟹ (� → Q)

Solution: To prove the given proposition, it is enough to prove

that (� ∧ �) → (� → Q)is a tautology

P Q 	 ∧
 	 → � (∧
)
→ (→ �)

186 | P a g e

Space for learners: T T T T T

T F F F T

F T F T T

F F F T T

Since the last column of the truth table of(� ∧ �) → (� → Q)

contains only T’s, so(� ∧ �) → (� → Q)is a tautology.

Hence (� ∧ �) ⟹ (� → Q)

Example 21: Prove that (� → (Q → R)) ⟹ ((� → Q) → (P → R))

by constructing the truth table.

Solution:

To prove the given proposition, it is enough to prove that (� →
(Q → R)) → ((� → Q) → (P → R)) is a tautology.

P Q R � → � 	 → � 	 → � (→ (� → �)) (→ �) →
(� → �)

(→ (� → �)) →
((→ �) → (� →

�))

T T T T T T T T T

T T F F T F F F T

T F T T F T T T T

T F F T F F T T T

F T T T T T T T T

F T F F T T T T T

F F T T T T T T T

F F F T T T T T T

Since the last column of the truth table of (� → (Q → R)) → ((� →
Q) → (P → R))contains only T’s, so (� → (Q → R)) → ((� → Q) →
(P → R)) is a tautology.

Hence, (� → (Q → R)) ⟹ ((� → Q) → (P → R))

Some Important Logical Implications:

1. P ∧ Q⟹P 2. P ∧ Q ⟹Q

3. P ⟹ P∨Q 4. ~P ⟹ P →Q

5. Q ⟹ P→Q 6. ~ (P → Q) ⟹P

7. ~ (P → Q)⟹~Q 8. P ∧ (P → Q) ⟹Q

187 | P a g e

Space for learners: 9.(P → Q) ∧ (Q → R) ⟹ P → R

10. (P ∨ Q)∧ (P → R) ∧ (Q → R) ⟹ R

Check yourself the above logical implications by using the truth

table.

Example 22: Show that P ∧(P → Q)⟹Q without constructing the

truth table.

Solution:We have to prove that [P ∧(P → Q)]→Q is a tautology.

 [P ∧(P → Q)]→Q

⟺[P ∧(~P ∨ Q)]→Q [∵ P → Q ⟺ ~ P ∨ Q]

⟺ ~[P ∧(~P ∨ Q)]∨Q [∵ P → Q ⟺ ~ P ∨ Q]

⟺[~P ∨ ~(~P ∨ Q)]∨Q [DeMorgan’s Law]

⟺[~P ∨(P ∧ ~Q)]∨Q [DeMorgan’s Law]

⟺[(~P∨ P)∧ (~P ∨ ~Q)]∨Q [Distributive Law]

⟺[� ∧ (~P ∨ ~Q)]∨Q [Complement Law]

⟺[~P ∨ ~Q]∨Q [Identity Law]

⟺[~P ∨ (~Q ∨Q)] [Associative Law]

⟺ ~P ∨ � [Complement Law]

⟺ � [Identity Law]

Hence, P ∧(P → Q)⟹Q

CHECK YOUR PROGRESS

Q 7.Show the following logical implications using the truth table:

a) Q ⟹ P→Q

b) ~(P→Q)⟹ ~Q

Q.8.Show the following logical implications without constructing

the truth tables:

 a) � ∧ � ⟹ � ∨ �

 b) � ∧ � ⟹ P → Q

7.8 Two-State Devices

Let us consider the example of an electric switch which is used for

turning “On” and “Off “an electric light. It has wo states “On” and

188 | P a g e

Space for learners: “Off “. So, it is a two-statedevice. Let us consider another example

of a magnetic core which is used in computer. In magnetic core,

there lies a doughnut-shaped metal disc with a wire coil wrapped

around it. It may be magnetized in one direction, if current is passed

through the coil in one way and may be magnetized in the opposite

direction, it the current is reversed. So, the magnetic core is a two-

state device.

7.9 SUMMING UP

 A statement formula is an expression which is a string consisting

of (capital letters with or without subscripts), parentheses and

connective symbols (∨, ∧, →, ↔, ~), which produces a statement

when the variables are replaced by statements.

 A statement formula which is true regardless of the truth values of

the statements which replace the variables in it is called a

universally valid formula or a tautology or a logical truth.

 A statement formula which is false regardless of the truth values

of the statements which replaces the variables in it a

contradiction.

 The statement formulas A and B are equivalent provided A ↔B is

a tautology; and conversely, if A↔B is a tautology, then A and B

are equivalent. We shall represent the equivalence of A and B by

writing “A ⟺B” which is read as “A is equivalent to B.”

 A statement A is said is to tautologically imply a statement B if

and only if A → B is a tautology. We shall denote this idea by A

⟹ B which is read as “A logically implies B”.

7.10 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: a) The variable that occur in the formula are P

and Q, so we have to consider 4 possible combinations of truth

values of two statements P and Q.

P Q ~� ~� ~�
∧ ~�

~(~�
∧ ~�)

T T F F F T

189 | P a g e

Space for learners: T F F T F T

F T T F F T

F F T T T F

(b) The variable are P and Q,

clearly there are 2 rows in the

truth table of this formula.

P Q ~P ~Q ~P ∨ Q ~Q ∨ P (~P ∨ Q) ∧(~Q ∨ P)

T T F F T T T

T F F T F T F

F T T F T F F

F F T T T T T

(c)

P Q 	 ∧
 	 ∨
 (∧
)
→ (∨
)

T T T T T

T F F T T

F T F T T

F F F F T

(d)

P Q 	 →

 ∧ (→
) �
 ∧ (→
)�
→ 	

T T T T T

T F F F T

F T T T F

F F T F T

190 | P a g e

Space for learners: Answer to Q2:

(a)

P Q ~	 ~
 	 ∧ ~

∨ (∧ ~
)

~	
∧ ~

 ∨ (∧ ~
) ∨ (~	
∧ ~
)

T T F F F T F T

T F F T T T F T

F T T F F T F T

F F T T F F T T

All the entries in the last column are T, the given formula is a

tautology.

 (b)

P Q ~P ~P ∨ Q P → Q (P → Q) ↔(~P ∨

Q)

T T F T T T

T F F T F T

F T T T T T

F F T F F T

All the entries in the last column are T, the given formula is a

tautology.

Similarly, for (c) construct truth tables.

Answer to Q 3:

 Truth table for �(~�) ∨ (~�)� ∨ �

	
 ~	 ~
 (~)
∨ (~
)

�(~) ∨ (~
)�
∨ 	

T T F F F T

T F F T T T

F T T F T T

F F T T T T

The last column contains only T.

∴ �(~�) ∨ (~�)� ∨ � is a tautology.

Ans. To Q.No.4: Two propositions are logically equivalent or

simply equivalent if they have

exactly the same truth values under all circumstances.

191 | P a g e

Space for learners: Ans. To Q.No.5:(a)

P Q ~Q P → Q ~ (P → Q) P ∧ ~Q

T T F T F F

T F T F T T

F T F T F F

F F T T F F

As ~ (P → Q) and P ∧ ~Q have identical truth columns, so ~ (P →

Q)⇔ P ∧ ~Q.

(b)

P Q P → Q Q → P P ↔ Q (P → Q)∧ (� →
 �)

T T T T T T

T F F T F F

F T T F F F

F F T T T T

As P ↔ Q and (P → Q)∧ (Q → P)have identical truth columns,

so, P ↔ Q⇔ (P → Q) ∧ (Q → P).

(c)

P Q ~P ~Q P → Q ~Q → ~P

T T F F T T

T F F T F F

F T T F T T

F F T T T T

As P → Q and ~Q → ~P have identical truth columns, so P → Q ⇔
~Q → ~P.

Ans.toQ.No.6: a)WeknowthatP→Q⇔~P∨Q

Similarly, R → Q ⇔ ~R ∨ Q

Now,(P→Q)∧(R→Q)⇔(~P∨Q)∧(~R∨Q)

⇔(~P∧~R)∨Q (Bydistributivelaw)

⇔(~ (PvR))∨Q (ByDeMorgan’slaw)

192 | P a g e

Space for learners: ⇔(P ∨ R) → Q.

(b) (P∨Q)∧ ~(~P∧Q)

⇔ (P ∨ Q) ∧ (~~P ∨ ~Q) [De Morgan’s Law]

⇔ (P ∨ Q) ∧ (P ∨ ~Q) [Law of Double Negation]

⇔ � ∨ (Q ∧ ~Q) [Distributive Law]

⇔ � ∨ � [Inverse Law]

⇔ � [Identity Law]

(c) (P →Q) →Q

⇔(~P ∨Q) →Q [Conditional as disjunction]

⇔ ~(~P ∨Q)∨ Q [Conditional as disjunction]

⇔(~~P∧ ~Q)∨ Q [De Morgan’s Law]

⇔(P∧ ~Q)∨ Q [Law of Double Negation]

⇔(P∨ Q) ∧ (~Q∨ Q)[Distributive Law]

⇔(P∨ Q) ∧ � [~Q∨ Q = T]

⇔ P ∨ Q [∵ P ∧ T = P]

Hence, (P →Q) →Q⇔ P ∨ Q

Ans. to Q. No.7: a)

P Q P → Q Q → (P → Q)

T T T T

T F F T

F T T T

F F T T

Since Q → (P → Q) is a tautology, Therefore Q ⟹ P→Q.

(b)

P Q ~Q P→Q ~ (P →

Q)

~ (P → Q)

→~Q

T T F T F T

T F T F T T

F T F T F T

F F T T F T

193 | P a g e

Space for learners: Since ~(P→Q)→ ~Q is a tautology, therefore~(P→Q)⟹ ~Q.

.

Ans. to Q. No.8: a) We have to prove that � ∧ � → � ∨ � is a

tautology.

� ∧ � → � ∨ �

⇔ ~(� ∧ �) ∨ (� ∨ �) [Conditional as disjunction]

⇔ (~� ∨ ~�) ∨ (� ∨ �) [De Morgan’s Law]

⇔ (� ∨ ~�) ∨ (� ∨ ~�) [Associative and Commutative law]

⇔ � ∨ � [� ∨ ~� = � ,� ∨ ~� = �]
⇔ � [Idempotent Law]

Hence, � ∧ � ⟹ � ∨ �

(b) We have to prove that � ∧ � → (� → �)is a tautology.

� ∧ � → (� → �)

⇔ (� ∧ �) → (~� ∨ �) [Conditional as disjunction]

⇔ ~(� ∧ �) ∨ (~� ∨ �) [Conditional as disjunction]

⇔ (~� ∨ ~�) ∨ (~� ∨ �) [De Morgan’s Law]

⇔ ~� ∨ (~� ∨ �) [Associative Law]

⇔ ~� ∨ �[~Q∨ Q = T]

⇔ �

Hence, � ∧ � → � ∨ � is a tautology.

∴ � ∧ � ⟹ � ∨ �

7.11 POSSIBLE QUESTIONS

Q1. Construct the truth table for each of the following:

(a) (P ∧ Q) → (P ∨Q)

(b) (P ∧ Q) →~P

(c) (P → Q) ∧ (~P ∨ Q)

Q2. With the help of truth tables, prove the following:

(a) (P → Q) ⟺(~P ∨ Q)

(b) (P → Q) ⟺(~Q →

~P)

(c) (P∧Q)⟺(P→Q)∧(Q→

P)

194 | P a g e

Space for learners: Q3. Use the truth table to determine whether the proposition

�(~�) ∨ �� ∨ �� ∧ (~�)� is a tautology.

Q4. Show the implications without constructing the truth tables.

(a) ~ (P → Q) ⟹ P

(b) P∧ (P → Q) ⟹ Q

(c) ~Q∧ (P → Q)⟹ ~P

(d) (P∨ �) ∧ (~�) ⟹ Q

(e) (P→Q) → Q ⟹ P ∨ �

(f) (P∧Q)⟹ P→Q

Q5. Discuss the different types of statements with examples.

Q6. What do you mean by tautology? Explain with example

Q7. What is contradiction? Discuss.

Q8. Give a detailed discussion on logical equivalence.

Q9. What do you mean by tautological implications? Explain.

7.12 REFERENCES AND SUGGESTED READINGS

 Rao, G.S. S. Bhishma. Discrete Structures and Graph Theory.

SciTech Publications (India) PVT Ltd,2003

 Sharma, J.K. Discrete Mathematics. Macmillan Publishers India

Ltd,2011

 Balaji, G.Discrete Mathematics. Balaji Publishers,2015

 Singaravelu, A.&Jeyaraman, M.P. Discrete Mathematics.

Meenakshi Agency,2016

 Satyanarayana, B.&Prasad, K.S. Discrete Mathematics and

Graph Theory. PHI Learning Private Limited,2009

 Rao, G.S. Discrete Mathematical Structure. New Age

international (P) Limited,2009

 Singh, Y.N. Mathematical Foundation of Computer Science,

New Age international Publishers, 2005

 Lipschutz, S&Lipson, M.L.Schaum’s outline ofTheory and

Problems of Discrete Mathematics, McGraw-Hill,2007

195 | P a g e

Space for learners:  Chandrasekaran, N & Umaparvathi, M. Discrete Mathematics,

PHI Learning Private Limited,201

 Tremblay, J.P. & Manohar, Discrete Mathematical Structures

with Applications to Computer Science, Tata McGraw Hill

Education Private Limited,1997

196 | P a g e

Space for learners:
UNIT 8: PREDICATED CALCULUS

Unit Structure:

8.1 Introduction

8.2 Unit Objectives

8.3 Predicates

8.4 Quantifiers

8.4.1 Negation of a Quantified Expression

8.5 Predicate Formulas

8.6 Free and Bound Variables

8.7 Inference Theory of Predicate Calculus

8.8 Validity

8.9. Soundness, Completeness and Compactness

8.10 Summing Up

8.11 Answers to Check Your Progress

8.10 Possible Questions

8.11 References and Suggested Readings

8.1 INTRODUCTION

In this unit, we shall discuss about simple statements and their validity

through predicates and quantifiers. Also, we apply predicate formulas to

determine the truth or falsity of the statements. The soundness,

completeness and compactness of the statements are also discussed in this

unit.

8.2 UNIT OBJECTIVES

After going through this unit, you will be able to

 understand the logic of a computer program

197 | P a g e

Space for learners:  develop write programs in various computer languages.

 get ideas behind mathematical logic and inference theory

 understand mathematical logic associated with various reasoning and

mathematical proofs

 understand predicates, quantifiers, free and bound variables

 know the inference theory of predicate calculus.

8.3 PREDICATES

Let us consider a mathematical relation x>10.

The Statement “x is greater than 10” has two parts. The first part,

the variable x, is the subject of the statement. The second part, “is

greater than 10” which refers to a property that the subject can

have, is called the predicate.

We can denote the statement “x is greater than 10” by the notation

P(x), where P denotes the predicate “isgreaterthan10”and x is the

variable.

P(x) is called propositional function of x.

Once a value has been assigned to the variable x, the statement P(x) becomes

a proposition and has a truth value.

8.4 QUANTIFIERS

Many mathematical statements assert that a property is true for

all values of a variable or for some values of the variable, in a

particular domain, called the universe of discourse. Mostly it is

denoted by D.

The universal quantification of P(x) is the statement:

P(x) is true for all values of x in the universe of discourse” and is

denoted by the notation,

198 | P a g e

Space for learners: (x)P(x)or∀xP(x).

Theproposition(x)P(x)or∀xP(x)isreadas“forallx,P(x)”or“foreveryx,P(x)”.The

symbol∀iscalledtheuniversalquantifier.

TheexistentialquantificationofP(x)istheproposition.

Thereexistsatleastonex(oranx)suchthatP(x)istrue”andisdenotedbythenotati

on

∃xP(x).

The symbol ∃ is called the existential quantifier.

Example 1

Express the following statement using quantifiers:

“Every Computer

SciencestudentneedsacourseinMathematics”

Solution.

LetD={Students in Computer Science}(Disuniverseofdiscourseordomain).

LetP(x):xneedsacourseinMathematics.

Wecanrewritetheaboveexpressionas“Forallx,xneedsacourseinMathe

matics”.

Then∀xP(x).

Example 2

Express the following statement using quantifiers:

“Every Computer

SciencestudentneedsacourseinMathematics”.

Solution.

LetD={Students}

LetP(x):xis Computer Sciencestudent.

Q(x):xneeds a course inMathematics.

Wecanrewritetheaboveexpressionas

“Forallx,ifxisa Computer Science student then x needs a course

inMathematics”.

199 | P a g e

Space for learners: Then∀x[P(x)→Q(x)].

Example 3

Express the following statement using quantifiers:

“Thereisastudentinthisclass,whoownsapersonalcomputer”.

Solution.

LetD={Students inthisclass}.

Let P(x):xowns a personal computer.

Wecanrewritetheaboveexpressionas:

“Thereexistsanx,suchthat,xownsapersonalcomputer”.

Then∃xP(x).

Example 4

Express the following statement using quantifiers:

“EveryonewhoknowshowtowriteprogramsinJAVAcangetahighpayingj

ob”.

Solution.

LetD={Students inthisclass}.

P(x):xknowshowtowriteprogramsinJAVA.

Q(x):xgetsanhighpayingjob.

We can rewrite the above expression as

“For every x, if xknowshowtowriteprograms

inJAVAthenhegetsahighpayingjob”.

Then∀x[P(x)→Q(x)].

Example 5

Express the following statement using quantifiers:

“Someonewhopassedthefirstexaminationhasnotreadthebook”.

Solution.

LetD={Students inthisclass}.

Let P(x): x has passed the first examination.

Q(x):xhasnotreadthebook.

200 | P a g e

Space for learners: Wecanrewritetheaboveexpressionas“Thereexistsanx,such that x has

passed the first examination and x has notreadthebook”.

Then∃x[P(x)∧Q(x)].

8.4.1 Negation of a Quantified Expression

Example 6

Findthenegationoffollowingexpression:

“Everystudentintheclasshasstudiedcomputer

programming”.

Solution.

LetD={Students ina Class}.

LetP(x):xhasstudiedcomputerprogramming.

Thenthegivenexpressionis∀xP(x).

Tofindthenegationof∀xP(x):

Negation of the above expression is “It is not the case

that,everystudentintheclasshasstudiedcomputerprogramming”. Hence it is

represented as ¬[∀xP(x)].

It also

meansthat,“thereisastudentintheclasswhohasnotstudiedcomputerpr

ogramming”,

i.e.,thereisastudentxintheclass,suchthat,xhasnotstudiedcomputerpro

gramming.

Henceitisrepresentedas∃x[¬P(x)].

∴¬[∀xP(x)]≡∃x[¬P(x)].

Example 7

Findthenegationoffollowingexpression:

“Thereisastudentintheclasswhohasstudiedcomputerprogramming”.

Solution.

201 | P a g e

Space for learners: Let P(x): x has studied computer programming.

LetD={Students inaClass} (Disuniverseofdiscourse ordomain).

Thenthegivenexpressionis∃xP(x).

Tofindthenegationof∃xP(x):

Negationoftheaboveexpressionis“Itisnotthecasethat,there is a student in the

class who has studied computerprogramming”. Hence it is represented as

¬[∃xP(x)].

It also

meansthat,“Nostudentisfoundintheclass,whohavestudiedcomputerprogram

ming”,

i.e.,“Everystudentintheclasshasnotstudiedcomputer programming”,

i.e.,“Foreveryxintheclass,xhasnotstudiedcomputer programming”.

Henceitisrepresentedas∀x[¬P(x)].

∴¬[∃xP(x)]≡∀x[¬P(x)].

8.5 Predicate Formulas

We denote by  1 2, ,..., nP x x x , an n-place predicate formula in which the

letter P is an n-place predicate and x1, x2,…,xn are individual variables. In

general,  1 2, ,..., nP x x x is called an atomic formula of predicate calculus.

The following are some examples of atomic formulas.

A(x), B(x, y) and C(x, d, z).

A well-formed formula (wf.) of predicate

calculus is defined by

(i) Every atomic formula is a

well-formed formula.

(ii) If A is a well-formed formula,

so is  A.

202 | P a g e

Space for learners: (iii) If A and B are well-formed formulas, so are ()A B , ()A B ,

()A B and ()A B€ .

(iv) If A is a well-formed formula and x is any variable, so are ()x A

and  x A .

(v) Only the formulas obtained by applying rules (i)-(iv) are well-

formed formulas.

8.6 Free and Bound Variables

Consider the following statement:

All students are intelligent. This can be written in symbolic form as

()(() ()),x S x I x

where () :S x x is a student and () :I x x is

intelligent.

In the above statement, if we restrict the class as the class of students, then

the symbolic representation will be () ().x I x Such a restricted class is also

called “Universe of Discourse”.

 In any symbolic formula, the part containing () ()x A x or (),xA x

such part is called the “ x -bound” part of the formula.

 Any variable appearing in an “ x - bound” part of the formula is

called as a bound variable.

Check Your Progress

1. A property that the subject can have, is called the ________________

2 . The symbol _______ is called the existential quantifier.

3 . The symbol _______ is called the universal quantifier.

4 . T h e n e ga t i o n o f a s t a t e me n t i s de no t ed by t h e sy mb o l _______.

203 | P a g e

Space for learners:  Otherwise it is called as a free variable.

 Any formula immediately following ()x or ()x is called the scope

of the quantifier.

Example 8

Consider the symbolic form of a

statement: () () ().y A y B y

In this notation, all y in ()A y is bound whereas the y in ()B y is free. The

scope of ()y is ().A y

8.7 Inference Theory of Predicate

Calculus

Rules of Inference

1. Rule P: A premise can be introduced at any point of derivation.

2. Rule T: A formula can be introduced provided it is tautologically

implied by previously introduced formulas in the derivation.

3. Rule CP: If S can be derived from R and a set of premises, thenR→S

can be derived from the set of premises alone.

Rule US[Universal Specification]

It is the rule of inference, which states that one can conclude that

()A k is true, if ()y A y is true, where ' 'k is an arbitrary member of the

universe of discourse .This rule is also called the Universal Instantiation.

In other words, Universal Specification is the rule of inference

which says we can conclude ()A k is true for a particular element k of

the universe of discourse if ()y A y is true. This k can be chose

arbitrarily.

For example, if 2 0, 0,y y   then 23 0, for the particular

value 3. It is true for any 20, 0.k k 

204 | P a g e

Space for learners: Rule ES[ExistentialSpecification]

Itistherulewhichallowsustoconcludethat ()A k istrue,if ()y A y

istrue,where ' 'k isnotanarbitrarymemberof theuniverse, butone for which

()A k istrue.Usuallywe will notknow,what ' 'k

is,butknowthatitexists.Sinceitexists,wemaycallit ' '.k

ThisruleisalsocalledtheExistentialInstantiation.

In other words, Existential Specification is the rule of inference

which says that there is an element k in the universe of discourse for which

()A k is true if ()y A y is true. Here ' 'k is not arbitrary, but it is specific.

In practice, we may not know what ' 'k is, but it exists. Since it exists, we

give a name ' 'k and proceed with our argument.

RuleUG[UniversalGeneralization]

Itistherulewhichstatesthat ()y A y istrue,if ()A k istrue,where ' 'k

isanarbitrary member (notaspecificmember)oftheuniverse ofdiscourse.

In other words, Universal Generalization is the rule of inference

which says that ()y A y i s t r u e i f ()A k i s t r ue fo r an a rb i t r a ry

e l ement ' 'k o f t he un ive r se o f d i scou r se . Th i s ru le i s used

when we need to p rove ()y A y i s t r ue .

RuleEG[ExistentialGeneralization]

Itistherulethatisusedtoconcludethat, ()y A y when ()A k istrue,where

' 'k isaparticularmemberoftheuniverseofdiscourse.

In other words, Existential Generalization is the rule of inference

which says that for particular element ' 'k of the universe of discourse if

()A k i s t r u e , t h e n ()y A y i s t r u e .

We summarize the above rules in the following table.

Rule Inference

US ()yA y

205 | P a g e

Space for learners: ()A k for an arbitrary k

ES
()y A y

()A k for a particular k

UG
()A k for an arbitrary k

()y A y

EG
()A k for some k

()y A y

R e m a r k :

 We have seen rules of inference for proposition and rules of inference

for quantified propositions. Sometimes, we have to use a combination of the

above rules. Two such combinations of rules of inference quite often used are

the Universal Modus Ponens and Universal Modus Tollens.

 Universal Modus Ponens (MP) says that ,y if ()A y is true then

()B y is true and if ()A k is true for a particular element ' 'k in the

universe of discourse then ()B k must also be true.

Thus,
(() ())

()

(),

y A y B y

A k

B k

 

where ' 'k is particular element in the domain.

 Universal Modus Tollens (MT)says that ,y if ()A y then ()B y and if

for a particular element ' 'k in the universe of discourse ()B k is true

then ()A k is true.

Thus,
(() ())

()

()

y A y B y

B k

A k

 





for a particular ' '.k

206 | P a g e

Space for learners:  Universal Transitivity (UT) says that if (() ())y A y B y  and

(() ())y B y C y  are true, then (() ())y A y C y  is true, where

the domains of all the quantifiers are the same.

Example 8

Letusverifytheargumentbyinferencetheory.

Allmenaremortal.

Socratesisaman.

Therefore, Socrates is mortal.

Solution.

LetD={Humanbeing}

LetP(x): x isaman;Q(x): x ismortaland s :Socrates.

Aboveproblembecomes∀x[P(x)→Q(x)],P(s)⇒Q(s)

S.No Statement Reason

1

2

3

4

∀x[P(x)→Q(x)]

P(s) → Q(s)

P(s)

Q(s)

RuleP (Given Premise)

RuleUS, 1

RuleP (Given Premise)

MP, 2, 3

Solved Problems

1.

Provetheimplication:∀x(P(x)→Q(x)),∀x(R(x)→¬Q(x))⇒∀x(R(x)→¬P(x)

).

Solution.

207 | P a g e

Space for learners: Given premisesare∀x(P(x)→Q(x)),∀x(R(x)→¬Q(x)).

Conclusionis∀x(R(x)→¬P(x)).

S.No Statement Reason

1 ∀x(P(x)→Q(x))

P(a)→Q(a)

∀x(R(x)→¬Q(x))

R(a)→¬Q(a)

¬Q(a)→¬P(a)

R(a)→¬P(a)

∀x(R(x)→¬P(x))

RuleP

2 RuleUS,1,foralla

3 RuleP

4 RuleUS,3,foralla

5 RuleT,2,contrapositive,foralla

6 RuleT,4,5, for alla

7 RuleUG,6

2. Provethat∀x(P(x)→(Q(y)∧R(x))),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x)).

Solution.

Premisesare∀x(P(x)→(Q(y)∧R(x))),∃xP(x).

ConclusionisQ(y)∧∃x(P(x)∧R(x)).

S.No Statement Reason

1

2

3

4

5

6

7

∀x(P(x)→(Q(y)∧R(x)))

P(a)→(Q(y)∧R(a))

∃xP(x)

P(a)

Q(y)∧R(a)

Q(y)

R(a)

RuleP

RuleUS,1,forallaRul

eP

RuleES,3,forsome a

MP,2,4,forsomea

RuleT,5

RuleT,5,forsomea

8

9

P(a)∧R(a)

∃x(P(x)∧R(x))

Rule T, 4,7, for some

aRuleEG,8

208 | P a g e

Space for learners: 10 Q(y)∧∃x(P(x)∧R(x)) RuleT,6,9

3. Showby indirect methodofproof,that∀x(P(x)∨Q(x))⇒(∀xP(x))∨(∃xQ(x)).

Solution.

Byindirectmethod,letusassumethat¬[(∀xP(x))∨(∃xQ(x))]asanadditionalprem

iseandarrive ata contradiction.

S.No Statement Reason

1 ¬[(∀xP(x)) ∨(∃xQ(x))]

¬(∀xP(x))∧¬(∃xQ(x))

¬(∀xP(x))

¬(∃xQ(x))

∃x¬P(x)

∀x¬Q(x)

RuleP(additionalpremise)

2 RuleT,DeMorgan’slaw,1

3 RuleT,2

4 RuleT,2

5 RuleT,3

6 RuleT,4

7

8

9

10

11

12

13

14

¬P(a)

¬Q(a)

¬P(a)∧¬Q(a)

¬(P(a)∨Q(a))

∀x(P(x)∨Q(x))

P(a)∨Q(a)

¬(P(a)∨Q(a))∧(P(a)∨Q(a))

F

Rule ES, 5, for some

aRule US, 6, for all a

RuleT,7,8,forsomea

RuleT,DeMorgan’slaw,9,fo

rsomea

RuleP

Rule US, 11, for all a

RuleT,10,12,forsomea

RuleT,13

4.

Provetheimplication∀x(P(x)→Q(x)),∀x(R(x)→¬Q(x))⇒∀x(R(x)→¬P(x)

).

Solution.

Premisesare∀x(P(x)→Q(x))and∀x(R(x)→¬Q(x)).

209 | P a g e

Space for learners: Conclusionis∀x(R(x)→¬P(x)).

S.No Statement Reason

1 ∀x(P(x)→Q(x))

P(a)→Q(a)

∀x(R(x)→¬Q(x))

R(a)→¬Q(a)

Q(a)→¬R(a)

RuleP

2 RuleUS,1,foralla

3 RuleP

4 RuleUS,3,foralla

5 RuleT,Contrapositive,4,

 foralla

6

7

P(a)→¬R(a)

R(a)→¬P(a)

Rule T, 2, 5, for all a

RuleT,Contrapositive,6,

foralla

8 ∀x(R(x)→¬P(x)) RuleUG,7

5. Show that the premises “One student in this class knows

howtowriteprogramsinJAVA”and“Everyonewhoknowshowtowrite

programsinJAVAcangetahigh-payingjob”implytheconclusion

“Someone in this class can get a high-paying job”.

Solution.

LetD={Student}.

LetC(x):xisinthisclass.

J(x):xknowsJAVAprogramming.

H(x):x cangetahigh-payingjob.

Thenpremisesare∃x(C(x)∧J(x))and∀x(J(x)→H(x)).

Conclusionis∃x(C(x)∧H(x)).

S.No Statement Reason

210 | P a g e

Space for learners: 1

2

3

4

5

6

7

8

9

∃x(C(x)∧J(x))

C(a)∧J(a)

C(a)

J(a)

∀x(J(x)→H(x))

J (a)→H(a)

H(a)

C(a)∧H(a)

∃x(C(x)∧H(x))

RuleP

RuleES,1,forsomeaRu

le T, 2, for some

aRule T, 2, for some

aRuleP

RuleUS,5,foralla

Rule T, MP,4,6,forsomea

Rule T, 3, 7, for some a

RuleEG,8

6. Show that the premises “A student in this class has not readthe

book” and “Everyone in this class passed the

firstexamination”implytheconclusion“Someonewhopassedthefirstexa

minationhasnotreadthebook”.

Solution.

LetD={Student}.

LetC(x):xisinthisclass.

R(x):xhasnotreadthebook.

F(x):xhaspassedthefirstexamination.

Thenthepremisesare∃x(C(x)∧R(x)),∀x(C(x)→F(x)).

Conclusionis∃x(F(x)∧R(x)).

S.No Statement Reason

1

2

3

4

5

6

∃x(C(x)∧R(x))

C(a)∧R(a)

C(a)

R(a)

∀x(C(x)→F(x))

RuleP

RuleES,1,forsomeaRu

le T, 2, for some

aRule T, 2, for some

aRuleP

RuleUS,5,foralla

211 | P a g e

Space for learners: 7

8

9

C(a) →F(a)

F(a)

F(a)∧R(a)

∃x(F(x)∧R(x))

RuleT,MP,3,6,forsomeaRul

e T, 4, 7, for some

aRuleEG,8

8.8 Validity

In the practical life, the validity of a statement made by a person is

important. Suppose a person makes a validity of a statement which may

be true depending on the nature of the statement. For example, if the

statement is “Daily it is raining or it is raining on some days”.

A predicate formula is said to have validity if every assignment in every

structure satisfies it.

Examples

1. y P y P   

2. y P y P  

3. ()y P Q y P y Q     

4. ()y P Q y P y Q   

5. y y y 

8.9. Soundness, completeness and compactness

There are distinct concepts of "truth" (⊨) and "provability" (⊢). We'd

like them to be the same, in the sense that we should only be able to

prove things that are true, and if they are true, we should be able to

prove them. These two properties are known as soundness and

completeness.

A proof system is sound if everything that is provable is true. In other

words, if A1,…,An⊢S then A1,…,An⊨S.

A proof system is complete if everything that is true has a proof. In

212 | P a g e

Space for learners: other words, if A1,…,An⊨S then A1,…,An⊢S.

A set W of well-formed formulasis called satisfiable if and only if there

is a truth assignment that satisfies every member of W.

A set of well-formed formulas is satisfiable if and only if every finite

subset is satisfiable (Compactness Theorem).

8.10 SUMMING UP

 Propositions have truth values.

 A property is true for all values of a variable or for some values of

the variable, in a particular domain. It is called the universe of

discourse.

 Conjunction, disjunction or negation operations can be applied on

propositions.

 Every atomic formula is a well-

formed formula.

 Any variable appearing in an “ x - bound” part of the formula is called

as a bound variable. Otherwise, it is called as a free variable.

 Any formula immediately following ()x or ()x is called the scope of

the quantifier.

 A predicate formula is said to have validity if every assignment in

every structure satisfies it.

 A proof system is sound if everything that is provable is true. A

proof system is complete if everything that is true has a proof.

CHECK YOUR PROGRESS

5. In the statement ()(() ()),x S x I x _______ is free and ______ is

bound variables.

6. A proof system is _______if everything that is provable is true.

7. A proof system is _________if everything that is true has a proof.

8. A set of well-formed formulas is ____________if and only if

every finite subset is satisfiable (Compactness Theorem).

213 | P a g e

Space for learners:  A set W of well-formed formulas is called satisfiable if and only if

there is a truth assignment that satisfies every member of W.

8.11 ANSWERS TO CHECK YOUR PROGRESS

1. Predicate

2. ∃

3. ∀

4. ¬

5. I(x), S(x)

6. Sound

7. Complete

8. Satisfiable

8.12 POSSIBLE QUESTIONS

1. Express the following statements using predicates and both

quantifiers.

(i) All men are mortal.

(ii) Every apple is red.

(iii) All birds can fly.

(iv) There is an integer which is odd and prime.

(v) Every student of this class visited either Mumbai or New

Delhi”.

2. For the following statements, write the symbolic form using

predicates and quantifiers, and then their negation forms.

(i) Everybody who is healthy can do all types of works.

(ii) Some people are not admired by everyone.

(iii) Everyone should help his neighbours or his neighbours

will not help him.

214 | P a g e

Space for learners: 3. Show that the premises “Everyone in the Computer Science branch

has studied Discrete Mathematics” and “John is in Computer

Science branch” imply the conclusion “John has studied Discrete

Mathematics”.

4. Verify the validity of the following statement.

Every living thing is a plant or an animal. John’s gold fish is

alive and it is not a plant. All animals have hearts. Therefore

John’s gold fish has a heart.

5. Find the free and bound variables in the following:

(i) (() ()) (()) ().y A y B y y A y C y   

(ii) (() () ()) ().y A y B y y C y D y   €

8.13 REFERENCES AND SUGGESTED READINGS

 Bernad Kolman, Robert C. Busby and Sharon Cutler Ross,

Discrete Mathematical Structures, Pearson, USA. 2014.

 Kenneth Rosen, Discrete Mathematics and Its Applications,

McGraw-Hill Higher Education, New York, 2019.

 Senthil Kumar B. V. and Hemen Dutta, Discrete Mathematical

Structures: A Succinct Foundation, CRC Press, Boca Raton FL,

2020.

 Seymour Lipschutz and Marc Lipson, Schaums Outline of

Discrete Mathematics, MCGraw-Hill, New York, 2007.

 G. Shankar Rao, Discrete Mathematics Structures, New Age

International Pvt. Ltd., India, 2007.

 Sriraman Sridharan and R. Balakrishnan, Discrete Mathematics:

Graph Algorithms, Algebraic Structures, Coding Theory and

Cryptography, CRC Press, Boca Raton, FL, 2020.

 Susanna S. Epp, Discrete Mathematics with Applications,

Cengage Learning, Boston USA, 2019.

 J. P. Tremblay and R. Manohar, Discrete Mathematical

Structures with Applications to Computer Science, Tata

215 | P a g e

Space for learners: McGraw-Hill, New Delhi, India, 2008.

 Iqbal H. Jebril, Hemen Dutta and Ilwoo Cho, Concise

Introduction to Logic and Set Theory, CRC Press, Boca Raton

FL, 2021.

BLOCK II:

GRAPH THEORY

216 | P a g e

Space for learners: UNIT 1: INTRODUCTION TO GRAPH

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Brief history on development of graph theory

1.4 Basic Concepts

 1.4.1 Definition of a graph

 1.4.2 Basic terminologies

 1.4.3 Finite and infinite graphs

 1.4.4 Directed and undirected graphs

 1.4.5 Different types of Digraph

 1.4.6 Incidence and Degree

 1.4.7 Out-Degree and in-Degree in Directed Graph

 1.4.8 Isolated Vertex, Pendant Vertex and Null Graph

 1.4.9 Some Results

1.5 Summing Up

1.6 Answers to Check Your Progress

1.7 Possible questions

1.8 References and Suggested Readings

1.1 INTRODUCTION

In this unit, you will learn the fundamental aspects of graph theory. You

will also learn about finite and infinite graph, directed and undirected

graphs, incidence and degree, isolated and pendant vertices, null graph.

You will also learn the history of graph theory in this unit. Graph theory

is an area of mathematics which is realistic in its nature. The purpose of

graph theory is to solve day to day problems of human beings. In this

unit, you will also learn several properties related to finite and infinite

graphs. This unit tries to simplify the ideas related to directed and

217 | P a g e

Space for learners: undirected graphs. Incidence and degree of a vertex are two of the main

building blocks of graph theory. You will learn some fundamental

properties related to degree. Moreover, various examples will be

discussed in this unit. These examples will help your knowledge to

grow. Applications of graph theory can be found in various areas of

mathematics, computer science, biology, theoretical chemistry, social

networks, etc. since the scopes of applications are limited in this unit,

thus we will skip applications and we will mainly focus on theoretical

foundations only.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 know the history of development of graph theory in concise

manner

 understand the fundamental concepts and notions of graph

theory

 define graph and its different types viz. finite and infinite

graphs, directed and undirected graphs. Incidence and degree,

isolated and pendant vertices, null graphs etc. will be discussed.

 solve problems related to above graphs.

1.3 BRIEF HISTORY ON DEVELOPMENT OF

GRAPH THEORY

The subject “graph theory” was initiated from a real problem. The

problem is known as “Konigsberg bridge problem”. It was one of the

unsolved problems of 18th century. But, mathematician Leonhard Euler

(1707-1782) solved this famous problem in 1736. The problem is

discussed below.

218 | P a g e

Space for learners:

Figure 1: Konigsberg bridge problem

Two islands, A and C, of the Pregel River in Konigsberg were linked to

each other and to the banks, B and D, of the Pregel River by seven

bridges as shown in Fig1. The problem was to start at any of the four

land areas A,B,C or D, walk across each of the seven bridges exactly

once, and return to the starting point. Euler proved that there is no

solution of the Konigsberg bridge problem. To give proof, Euler

simplified the problem. He represented each land area by a point and

each bridge by a line joining the corresponding points. Thus, this

simplified representation produces a graph. Euler’s representation of the

Konigsberg bridge problem is shown in Fig2.

Figure 2: The graph of the Konigsberg bridge problem

219 | P a g e

Space for learners: Since the development of graph theory by Euler, it has been using in

many areas. Physicist Gustav Kirchhoff used theory of tree in 1845 to

solve the system of simultaneous linear equations representing the

current in each branch and around each circuit of an electric network.

Kirchhoff used simple representations of the electric networks of the

circuits using only points and lines without indicating electrical

elements of the circuits. Similarly Caylay discovered trees and his ideas

of trees were applied to enumerate the isomers of the saturated

hydrocarbons CnH2n+2, where n represents the number of carbons atoms.

Some of the saturated hydrocarbons are given below.

220 | P a g e

Space for learners:

Figure 3: Some saturated hydrocarbons and their graphical

representations.

These are some of the fields where graph theory has been applied. But,

the reach of graph theory to any area of science and social science can

be found easily. Computer networking, an area of computer science, has

its foundation based on graph theory.

CHECK YOUR PROGRESS

1. Graph theory was initiated from a real problem entitled

……………………… .

2. ………………. Solved Konigsberg bridge problem in

………………. .

3. There were ……………. Islands, ……………... banks and

……………. Bridges in Konigsberg bridge problem.

4. “Euler proved that Konigsberg bridge problem has no solution”

…………..is the statement true?

1.4 BASIC CONCEPTS

221 | P a g e

Space for learners: In this section, we study the basic concepts of graph theory. It is

important to note that graph theory does not require any other

sophisticated area of mathematics other than basic set theory to

introduce fundamental notions and definitions of graph theory. Thus, it

is expected that our readers are familiar to basic set theory.

1.4.1 Definition of A Graph

A graph (or simply a linear graph) G=(V,E) consists of a set of points

 and a set of unordered

pairs of points of V.

The points are called vertices and e1, e2, e3,…. are

called edges. Several books use the words ‘nodes’ in lieu of vertices and

‘lines’ in lieu of edges.

Each edges ek is represented by an unordered pair (vi, vj). It is also

denoted as {vi, vj}. Thus, (vi, vj) and {vi, vj} are not different in

graph theory. ek = (vi, vj) is said to join vertex vi and vertex vj. We

write ek = vivj and say that ei and ej are adjacent points. It is sometimes

denoted as eiadjej. The points vi and line ek are incident with each

other. Similarly, vj and the line ek are incident with each other. Two

lines ek and em are adjacent lines if they are incident with a common

point.

Example1. If G=(V,E) be a graph, where V={x,y,z,p,q} and E={(x,y),

(y,z), (x,q), (x,p), (y,p)}, then the graph G=(V,E) can be represented as

given below.

222 | P a g e

Space for learners:

Figure 4: Graph of G=(V,E)

If we represent e1=(x,y), e2=(y,z), e3=(x,q), e4=(x,p) and e5=(y,p), then

the graph can be represented as given below

Figure 5: Graph of G = (V, E)

Check your progress

5. A graph G=(V,E) consist of ……… and ……………

6. The elements of the set V of a graph G=(V,E) are called………. .

7. The elements of the set E of a graph G=(V,E) are called ……….. .

1.4.2 Basic Terminologies

223 | P a g e

Space for learners: In this section, we study basic terminologies of graph theory.

Definition1: A graph with p-vertics and q- edges is called a (p,q) graph.

Example 2 : A (3,3) graph is represented as given below

Figure 6: (3,3)-graph

Definition2 : The (1,0)-graph is called trivial graph

Example 3 :The trivial graph is shown below

Definition3 : In graph G=(V,E); an edge to be associated with a vertex

pair ((())))) is permissible. Such an edge is called a loop (or self-loop).

Example 4 :Let G=(V,E) be a graph, where V={x,y,z} and E= {(x,x),

(x,y), (x,z), (y,z), (z,z)}.

Figure 7: Graph of G=(V,E).

If we denote e1=(x1,x), e2=(x,y), e3=(x,z), e4=(y,z) and e5=(z,z), then

figure 7 can be re-drawn as below.

224 | P a g e

Space for learners:

Figure 8: Graph of G=(V,E) with distinct edges.

Defination 4: In a multigraph, no loops are allowed but more than one

edge can join two vertices. These edges are called multiple edges (or

multiple lines).

Example 5: If G=(V,E) beagraph, where V= {x,y,z,p} and E={(x,y),

(x,z), (x,p), (y,z), (y,z)} then G=(V,E) is a multigraph. This graph is

shown below.

Figure 9: Multigraph G=(V,E)

Here, (y,z) is considered twice in the set e. If we represent G=(x,y),

e2=(x,z), e3=(x,p), e4=(y,z) and e5=(y,z), then fig 9 can be represented as

given below.

225 | P a g e

Space for learners: Figure 10: Multigraph G=(V,E)

Since e4 and e5 are distinct edges, thus it is not problematic for our

readers to write (y,z) twice in the set E. Such edges are known as

parallel edges.

Defination 5: A multigraph having loop(s) is called a pseudo graph.

Example 6: If G=(V,E) be a graph, where V={x,y,z,p} and E={(x,x),

(x,y), (x,z), (x,p), (y,z), (y,z)}, then G=(V,E) is a pseudo graph.

Figure 11: Pseudo graph G=(V,E)

Defination 6: A graph which has neither loops nor multiple edges is

called a simple graph.

Example7: Fig5, fig6 are example of simple graph.

CHECK YOUR PROGRESS

8. Euler’s graph representing Konigsberg bridge problem is a ………

graph.

9. In a multigraph, ……….. are allowed.

10. Is loop allowed in a multigraph?

11. Is loop allowed in a simple graph?

12. Are multiedges allowed in a simple graph?

13. “Every pseudo graph is a simple graph”- true or false?

226 | P a g e

Space for learners: 1.4.3 Finite and Infinite Graphs

In this section, we study finite and infinite graph.

Definition7: A graph with a finite number of vertices as well as a finite

number of edges is called a finite graph; otherwise, it is an infinite

graph.

The graphs, which we considered earlier, are all finite graphs.

Example 8:

Figure 12: Portion of an infinite graph

Figure 13: a finite graph

In reality, Fig12 is the graphical representation of Graphene. Graphene

is one of the very important atomic-scale hexagonal lattices made of

227 | P a g e

Space for learners: carbon-atoms. The discoverers of Graphene were awarded Nobel prize

in physics in 2010.

1.4.4 Directed and Undirected Graphs

In this section, we discuss directed and undirected graphs. These graphs

are used in several real-life problems.

Definition8: A directed graph (or digraph) G=(V,E) consists of a set of

vertices V={v1, v2, v3, …..}, a set of edges E={e1,e2,e3,….} and a

mapping of that maps every edges onto some ordered pair of vertices

(vi,, vj). A diagraph is also referred to as oriented graph.

We often make a distinction between the terms “oriented graph” and

“directed graph” by considering only these digraphs which have at most

one directed edge between a pair of vertices (for digraphs).

The elements of E are called directed edges (or directed lines or areas).

In digraphs, a vertex is represented by a point and an edge by a line

segment between vi and vj with an arrow directed from vertex vi to

vertex vj.

Example: 9

Fig 14: A digraph with four vertices and six edges.

228 | P a g e

Space for learners: Suppose ek=(vi, vj) is a directed edge in a digraph G= (V,E); then vi is

called the initial vertex of ek and vj is called the terminal vertex of ek.

In this case, ek is said to be incident from vi and to be incident to vj.

Also, vi is adjacent to vj; and vj is adjacent from vi.

Defination 9: An undirected graph G=(V,E) consist of a set V={v1, v2,

v3, …..} of vertices and a set E= {e1,e2, e3,……} of edges such that

each edges is associated with an unordered pair of vertices.

Example 10:

Fig 15: An undirected graph with five vertices and five edges.

1.4.5 Different Types of Digraphs

There are various types of digraphs available in literature. Here we

discuss some of them.

Definition 10: A digraph that has no parallel edges or self-loops is

called a simple digraph.

Example 11:

229 | P a g e

Space for learners:

Fig 16: A simple digraph

Definition 11: A digraph that has at most one directed edge between a

pair of vertices, but is allowed to have loops, is called an asymmetric

graph or anti symmetric digraph.

Example 12:

Fig17. An asymmetric digraph

Definition 12: A digraph that is both simple and symmetric is called a

simple symmetric digraph.

Definition 13: A digraph that is both simple and asymmetric is called

simple asymmetric is called simple asymmetric digraph.

Definition 14: A simple digraph in which there is exactly one edge

directed from every vertex to other vertex is said to be a complete

symmetric digraph.

1.4.6 Incidence and Degree

In this section, we discuss incidence and degree.

230 | P a g e

Space for learners: Definition 15: A vertex vi and an edge ek are said to be incident with

(on or to) each other, if vi is an end vertex of the edge ek.

Example 13:

Fig 18: Vertex incident

Here, Vertex v4 is incident with edge e4. The edges e5, e3, e4 and e6

are incident with vertex v2.

Definition 16: Two non-parallel edges are said to be adjacent if they are

incident on a common vertex.

Example 14: In example 13, the edges e3, e4, e5 and e6 are adjacent.

Definition 17: Two vertices are said to be adjacent if there is an edge

between them.

Example 15:

Fig 19: v1 and v2 are adjacent

Here, vertices v1 and v2 are adjacent because there is an edge e1

between them.

231 | P a g e

Space for learners: Definition 18: Degree of a vertex vi is the number of edges incident on

a vertex vi, with loops counted twice. It is denoted as d(vi)

Example 16: In example 15, d(v1)=2, d(v2)=2, d(v3)=3 and d(v4)=3

Definition 19: A regular graph is a graph in which all vertices are of

equal degree.

Example 17:

Fig20: A regular graph G=(V,E) of degree two.

Here, . Thus, G=(V,E) is a

regular graph of degree two.

1.4.7 Out-Degree and in-Degree in Directed Graph

Definition 20: In a digraph, out-degree of a vertex vi is the number of

edges incident out of a vertex vi. It is denoted by d+(vi).

Example 18:

Fig 21: Out-Degree of G=(V,E)

Here, in the graph G=(V,E); d+(v1)=1, d+(v2)=1, d+(v3)=0 and

d+(v4)=2.

232 | P a g e

Space for learners: Definition 21: In a digraph, indegree of a vertex vi is the number of

edges incident into vi. It is denoted by d-(vi).

Example 19: In example 18, d+(v1)=1, d+(v2)=1, d+(v3)=2 and

d+(v4)=0.

1.4.8 Isolated Vertex, Pendant Vertex and Null Graph

Definition 22: A vertex is said to be an isolated vertex if it has degree

zero.

Definition 23: A vertex having degree one is called a pendant vertex (or

an end vertex)

Example 20:

Fig 22: A graph G=(V,E) with six vertices and six edges.

In the above graph, v5 is isolated vertex and v6 is the pendant vertex.

Definition 24: If two adjacent edges have their common vertex of

degree two then the two edges are said to be in series.

Example 21: In example 20, the edges e1 and e5 are in series.

Definition 25: A graph is said to be a null graph if every vertex of it has

degree zero.

Example 22:

233 | P a g e

Space for learners:

Fig 23: Null graph of five vertices

Definition 26: An isolated vertex is a vertex in which the in-degree and

the out-degree are both equal to zero.

Definition 27: A vertex vi in a digraph is said to be pendant if d+(vi)

+d-(vi)=1.

1.4.9 Some Results

In this section, we discuss some theorems, problems, etc. related to

previous sections.

Theorem 1: If G=(V,E) be an undirected graph, then

Or,

The sum of the degrees of all vertices in an undirected graph G=(V,E) is

twice the number of edges in G.

Proof: Let G=(V,E) be an undirected graph. In G, every edge is incident

with exactly two vertices. Thus, each edge gets counted twice, once at

each end. Moreover, degree of a vertex is the number of edges incident

with that vertex. Thus, sum of the degrees of all vertices counts the total

number of times an edge is incident with a vertex. Thus,

.

234 | P a g e

Space for learners: Theorem 2: The number of vertices of odd degree in a graph is always

even.

Proof: Let G=(V,E) be a graph. We write V=V1UV2, where V1 and V2

are the sets of vertices with odd and even degrees respectively.

Thus, the number of vertices of odd degree in G=(V,E) is even.

Theorem 3: In a directed graph G=(V,E);

Theorem 4: If Gis a directed graph, then

Proof: Let G=(V,E) be a directed graph

Problem 1: Determine the number of edges in a graph with 5 vertices, 2

vertices of degree 4, 2 vertices of degree 3 and 1 vertex of degree2.

235 | P a g e

Space for learners: Solution: Let G=(V,E) be a graph where |v| = 5. Let v1, v2, v3, v5 and

v5 are five vertices of G=(V,E).

Thus, the number of edges of G=(V,E) is 8.

Problem 2: How many vertices are required to draw a graph with 7

edges in which each vertex is of degree2.

Solution: Let there are ‘x’ number of vertices in the graph.

So, 7 vertices are required.

Problem 3: Show that the maximum number of edges in a simple graph

with n vertices is .

Solution let G=(V,E) be a simple graph then .

Given, |v| = n also, the maximum degree of each vertex in a simple

graph can be (n-1)

236 | P a g e

Space for learners: Hence, the maximum number of edges in a simple graph with n vertices

is .

1.5 SUMMING UP

 “Konigsberg bridge problem” has two islands, two banks and seven

bridges.

 Leonhard Euler initially represented “Konigsberg bridge problem”

using a graph.

 A linear graph G=(V,E) consists of a set of vertices and edges. A

graph with p-vertics and q- edges is called a (p,q) graph. The (1,0)-

graph is called trivial graph.

 In a multigraph, no loops are allowed but more than one edge can

join two vertices. These edges are called multiple edges (or

multiple lines). A multigraph having loop(s) is called a pseudo

graph. A simple graph which has neither loops nor multiple edges.

 A graph with a finite number of vertices as well as a finite number

of edges is called a finite graph; otherwise, it is an infinite graph.

 A simple digraph has no parallel edges or self-loops.

 A simple digraph in which there is exactly one edge directed from

every vertex to other vertex is said to be a complete symmetric

digraph. A digraph that has at most one directed edge between a

pair of vertices, but is allowed to have loops, is called an

asymmetric graph.

 In a digraph, indegree of a vertex vi is the number of edges incident

into vi. In a digraph, out-degree of a vertex vi is the number of

edges incident out of a vertex vi.

 An isolated vertex if it has degree zero. A pendant vertex has

degree one. A graph is said to be a null graph if every vertex of it

has degree zero.

1.6 ANSWERS TO CHECK YOUR PROGRESS

237 | P a g e

Space for learners: 1. Konigsberg bridge problem

2. Leonhard Euler, 1736

3. Two, two, seven

4. True

5. Vertices, edges

6. Vertices

7. Edges

8. Eulerian

9. multiple edges

10. No

11. No

12. No

13. False

1.7 POSSIBLE QUESTIONS

1. Represent the following figures as of Euler’s representation

process.

238 | P a g e

Space for learners:

2. Represent graphically C4H10.

3. Draw the graph G=(V,E), where V={x,y,z,p} and E=

{(x,y),(x,p), (x,z) (y,z)}.

4. What is the size of an r-regular (m,n)-graph?

5. Prove that the degree of a vertex of a simple graph G on n

vertices cannot exceed (n-1).

6. Is it possible to draw a simple graph with 5 vertices and 13

edges? Justify your answer.

7. Identify simple graphs, multigraph, pseudo graphs from the

figures given below.

8. The graphical representation of C2H6 is a ………… graph.

239 | P a g e

Space for learners: 9. Draw a portion of an infinite graph.

10. Draw a finite graph.

11. In a finite graph, number of vertices and number of edges are

both ………. .

12. In an infinite graph, number of vertices and number of edges are

both…….. .

13. Define digraph.

14. Define undirected graph.

15. Is every graph is a digraph?

16. Choose directed graphs and undirected graphs from below.

17. Define a simple digraph.

18. Define an asymmetric digraph.

19. Define a simple symmetric digraph.

20. Define a simple asymmetric digraph.

21. Define a complete symmetric digraph.

240 | P a g e

Space for learners: 22. Draw a simple digraph, asymmetric digraph, a simple symmetric

digraph, a simple asymmetric digraph, a complete symmetric

digraph.

23. Define degree of a vertex.

24. Find degree of vertex ((())))) of the following graph.

25. Degree of the vertex in (1,0) graph is …………. .

26. Identify the regular graph.

27. Find out-degree and in-degree of each vertex of the following

graph.

28. Define isolated vertex.

29. Define pendant vertex

30. Find of the following

graph.

241 | P a g e

Space for learners:

31. Prove that in a diagraph,

i) If vi is an isolated vertex, then

 d+(vi) = 0 and d-(vi) = 0.

ii) If vi is a pendant vertex, then

 d+(vi) +d-(vi)=1

1.8 REFERENCES AND SUGGESTED READINGS

 Harary, F. Graph theory. Narosa Publishing House, 2001

 Deo, Narsingh, Graph theory with applications to engineering and

computer science, PHI Learning Pvt. Ltd., 2013

 Diestel, Reinhard, Graph theory, Springer, 2006

 Vasudev, C. Graph theory with applications, New age international

Publishers, 2018.

242 | P a g e

Space for learners: UNIT 2: PATHS AND CIRCUITS-I

Unit Structure:

2.1. Learning Objectives

2.2. Introduction

2.3. Isomorphism in Graphs

2.4. Subgraphs

2.5. Walks, Trails, Paths and Circuit

2.6. Connected and Disconnected Graphs

2.7. Summing Up

2.8. Check Your Progress

2.9. Answers to Check Your Progress

2.10. Model Questions

2.11. Further Readings

2.1. INTRODUCTION

Many tangible real-world issues may be successfully analyzed using

graphs as mathematical models. Graph theory may be used to formulate

issues in physics, chemistry, communication science, computer

technology, genetics, psychology, sociology, and linguistics. Graph

theory also has strong ties to several disciplines of mathematics,

including group theory, matrix theory, probability, and topology. The

development of different subjects in graph theory has been aided by

several puzzles and issues of a practical character. The classic

Konigsberg bridge issue served as a model for the creation of Eulerian

graph theory. The Hamiltonian graph theory was derived from Sir

William Hamilton's "Around the World" game. The study of "trees" was

created to enumerate isomers of chemical compounds, and the idea of

acyclic graphs was developed to solve difficulties with electrical

networks. In this unit, we present some fundamental concepts of graph

243 | P a g e

Space for learners: theory which include graph isomorphism, various types of subgraphs,

walks, trails, paths and circuit.

2.2. UNIT OBJECTIVES

On completion of this unit students will be able to:

 Explain the definition, concept, and properties of graph

isomorphism.

 Explain and differentiate various types of subgraphs.

 Define walks, trails, paths and circuits.

 Differentiate between connected and disconnected graph.

2.3. ISOMORPHISM IN GRAPHS

In graph theory, a graph � can be called as equivalent to another graph

�� if both the graphs are identical in terms of their vertices and edges.

This concept is called as graph isomorphism. Two isomorphic graphs

may use different labels for the vertices and may have drawn

differently, but they have exactly the same number of vertices and same

sets of edges. The formal definition on graph isomorphism is presented

below.

Definition 2.3.1:Graph Isomorphism is a concept in graph theory

which states that any two graphs, � and �’ are called as Isomorphic if

there is a bijection between the vertex sets of � and �’. Formally, a

graph �(�, �) is isomorphic to another graph �’(�’, �’) if there exists a

bijective function 	: ���’ such that if any vertices, �,
 ∈ � are there

is an edge from � to
 in � then there must be an edge from 	(�) to

	(
) in �’. Mathematically two isomorphic graphs � and �’ are

denoted as � ≃ �’. The map 	 is termed as an isomorphism from � to

�’.

Example 2.3.1: The graphs shown in figure 2.1 are examples of

isomorphic graphs. Both the graphs have equal number of vertices and

edges. The graph on left has the vertices,< ��, ��, … … … , �� > and the

graph on right has the vertices <
�,
�, … … … ,
� >. In this example,

244 | P a g e

Space for learners: 	(��) =
�. The adjacency matrices of both the graphs are presented in

Table 2.1. The adjacency matrices of both the graphs are identical as

they are isomorphic.

Fig. 2.1 Isomorphic Graphs

Table 2.1 Adjacency matrices of the graphs shown in Fig. 2.1

 u1 u2 u3 u4 u5 v1 v2 v3 v4 v5

u1 0 1 0 1 0 v1 0 1 0 1 0

u2 1 0 1 0 1 v2 1 0 1 0 1

u3 0 1 0 1 1 v3 0 1 0 1 1

u4 0 1 1 0 1 v4 0 1 1 0 1

u5 0 1 1 1 0 v5 0 1 1 1 0

Theorem 2.3.1: Consider � be an isomorphism of the graph � =

 (�, �) to the

graph �’ = (�’, �’). Consider a vertex
 ∈ �. Then ������(
) =

 ������(�(
)). i.e.,

the degree of vertices is preserved by isomorphism.

Proof: Consider two vertices �,
 ∈ �. If u is adjacent to
in graph �,

then �(�) must be adjacent to �(
) in graph �’. So, the number

adjacent vertices of
in � is equal to the number of adjacent vertices of

�(
) in �’. Hence, ������(
) = ������(�(
)).

Properties: If a graph � is isomorphic to another graph �’ by a bijection

�, then the following properties hold true.

 Number of vertices in � is same as the number of vertices in �’.

 Number of edges in � is same as the number of edges in �’.

u1

u2 u3

u4

u5

v1

v2

v5

v3

 v4

245 | P a g e

Space for learners:  Both in-degree and out-degree of a vertex
is same as the in-

degree and out-degree of �(
).

Definition 2.3.2: An automorphism of a graph is a type of symmetry in

graph theory in which the graph is mapped onto itself while retaining

the edge–vertex connection. In other words, a graph � is isomorphic

onto itself.

2.4. SUBGRAPHS

A graph ��is a subgraph of another graph � if all the vertices and edges

of �� belong to the � and each edge in �� has the same source and

destination in � as ��. A subgraph can be called as a subpart of another

graph. The formal definition of subgraph is presented in Definition

2.4.1.

Definition 2.4.1: A graph ��(��, ��) is called as a subgraph of another

graph � (�, �)if �� ⊆ �,�� ⊆ � and �� is the restriction of�� to��.

The graph ��is a proper subgraph of � if �� ⊂ � or �′ ⊂ �. The

graph � can be called as supergraph of �� if ��is a subgraph of �. A

graph �� is called as an induced subgraph of � if a vertex
 ∈ � is

adjacent to another vertex � in � and �,
 ∈ �� then
 must be adjacent

to
 in ��as well. If ��is an induced subgraph of � and vertex set of ��,

�� ⊆ � then �� is called as the subgraph of � induced by �� and is

denoted by �[��]. If ��(��, ��) is an induced subgraph of � (�, �) and

�� ⊆ � then �� is called as the subgraph of � induced by �� and is

denoted by �[��]. A subgraph ��(��, ��)of � (�, �) is called as

aspanning subgraph of � if �� = �.

Example 2.4.1: Figure 2.2 (b)-(d) shows various types of subgraphs of

the graph �. The graph � has the vertex set, � = {1,2,3,4,5,6,7}. The

graph in (b) is a subgraph of � but not an induced subgraph because in

� the vertex 1 is adjacent to 2 and vertex 4 is adjacent to 3 and 7; but

the same is not true in this subgraph. Also, this is not a spanning

subgraph as it does not include all the vertices of �. The graph shown in

(c) is an induced subgraph of � as this subgraph doesn’t include any

pair of vertices which are adjacent in � but not in this subgraph. The

subgraph in (d) includes all the vertices of � but not all the edges. So,

this is a spanning subgraph of �.

246 | P a g e

Space for learners: Definition 2.4.2: A clique is a subgraph of a graph � whose vertex set

is a subset of the vertex set of � and any two vertices of the clique are

adjacent. Informally, a clique is a complete subgraph of another graph.

That means, all the vertices of the clique are adjacent to each other. A

clique is called as maximal clique if no adjacent vertex can be added to

expand the clique. A maximum clique is a clique which contains

maximum possible vertex.

Fig. 2.2 Various types of subgraphs

Example 2.4.2: Figure 2.3 presents some examples of cliques of the

graph shown in the subfigure (a). The subgraph shown in subfigure (b)

is a clique as there is an edge between any two vertices in the subgraph.

Similarly, the subgraphs shown in subfigures (c) and (d) are also

cliques. While the subgraph in subfigure (e) is not a clique as the vertex

1 is adjacent to vertex 2 only. The cliques in (c) and (d) are maximal

cliques as if we add any other vertex to them, then they will no longer

1

 2

 3 7

6 4

5

1

 2

 3 7

6 4

5

 7

6 4

5

(a) Graph G (b) Subgraph of G

(c) Induced Subgraph of G (d) Spanning subgraph of G

 2

1 3 7

6
4

247 | P a g e

Space for learners: be cliques. The clique in (b) is not maximal as there is a possibility of

adding another vertex (vertex 7) to expand the clique.

2.5. WALKS, TRAILS, PATHS AND CIRCUIT

A walk is a finite alternating series of vertices and edges that starts and

ends with vertices, with each edge connecting the vertices before and

after it. A walk may have repeated vertices but not edges. A walk is

called as a closed walk if the starting vertex and the ending vertex is the

same,otherwise, it is called as open. An open walk with no repeated

edges is called as a trail. The vertices may repeat in a trail. A trail with

non-repeated vertices is called as a path. A non-empty trail in which the

starting and ending vertices are the only vertices that are repeated is

called as a circuit or a cycle. Definition 2.5.1 gives the formal definition

of walk, trail, path and circuit.

Fig. 2.3 Various subgraphs of the graph shown in (a). The subgraphs

(b)-(d) are cliques but the one in (e) is not a clique. The cliques (c) and

(d) are maximal cliques but not the one in (b).

Definition 2.5.1: Consider a graph � = (�, �) with the vertex set, � =

{
.,
�,
�, … … … ,
�} and the set of edges, � = {�., ��, ��, … … … , �/}.

A walk, 0 of the graph � can be defined as an alternating sequence of

vertices and edges,0 =<
., ��,
�, ��
�, … … … , �1,
1 >such that �� is

the edge from the vertex
�2� to
�. The vertex
. is called as the origin

and the
1 is called as the terminal of 0. The walk, 0 joins the vertex

. to
1 and the walk is called as
. −
1 walk. The walk which

terminates at origin, i.e.,
. =
1 is termed as a closed walk otherwise

termed as open. When the edges of a walk are distinct, the walk is

 5

 1

 2 3

1

 4

6
7

 2

6
7 2 3

1

 4 1 2

1

6
7

 2

 6

(a) Main Graph, �(b) clique of �(c) clique of � (d) clique of � (e) subgraph of �

248 | P a g e

Space for learners: called as a trail and when the vertices are distinct then it is called a

path. A closed trail with distinct vertices is called as a circuit. The

number of edges present in a walk can be referred as the length of the

walk.

Definition 2.5.2: A cycle which has 4 vertices and 4 ≥ 3has a length of

4. A graph having a cycle of length 4 is denoted as 6�. A cycle with

length 3 i.e., 67 is called as a triangle, 68 is termed as a square and 69

as pentagon.

Lemma 2.5.1: Every � −
 walk of a graph � contains a � −
 path.

Proof: We prove this lemma by the method of induction on length of the

walk � −
. Let : be the length of the walk � −
, 0.

Base case: : = 0.The walk contains a single vertex � =
 with no edge.

Then there is obviously a � −
 path of length 0.

Induction step: : ≥ 1.Let us try to prove the lemma for walks of length

less than :. If 0 is a � −
 walk with length : contains no repeated

vertex then the walk is already a path. If not, then suppose there exist

some vertex < in 0which occur more than once in the walk then

removing the all the occurrences of <(and the corresponding edges)

leaving one then we will get a walk 0� of length less than :. By

induction hypothesis there exists a � −
 path in 0� and as 0� is

contained in 0 hence there is a � −
path in 0.

Lemma 2.5.2: A closed walk of odd length contains a cycle.

Proof: Let 0 be a closed walk with odd length :. Using the method of

induction, we can prove that 0 contains a cycle.

Base case: : = 1. If the length of the walk is 1 then there is a self- loop

and 0 contains only a single vertex, hence there is a cycle.

Induction step:: ≥ 3. Consider the walk, 0 consists of a vertex set � =

 <
.,
�,
�, … … ,
� > and
. =
�. If each vertex
�(0 ≤ < ≤ 4) is

distinct, then the walk itself is a cycle. If not, then there exist two

positiveterms <, > such that < < >,
� ,
? ∈ � − {
.,
�}and
� =
?. Now

we can split this walk 0 into two closed walks 0� and 0� at
� such

that 0� includes the vertices
� ,
�@�,
�@�, … … ,
? (
� =
?) and

.,
�, . .
�,
?@� … … ,
�. So, sum of the lengths of 0� and 0� will be

249 | P a g e

Space for learners: equal to :. Since the length : is odd, one of these closed walks will be

odd and by induction hypothesis, it has a cycle.

Example 2.5.1: The graphs in figure 2.4 illustrates various subtypes of

walk. The subfigure (b) presents an open walk (3�2�1�3�4�1) of

the graph shown in subfigure (a). In this walk, 3 is the origin and 2 is

the terminal. This is called as an open walk as the origin and the

terminal is not the same.

The walk shown in (c)(1�2�3�4�5�3�1) is a closed walk as the

origin and the terminal vertices are the same which is 1. This cannot be

called as a circuit or cycle as the vertex 3is repeated twice in the walk.

The walk shown in (d) is (3�2�1�3�4�5�6) represents a trail of

the graph in (a). Here, the vertex 3 repeated twice but all the edges are

distinct which satisfies the properties of a trail.

The subfigure (e) presents a path of graph in (a). All the vertices and

edges along the path 3�2�1�4�5�6�7 are distinct which satisfies

the properties of a path.

The example shown in (f) represent a circuit of the graph in (a). A

circuit must have distinct edges and distinct vertices except for the

starting and ending vertices. The walk 3�2�1�4�5�3 satisfies the

properties of a circuit, so we can term this walk as a circuit.

2.6. CONNECTED AND DISCONNECTED GRAPHS

A graph is called as connected if each vertex of the graph is reachable

from all other vertices. Otherwise, the graph is called as a disconnected

graph. A disconnected graph contains more than one connected

subgraph. Such subgraphs are called as components of a graph. Formal

definition of connected graphs, disconnected graphs and components

are given by Definition 2.6.1.

Definition 2.6.1: Consider a graph, �(�, �). If there exist a � −
 path

in � such that �,
 ∈ �, then � is said to connected to
. The relation

connected is an equivalence relation on the vertex set � of graph �.

Suppose ��, ��, … , �B are equivalence classes of �. Then a subgraph

with vertex set ��, 1 ≤ < ≤ C is a component of G. If C = 1, then the

graph � is connected graph and the graph � will be called as

250 | P a g e

Space for learners: disconnected graph if C ≥ 2. In simple words, a connected graph can

have at most one component. In case of a connected graph,�there will

be a path � −
 for any pair of vertices �,
 ∈ �.

Fig. 2.4 Example to illustrate walk, trail, path and circuit

Definition 2.6.2: Let ��(��, ��) be a subgraph of a graph �(�, �). The

subgraph �� will be a maximally connected component of � if �� is

connected and for any vertex
 such that
 ∈ � and
 ∉ �� there is no

vertex � ∈ � which is adjacent to
. Informally, if there exist no vertex

in � which can be added to �� and �� still be connected.

Example 2.6.1: The figures shown in figure 2.4 illustrates the graph

connectedness. The graph shown in (a) represents a connected a graph.

This graph has 7 vertices and each vertex is reachable from all

remaining 6 vertices. The graph in (b) also has 7 vertices, but the

5

1

2 3

4

6

 7

1

2 3

5

4

6

1

2 3

4

1

2 3

4

1

2 3

5

4

6

 7

1

2 3

5

4

(a) A sample graph � (b) An open walk of �: 3�2�1�3�4�1

(c) A close walk of �: 1�2�3�4�5�3�1 (d) A trail of �: 3�2�1�3�4�5�6

(e) A path of �: 3�2�1�4�5�6�7

5

(f) A circuit of �: 3�2�1�4�5�3

251 | P a g e

Space for learners: vertices 1-4 are not reachable from the vertices 5-7. Thus, this graph is

disconnected. The subfigure (c) shows the components of the graph in

(b). The components are enclosed within the rectangular boxes. One

component has the vertex set {1,2,3,4} and the other has the vertex set

{5,6,7}. Both the components are connected graphs individually.

Fig. 2.5 Sample graphs illustrating connected graph, disconnected graph

and components of a graph

Theorem 2.6.1: A simple graph � with 4 vertices and minimum degree

E ≥
�2�

�
 is connected.

Proof: We shall prove this theorem by contradiction. Suppose � is not

connected and has at least two components, say �� and ��. Let us

consider
 be any vertex of ��. The degree of
, �(
) ≥
�2�

�
 as E ≥

5

1

2 3

4

6

 7

5

3

1

2

4

6

 7

5

1

2 3

4

6

 7

(a) A connected graph

(b) A disconnected graph

(c) Components of the graph shown in (b)

252 | P a g e

Space for learners:
�2�

�
. Hence,
 has at least

�2�

�
 adjacent vertices in ��and so, ��contains

at least
�2�

�
+ 1 =

�@�

�
vetrices. Similarly, �� also contains minimum

�@�

�
 vertices. Hence, the graph, � has a minimum of

�@�

�
+

�@�

�
= 4 + 1

vertices, which is a contradiction.

Theorem 2.6.2: If a simple graph � is not connected then � is

connected.

Proof: Let �(�, �) has more than one component. Let �,
 be any two

vertices of � (and of �). If �,
 belongs to two different components of

� (� is not adjacent to
 in �), then they are adjacent in �. So, � and

are connected in �. If �,
 belongs to the same component of � then let

us select a vertex G from a different component. The edges �G and
G

do not belong to � but they belong to �. Then there exists a path �G

in �, which is nothing but a � −
 path. Hence � is connected.

Theorem 2.6.3: A graph with 4 vertices and C components can have at

most
(�2B)(�2B@�)

�
 edges.

Proof: Let ��, ��, … �Bbe the components of a graph � and let 4� be the

number of vertices of the <HI component of � such that 1 ≤ < ≤ C and

�(��) represents the number of edges present in ��.

Any graph of 4 vertices can have at most
�(�2�)

�
 vertices (this happens

when the graph is a complete graph which mean each vertex is

connected with each other).

Thus, for any ��, 1 ≤ < ≤ C, �(��) ≤
�J(�J2�)

�
, and hence �(�) ≤

∑
�J(�J2�)

�

B
�L� .

Since each component has at most one vertex, for any ��, 4� > 1

and4� = 4 −

(M�N OP Qℎ�
��Q<S�M <4 T:: Qℎ� SONUO4�4QM OP � �VS�UQ ��)

Hence, 4� ≤ 4 − C + 1, so ∑
�J(�J2�)

�

B
�L� ≤ ∑

(�2B@�)(�2B)

�
=B

�L�

(�2B@�)(�2B)

�
=

(�2B)(�2B@�)

�
,

Hence proved, �(�) ≤
(�2B)(�2B@�)

�
.

253 | P a g e

Space for learners: Theorem 2.6.3: A graph �(�, �) is connected if and only if for any

partition of vertex set � into subsets �� and ��, there is an edge from

any vertex of �� to any vertex of ��.

Proof: Let a graph �(�, �) is connected and let � = �� ∪ ��. Let us

consider two vertices �,
 such that � ∈ �� and
 ∈ ��. There exists a

� −
 path in �, say< �, G., G�, … , GB >(GB =
) as � is connected.

Let < be the smallest positive integer such that G� ∈ ��, then G�2� ∈ ��.

Since G�2� and G� are adjacent, thus there is an edge from G�2� ∈ ��to

G� ∈ ��. Conversely, let � is not connected. Thus, � has at least two

components. Let �� represents the set of one component and ��

represents the other component. It is obvious that there is no edge from

any vertex of �� to any vertex of ��. Hence it proves the theorem.

CHECK YOUR PROGRESS

i. Let two groups � and X are two isomorphic graphs. Which

of the following is true in terms of � and X?

a. Number of vertices in � is same as the number of

vertices in X

b. Number of edges in � is same as the number of edges in

X.

c. Both in-degree and out-degree of a vertex
is same as

the in-degree and out-degree of �(
).

d. All of the above

ii. A subgraph containing all the vertices is called as

a. Induced subgraph

b. Spanning graph

c. Clique

d. None of the above

iii. The subgraph in which all the vertices are adjacent to each

other is called as

a. Induced subgraph

b. Spanning graph

c. Clique

d. None of the above

iv. What will be the number of edges in a walk with 4 vertices?

a. 4-1

254 | P a g e

Space for learners: b. 4

c. 4 + 1

d. 24

v. Which of the following is true in terms of a walk?

a. All the vertices must be distinct.

b. All the edges must be distinct.

c. Both (a) and (b)

d. None of the above.

vi. A walk with same starting and ending vertex is called as a

a. Open walk

b. Closed walk

c. Cycle

d. Trail

vii. A walk with no repeated vertex is called as a

a. Open walk

b. Closed walk

c. Path

d. Trail

viii. A closed walk with distinct vertices is called as a

a. Cycle

b. Path

c. Trail

d. Clique

ix. The maximum number of edges a graph with 4 vertices

and C edges is

a.
(�2B)(�2B@�)

�

b.
(�2B)(�2B2�)

�

c.
(�2B)�

�

d.
(�2B2�)(�2B@�)

�

x. The maximum number of components that a connected

graph with 4 vertice scan have is

a. 0

b. 4/2

c. 4-1

d. 4

255 | P a g e

Space for learners: 2.7. SUMMING UP

 Graph Isomorphism is a concept in graph theory which states that

any two graphs, � and �’ are called as Isomorphic if there is a

bijection between the vertex sets of � and �’. Two isomorphic

graphs have equal number of vertices and edges. The degree of a

vertex
 in � is same as the degree of its corresponding vertex in

�’.

 A subgraph can be called as a subpart of another graph. An

induced subgraph of a graph is another graph generated from a

subset of the graph's vertices and all of the edges joining pairs of

vertices in that subset. A spanning subgraph is a subgraph of

another graph if the vertex set remains the same in both the

subgraph and the original graph. A clique is a complete subgraph.

of another graph.

 A walk is a finite alternating series of vertices and edges that starts

and ends with vertices, with each edge connecting the vertices

before and after it. A walk may have repeated vertices but not the

edges of another graph. An open walk with no repeated edges is

called as a trail. The vertices may repeat in a trail. A trail with non-

repeated vertices is called as a path. A non-empty trail in which the

starting and ending vertices are the only vertices that are repeated is

called as a circuit or a cycle.

 A graph is called as connected if each vertex of the graph is

reachable from all other vertices. Otherwise, the graph is called as a

disconnected graph. A disconnected graph contains more than one

connected subgraph. Such subgraphs are called as components of a

graph. A trail is a walk in which the starting and ending vertices are

the only vertices that are repeated is called as a circuit or a cycle.

2.8. ANSWERS TO CHECK YOUR PROGRESS

(i)d (ii)b (iii)c (iv)a (v)b

(vi)b (vii)c (viii)a (ix)a (x)a

256 | P a g e

Space for learners: 2.9. POSSIBLE QUESTIONS

i. What are the properties of graph isomorphism?

ii. What is meant by subgraph? What are the different types of

subgraphs available?

iii. What is meant by an induced subgraph? Explain with an

example.

iv. What do mean by a walk of a graph? What is the difference

between a trail and a path?

v. What is the difference between a closed walk and a cycle?

vi. What is meant by components of a graph? How is it related to

graph connectedness?

vii. Find a trail, a cycle and a path in the graph given below.

viii. Verify if the sequence given below can be considered as a

trail. Justify your answer.

2�3�1�4�6�2�1

ix. Verify if the sequence given below can be considered as a

path. Justify your answer.

2�1�5�3�4�1

x. Verify if the sequence given below can be considered as a

cycle. Justify your answer.

2�3�1�4�6�2

2.10. REFERENCES AND FURTHER READINGS

 Graph Theory with Applications to Engineering and Computer

Science by Narsingh Deo, Published by Prentice Hall India

Learning Private Limited.

1

 2

 3 7

6 4

5

257 | P a g e

Space for learners:  Introduction to Graph Theory by Richard J Trudeau, Published by

Courier Corporation.

 A First Course in Graph Theory by Gary Chartrand and Ping

Zhang, Published by Courier Corporation.

 Graph theory with applications by John Adrian Bondy, Published

by Elsevier Publishing Company

258 | P a g e

Space for learners: UNIT 3: PATHS AND CIRCUITS-II

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Euler Graphs

 3.3.1 Definitions

 3.3.2 Theorems on Euler Graph

 3.3.3 Arbitrarily Traceable Graphs

3.4 Hamiltonian Graphs

 3.4.1 Definitions

 3.4.2 Theorems on Hamiltonian Circuits

3.5 Bipartite Graphs

 3.5.1 Properties of Bipartite Graph

 3.5.2 Matching in Bipartite Graph

3.6 Summing Up

3.7 Answers to Check Your Progress

3.8 Possible Questions

3.9 References and Suggested Reading

259 | P a g e

Space for learners: 3.1 INTRODUCTION

This unit focuses on three very important concepts of graph theory-

Euler graph, Hamiltonian graph, and Bipartite graph. Almost every

real-world problem involving discrete groupings of items, where the

focus is on the relationship between them rather than the intrinsic

features of the items, may be translated into one of these graphs.

Thus, these graphs find a wide range of applications such as in

computer science, communication science, economics, computer

graphics, electronic circuit design, mapping genomes, operation

research, error correction code etc. The goal of this unit is to

familiarize the students with the various terms and definitions

related to these graphs and to introduce some important theorems.

3.2 UNIT OBJECTIVES

After completing the module learners will be able to-

• define the terms Euler graph, Hamiltonian graph, and

Bipartite graph.

• determine whether a graph is an Euler graph or not.

• determine if a graph is a Hamiltonian graph.

• list the properties of the Bipartite graph.

• Determine whether there exists a perfect match in a graph or

not.

3.3 EULER GRAPHS

In 1736, Swiss mathematician Leonhard Euler in his famous paper,

where he solved the Königsberg bridge problem, raised an

interesting problem. The problem was, given a graph G, is it

possible to find a walk, with the same staring and the end vertices

and includes each edge of G exactly once. In the same paper, he also

presented the solution of the problem and introduced the concept of

the Euler graph which now is extensively used in many fields-

ranging from DNA sequence reconstruction to circuit designs.

260 | P a g e

Space for learners: 3.3.1 Definitions

• Euler line: in a given graph G, if there exists a closed walk

(having the same starting and end vertex) such that it contains

each edge of G exactly once, then the walk is called an Euler line.

• Euler Graph: A graph that contains an Euler line is called an

Euler Graph.

• Unicursal Line: A walk that contains all the edges of the graph

exactly once, with different starting and end vertices, is called a

unicursal line. A unicursal line is an Euler line with the dropped

constraint of the walk being closed. Hence, it is also referred to as

the open Euler line.

• Unicursal Graph: A graph that contains a unicursal line is called

the Unicursal Graph.

Example: The graphs in figure 3.1 are examples of Euler graphs.

The graph in figure 3.1(a) consists of four vertices and eight edges.

If we start from vertex A, the walk (A, B, C, D, B, A, C, D, A)

contains all the edges of the graph. Similarly, the graph in figure 3.1

(b) is also an Euler graph and one possible Euler line is-(A, B, C, D,

A, H, D, G, C, F, B, E, A) starting and ending with vertex A.

(a) (b)

Fig 3.1: Examples of Euler Graph
However, the graphs in figure 3.2 are not Euler graphs. It is not

possible to get any Euler line starting from any vertex of these

graphs.

The graphs in figure 3.3 are also not Euler graphs. But they are

unicursal graphs. For the graph in figure 3.3 (a), one possible

261 | P a g e

Space for learners: unicursal line is (A, B, C, A, D, C, E, D, C). Similarly, (B, F, A, B,

C, A, D, C, E, D) is a possible unicursal line for the graph in figure

3.3 (b).

(a) (b)

Fig 3.3: Example of Unicursal Graph and Unicursal Line

3.3.2 Theorems on Euler Graph

Theorem 3.1: A connected graph G is an Euler graph if and only if

each vertex in G is of even degree.

Proof:

Part A- Necessary:

Assume that G is a Euler graph. By the definition of the Euler graph,

there must exist a Euler line in G, which is a closed walk containing

each edge of G exactly once. This implies that- every time a vertex v

is encountered while tracing the Euler line, there must be-

1. A new edge incident on v which serves as the entry edge and

2. Another new edge incident out of v which serves as the exit

edge.

This holds true for each intermediate vertex v indicating that the

intermediate vertices must be of even degree. As an Euler line is a

closed walk, there exists only one terminal vertex which is both the

starting and the end vertex. Thus, the walk starts from the terminal

vertex and came back to the same vertex at the end. This indicates

that the terminal vertex must also be of even degree.

Thus, we may conclude that if a graph G is an Euler graph then each

vertex must be of even degree.

Part B- Sufficiency:

Assume that each vertex of G is of even degree. Let’s start with any

vertex v of Gand then arbitrarily trace a walk in such a way that an

edge is traversed only once. As each vertex of G is of even degree,

262 | P a g e

Space for learners: we can exit from any vertex u that we enter in this walk. The walk

may come to end only when we eventually reach v. Let this closed

walk be termed as h. If h contains all the edges of G then it's an

Euler line, otherwise, we will remove h from G, which results in a

subgraph G’. As the vertices in both h and G are of even degree, the

vertices in G ’ must also be of even degree. As the graph G was

connected, G’ must have at least one common vertex with G. Let this

common vertex be w. Now, starting from w, again we trace another

arbitrary walk h’ containing an edge of G’ only once. As h’ also has

vertices only of even degree, this walk may also come to an end only

on encountering w. Now we remove h’ from G’ and join with h,

which results in a new walk that starts and ends with v but with more

number of edges. We can apply this process recursively until we

obtain a closed walk that contains all the edges of G. ThusG is an

Euler graph.

Example: If we consider the graphs in figure 3.1(a), the graph has

four vertices(A, B, C, D) and eight edges. All the vertices of the

graph are of degree 4, which is even. Thus the graph is an Euler

graph.

(a) (b)

Fig 3.2: Examples of non-Euler Graph

Similarly, the graph in figure 3.1(b) has eight vertices (A, B, C, D,

E, F, G, H). The vertices A, B, C, and D are of degree 4; and the

vertices E, E, G, and H are of degree 2. Thus, all the vertices in this

graph are also of even degree. Thus, the graph is an Euler graph.

Now, if we consider the graphs in figure 3.2, there exists at least one

vertex in each graph which is of odd degree. For example, in the

graph of figure 3.2 (a), the degree of vertices A and B is 3.

Similarly, in graph 3.2 (b), the vertices C and D are of degree 3.

Thus, the graphs are not Euler graphs.

Königsberg bridge problem: The famous Königsberg bridge

problem stated that whether it is possible to cross the seven bridges,

connecting the two islands of the city Königsberg, exactly once in a

single traversal. The additional requirement of the problem was that

263 | P a g e

Space for learners: the traversal must end at the same point from where it started. The

problem may be represented graphically as in figure 3.4(a). An

equivalent representation of the same problem in terms of a graph is

given in figure 3.4(b).

As it can be seen from figure 3.4 (b) that the vertices of the graph

are not of even degree. Hence, it is not an Euler graph and a walk

that starts and ends at the same point, by crossing each edge of the

graph exactly once, is not possible.

Theorem 3.2: There exist exactly k edge-disjoint subgraphs, in a

graph G with exactly 2k odd degree vertices, such that each

subgraph is a unicursal graph and all the subgraphs together include

all the edges of G.

Proof: Let the odd degree vertices in G be (v1, v2, v3, ……., vk; u1, u2,

u3….., uk). Now, let’s add k edges (e1, e2, e3, …..ek) in between a pair

of vertices (v1, u1), (v2, u2), (v3, u3)….. and (vk, uk). This results in a

new graph G’ where each vertex is of even degree. Thus, G’ is an

Euler graph.

Let, � be an Euler line in G’. If we now deleting e1from � will

result in a unicursal line �. Deleting e2 from that from �will split it

into two unicursal lines �1 and �’; removal of e3 from whichever

unicursal line that it belongs to, will split that line again into two

more unicursal lines resulting in a total 3 unicursal lines. Continuing

this process, until we delete all other remaining extra k-3 edges, i.e.,

e4, e5,…..ek will finally result in k unicursal lines. As we removed

Image

Fig 3.4: Graphical representation of Königsberg bridge problem

264 | P a g e

Space for learners: only the extra edges that we had added to G, all the unicursal lines

together will still contain all the original edges of G.

Theorem 3.3: For a connected graph to be an Euler Graph, if and

only if it contains edge-disjoint circuits.

Proof:

If Part:

Let’s G is a connected graph containing circuits. All the circuits in G

are edge-disjoint and thus G can be decomposed into circuits. As in

a circuit, all the vertices are of degree 2, it can be concluded that all

the vertices in G have even degree. Hence, G is an Euler graph.

Only if path:

Let G is a Euler graph. Now let’s randomly take any vertex v1 from

G, it must be involved with at least two edges as it is of even degree.

Let one of these edges be (v1, v2) incident on the vertex v2. Due to

the same reason, v2 must also be part of at least two edges. Let (v2,

v3) be an edge connecting the vertices v2 and v3. If we continue the

process, it will end only when we reach the starting vertex v1

resulting in a circuit C. Now, removing C from G will result in a

subgraph G’ where all the vertices are of even degree. Thus, we

can repeat the same process in G’ and remove another circuit from

it. This we can continue until we get a Null graph.

265 | P a g e

Space for learners: 3.3.3 Arbitrarily Traceable Graphs

In an Euler graph, starting from any vertex v, if we start tracing the

edges in such a way that no edge is repeated, it may not always

result in an Euler line. For example, consider the graph in figure 3.5.

If we now start from vertex A and start tracing the edges in the

sequence (A, C, B, A); we will get back to the vertex A ,after which

we don’t have any option to visit a new edge. However, the

sequence (A, B, C, A) is a circuit, not an Euler line as it does not

cover all the edges of the graph. On the contrary, if we choose the

starting vertex as C, and take a walk by visiting a new edge every

time, we are guaranteed to get an Euler line, does not matter in what

sequence we visit the edges. One such sequence is (C, E, D, C, B, A,

C). From this example, it is clear that in an Euler graph, starting

from any random vertex v, if we take an arbitrary walk by simply

visiting a new edge every time, we may not get an Euler line.

For any vertex u in an Euler Graph G, if it is always possible to start

from that vertex and then take an arbitrary walk by randomly

selecting a new edge every time, and get back to u by traversing all

the edges in G, then G is said to be arbitrarily traceable with respect

to u.

Theorem 3.4: A Euler graph G is arbitrarily traceable with respect

to a vertex v, if and only if v is a part of every circuit in G.

Proof: Let the Eulerian graph G can be traced arbitrarily from a

vertex v. Assume that circuit C does not pass throughv. Let H be a

subgraph of G that does not contain the edges of C. As G is Euler

Fig 3.5: Arbitrarily Traceable Graph with respect to Vertex ‘C’

266 | P a g e

Space for learners: graph all its vertices are of even degree and C being a circuit all its

vertices are also of degree 2. Therefore, all the vertices in H also

have an even degree meaning that it's an Euler graph. So, in H if we

start from v, then it is possible to traverse all the edges of H exactly

once and then come back to v. Now, according to our initial

assumption, as C does not contain v, this walk cannot be extended to

contain the edges of C.

Example: The graph in figure 3.5 contains two circuits C1(A, B, C,

A) and C2(C, D, E, C). As we can see that C is the only vertex that

is common in both the circuits, the graph is arbitrarily traceable with

respect to C only. For the other vertices namely- A, B, D, and E we

may not always get an Euler line by randomly walking through a

new edge every time.

3.4 HAMILTONIAN GRAPHS

Sir William Hamilton, an Irish mathematician (1805-1865), created

the Icosian game, wherea dodecahedron was used with each of the

20 vertices labelled with the name of a different capital city across

the world. The objective of the game was to create a closed

walkacross all the cities using the edges of the dodecahedron that

CHECK YOUR PROGRESS

1. Fill in the blanks

a. A connected graph is an Euler graph if and only if all its

vertices are of ______ degree.

b. In a graph G, with 6 odd degree vertices, there exist at least

_____ subgraphs such that each subgraph is a unicursal

graph and all the subgraphs together include all the edges of

G.

2. State true or false:

a. An Euler graph is arbitrarily traceable with respect to any

vertex in the graph.

b. In a graph G, the sum of the degrees of vertices is18. G is an

Euler graph.

c. A graph where G all the vertices are of degree 6. The graph

is an Euler graph.

267 | P a g e

Space for learners: visited each city precisely once, beginning and finishing in the same

city. The term -“Hamiltonian Graph” originated from this problem

and became one of the most important and interesting concepts in

Graph Theory.

3.4.1 Definitions

• HAMILTONIAN CIRCUITS: In a graph G, if there exists a

circuit that passes through all the vertices of G exactly once, then

the circuit is called a Hamiltonian Circuit. If G contains n

vertices, then a Hamiltonian circuit of G will always contain

exactly n edges.

• Hamiltonian Graph: A graph that possesses a Hamiltonian

circuit is called a Hamiltonian graph.

• HAMILTONIAN PATHS : If there exists apathin a graph G,

such that it starts with a vertex v and ends with vertex u;

containing all the vertices of G exactly once, then that path is

called Hamiltonian path. Dropping an edge from a Hamiltonian

circuit results in a Hamiltonian path. In a Hamiltonian graph G,

each Hamiltonian path contains exactly n-1 edges.

Example: Consider the graph in figure 3.6(a). It contains five

vertices and 8 edges. The graph is Hamiltonian and a possible

Hamiltonian circuit is shown in figure 3.6 (b). The figure in 3.6(c)

presents a possible Hamiltonian path for the graph.

(a) (b) (c)

Fig 3.7: Example of Hamiltonian graph and non-Hamiltonian Graph

268 | P a g e

Space for learners:

(a) (b) (c)

Fig 3.6: Examples of Hamiltonian graph, Hamiltonian circuit and Hamiltonian path

We may observe that the Hamiltonian Circuit contains all the 5

vertices of the original graph and has exactly 5 edges. The

Hamiltonian path on the other hand contains exactly 4 edges and 5

vertices.

3.4.2 Theorems on Hamiltonian Circuits

Theorem 3.5 (Dirac’s Theorem): In a simple graph G, with n

vertices (n≥3), if the degree of each vertex is greater than or equal to

n/2, then G is a Hamiltonian graph.

Example: The graph in figure 3.7(a) has 6 vertices. Each vertex in

the graph has degree 3≥ (6/2). Thus the graph is Hamiltonian. Figure

3.7(b) presents a Hamiltonian circuit for the same. Now, if we

consider the graph in figure 3.7 (c) it has 5 vertices. The degree of

the vertex E is 2 which is less than 5/2. Thus this graph is not

Hamiltonian.

Theorem 3.6 (Oreo’s theorem): If in a simple Graph G with n

vertices, where n ≥2, for each pair of non-adjacent vertices u and v,

degree(u)+degree(v)≥n, then the graph G is a Hamiltonian graph.

Example: Consider the graph in figure 3.6 (a). The pairs of non-

adjacent vertices in this graph are- (A, C), (A, F), (B, F), (B, D), (C,

269 | P a g e

Space for learners: E), and (D, E). All the pair of vertices has a sum of degrees equal to

6≥6. Thus the graph is Hamiltonian.

For the graph in figure 3.7(c), (E, D) is a non-adjacent pair of

vertices. The sump of degrees of the vertices E and D is 4 which is

less than 5. Thus we can claim that the graph is not a Hamiltonian

graph.

3.5 BIPARTITE GRAPHS

In graph theory, a graph G=(V, E) is said to be a bipartite graph if,

the set of vertices V can be divided into two disjoint sets V1 and V2

such that each edge e belonging to E, connects a pair of vertices (u,

v) such that u∈V1 and v∈V2. In other words, there does not exist

any edge in G that connects vertices of the same set.

CHECK YOUR PROGRESS

3. Fill in the blanks

a. A Hamiltonian path traverse each vertex of the graph

exactly______ .

b. A Hamiltonian path for a Hamiltonian graph with 6 vertices

has exactly _____ edges.

4. State true or false:

a. A graph G has 6 vertices with degrees 2, 2, 4, 1, 3, 3 and 3.

The graph is a Hamiltonian graph.

b. A Hamiltonian circuit contains all the edges of the graph.

270 | P a g e

Space for learners:

(a) (b) (c)

Fig 3.8: Examples of (a) Bipartite graph, (b) Balanced Bipartite graph and (c) Complete Bipartite

Graph

Example: The graphs in figure 3.8 are bipartite. In all the graphs the

set of vertices can be divided into two disjoint sets and none of the

edges connects vertices from the same set. In graph 3.8(a) , the

bipartition of the vertex set is V1={A,B,C,D} and V2={P, Q,R}. As

we may see that there no edge connecting two vertices from V1 or

V2. For the graph in figure 3.8(b), the two disjoint sets of vertices

are V1={A, B, C, D} and V2={P, Q, R, S}. In the last graph in

figure 3.8(c) the bipartition of the vertices is V1={A, B, C} and

V2={P, Q, R}.

Following are some terms related to bipartite graph-

• Balanced Bipartite Graph: If the two sets V1 and V2 have

the same number of vertices then, the graph G is called a

balanced bipartite graph.

• Complete Bipartite Graph: A bipartite graph, G is referred

to as a complete bipartite graph if each vertex in one set is

connected to every vertex in the other set. In other words for

each vertex belong to V1, there exists an edge to each v

belonging to V2 and vice versa. A complete bipartite graph is

denoted by Km,n where m and n are the cardinalities (number

of vertices) of set V1 and V2 respectively.

Example: The graph in figure 3.8(b) is a balanced bipartite graph as

the bipartition of the graph V1 and V2 contains an equal number of

271 | P a g e

Space for learners: vertices. The graph in figure 3.8(c) is an example of a complete

bipartite graph as each vertex in V1 is connected to all the vertices in

V2.

3.5.1 Properties of Bipartite Graph

Lemma 3.1: In a bipartite graph G with the vertex petitions sets V1

and V2, ∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�)

Proof: Let’s G’ be a subgraph of G that contains only the vertices of

G and doesn’t contain contain any edge. Hence, initially for this

subgraph, the degree of each vertex is zero. As G is a bipartite

graph, each edge connects a vertex in V1 and to a vertex in V2.

Thus, if we now add an edge of G to G’, say between the vertex

u∈ V1 and v∈ V2, this will increase the sums of degrees of the

vertices in both sets to 1. Thus, ∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�) = 1

after adding a single edge. Adding the second edge will connect

another vertex from V1 to a vertex in V2. This will further increase

the sums of the degrees of the vertices by 1. Thus, after adding the

second edge, ∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�) = 2 . Since, every edge

contributes exactly one to the sum of the degrees of vertices in each

side, continuing the process until we add all the edges of G will still

maintain the equality.

Example: For the graph in figure 3.8(a), the bipartition of the

vertices are V1={A, B, C, D} and V2={P, Q, R}. The sum of

degrees of vertices in V1

=deg(A)+deg(B)+deg(C)+deg(D)=1+1+2+1=5. The sum of degrees

of vertices in V2 = deg(P)+deg(Q)+deg(R)=2+1+2=5. Thus we may

see that the sum of degrees of vertices in both the sets is the same.

We can establish the same for the other two graphs in figure 3.8.

Theorem 3.7: If G is a k-regular (k>0) bipartite graph with

bipartition V1 and V2, then |V1|=|V2|, i.e. number of vertices in V1

must be equal to number of vertices in V2.

Proof: A graph is k-regular if all the vertices in the graph are of

degree k. As, G is a k-regular bipartite graph, all the vertices in G are

of equal degree, i.e, k. Thus,

272 | P a g e

Space for learners: ∑
�∈�1

�	
(�) = �|�1| and ∑
�∈�2

�	
(�) = �|�2|.

Form the Lemma 3.1-

∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�).

This implies that,

�|�1| = �|�2|⇒ |V1|=|V2|

Example: The bipartite graph in figure 3.8(c) is a 3-regular graph,

as all the vertices in that graph are of degree 3. The bipartition of the

graph is V1={A, B, C} and V2={P, Q, R}. As we may see that both

the partitions have an equal number of vertices, i.e. 3.

Theorem 3.8: All the circuits in a bipartite graph are of even length.

Proof:Let G be a bipartitely graph with set of vertices partitioned

into V1 and V2. Let, C=(u, v1,v2….v2k, u) be a circuit in G with an

odd length 2k+1. Let the vertex u∈ V1. As G is bipartite, u must be

connected to a vertex in V2.

Now, starting from u, following the sequence in C, the first edge

connects u to v1. Thusv1 must belong to V2. The second edge

connects vertex v1 with v2. Using the same argument we can say that

v2∈ V1. If we continue following the sequence, the 2kth edge in C

connects the vertex v2k-1∈ V2 and v2k∈ V1. The final edge 2k+1

connects v2k∈ V1 to u∈ V2, which contradicts our initial

assumption that u∈ V1. Thus, we can conclude that all the circuits

in a bipartite graph must be of even length.

Theorem 3.9: Every subgraph of a bipartite graph is a bipartite

graph,

Proof: Let G be a bipartite graph with the set of vertices partitioned

into V1 and V2. Let G’ be a valid subgraph of G. Then let V1’=V1

∩ G’ and V2’=V2 ∩ G’. If (V1’, V2’) is an invalid bipartition of G’

then there must exist an edge that connects the vertices u and v such

that u, v∈ V1’ or u,v∈ V2’. However, as G’ is a valid subgraph of

G it must not contain any edge that is not in G. Thus, the edge (u, v)

is not a valid edge which implies that V1’ and V2’ is a valid

bipartition. So, G’ is also a bipartite graph.

273 | P a g e

Space for learners: Theorem 3.10: A bipartite graph with at least one edge is 2-

colourable.

Proof: Let G be a bipartite graph with a set of vertices partitioned

into V1 and V2. None of the vertices in V1 are adjacent to each

other. Thus, they can be coloured with 1-colour, say colour-1. The

same is true for the vertices in set V2 and all the vertices in set V2

are coloured with the same colour, colour-2.

Now, we will have to prove that colour-1 and colour -2 cannot be

the same. As there exist a positive number of edges in the graph,

there is at least one edge in the bipartite graph that connects a vertex

u in set V1 to a vertex v in V2. This implies that u and v are adjacent

to each other and thus they cannot be coloured with the same colour.

Thus colour -1 and colour-2 must be different.

Example: Consider the graph in figure 3.8(a). It can be coloured

using 2-colours as shown in figure 3.9. In this case, we have used

red and green colours. As we may observe that none of the adjacent

vertices are coloured with the same colour. The red colour has been

used for the vertices A, B, C, and D, which are not adjacent to each

other. The green colour has been used for the vertices P, Q, and R;

none of which are adjacent to each other. Thus with two colours, we

can properly colour the graph. The same can be shown for the other

two graphs in figure 3.8.

Image

Figure 3.9: Example of

colouring in a bipartite graph

(a) (b)

Fig 3.10: Example of Matching

274 | P a g e

Space for learners:

3.5.2 Matching in Bipartite Graph

In a graph G, a matching M is a subgraph, with a set of edges such

that no two edges have a common vertex. Thus, in a matching each

vertex has degree exactly 1.

A matching M is said to be maximal if it contains the largest

possible number of edges from G. A perfect matching is a maximal

matching that contains all the vertices of G.

The graph in figure 3.10(a) is a matching for graph 3.8(a). It is also

the maximal matching for the graph. However, it is not a perfect

matching as it does not include the vertex D. On the other hand, the

graph in figure 3.10(b) is an example of matching for the graph in

figure 3.8(c). It is a perfect matching as it includes all the vertices of

the graph.

Lemma 3.2: In bipartite graph G, with bipartition V1 and V2, there

does not exist a perfect match if |V1|≠|V2|

Proof: Suppose, there exists a perfect matching M for G. Now, let's

construct a subgraph G’ which contains all the vertices of G and the

edges of M. According to theorem 3.9, G’ is also a bipartite graph.

Since G’ contains the edges of M, all the vertices in G’ are of degree

1. Thus, G’ is a 1-regular bipartite graph, and applying the theorem

3.7, we can conclude that |V1|=|V2|.

Example: It is not possible to have a perfect match for the graph in

figure 3.8(a), as the bipartition does not contain an equal number of

vertices. On the contrary, if we examine the graph in figure 3.8(c), it

CHECK YOUR PROGRESS

5. Fill in the blanks

a. A bipartite graph can be coloured using ___ colours .

b. In a bipartite graph, the sum of degrees of vertices in one set is

8. The same of the other set is____.

6. State true or false:

a. A 6- regular bipartite graph contains equal number of vertices

in both the set of bipartition.

b. The circuits of a bipartite graph can be of odd as well as of

even length.

275 | P a g e

Space for learners: contains an equal number of vertices in both sets. Thus, a perfect

match is possible in this graph. The graph in figure 3.10(b) is an

example of a perfect match for this graph.

3.6 SUMMING UP

• In this module we have discussed - Euler graph, Hamiltonian

graph, and Bipartite graph.

• An Euler line is a closed walk that contains all the edges of the

graph exactly once. A graph containing an Euler line is an Euler

graph.

• A graph is an Euler graph if and only if all the vertices are of

even degree.

• A unicursal line is an open Euler line.

• A connected graph is an Euler graph if and only f it contains

edge-disjoint circuits.

• An Euler graph is arbitrarily traceable with respect to a vertex v

, if v is a part of every circuit in the graph.

• A Hamiltonian circuit contains all the vertices of a graph

exactly once. A graph containing a Hamiltonian circuit is called

a Hamiltonian graph.

• Using Dirac’s theorem and Oreo’s theorem we can check if a

graph is Hamiltonian or not.

• A bipartite graph, G, is a graph, where the vertices can be

partitioned into two disjoint sets such that no edge of G

connects two vertices from the same set.

• The subgraph of a bipartite graph is also a bipartite graph.

• A bipartite graph is 2-colourable.

• In a bipartite graph, a perfect match exists if both set of vertices

have equal cardinality.

3.7 ANSWERS TO CHECK YOUR PROGRESS

1.

a. Even

276 | P a g e

Space for learners: b. 3

2.

a. False

b. Flase.

c. True.

3.

a. once

b. 5

4.

a. False.

b. False.

5.

a. 2

b. 8

6.

a. True

b. False

3.8 POSSIBLE QUESTIONS

1. Short Answer Type Questions:

a. Define Hamiltonian graph. List some of its applications.

b. Define Euler graph and list some its applications.

c. For a graph to be arbitrarily traceable with respect to a vertex

v, what constraint v must satisfy?

d. Define unicursal line. Why is it also called an open Euler

line?

e. What is a complete bipartite graph. Give an example.

2. Long Answer Type Questions:

a. State the Königsberg bridge problem and illustrate Euler’s

solution to this problem.

b. What is a matching? Explain with an examples the concept

of perfect matching. Prove that perfect matching is not

possible in a bipartite graph having different number of

vertices in the bipartition.

277 | P a g e

Space for learners: c. Discuss the Dirac’s theorem and Oreo’s theorem for

Hamiltonian gram with the help of examples.

d. State some applications of Bipartite graph. Prove that a

bipartite graph is 2-colourable.

e. Prove that a subgraph of a bipartite graph is also a bipartite

graph.

3.9 REFERENCES AND SUGGESTED READINGS

• M.E Van Valkenburg, “Network Analysis”, Prentice Hall, 2006.

• Abhijit Chakrabarti, “Circuit Theory (Analysis and Synthesis)”,

Dhanpat Rai & Co, 7th Edition, 2018.

• C. K Alexander and M.N.O Sadiku, “Electric Circuits”, McGraw

Hill Education, 2004

278 | P a g e

Space for learners: UNIT 4: TREES

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Properties of Trees

4.4 Distance and Center of Trees

4.5 Rooted and Binary Trees

4.6 Counting Binary Trees

4.7 Fundamental Circuit

4.8Spanning Trees in Weighted Graphs

4.9 Cut Sets

4.10 Summing Up

 4.11 Answers to Check Your Progress

4.12Possible Questions

 4.13 References and Suggested Readings

4.1 INTRODUCTION

A tree is a nonlinear discrete data structure. This unit gives an

overview of the tree and its properties. The types of trees such as

rooted and binary trees are also discussed in this unit. A binary

tree has a maximum of two leaf nodes. The counting tree with its

properties is also reported in the unit. The concept of a circuit

along with the minimum spanning tree is also discussed in the

unit. A minimum spanning tree contains the minimum weight of

the graph. The graph cut set and the weighted graph are also

discussed in this unit.

4.2 UNIT OBJECTIVES

After going through this unit, you will be able to know

 About trees and their properties.

 About the rooted tree, counting tree, and binary trees.

279 | P a g e

Space for learners:  About the circuit and weighted graph.

 About the spanning tree.

4.3 TREES AND THEIR PROPERTIES

The tree is a discrete nonlinear structure that represents

hierarchical relationships between nodes. It is a connected and

acyclic undirected graph. There is a path between the nodes of a

tree. A tree with n nodes contains (n-1) numbers of edges. Every

node has a degree. The node which has o degree, known as the

root of the tree. The node with degrees 1 and 2 is known as the

leaf and internal node of the tree.

Fig. 4.1: Example of a tree

 The properties of a tree are explained below:

i) A tree is a nonlinear data structure.

ii) Every tree has a root node with degree 2.

iii) The degree of a leaf node is 1.

iv) The degree of an internal node is at most 2.

v) Every tree has n-1 numbers of edges.

4.4 DISTANCE AND CENTER OF TREES

The vertex with the minimal eccentricity of a tree is known as the

center of the tree. The eccentricity of a vertex is the maximum

distance from that respective vertex to other vertexes in the tree

and it is the diameter of the tree. Some trees may contain only one

center and this type of tree is known as a central tree. Some trees

280 | P a g e

Space for learners: may contain more than one tree and this type of tree is known as a

bi-central tree.

To understand the Center of a tree, let’s consider the following

tree.

In the above tree, five nodes are present. Initially, a node with

degree 1 and its adjacent edges should remove from the tree to

find the center of the tree. So, you remove node a and e as both

nodes have degree 0. After removing a and e along with its

adjacent edges, the resultant graph will be as follows.

Then apply the same procedure on the graph and remove b and d

from the graph, Final the graph contains only one vertex and that

is C. So, it is a central tree.

4.5 ROOTED AND BINARY TREE

A rooted tree is a connected and acyclic graph. The tree has a

special node known as the root of the tree and each node is

directly or indirectly connected to the root of the tree where

children of the internal nodes are ordered. The internal node of the

CHECK YOUR PROGRESS - I

1. What is degree of a tree?

2. What is te degree of the root node?

3. How many edges are there in a tree of n nodes?

4. The following tree is central (True or False).

281 | P a g e

Space for learners: rooted tree may have fewer or exactly m children. The rooted tree

in which m =2, is known as the binary tree.

Fig. 4.2 Rooted tree

The Binary tree is that rooted that has a maximum of two children.

It means that each node can have either 0, 1, or 2 children.

Fig. 4.3 Rooted tree

In Fig. 4.3, the root node is A and it has a maximum of 2 children,

i.e., B and C. Node B has only one child and node C have two

children. The leaf nodes D, E, and F have no children. So, it is a

binary tree.

The properties of the binary tree are presented below.

i) The maximum number of nodes in a level “i” is 2i.

ii) The height of the tree is the longest path from the root node

to the leaf node.

iii) The minimum number of nodes at height h is h+1.

iv) The maximum of nodes in a binary tree of height h is 2(h+1)-1

v) The height and number of nodes of the binary tree are

inversely related.

The height of a binary tree with n nodes can be calculated as

follows.

As you know that n = 2h+1 -1

282 | P a g e

Space for learners:  n+1 = 2h+1

 Now Taking log on both the sides

 log2(n+1) = log2(2h+1)

 log2(n+1) = h+1

 h = log2(n+1) –1

Depending on the number of children of a node, the binary tree is

further divided into the following categories.

i) Full or Strict Binary Tree:

 The full or strict binary tree is one that each node must have

either 0 or 2 children. The full binary tree can also be defined

as the tree in which each node must contain 2 children except

the leaf nodes.

ii) Complete Binary Tree:

 The complete binary tree is one where all the nodes In a

complete binary tree, the nodes should be added from the left.

iii) Perfect Binary Tree:

 A perfect binary tree is one where all the internal nodes have

2 children, and all the leaf nodes are at the same level.

iv) Degenerate Binary Tree:

 In this binary tree, the internal nodes have only one child.

v) Balanced Binary Tree:

 The balanced binary tree is one where the left and right

subtree differ by at most 1. For example, AVL and Red-Black

trees.

4.6 COUNTING BINARY TREE

Let’s have a binary tree. How do you count the number of nodes

and the nodes have two children (two children) without or without

using recursion.

i) Let’s you have a binary tree, and you can count all the

nodes in the binary tree using the following approach

a. Do post-order traversal of the tree.

283 | P a g e

Space for learners: b. If the root is null, then perform return 0.

c. If the root is not null then you can make a recursive

call to the left child and right child. The result of

these with 1 will be return

Fig. 4.4Binary tree

In Fig. 4.4, the number of nodes is 3.

The number of nodes that have both children or null can be count

using the following approach.

1) Create an empty Queue and push the root node to Queue.

2) Do following while Queue is not empty.

a. Pop an item from Queue and process it.

i) If it is a full node then increment the counter.

b. Push left child of the popped item to Queue, if available.

c. Push the right child of the popped item to Queue, if

available.

4.7 FUNDAMENTAL CIRCUITS

The fundamental circuit is related to the spanning tree. Let you

have a connected graph G and T be a spanning tree. Then a circuit

formed by adding a chord T in the spanning tree T is known as a

fundamental circuit.

To understand it, lets you have a graph G. Now, form a spanning

tree T from the graph. A spanning tree is a that tree which contains

all vertices of the graph without any cycle.

284 | P a g e

Space for learners:

Fig. 4.5Example of Graph

Now, the spanning of the graph is

Fig. 4.6 Example of Spanning Tree

Now, you have to find the branch and chord set from the spanning

tree. The branch set is that set that contains the edges of the

spanning tree. The chord set is that one which does not present in

the spanning tree.

So, the branch set = {AB, BC, BD, DE}

The chord set = {AC, CE}

Now, if you add AC in the spanning tree, then it will form a circuit

(AB, BC, AC). So it is known as a fundamental circuit. Again if

we add CE, then it will create another fundamental circuit (BC,

CE, ED, DB).

285 | P a g e

Space for learners:

4.8 SPANNING-TREE IN WEIGHTED GRAPHS

A spanning tree contains all vertices of a graph without having any

cycles. A spanning tree cannot be disconnected.

So, you can say that every connected and undirected graph has

atleast one spanning tree. Let’s you have the following graph.

Fig. 4.7Example of Graph

In the graph, four vertices (A, B, C, and D) are present. From the

graph, you can draw the following four spanning trees.

Fig. 4.8 Different Spanning Tree of Fig. 4.7

CHECK YOUR PROGRESS- II

5. What is rooted tree?

6. What is the maximum number of node associated with a

height h?

7. What is the height of a binary tree with n number of

nodes?

8. Is perfect and full binary is same?

9. Can you form a fundamental ciruit from a spanning

tree?

10. What is chord and branch set?

286 | P a g e

Space for learners: The above is graph is not complete. So in this graph, you can

apply the Kirchhoff theorem to count the number of spanning

trees. But if you have a complete undirected graph, you can count

the number of spanning-tree using the formula nn-2. Let’s consider

the following graph.

Fig. 4.9Example of Graph

The above graph is completely undirected. So, you can draw

nn-2 = 33-2 = 3. The spanning trees are as follows.

Fig. 4.10Different Spanning Tree of Fig. 4.9

The properties of a Spanning tree are presented below.

i) A connected graph can have more than one spanning tree.

ii) All possible spanning trees must have many edges and

vertices.

iii) A spanning tree does not have a closed circuit.

iv) A spanning will be disconnected after removing one edge.

v) The addition of an extra edge in the spanning tree creates

the fundamental circuit.

A minimum spanning tree contains the minimum cost of the

graph. A minimum spanning tree can be found in a weighted

graph. A weighted graph must have one weight associated with

each edge. When you create spanning trees from this type of

graph, one spanning must have minimum weight, which is known

as a minimum spanning tree (MST).

You can find the minimum spanning tree from a graph using the

Kruskal Algorithm.

287 | P a g e

Space for learners: Let's you have the following graph.

Fig. 4.11Example of Graph

In the above graph, three edges are there which have edge weights

1, 2, and 3, accordingly. So, this is a weighted graph. From the

above-weighted graph, you can draw the following spanning trees.

Fig. 4.12Different Spanning Tree with the weight of Fig. 4.11

In the above three spanning, the first spanning tree has the total

weight = 1 + 2 = 3. The second spanning tree has the total weight

= 2 + 3 = 5. The last spanning tree has the total weight = 1 + 3 =4.

So, now, you have three spanning three with three different

weights. Among all, the first spanning tree has the minimum

weight. So it is known as MST.

As mentioned above, you can find the MST using Kruskal's

algorithm as follows.

i) Sort all the edge weight in ascending order.

ii) Consider and add one by one edge from the sorted list.

iii) Do not add an edge it creates a cycle.

If you apply the above steps in the above graph, then the

execution will be as follows.

i) After sorting the edge, you will get 1, 2, 3.

ii) Now consider the first edge weight 1 and add it to the

tree, as it will not create any cycle.

288 | P a g e

Space for learners: iii) Then you can add edge 2, as it will also not create any

cycle.

iv) Finally, consider edge weight 3. But you can not add it

as it will create a cycle.

So, your spanning tree will contain only the edge weight 1 and

2. So, the MST is 3.

4.9 CUT SETS

Before discussing the cutsets, you first know about the cut edge

and cut vertice. A cut vertice is that upon removing of which the

graph will be a disconnect. Like vertice, upon removing of which

edge, two or more graphs will be a disconnect, is known as the cut

edge.

Let’s have a graph G (V, E). A subset EE of E is called a cut set

of G, if deletion of all the edges of EE from G, the G will

disconnect. If deleting edges from a graph makes it disconnected,

is known as cut sets.

Fig. 4.13Example of Graph

In the above graph, the graph contains 4 edges i.e., {E1, E2, E3,

E4}. Let the cut set = { E1, E4}. Upon removing E1, and E4 from

the graph will look like two graphs (below). So, it is the cut set.

Fig. 4.14Example of Cut set

289 | P a g e

Space for learners: Depending on the size of the cut, a cut set may be minimum, and

maximum. If the size of the cut set is minimum as compared to the

other cut set, then it is minimum otherwise the cut set may equal

or maximum.

4.10 SUMMING UP

i) The tree is a discrete nonlinear structure that represents

hierarchical relationships between nodes.

ii) A tree with n nodes contains (n-1) numbers of edges. Every

node has a degree.

iii) Every tree has a root node with degree 2.

iv) The degree of an internal node is at most 2.

v) The vertex with the minimal eccentricity of a tree is known

as the center of the tree.

vi) Some trees may contain only one center and this type of tree

is known as a central tree. Some trees may contain more

than one tree and this type of tree is known as a bi-central

tree.

vii) A rooted tree is a connected and acyclic graph. The tree has

a special node known as the root of the tree and each node is

directly or indirectly connected to the root of the tree.

viii) The Binary tree is that rooted that hasa maximum of two

children. It means that each node can have either 0, 1, or 2

children.

ix) The minimum number of nodes at height h is h+1.

x) The maximum of nodes in a binary tree of height h is

2^(h+1)-1

CHECK YOUR PROGRESS - III

11. What is MST?

12. Which algorithm is used to count the number of spanning

tree of a graph?

13. A Spanning has a cycle (True or False).

14. What is cut vertex and cut edge?

290 | P a g e

Space for learners: xi) The full or strict binary tree is one that each node must have

either 0 or 2 children.

xii) A perfect binary tree is one where all the internal nodes have

2 children, and all the leaf nodes are at the same level.

xiii) The fundamental circuit is related to the spanning tree. Let

you have a connected graph G and T be a spanning tree.

Then a circuit formed by adding a chord T in the spanning

tree T is known as a fundamental circuit.

xiv) A spanning tree contains all vertices of a graph without

having any cycles.

xv) A minimum spanning tree contains the minimum cost of the

graph. A minimum spanning tree can be found in a weighted

graph.

xvi) A cut vertice is that upon removing of which the graph will

be a disconnect. Like vertice, upon removing of which edge,

two or more graphs will be a disconnect, is known as the cut

edge.

4.11 ANSWER TO CHECK YOUR PROGRESS

1) The number of edges associated with a vertex is known as the

degree of a vertex.

2) 2

3) n-1

4) False

5) A rooted tree is a connected and acyclic graph. The tree has a

special node known as the root of the tree and each node is

directly or indirectly connected to the root of the treewhere

children of the internal nodes are ordered.

6) 2(h+1)-1

7) h = log2(n+1) – 1

8) No

9) Yes

291 | P a g e

Space for learners: 10) The branch set is that set that contains the edges of the

spanning tree. The chord set is that one which does not

present in the spanning tree.

11) A minimum spanning tree contains the minimum cost of the

graph. A minimum spanning tree can be found in a weighted

graph.

12) Kirchhoff theorem.

13) False

14) A cut vertice is that upon removing of which the graph will be

a disconnect. Like vertice, upon removing of which edge, two

or more graphs will be a disconnect, is known as the cut edge.

4.12 POSSIBLE QUESTIONS

Short answer type questions:

i) What is a tree? What are the properties ofa tree?

ii) What is the center of the tree?

iii) What is the difference between centric and bicentric trees?

iv) What is a binary tree?

v) What are the properties of a binary tree?

vi) Show that the height of a binary tree of node n is h =

log2(n+1) – 1

vii) What is the difference between a full and perfect binary

tree?

viii) How do you count the number of nodes in a binary tree?

ix) What isa fundamental circuit? How do you form a

fundamental circuit from a spanning tree?

x) What is MST?

xi) How many spanning trees will be formed from a connected

graph with n vertices?

xii) What are the properties of a spanning tree?

xiii) What is cur set?

Long answer type questions:

292 | P a g e

Space for learners: i) Explain the MST with an example.

ii) Find the MST for the following tree

iii) Explain binary trees with their types with examples.

4.13 REFERENCES AND SUGGESTED

READINGS

 Data Structures Using C by Reema Theraja Publisher: Oxford

Publication

293 | P a g e

Space for learners:

UNIT 5: GRAPH REPRESENTATION

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Matrix Representation of Graphs

5.4 Adjacency Matrix

5.5 Adjacency List

5.6 Incidence Matrix

5.7 Basic Concept of Graph Coloring, Covering and Partitioning

5.8 Summing Up

5.9 Answers to Check Your Progress

5.10 Possible Questions

5.11 References and Suggested Reading

5.1 INTRODUCTION

Graph theory has evolved into a powerful tool that can be used to a

wide range of areas. Engineering mathematics, computer

programming, networking and marketing are only a few of them.

Paths generated by travelling along the edges of a graph can be used

to simulate a variety of issues. Models that incorporate pathways in

graphs can be used to address problems such as efficiently designing

routes for parcel delivery, waste collection, and finding shortest path.

Graphs may grow exceedingly complicated when faced with these

types of problems, necessitating a more efficient means of expressing

them in practice. The adjacency matrix and adjacency list are used to

solve this problem.

5.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 To understand and apply the fundamental concepts in graph

representations

294 | P a g e

Space for learners:  To explain the basic concepts on graph colouring and solving

practical problems.

 To explain the basic concepts on graph covering and solving

problems.

5.3 MATRIX REPRESENTATION OF GRAPHS

In a computer, there are several methods to represent a graph. Graphs

are typically depicted diagrammatically, although this is only viable

when the number of vertices and edges is minimal. As a result, the

notion of graph matrix representation is established.The computation

of paths and cycles in graphs problems such as communication

networks, power distribution, and transportation, among others, is one

of the primary advantages of this representation. However, this format

has the drawback of reducing the visual appeal of graphs.

5.4 ADJACENCY MATRIX

The most convenient way of representing any graph is the matrix

representation. It is a square matrix of order (n xn) where n is the

number of vertices in the graph. Generally represented by M[aij]

where aijis the ithrow, jth column element. The general form of

adjacency matrix is given below.

Where, aij

=

1 ; if an edge in the graph between the vertex vi and vj

0 ; otherwise

295 | P a g e

Space for learners:

The matrix is termed as adjacency matrix, because each entry in the

matrix stores the information between the vertices as adjacent or not.

The entry can be either 0 or 1.

Figure 5.1: A Simple Graph

Consider the graph, G given in Figure 5.1, the adjacency matrix with

respect to the vertices a, b, c, d, e is shown below. As there is an edge

between vertex ‘a’ and vertex ‘b’, the corresponding position in the

adjacency matrix is having the entry 1. As there is no edge between

vertex ‘a’ and vertex ‘c’, the corresponding position in the adjacency

matrix is having the entry 0.

 a b c d e

 a

0 1 0 1 0

 b 1 0 1 0 0

I = c 0 1 0 1 1

296 | P a g e

Space for learners: d 1 0 1 0 1

 e 0 0 1 1 0

Figure 5.2: A Weighted Graph

Consider the graph, G given in Figure 5.2, the adjacency matrix with

respect to the vertices a, b, c, d, e is shown below. As there is a

directed edge from vertex ‘a’ to vertex ‘d’ having weight ‘5’ the

corresponding position in the adjacency matrix is having the entry 5.

As there is no directed edge from vertex ‘a’ to vertex ‘c’, the

corresponding position in the adjacency matrix is having the entry 0.

297 | P a g e

Space for learners: STOP TO CONSIDER

In an adjacency matrix, if the diagonal elements are zero, then the

graph is called simple graph.

In a multi graph i.e. a graph having parallel edges, adjacency matrix

can be found using

 n; number of edges between a pair of vertex vi and vj

aij =

 0; otherwise

In a weighted graph, adjacency matrix can be found using

w; w is the weight of edge between the vertex between vi and vj

aij =

 0; otherwise

5.5 ADJACENCY LIST

An adjacency list is a group of unordered lists that is used to describe

a finite graph. Each unordered list in an adjacency list describes a

vertex's collection of neighbours in the graph. This is one of the graph

representations frequently used in computer systems.

In Adjacency List, an array of a list “Adjlist[i]”is used to represent the

graph.The list size is equal to the number of vertex(n).

If we assume that graph has n vertex, then

Adjlist[0] will have all the vertices that are connected to vertex 0.

Adjlist[1] will have all the vertices that are connected to vertex 1 and

so on.

Consider the undirected graph G in Figure 5.3.

298 | P a g e

Space for learners:

Figure 5.3: An undirected Graph

The adjacency list for the undirected graph is shown below, here the

adjacency list for vertex ‘a’ are the vertices adjacent to ‘a’ that is there

is an edge connecting ‘a’ with vertices ‘b’, ‘c’ and ‘d’. Similarly,

adjacency list for vertex ‘c’ is ‘a’ and ‘d’, adjacency list for vertex ‘d’

is ‘a’ and ‘c’. Finally, adjacency list for vertex ‘b’ is ‘a’.

Consider the directed graph G in Figure 5.4

Figure 5.4: An directed Graph

299 | P a g e

Space for learners: The adjacency list for directed graph is shown below, here the

adjacency list for vertex ‘a’ are the vertices adjacent to ‘a’ that is there

is an outgoing edge from ‘a’ to vertex ‘b’ and ‘d’. Similarly,

adjacency list for vertex ‘c’ is the outgoing edge from ‘c’ to ‘a’ and

adjacency list for vertex ‘d’ is the outgoing edge from ‘d’ to ‘b’.

Finally, adjacency list for vertex ‘b’ is nil, as there is no outgoing edge

from vertex ‘b’.

5.6 INCIDENCE MATRIX

Consider a graph G with n vertices and e edges, then the incidence

matrix I[aij] is a matrix of order (n x e) where the element aij, where

rows corresponds to its vertices and columns correspond to its edges is

defined as

1; if vertex i belongs to edge j

aij =

 0; otherwise

Consider the graph G in Figure 5.5

300 | P a g e

Space for learners: Figure 5.5: A Graph

The incidence matrix with respect to the vertices a, b, c, d, e and edges

e1, e2, e3, e4, e5, e6, e7 is shown below. As there is an edge incident

on vertex ‘a’ and vertex ‘b’ the corresponding position in the

incidence matrix is having the entry 1. As there is no edge e4, e5, e6

and e7 incident on vertex ‘a’, the corresponding position in the

incidence matrix is having the entry 0.

 e1 e2 e3 e4 e5 e6 e7

 a

1 1 1 0 0 0 0

 b 1 0 0 1 1 0 0

I = c 0 1 0 0 0 1 0

 d 0 0 1 1 0 1 1

 e 0 0 0 0 1 0 1

Similarly, the incidence matrix I[aij] of a digraph G is defined as

1; if edge jis incident out of vertexi

aij = -1; if edge jis incident into vertexi

 0; otherwise

Consider the graph G in Figure 5.6.

Figure 5.6: A Graph

301 | P a g e

Space for learners: The incidence matrix with respect to the vertices a, b, c, d and edges

e1, e2, e3, e4, e5 is shown below. As there is an edge ‘e1’ and ‘e4’

incident out of vertex ‘a’ the corresponding position in the incidence

matrix is having the entry 1. Whereas there is an edge ‘e2’ incident

into vertex ‘a’, the corresponding position in the incidence matrix is

having the entry -1. Finally, as neither the edge ‘e3’ and ‘e4’ is

incident into or out of vertex ‘a’, the corresponding entry in the

incidence matrix is marked as 0.

 e1 e2 e3 e4 e5

 a

1 -1 0 1 0

 b -1 0 0 0 -1

I = c 0 1 1 0 0

 d 0 0 -1 -1 1

5.7 BASIC CONCEPT OF GRAPH COLORING,

COVERING AND PARTITIONING

Graph Coloring: Consider a graph G having n vertices. If we want to

paint all the vertices such that no two adjacent vertices are of same

colour then a question can be asked as to what should be the minimum

number of colours required in such case? This type of problem

constitutes graph colouring problem. Similarly, colouring problem in a

graph can be applied also to the edges. One application of graph

colouring is Map Coloring where geographical map of states where no

two adjacent states can be assigned same color.

As an example in Figure 5.7 (a), assigning all the vertices with colours

such that no two adjacent vertices are assigned same colour is called

proper colouring. In some cases, proper colouring with minimum

number of colours may be required. In Figure 5.7 (b), 4 different

colours are used compared to six in Figure 5.7 (a).

302 | P a g e

Space for learners: The minimum number of colours required to colour a graph G is

called its chromatic number. If a graph requires k different colours for

its proper colouring then it is known as k-chromatic or k-colourable.

(a) (b)

Figure 5.7: Proper Colouring of a Graph

STOP TO CONSIDER

A complete graph where each vertex is connected to every other

vertex having n vertices, has chromatic number k = n.

A cycle graph having n vertices,has chromatic number k = 3 if n is

odd or k =2 if n is even.

Graph Covering: A covering graph C is a subgraph which contains

either all the vertices or all the edges corresponding to some other

graph G.

303 | P a g e

Space for learners:

Figure 5.8: A simple Graph

A subset is called a line covering of a graph G if every vertex of G is

incident with at least one edge. For example, in the graph given in

Figure 5.8, subset S1, S2, S3, S4 are line covering as all the vertices are

covered using the edges in each of the subset. However, subset S5 is

not line covering due to the fact that vertex ‘c’ is not covered.

S1 = {(a, b), (c, d)}

S2 = {(a, c), (b, d)}

S3 = {(a, b), (b, d), (c, d)}

S4 = {(a, b), (b, c), (b, d)}

S5 = {(a, b), (b, d)}

A subset K of V is called a vertex covering of a graph G (V, E), if

every edge of ‘G’ is incident with or covered by a vertex in ‘K’. For

example, in the graph given in Figure 5.8, subset K1 contains vertex

‘b’ and ‘c’ which covers the edges that is ‘ba’, ‘bc’, ‘bd’ and ‘ca’,

‘cb’, ‘cd’ respectively. Thus all the edges are covered by vertex {b, c}

and so is K1 vertex covering. Similarly, subset K2 contains vertex ‘a’

‘b’ and ‘c’ which covers all the edges in the graph G. Also, subset K3

contains vertex ‘a’ ‘d’ and ‘c’ which covers all the edges in the graph

G. So, both K2 and K3 are vertex covering. However, subset

K4contains vertex ‘a’ and ‘c’ which do not cover the edge ‘bd’,

therefore K4 is not vertex covering.

K1 = {b,c}

K2 = {a, b,c}

K3 = {a,d, c}

K4= {a, c}

304 | P a g e

Space for learners: Graph Partitioning:A graph partition is the process of reducing a

large graph to a smaller one by grouping its nodes into mutually

exclusive groups.

Graph chromatic partitioning: A proper colouring of a graph induces

partitioning of vertices into different subsets such as the graph shown

in Figure 5.7 (b) can be portioned into {v1, v6}, {v2, v5}, {v3} and

{v4}. As it can be observed that no two vertices in the four subsets are

adjacent. Such a subset of vertices is called an independent set.

A maximal independent set is an independent set to which no other

vertex can be added without compromising its independence property.

There can be many maximal independent sets of different sizes,

however the one with largest number of vertices is of particular

importance.

CHECK YOUR PROGRESS

i. In a graph G, number of vertices is 5. What is the total

number of elements in the adjacency matrix?

a) 5

b) 25

c) 10

d) 125

ii. Which of these adjacency matrices represents a simple

graph?

a) [[0, 0, 1], [1, 0, 1], [1, 0, 0]]

b) [[1, 0, 0], [0, 1, 0], [0, 1, 1]]

c) [[1, 1, 1], [1, 1, 1], [1, 1, 1]]

d) [[0, 0, 1], [0, 0, 0], [0, 0, 1]]

iii. In a simple graph, sum of the column in an incidence matrix

is __________

a) number of edges

b) greater than 2

c) number of edges + 1

d) equal to 2

305 | P a g e

Space for learners: iv. The dimensions of an incidence matrix for graph having v as

the number of vertices and e as the number of edges is given

by ___________.

a) e x e

b) v x e

c) v x v

d) ex (v + e)

v. Incidence matrix and Adjacency matrix of a graph G will

always have ________?

a) Same dimension

b) Different dimension

c) Some cases may have different dimension

d) None of the above

vi. Vertex coloring of a graph is_______________.

a) Adjacent vertices do not have same color

b) Adjacentvertices always have same color

c) All vertices should have a different color

d) All vertices should have same color

vii. Minimum number of unique colors required so that adjacent

vertices do not have the same colour is given

by_____________.

a) chromatic key

b) chromatic index

c) chromatic number

d) color number

viii. In an empty graph having n vertices_________ number of

unique colours will be needed for vertex colouring.

a) n + 1

b) 1

c) 2

d) n

ix. In an empty graph having n vertices_________ number of

unique colours will be needed for vertex colouring.

306 | P a g e

Space for learners: a) n-1

b) 1

c) n+1

d) n

x. How many unique colors will be required for vertex coloring

of the following graph?

a) 2

b) 3

c) 4

d) 5

5.8 SUMMING UP

 Adjacency matrix is represented by M[aij] where aijis the ith row, jth

column element. The general form is given by:

1;if an edge in the graph between the vertex vi

and vj

aij =

 0; otherwise

 Incidence matrix I[aij] is a matrix of order (n x e) where the

element aij, where rows correspond to its vertices and columns

correspond to its edges is defined as

1; if vertex i belongs to edge j

307 | P a g e

Space for learners: aij =

 0; otherwise

 An adjacency list is a group of unordered lists that is used to

describe a finite graph. Each unordered list in an adjacency list

describes a vertex's collection of neighbours in the graph.

 Graph Coloring problem is to paint all the vertices such that no

two adjacent vertices are of same colour.

 Graph Covering: A covering graph C is a subgraph which contains

either all the vertices or all the edges corresponding to some other

graph G.

 A graph partition is the process of reducing a large graph to a

smaller one by grouping its nodes into mutually exclusive groups.

5.9 ANSWERS TO CHECK YOUR PROGRESS

i, b ii, a iii, d iv, b v, b

vi, a vii, c viii, b ix, d x, b

5.10 POSSIBLE QUESTIONS

Q1 Draw the graph having the following matrix as its adjacency

matrix.

0 1 2 3 4

1 1 2 2 3

4 1 3 1 2

4 3 2 1 0

Q2 Draw the adjacency matrix and adjacency list of the following

graphs

308 | P a g e

Space for learners:

(a) (b)

Q3 Write the adjacency matrix of the graph given below.

Q4 Draw the graph for the incidence matrix given below:

 e1 e2 e3 e4 e5 e6 e7

 a

1 0 0 0 1 0 0

 b 0 1 0 1 0 0 1

I = c 0 1 0 0 0 1 1

 d 1 1 1 0 1 1 0

 e 1 0 0 1 0 0 0

Q5 Draw the incidence matrix for the graph given below.

309 | P a g e

Space for learners:

Q6 What is graph colouring? Explain using an example.

Q7 What is graph covering?

Q8 Differentiate between vertex covering and edge covering.

Q9 Find chromatic number of the following graphs

(a) (b)

Q10 Find chromatic number of the following graph.

5.11 FURTHER READING

 Graph Theory with Applications to Engineering and Computer

Science by Narsingh Deo, Published by Prentice Hall India

Learning Private Limited.

 Introduction to Graph Theory by Richard J Trudeau, Published by

Courier Corporation.

310 | P a g e

Space for learners:  A First Course in Graph Theory by Gary Chartrand and Ping

Zhang, Published by Courier Corporation.

 Graph theory with applications by John Adrian Bondy, Published

by Elsevier Publishing Company

BLOCK III:

AUTOMATA THEORY

311 | P a g e

Space for learners:

UNIT 1: INTRODUCTION TO LANGUAGES

AND GRAMMAR

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Introduction to Formal Languages

 1.3.1 Basic Terminologies

1.4 Regular Grammar and Regular Expression

1.5 Grammar

 1.5.1 Formal Definition of a Grammar

1.6 Chomsky Classification of Grammar

1.7 Summing Up

1.8 Answers to Check Your Progress

1.9 Possible Questions

1.10 References and Suggested Readings

312 | P a g e

Space for learners: 1.1 INTRODUCTION

To write instructions for machines it is important to learn syntax of

the language and to designed computing machines, automata theory

is important. For formalizing the notion of a language, we must

include all the varieties of languages such as natural language

produced by human being and languages for computer. Automata

theory is a theoretical branch of Computer Science and

Mathematics. It primarily deals with the logic of computation by

some simple machine.

The word “automata” is a plural form of the word “automaton”. The

meaning of the word “automaton” is mechanization i.e., the

condition of being automatically operated or controlled. Automating

a process means performing it in a machine without the intervention

of human. To perform a particular task in a mechanical environment,

inputs, energy and control signal are required so thatit can produce

the output without the direct involvement of human. Worked

performed by machines are more accurate and efficient and it takes

less time.

In the context of computer science, an automaton is a machine that

can perform the computation in a mechanized manner. An

automaton with a finite number of states is called a finite automaton.

It is very important that the computing machine understands the

instructions given by human. And it is necessary to develop

languages for writing these instructions so that the machine can

understand unambiguously.

This unit is an attempt to give the concept of languages and

grammar in the context of computer science.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define alphabet, string, substring empty string,

concatenation, Kleene closure etc.

 learn about variables, terminals, productions rules etc.

 define grammar and language in the context of theory of

computer science

 determine language generated by a grammar

313 | P a g e

Space for learners:  learn about Chomsky classification of grammar

1.3 INTRODUCTION TO FORMAL LANGUAGES

We begin our discussion with the concept of set. A set is a collection

of elements or objects. For example, a set of three elements a, b and

c can be written as S= {a, b, c}. It can be written in any order like S

= {b, a, c}.

But a sequence is an ordered collection of elements. A sequence {a,

b} is not same as {b, a}.An ordered collection is one in which the

arrangement of objects matters.

Characters and their orders are important components in the

formation of any language. For instance, the word “cat” does not

carry the same meaning “act” though the letters or the elements are

same. The most vital component of any language is its character set.

In case of language such as English, any word can be formed from

the English alphabet set S = {A, B, C, D,……,Z, a, b, c, d,…….,z}.

Whereas a sentence is a combination of sequence of symbols from

the Roman alphabet along with punctuation marks such as comma,

full-stop, colon and blank-space which is used to separate two

words.

Suppose we want to form words consisting of 5 letters from the set

of English alphabets, say S. Then S5 will be the all possible

sequence of word of length 5. Thus, Sn represents the set of all

possible n letter sequences. A word becomes valid when it carries

some meaning. For example, the word “cake” has meaning but the

reverse “ekac” has no meaning. Whereas, the word “cat” and its

reverse “act” carries definite meaning in English language. The one

who understands a language L can able to differentiate the

meaningful and meaningless word of that particular language.

The same is true in the context of computer language. For example,

in case of C programming language, we write codes for program

using the character sets of the C language. Each and every

component of statements of the programming language is formed by

combining the characters from the character sets so that the compiler

can understand and compile the statements of the program.

We can define a language is a set of valid words over its character

set. If we denote the set of alphabets or character set by the symbol

∑, then ∑* represents the set of all possible words or strings that can

314 | P a g e

Space for learners: be constructed using the characters in ∑.It is therefore observed that

formal learning of a language includes the following:

 Learning the alphabet

 Words which are formed by various sequence of symbols of its

alphabet.

 Sentence formation; Sentences are formed by combining

sequence of various words following some rules.

Formal language is designed for use in which natural language is

unsuitable. If we want to instruct an abstract machine, we have to

use something much more precise. An abstract machine takes

instruction given by humans and provides the desired output. So, it

is necessary to develop languages for these instructions. The

languages that are developed with precise syntax and semantics are

called formal language. Syntaxes are precise rules that tell us the

symbols we are allowed to use and how to put them together into

legal expressions. And semantics tell us the meanings of the symbols

and legal expressions. Formal languages play an important role in

the development of compilers.

Let us now discuss the basic terminologies which are important and

frequently used in formal languages and automata theory.

1.3.1 Basic Terminologies

Symbols:

Symbol can be any alphabet, letter or any element which is

considered as the smallest building block of a language. Symbol can

be considered as the atom of a language. For example, a, b, c, x, y,

0, 1, #, �, etc. are symbols.

Alphabet:

Dictionary meaning of alphabet is a finite set of characters that

include letters and is used to write a language. Mathematically we

can define alphabet as a finite, non-empty set of symbols. Alphabet

of a language is generally denoted by the summation “ ∑ ” symbol.

For example,

315 | P a g e

Space for learners: Binary alphabet consists of 0 and 1 only. It is represented as

∑= {0, 1}

Roman alphabet is denoted by ∑= {a,b,…..,z}.

∑= {a, b, c,�} is an alphabet.

∑={�, �, �} is an alphabet.

But, A = { 1,2,3, … … } is not an alphabet because it is

infinite.

String:

A “string” over an alphabet ∑ is a finite sequence of symbols from

that alphabet∑ which is written next to one another and not

separated by commas. A string is also known as a word. For

example,

i) If ∑ ={a,b} be an alphabet; then ab, ba, aa, bb, aba, bab,

bbaab, aababa,…are some examples of strings over ∑.

ii) If ∑={0,1} then 110010, 001, 10, 01, 0001, 111101, etc. are

some stringsover ∑ .

iii) If ∑= {a, b, c, d,….,z} the any combination of symbols

abp, bac, pqre, bcatdpr, etc.are some strings over ∑.

iv) The set of all strings over an alphabet ∑ is denoted by ∑*.

For example, if ∑={0,1} then∑*=

{�, 0, 1, 00, 11, 01, 10, 111, 000, 010, 101, … … . }

Length of a string:

Length of a stringwis defined as the number of symbols or element

present in the string. For example, length of 110010 is 6. Length of

the string bcatdpr is 7. Length of a string w is represented within

two vertical bars “|w|” as follows:

 |00111010| = 8

 |101010101110| = 12

 |abba|=4

 |a|=1

� is the empty string and has length zero.

Empty String:

The string that has no element i.e., of zero length is called the

“empty string”. Empty string is denoted by the symbol

� (epsilon).Length of empty string is

|�| =0

316 | P a g e

Space for learners: Reversing a string:

Writing a string in reverse order is known as reversing a string.

If w= w1w2w3…..wn where wi∈∑, the reverse of the string w is wn

wn-1wn-2….w1

String concatenation:

When we write one string appending the other string at end,then it is

known as string concatenation. It is one of the most fundamental

operations used for string manipulation.

 Let x = a1a2a3…..anand y = b1b2b3…….bmbe two strings of

length n and m, then the concatenationof the two strings x and y is

written asxy,which is the string obtained by appending y to the end

of x. The concatenated string xyis xy= a1a2a3…..an b1b2b3…….bm

The empty string � satisfies the property �� = �� = � where w is

a string.

Substring:

We say that x is a substring of wif x occurs in w, that is w= uxvfor

some strings u and v. For example, “put” is a substring of the string

computer.

Suffix and Prefix:

If w = xv for some x, then v is a suffix of w. Similarly, if w = ux for

some x, then u is the prefix of w.

Again, for w=uxv, the substring x will be the prefix of w if u= � and

x will be the suffix of w if v= �.

Languages

We have already been acquainted with the concept of strings. Any

set of strings over an alphabet ∑ is called a language.Language can

be finite or infinite. We usually denote a language by the letter L. As

∑* represents the set of all strings, including the empty string � over

the alphabet ∑, we can define a language L over an alphabet ∑ as a

subset of ∑*. Thus

� = {� ∈ ∑*: w has some property P}

Some other examples of language are as follows:

i) � = {� ∈ {a, b}*: � has an equal number of a’s and

b’s}

ii) � = {� ∈ ∑* : w = wR} where wR reverse string of w.

317 | P a g e

Space for learners: iii) The set of all strings over {0,1} that start with 0.

iv) L= { � , 0, 00, 000, ……, } is a language over

alphabet { 0}.

v) L= {0n1n2n : n ≥ 1} is a language.

vi) The set of all strings over {a, b, c} having ab as a

substring.

vii) The set of empty string {� } is also a language over

any alphabet.

viii) The empty set ∅ is a language over any alphabet. {� }

It should be noted that ∅ ≠ {�} . Because the language does not

contain any string but {� } contains a string �.Also, length of |{� }|

=1 but |∅| = 0

Concatenation of languages:

If L1 and L2 are languages over some alphabet ∑, their concatenation

can be denoted by L=L1.L2 or, L = L1L2 where

L={w∈ ∑* : w = x . y for some x � = {� ∈ ∑* :� = �. � for some

� ∈ L1,

y ∈ L2}.

For example,

i) If L1={0,1} and L2= {1,00}, then L1L2 =

{01,000,11,100}

ii) If L1={0,1,2} and L2= {1,00}, then L1L2 =

{01,000,11,100, 21,200}

iii) If L1={a, ab, abab} and L2= {pq, ppqq, pppqqq}, then

L1L2={apq, appqq, apppqqq, abpq, abppqq, abpppqqq,

ababpq,

ababppqq, ababpppqqq}

iv) If L1={b,ba,bab } and L2= { � ,b,bb}, then

L1L2 = {b, bb, bbb, ba, bab, babb, babbb}

Since string concatenation supports the associative property, so the

concatenation of languages is also associative. Thus, if L1, L2 and L3

are three languages then

(L1L2)L3 = L1(L2L3)

It is to be noted that L1L2≠ L2L1

Kleene Closure:

318 | P a g e

Space for learners: In terms of formal languages, another important operation is Kleene

closure orKleenestar. Kleene closure of a language L is denoted by

L*.

L* can be define as

L*= {w ∈ ∑*: w = w1w2w3……wn, for some n ≥ 0 and some

w1,w2,w3,….,wn ∈ L. It can also be defined as follows:

�∗ = � ��
���

 L*= {Set of all strings over ∑}

Examples:

i) If ∑ = {a,b} and a language over L over ∑, then

�∗ = �� ∪ �� ∪ �� ∪ � … … …

�� = {�}

�� = {!, "}

�� = {!!, !", "!, ""} and so on.

So, �∗ = {�, !, ", !!, !", "!, "", … … }

ii) If ∑ = {0} and a language over L over ∑,

 then �∗ = {�, 0,00,000,0000, … … … … }

Positive Closure:

If ∑ is an alphabet then positive closure of the language L denoted

by L+ is the set of all strings over ∑ excluding the empty string �.

L+ = L* - { � }

For example, if ∑ = {0},the L+ = {0,00,000,0000, … … … … }∑

The positive closure of a language L is

�# = � ��
���

319 | P a g e

Space for learners:

CHECK YOUR PROGRESS

1. Given a string 011 over ∑= {0,1}. Find all the substring of

the string.

2. For the binary alphabet { 0, 1 }, find ∑2 and ∑3.

3. If L = { a, ab }, find L* and L+.

1.4 REGULAR LANGUAGES AND REGULAR

EXPRESSIONS

In this section we are going to introduce the concept of regular

languages and regular expressions. In mathematics, we can use

operations like + and × to represent expression such as

(2+4)×5

The value of the above arithmetic expression is number 30.

Similarly, we can use regular operations to build up expressions

describing languages, which are called regular expressions. The

value of a regular expression is a language. As an example,

(0+1) *11

In this case the value is the language L over {0,1} such that every

string in L ends with two consecutive one.

We can define a regular expressionover an alphabet ∑ recursively

as follows:

 Every character or alphabet belonging to ∑ is a regular

expression.

 ∅, empty string �, and a, for each a ∈ ∑, are regular

expressions representing the languages ∅, {$} and {a},

respectively.

 If r and s are regular expressions representing the language R

and S respectively, thenconcatenation of these represented as

rs is also a regular expression.

 If r and s are regular expressions representing the language R

and S respectively, then the union of these represented as r ∪
% or r+s is also a regular expression.

 The Kleene closure r* is a regular expression representing the

language R*.

320 | P a g e

Space for learners:

A class of languages can be generated by applying operations

like union, concatenation, Kleene star etc. on the elements.

These languages are known as regular languages and the

corresponding finite representations are known as regular

expressions.

Some regular expressions and their corresponding regular sets are as

follows:

Regular

expression

Corresponding regular set

0 {0}

0+1 {0,1}

a+b+c {a, b, c}

(11)* {�, 11,1111,111111, … . }

ab+ba {ab,ba}

(a+b)*c {a, ac, acc, accc,…..b, bc, bcc, bccc,

……….}

(abc)* {�, abc, abcabc,abcabcabc, …….}

(abc)*d d, abcd,abcabcd,abcabcabcd,……..}

ab*cd acd, abcd, abbcd, abbbcd, abbbbcd,…..}

ab(p+q) {abp, abq}

If r is a regular expression, then the language representedby r is

denoted by L(r). Further, a language L is said to be regular if there

exists a regular expression r such that L = L(r).

1.5 GRAMMAR

It is required to learn the grammar of a language while learning a

specific language. For instance, it is required to learn English

grammar while learning English language for forming meaning

correct sentences. For the formation of sentences in any language,

concept of grammar is very necessary. For getting the concept of

grammar in the context of computer, let us first take some examples

from English grammar. Here, we are considering two types of

sentences in English; sentences having a noun and a verb or those

with a noun, verb and adverb.

321 | P a g e

Space for learners:

Noun- verb -adverb Noun - verb

Barun ate quickly. Barun ate.

Rita walked slowly. Rita walked.

Neha talks slowly. Neha sang.

Rishi writes slowly. Rishi ran.

We can see that Noun- verb –adverb and Noun- verb are

description of two types of sentences in English grammar. If we

replace noun, verb, adverb with some suitable word, we get

grammatically correct sentences. In the example, we have seen in

the example that sentences are formed by replacing noun with some

name like Barun, Rita, Neha, Rishi, verb with ate,walked, talks,

writes, etc. and adverb with quickly, slowly, etc.

If we callnoun-verb-adverbor Noun-verbas variables(V), words like

Barun, Neha, ate, writes, quickly, slowly, etc. as terminals(T), S be a

variable representing a sentence, then following will be the rules (P)

for generating two types of sentences:

& →<)*+) >< -./" >< !0-./" >

& →<)*+) >< -./" >

<)*+) >→ 1!/+)

<)*+) >→ 234!

<)*+) >→ 5.ℎ!

< -./" >→ !4.

< -./" >→ �/34.

< -./" >→ �!67.0

< !0-./" >→ %6*�6�

< !0-./" >→ 8+3976�

Thus we can describe a grammar by a 4-tuple: Variable (V),

Terminals (T), S is a special symbol from V, P is a collection of

rules which is termed a productions. The sentences are formed by

starting with S, replacing words/strings using the production rules,

and terminating when string of terminals is obtained.

A grammar consists of a set of rules (called productions) that specify

the sequence of characters (or lexical items or sentences) that form

allowable programs in the language been defined.Meaningful

sentences

322 | P a g e

Space for learners: (or statements) are formed using the grammar of the language. We

have learnt that a grammar should have the following components

 A set of nonterminals symbols. These symbols are

represented using capital letter like A, B, C, etc.

 A set of terminal symbols. Terminals are generally

represented using small case letter like a, b, c etc.

 A start symbol from the set of nonterminals to represent a

sentence from which various sentences of the language can

be generated.

 A set of production rules.

1.5.1 Formal Definition of a Grammar

Noam Chomsky gave a mathematical model of grammar in 1956

which turned out to be useful for writing computer language

although it was not useful for describing natural languages. We will

briefly discuss the different categories of grammar provided by

Noam Chomsky in the next section.

A formal grammar is just a grammar specified using a

strictly defined notation. For compiler technology, there are two

useful grammars, which are regular grammar and context free

grammar. Let us now write the formal definition of a grammar.

A grammar is a quadruple G=(V, ∑,P,S)

where :is a finite set of variables (non-terminals),

∑ is a finite set of terminals. Terminals are denoted by T also.

& is the start symbol, where &$:

;is a finite non-empty set of rules whose elements are � → �,

where �, � are strings on : ∪∑.

� has at least one symbol from V. The elements of P are called

production rules.

Following points are to be noted while writing and substituting

productions:

i) A production rule of a grammar is of the form < → � where

A is a nonterminal symbol. The production rule < → � is

same as=<, �>$;. But it is more convenient to write the

production as< → �.

323 | P a g e

Space for learners: ii) If & → <1 is a production, then we can replace S by AB, but

reverse substitution is not allowed. i.e., we cannot replace

AB by S.

iii) & → <1 is a production but <1 → & is not.

Examples 1: If G = ({S}, {a}, {& → &&}, &), find the language

generated by G.

Solution: Here we have V={S}, T={a}, Start symbol S, production

rule

P: & → &&

Since we have only one production rule & → && in G and it has no

terminal on the right-hand side, so we will not get any string from

the production. Therefore, the language generated by G is �=?> =
∅.

Example 2: Consider the Grammar G = (V,T,P, S) where T= {a,

b},

P={< → <!, < → <", < → !, < → ", < → �}, S={A}. White a

common generated by this grammar exacting few strings of the

grammar.

Solution: Here the start symbol is A.

A→ <! → !!

A→ <" → "!

A→ <" → <!" → <!!" → !!!"

A→ <" → <"" → <!"" → "!""

A→ <" → �" → "

A→ <! → �! → !

A→ <! → <!! → <"!! → <""!! → �""!!

Hence this grammar can be used to produce the strings of the form

(a+b)*

1.6 CHOMSKY CLASSIFICATION OF GRAMMARS

So far, we have seen that a grammar depends on its production rules

to derive strings in the associated language. Noam Chomsky

classified the grammar into four categories which based on their

production rules.

324 | P a g e

Space for learners: Type 3: The first category is known as the type 3which is also

referred to as regular grammar. We have already been acquainted

with regular grammar and regular language in our previous section.

The production rules for type 3 grammar are of the following forms:

< → !
< → !1

where A and B are some nonterminals and a is some terminal in the

grammar. Type 3 grammars are recognized by finite automaton. In

case of type 3 grammar, productions in the left-hand-side consists of

a non-terminal only and the productions in the right-hand-side

contains either a single terminal or a terminal followed by a single

nonterminal.

Type 2: The second category is the type 2 category which is also

known as context-freegrammar (CFG). The productions of type 2

grammar are of the form

 < → =∑ ∪ :> *
The left-hand-side of every production in type 2 grammar consists of

one non terminal only, while the right-hand-side consists of a

combination (union) of terminals from ∑ and nonterminals from V.

The name of the automaton which accepts the type 2 grammar is

pushdown automaton.

Type 1:The third category of Chomsky classification of grammar is

type 1 grammar which is also known as context-sensitive grammar.

It has the following form of production:

 =∑ ∪ :> *→ =∑ ∪ :> *
Here, combination of variable and terminals are in both side. But the

size of the string produced on the right-hand-side should either be

greater than or equal to the size of the string on the left-hand-side of

the production. Linear bounded automaton recognizes the language

generated by type 1 grammar.

Type 0:The fourth category is termed as type 0 grammar. This

grammar is also known as unrestricted grammar. The language

generated by type 0 grammars are accepted by Turing machine. The

form of production of type 0 grammar is

 =∑ ∪ :> *→ =∑ ∪ :> *
The production rules are same as type 1 but it has no restrictions.

325 | P a g e

Space for learners: CHECK YOUR PROGRESS

4. Choose the correct option:

i. Language of finite automata is generated by

a) Type 0 grammar

b) Type 1 grammar

c) Type 2 grammar

d) Type 3 grammar

ii. Regular expression of all strings start with ab and ends

with ba is

a) (a+b)*ab(a+b)*

b) ab(a+b)*ba

c) (a+b)*ab(b+a)*

d) aba*b*ba

iii. L= {�, ", "", """, """", … ….} is represented by

a) a+

b) a*

c) both a) and b)

d) none of these

iv. Given: ∑= {a, b}, L= {xϵ∑*|x is a string

combination}.

∑4 represents which among the following?

a) {aa, ab, ba, bb}

b) {aaaa, abab, ε, abaa, aabb}

c) {aaa, aab, aba, bbb}

d) All of these

v. Regular expression for all strings starts with ab and

ends with bba

is

a) ab(a+b)*bba

b) aba*b*bba

c) ab(ab)*bba

d) All of these

1.7 SUMMING UP

 A formal language is a set of strings of symbols drawn from a

finite alphabet. It can be specified either by a set of rules that

326 | P a g e

Space for learners: generates the language, or by a machine that accepts or

recognizes the language.

 An alphabet ∑ is a finite and non empty set of symbols.

 A string is a finite sequence of symbols from some alphabet.

 A language L over some alphabet ∑, is a collection of strings

over the alphabet. For example,

L= {�,1,111, …} is a language over the alphabet {1}

 L={0n1n2n : n≥ 1} is a language.

 The Kleene closure of a language L is denoted by L*.

L* = {Set of all words over ∑}

={word of length zero, words of length one, words of length two,

..}

 = L0∪L1∪ L2∪ … ….
 If is an alphabet then positive closure of ∑ is denoted by ∑+ and

is defined as ∑+=∑*-{�}

 A grammar consists of four items: a set of terminals ∑, a set of

nontermninals V, a set of productions P, and a special symbol S,

known as start symbol which is a nonterminal and is belongs to

V.

 Noam Chomsky classified the grammar into four categories

which are based on their type of production.

 Type 3 is known as regular grammar, type 2 is known as or

context-free grammar, type 1 in known as context-sensitive

grammar and type 0 grammar is known as unrestricted grammar.

1.8 ANSWERS TO CHECK YOUR PROGRESS

Ans. 1:

Substrings of the string 011 are : ε, 0, 1, 01, 11, 011

Ans 2:

∑2= {00, 01,10,11

∑3= {000,001,010,011,100,101,110,111}

Ans 3:

Given L = { a, ab }. Then we can determine L* as

L*= L0∪L1∪L2∪………

327 | P a g e

Space for learners: = {�} ∪ {!, !"} ∪ {!!, !"!", !!", !"!} ∪……..

L+= L1∪L2∪………

 = {!, !"} ∪ {!!, !"!", !!", !"!} ∪……..

Ans 4:

(i)(d) Type 3 grammar

(ii)(b) ab(a+b)*ba

iii)(b)a*

iv)(b) {aaaa, abab, ε, abaa, aabb}

v) (a) ab(a+b)*bba

1.9 POSSIBLE QUESTIONS

1. Define Kleene star. Give examples.

2. What is a language?

3. Define ∑+
.

4. Define empty string.

5. Define prefix and suffix of a string with examples.

6. Define length of a string.

7. Define alphabet with suitable examples.

8. Define a regular language.

9. Give the formal definition of grammar. Write the categories

of grammars provided by Noam Chomsky with their

production types.

10. Define a grammar of a language.

11. Define regular expressions? Give some examples of regular

expression.

12. Write the Regular expression for the following

languages/sets

i) L= {aa, aaaa, aaaaaa, aaaaaaaa,….}

ii) Language L over {0,1} such that every string in L

ends with 11

iii) Language L over { a, b, c} such that every string in L

ends with 11

iv) L= {00,001,0011,00111,….}

328 | P a g e

Space for learners: v) Set of all string over {0,1}containing exactly one 0

vi) Set of all strings over { a, b} containing exactly two

a’ s.

vii) Set of all strings over {a, b, c} beginning with c and

ending with cc.

1.10 REFERENCES AND SUGGESTED READINGS

1. Mishra, K. L. P., & Chandrasekaran, N. (2006). Theory of

Computer Science: Automata, Languages and Computation.

PHI Learning Pvt. Ltd.

2. Nagpal, C. K. (2012). Formal Languages and Automata Theory.

Oxford University Press.

3. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2007).

Introduction to automata theory, languages, and

computation. Pearson Education

329 | P a g e

Space for learners: UNIT 2: INTRODUCTION TO FINITE

AUTOMATA

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Deterministic Finite Automata (DFA)

2.4 Non-deterministic Finite Automata (NFA)

 2.4.1 Non-Deterministic Finite Automata

 2.4.2 NFA Detailed Example

 2.4.3 NFA versus DFA

 2.4.4 Membership Example

 2.4.5 NFA with empty moves

2.5 Equivalence of DFA and NFA

2.5.1 Equivalence Theorem

2.5.2 NFA to DFA Construction

2.5.3 ε-NFA to NFA conversion

2.6 Minimization of FA

2.7 Summing Up

2.8 Answers to check your progress

2.9 Possible Questions

2.10 References and Suggested Readings

330 | P a g e

Space for learners: 2.1 INTRODUCTION

This Unit discusses fundamental concepts of Theory of Computations.

This unit covers the concepts around Deterministic and Non

deterministic automata thoroughly with easily understandable examples.

Differences, theorems and conversions are also easily discussed with

mathematical techniques. It discusses how to construct finite automata

for any language, whether it is a DFA, NFA or NFA with empty moves.

Basically, for different input symbols, when the machine state is not

determined, i.e., machine can move to any states of the automaton, it is

called as Nondeterministic finite automata (NFA) and if the machine

state is determined then it is known as Deterministic finite automata

(DFA). So, let’s study their detailed definitions with different type of

properties.

2.2 UNIT OBJECTIVES

This unit revolves around DFA, NFA and ε-NFA. After going through

this unit, you will be able to –

 Get full concept on DFA and NFA with examples.

 Construct DFA, NFA for any given example

 Convert an NFA into DFA

 Convert a ε-NFA into its equivalent DFA.

 Equivalence of NFA and DFA.

 Discuss the differences between DFA, NFA and ε-NFA.

 Minimize states in a DFA.

 Check a particular string is belongs to finite automata or not.

2.3 DETERMINISTIC FINITE AUTOMATA

It is a finite automaton (FA) where our machine exists only one place at

a time. For each input symbol, the machine state is determined, i.e.,

machine will move to only one certain state, hence it is called as

331 | P a g e

Space for learners: deterministic finite automata. A deterministic finite automata consists of

five tuples {Q, Σ, q0, F, δ} where-

Q represents finite set of states.

Σ represents set of all input symbols, i.e., Alphabet.

q0 represents Initial state.

F represents finite set of final state/states.

δ represents Transition Function, which takes two arguments, a state

and an input symbol, it returns a single state. So, δ : Q X Σ -> Q.

Some real-life examples of Deterministic Finite Automata (DFA) are

lifts in buildings, text parsing, video game character behavior, security

analysis etc. A Deterministic Finite Automata (DFA) generally

represented by digraph, which is known as transition diagram or state

diagram, where vertices represent states and arcs shows the transition

from one state to another state.

Let us now discuss one example of Deterministic Finite Automata

(DFA). Suppose our DFA’s tuples look like below-

Q = {a, b}

Σ = {0, 1}

q0 = {a}

F = {b}

For transition function δ, we need to show the mappings from one

state to another state on each input symbols, that’s why we need a

table:

States Input Symbols 01

a b a

 b a
b

So, from the table we can easily understand that on accepting input

symbol ‘0’ state ‘a’ is moving to state ’b’ and on accepting input

symbol ‘1’ state ‘a’ remains unchanged, i.e., self-looped and In this

manner, we can easily identify the transitions of state ‘b’ as well. So,

let’s draw a diagram for the above example:

332 | P a g e

Space for learners:

Figure 1: A DFA example

Now, additionally, we can discuss this above diagram more. Check the

diagram, see in the final state ‘b’, input symbol ‘0’ is self looped and

from state ‘a’, by consuming only ‘0’ we can reach the final state. So,

we can easily say, this is a DFA, which will accepts all strings ending

with zero. Since it is mathematical way to design a finite automata, so

there can be numerous number of ways or patterns to design and draw

it. But, a finite automaton with minimum number of states is always

preferred.

2.4 NONDETERMINISTIC FINITE AUTOMATA (NFA)

2.4.1 Nondeterministic Finite Automata (NFA)

A kind of finite automata (FA) where our machine can exist in multiple

states at the same time. For input symbols, the machine state is not

determined, i.e., machine can move to any states of the automaton,

hence it is called as nondeterministic finite automata (NFA). That’s

why Non Deterministic Automata(NFA) is more complex than DFA.

Just like Deterministic Finite Automata (DFA), NFA also consists of

five-tuple {Q, Σ, q0, F, δ} where-

Q represents set of all states.

Σ represents set of all input symbols, i.e. Alphabet.

q0 represents Initial state.

F represents set of final state or states.

a b

333 | P a g e

Space for learners: δ represents Transition Function, which takes two arguments, a state

and an input symbol, it returns any combination of Q states. So, δ : Q

X Σ -> 2Q.

If we compare this transition function with DFA’s transition function,

we know that Q is the subset of 2Q which indicates Q is contained in

2Q or Q is a part of 2Q, however, the reverse isn’t true. So

mathematically, we can say that all DFA is NFA but inverse is not

true.

2.4.2 NFA Detailed Example

Some real-life examples of Nondeterministic Finite Automata (NFA)

include playing cards, Tic tac toe and Ludo etc. As we have studied in

the section of Deterministic Finite Automata (DFA), same notation

technique i.e., digraph is used to draw Nondeterministic Finite

Automata (NFA).

Let us now discuss earlier example for Non-Deterministic Automata

(NFA). So, suppose our NFA’s tuples look like below-

Q = {a, b}

Σ = {0, 1}

q0 = {a}

F = {b}

For transition function δ, we need to show the mappings of states on

each input symbols, that’s why we need a table:

States Input Symbols

01

a aa,b

-b b

From the above table, we can easily understand that on accepting input

symbol ‘1’ state ‘a’ can move either to state ’b’ or to state ’a’ and on

334 | P a g e

Space for learners: accepting input symbol ‘0’ state ‘a’ remains unchanged, i.e., self-

looped. So, let’s draw a diagram for the above example:

Figure 2: A NFA example

So, according to the diagram, see in the final state ‘b’, input symbol ‘1’

is self looped and from state ‘a’, by consuming only ‘1’ we can reach

the final state. So, we can easily say, this is a NFA, which will accepts

all strings ending with one. Furthermore, we can see there is no

transition for input symbol ‘0’ from final state ‘b’, this type of

mechanisms we can use while constructing a Non-deterministic finite

Automata.

2.4.3 NFA v/s DFA

We have studied Deterministic Finite Automata (DFA) and Non-

deterministic Finite Automata (NFA) in previous sections and learnt to

know how these automaton works. We have seen that both the types of

automaton are quite similar to each other, both NFA and DFA have

same power and each NFA can be converted into a DFA, but they

broadly differ from each other. Their differences are listed below:

a b

 1, 0

 1

1

335 | P a g e

Space for learners:

2.4.4 Membership Example

Given the NFA M, is 01001 accepted by the NFA? The transition

function for the given NFA is

Inputs States 0 1

->q0 {q0, q3} {q0, q1}

q1 _ {q2}

q2 {q2} {q2}

q3 {q4} _

*q4 {q4} {q4}

CHECK YOUR PROGRESS

Question 1: What are DFA and NFA’s?

Question 2: What is Transition Table? Give one example.

Question 3: Write down the differences between DFA and NFA.

Question 4: Write the transition function for DFA and NFA.

336 | P a g e

Space for learners: Solution: So, we will use transition function to solve it. As per transition

table, q0 & q4 are initial and accepting states respectively.

 δ (q0, 0) = {q0, q3}

 δ (q0, 01) = δ (δ (q0, 0), 1)

 = δ ({q0, q3}, 1)

 = δ (q0, 1) Uδ (q3, 1)

 = {q0, q1}

δ (q0, 010)=δ (δ (q0, 01), 0)

 = δ ({q0, q1}, 0)

 = δ (q0, 0) Uδ (q1, 0)

 = {q0, q3}

 δ (q0, 0100) = {q0, q3, q4}

 δ (q0, 01001) = δ (δ (q0, 0100), 1)

 = δ ({q0, q3, q4}, 1)

 = δ (q0, 1) Uδ (q3, 1) U δ (q4, 1)

 = {q0, q1, q4}

We know, q4 is the final state and q4 is in the final set of states. So, we

can say the string 01001 is accepted by the NFA. In similar way, we can

check any string is either accepted or rejected by NFA and DFA.

2.4.5 NFA with Empty Moves

A kind of finite automata which contains ε (null or empty) move or

instantaneous transition. As we studied, a nondeterministic finite

automaton (NFA) can have zero, one, or multiple transitions

corresponding to a particular symbol. It is defined to accept the input if

there exists some choice of transitions that cause the machine to end up

in an accept state. With NFA, we can easily solve complex problems.

Epsilon NFA is nothing but an NFA with an additional feature named

Epsilon (ε), is a convenient feature with which we can construct even

more complex and bigger problems. Both NFA and ε-NFA can

recognize same language. An example of ε-NFA is given below:

337 | P a g e

Space for learners:

Figure 3: a ε-NFA Example

Check the above diagram, and see from the state q0, the machine is

moving to state q1 andq2 with ε transition that means without input

symbol q0 is changing its state. The transition table will look like:

 States Input

Symbols

 0 ε 1

q0 - q1 ,q2 -

q3- -

 - -q3

 - -q4

- - -

q1

q2

q3

q4

2.4.4.1 ε-closure

ε-closure is calculated for different states of an ε-NFA. ε-closure of a

state ‘q’ means a set of states which can be reached from the state ‘q’

with ε move (empty/null move) including the self-state. That means set

of states that can be reached without any input symbol is ε-closure of a

state. Now, Let us find out ε-closure for each state of a ε-NFA given in

figure 3:

ε-closure {q0} = {q0, q1, q2}

ε-closure {q1} = {q1}

338 | P a g e

Space for learners: ε-closure {q2} = {q2}

ε-closure {q3} = {q3}

ε-closure {q4} = {q4}

2.5 EQUIVALENCE OF DFA AND NFA

In this section, we will discuss the equivalence of DFA and NFA, which

means their capability of recognizing language. As we studied

deterministic finite automata and non-deterministic finite automata, it

looked like they are different from each other. Their transition diagram,

working etc. are different but when comes to recognize a language it

turns out to be an equivalent of each other. We can convert an NFA to

its equivalent DFA by any conversion algorithm. So, here we will prove

the equivalence of NFA and DFA i.e.both NFA and DFA can recognize

same type of languages which means for any DFA D, there is an NFA N

such that L(N) = L(D) and For any NFA N, there is a DFA D such that

L(D) = L(N).

2.5.1 Equivalence Theorem

Let’s formally state the theorem below:

Let for any language, and suppose L is accepted by NFA N = (Σ, Q, q0,

F, δ). There exists a DFA D= (Σ, Q’, q’0, F’, δ’) which also accepts L.

(L(N) = L(D)).

We just need to prove that DFA D is equivalent to NFA N. Through

Induction method, we can prove it if we allow each state of DFA D to

represent the state or set of states in the NFA N. So, firstly, let’s

configure the parameters of DFA D(Σ, Q’, q’0, F’, δ’),where-

Q’ = 2Q and q’0 = {q0}

CHECK YOUR PROGRESS

Question 5: Discuss Epsilon NFA with example.

Question 6: What is ε-closure?

339 | P a g e

Space for learners: F’ = {q ∈Q’|q ∩ F ≠ Ø}, where F’ is the set of states in Q’ and F is the

set of final states in NFA.

δ’ is the transition function of DFA D.

δ’(q,a) = Up∈q δ(p,a) for q∈Q’ and a∈ Σ

We know from the transition function of both NFA and DFA, each state

in the set of states Q’ in D is nothing but a set of states itself from Q in

N. For each state p in state q in Q’ of D(p is a single state from Q),

determine the transition δ(p,a). δ(p,a) is the union of all δ(p,a).

Now, we can easily prove that δ’’(q0’,x) = δ’’(q0,x) for every x. i.e.,

L(D) = L(N)

Basic Step:Let x be the empty string ε.

 δ’’(q0’,x) = δ’’(q0’, ε)

 = q0’

 ={ q0}

 = δ’(q0, ε)

 = δ’(q0, x)

Inductive Step:

Assume that for any y with |y|>=0, δ’’(q0’,y) = δ’(q0’,y)

If we let n=|y|, then we need to prove that for a string z with |z| = n+1,

δ’’(q0’,z) = δ’(q0’,z). We can then represent the string z as a

concatenation of string y and symbol a from the alphabet Σ (a ∈ Σ).

So, z=ya

 δ’’(q0’,z) = δ’’(q0’,ya)

 =δ’(δ’’ (q0’,y),a)

= δ’(δ’ (q0,y),a) (assumption)

= Up∈ δ’ (q0,y) δ’ (p,a)

 = δ’ (q0, ay)

340 | P a g e

Space for learners: = δ’ (q0, z)

Now, DFA D accepts a string iff δ’’ (q0’, x) ∈ F’. From the above

explanation, it follows that D accepts x iffδ’(q0, x) ∩ F ≠ Ø. So, a string

is accepted by DFA D, if and only if, it is accepted by NFA N.

There is another alternative and easy way to prove this theorem,

approach is given below:

Theorem:

A language L is accepted by a DFA if and only if it is accepted

by an NFA.

Proof:

If part:

Prove by showing every NFA can be converted to an

equivalent DFA.

Only-if part:

Every DFA is a special case of an NFA where each state

has exactly one transition for every input symbol. Therefore, if L

is accepted by a DFA, it is accepted by a corresponding NFA.

By showing these two parts, we can easily solve the above

Theorem.

2.5.2 NFA to DFA Construction

From the above equivalence theorem, we can conclude that there exists

an equivalent DFA for any NFA. In this section we will learn to

construct corresponding DFA for an NFA. So, let’s discuss subset

construction method to construct a DFA for NFA:

Let our NFA is N = {QN,Σ,δN,q0,FN}. Our aim is to build a

corresponding DFA D={QD, Σ, δD,{q0},FD} such that L(D)=L(N)

Subset Construction:

1. QD= all subsets of QN (i.e., power set)

2. FD=set of subsets S of QN such that S∩FN≠Φ

3. δD:for each subset S of QN and for each input symbol a in Σ:

341 | P a g e

Space for learners: δD(S,a) = U δN(p,a)

For easy understanding of Subset construction method, we will take an

example to construct a corresponding DFA from its NFA. Let’s take a

language L = {w | w ends in 01}, for this NFA will be:

Figure 4: a NFA Example-to convert to DFA

We need to construct a DFA for this NFA by subset construction

method. So, transition table of the NFA will look like:

States Input Symbols

01

q0 { q0, q1} { q0}

Ø { q2}

 Ø Ø

q1

 q2

Now, as per algorithm, we first need to find out all subsets of states. We

have three states { q0, q1 , q2 }, then there subsets are – Ø, { q0}, { q1}, {

q2}, { q0, q1}, { q1, q2}, { q0, q0}, { q0, q1, q2} i.e., 23=8 subsets of states

can be possible. After enumerating all the possible subsets, check the

transition table of NFA, from which we have to determine important

transitions. We have to give importance to the starting state, here

starting state is q0, now check,from q0 only we can easily reach to other

subsets of states like { q0, q1} and { q2}. So we will retain only those

states which are reachable from {q0}. So, let’s construct the transition

table of DFA. Since, our starting state is {q0}, we will start from this,

after writing its mappings, we need to find out the mappings of our

new state { q0, q1}, for this we need to check the mappings of q0, q1

separately in the NFA table and then union it. In this way, we will find

the new subset of states and eventually we will move to the final state.

q0 q1 C
0

 0

0,1

1
q2

342 | P a g e

Space for learners: Since, our final state in NFA is q2, so, in DFA table, any combination

of subset of states, which contains q2 will become final state of the

corresponding DFA.

States Input Symbols

01

{q0} { q0, q1} {

q0}

{ q0, q1} { q0, q2}

{ q0, q1}{ q0}

{ q0, q1}

{ q0, q2}

So, from this DFA transition table, we can finally construct our

resulting DFA, which is:

Figure 5: Resulting DFA of an NFA (Figure 4)

Now, we will discuss another method, which is easier than this. Method

is known as Lazy Creation, Aim is to avoid enumerating all of power

sets of states. In this method, we will create states of the resulting DFA

by lazy creation of sets. Let us try to understand this method:

Let’s take earlier example of figure 4 and check its transition table.

Now, checking only that transition table, we can easily construct our

DFA transition table by lazy creation of sets. Firstly, we need to check

the starting state, from starting state {q0} we can write the states for its

different input symbols. Now, see we get a new state named { q0, q1}, so

whenever we get a new state we need to define it first, i.e., we need to

find its mappings. Now, we get another new state { q0, q2}, so we need

to define it. After defining it, check if there is any new state present or

not, if there is a new state then define it. Define all the new states until

{ q0} {q0 ,q1}
0

 0

1

1

0

 {q0 ,q2} {q0 ,q2}

 0

1

343 | P a g e

Space for learners: no new state is there. When there is no new state present in my

transition table, we are ready to draw the diagram of corresponding

DFA, So for the example’s DFA diagram, check figure 5.

States Input Symbols

01

{q0} { q0, q1} { q0}

{ q0, q1} { q0, q2}

{ q0, q1}{ q0}

{ q0, q1}

{ q0, q2}

2.5.3 ε-NFA to DFA conversion

We need to recall ε-closure definition from previous sections. We have

learnt how to find out ε-closure of each state of a ε-NFA. ε-NFA to

DFA conversion is the easier conversion technique among all

conversion techniques. Let’s take an example of an ε-NFA as in figure

6, then very first we need to find out ε-closure of each states. Steps to

convert ε-NFA to DFA are-

 Step 1 : Take ε-closure for the beginning state of NFA as beginning

state of DFA.

Step 2 : Find the states that can be traversed from the present for each

input symbol .

Step 3 : If any new state is found take it as current state and repeat step

2.

Step 4 : Do repeat Step 2 and Step 3 until no new state present in DFA

transition table.

Step 5 : Mark the states of DFA which contains final state of NFA as

final states of DFA.

344 | P a g e

Space for learners:

Figure 6: Epsilon NFA

Transition Table will be:

States Input Symbols

0ε1

A B,C B A

 - C

B

C C

B

C

For the above example ε-closure are as follows :

ε-closure (A) : {A, B, C}

ε-closure (B) : {B, C}

ε-closure (C) : {C}

Now, using the algorithm steps, we will construct the transition table of

DFA:

States Input Symbols

01

{A,B,C} B,C

A,B,C

 C

B,C

C C

{B,C}

 {C}

So, the resulting DFA is:

A B C

0,1

0
 0

0

1 1

ε

ε

C

345 | P a g e

Space for learners:

Figure 7: DFA of an Epsilon NFA (fig. 6)

2.6 MINIMIZATION OF FA

Minimization of Finite Automata means reducing the useless and

redundant states from given Finite automata. Here, we are saying FA,

we are mainly indicating DFA. Reducing number of states leads our

automaton faster, consumes very less space and eventually become

easier to implement. Steps to minimizing DFA are given below:

Step 1: Remove all the states that are unreachable from the initial state

via any set of the transition of DFA.

Step 2: Draw the transition table for all pair of states.

Step 3: Now split the transition table into two tables T1 and T2. T1

contains all final states, and T2 contains non-final states.

Step 4: Find similar rows from T1 such that:

1. δ (q, a) =p

2. δ (r, a) = p

That means, find the two states which have the same value of a and b

and remove one of them.

{A,B,C} {B,C} {C}

0,1

1

0 0

1

CHECK YOUR PROGRESS

Question 7: What do you mean by lazy creation of sets?

Question 8: Discuss the equivalence theorem of DFA and NFA.

Question 9: What is the power of NFA and DFA in recognizing

languages?

346 | P a g e

Space for learners: Step 5: Repeat step 3 until we find no similar rows available in the

transition table T1.

Step 6: Repeat step 3 and step 4 for table T2 also.

Step 7: Now combine the reduced T1 and T2 tables. The combined

transition table is the transition table of minimized DFA.

Let us take an example to illustrate this:

Suppose we have finite automata -

In the first step, we will try to find unreachable states. From the

diagram, we can say that q2 and q4 are the unreachable states. We will

remove all unreachable states.

In the second step, we will construct the transition table for the rest of

the states. q0 is the initial state, q3 and q5 are the final states.

States Input Symbols

01

q0 q1 q3

q0 q3

q5q5

q5 q5

q1

 *q3

 *q5

In the third step, we will divide rows of transition table into two sets as:

1. One set contains those rows, which start from non-final states:

347 | P a g e

Space for learners: States Input Symbols

01

q0

q1

 q1

q3

 q0

q3

2. Another set contains those rows, which starts from final states.

States Input Symbols

01

q3

q5

 q5

q5

 q5

q5

In fourth step, Set 1 has no similar rows so set 1 will be the same.

In fifth step, in set 2, row 1 and row 2 are similar since q3 and q5 transit

to the same state on 0 and 1. So skip q5 and then replace q5 by q3 in the

rest.

States Input Symbols

01

q3 q3

q3

In sixth step, we will combine set 1 and set 2 as:

States Input Symbols

01

q0 q1

348 | P a g e

Space for learners: q1 q3

q0 q3

 q3q3

 *q3

This is nothing but final minimized DFA transition table. Using this

table, we can draw our DFA-

2.7 SUMMING UP

 For each input symbol, if our machine will move to only one certain

state, it is a deterministic finite automaton

 If our machine is moving to any combination of states in the machine

then it becomes non deterministic in nature.

 For describing complex problems, NFA is used and ε– NFA is a kind

of NFA having epsilon feature, which helps states to move to other

states or self state without input symbol.

 We can convert NFA, ε– NFA to its equivalent DFA.

 Some finite automata has large number of useless and redundant

states, which consumes time and space both, that is why we learnt to

reducing states of finite automata.

2.8 ANSWERS TO CHECK YOUR PROGRESS

349 | P a g e

Space for learners: 1. DFA: When our finite automata’s state is determined i.e. for each

input symbol, machine will move to only one certain state, hence it is

called as deterministic finite automata. A deterministic finite automata

consists of five tuples {Q, Σ, q0, F, δ} where-

Q represents finite set of states.

Σ represents set of all input symbols, i.e. Alphabet.

q0 represents Initial state.

F represents finite set of final state/states.

δ represents Transition Function, which takes two arguments, a state

and an input symbol, it returns a single state. So, δ : Q X Σ -> Q.

Some real-life examples of Deterministic Finite Automata (DFA) are

lifts in buildings, text parsing, video game character behavior, security

analysis etc.

NFA: When our finite automata’s state is not determined i.e. machine

can move to any states of the automaton. It consists of five-tuples {Q,

Σ, q0, F, δ} where-

Q represents set of all states.

Σ represents set of all input symbols, i.e., Alphabet.

q0 represents Initial state.

F represents set of final state or states.

δ represents Transition Function, which takes two arguments, a state

and an input symbol, it returns any combination of Q states. So,δ : Q

X Σ -> 2Q.

2. Transition Table contains the information regarding states and its

input symbols. On different input symbols, different states of machine

are moving to different states, these information are available in

transition table.

For Example, typical transition tables look like-

States Input Symbols

01

a b

350 | P a g e

Space for learners: b a

 b

a

3. Refer the section 2.3.3

4. Transition function of DFA is δ: Q X Σ -> Q, which means the

function takes two arguments, a state and an input symbol, it returns a

single state.

Transition function of NFA is δ : Q X Σ -> 2Q, which means the

function takes two arguments, a state and an input symbol, it returns

any combination of Q states.

5. Refer section 2.3.5

6. ε-closure means set of states that can be reached without any input

symbol from any state of the ε-NFA.

7. Lazy creation of sets is a technique to convert a NFA to DFA. It used

while we are constructing a DFA from given NFA. Unlike subset

construction method, here we don’t use to enumerate all the subsets of

states. Whenever a new state arrived, we just calculate its mappings.

When there is no new state, we draw equivalent DFA.

8. Refer section 2.4.1

9. From the theorem, we can say, A language L is recognized by a DFA

if and only if there is an NFA N such that L (N) = L. So, NFA and DFA

can recognize same set of languages.

2.9 POSSIBLE QUESTIONS

Question 1: Discuss about NFA with example.

Question 2: Draw deterministic and non-deterministic finite automata

which accept 00 and 11 at the end of a string containing 0, 1 in it.

Question 3: Write down the differences between NFA and DFA.

Question 4: Convert Following NFA to its equivalent DFA.

a)

351 | P a g e

Space for learners:

b)

Question 5: Convert the following ε - NFA to its equivalent DFA.

Question 6: Write down the applications of Finite automata.

Question 7: Minimize states of the following FA.

352 | P a g e

Space for learners: 2.10 REFERENCES AND SUGGESTED READINGS

 Introduction to Automata Theory, Languages and Computation,

John E Hopcroft ,Matwani& Jeffery D. Ullman

 Introduction to Languages and the Theory of Computation, John C.

Martin

 Elements of the Theory of Computation, Lewis & Papadimitriou

 GeeksforGeeks - https://www.geeksforgeeks.org/

 Gatevidyalay- https://www.gatevidyalay.com/

 Equivalence Theorem - https://www.neuraldump.net/

 Minimization Techniques - https://www.javatpoint.com/

353 | P a g e

Space for learners: UNIT3: REGULAR SETS AND REGULAR

EXPRESSIONS

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Regular Sets and Regular Expressions

 3.3.1 Precedence Rules

 3.3.2 Finite Automata and Regular Expressions

3.3.3 Inductive Definition

3.4 Closure Properties

 3.4.1 Complement

 3.4.2 Intersection

3.4.3 Algebraic Laws of Language

3.5 Decision Algorithms for Regular Sets

3.6 Pumping Lemma for Regular Sets

3.6.1 Pumping Lemma

 3.6.2 Examples

3.7 Summing Up

3.8 Answers to Check Your Progress

3.9 Possible Questions

3.10 References and Suggested Readings

354 | P a g e

Space for learners: 3.1 INTRODUCTION

Regular Expressions are the simplest way to describe set of various

strings in a language. Starting from our own utility software like

compilers, game player etc to real life, regular expressions has

enormous number of applications in various fields. That is why we need

to study regular expressions, set and eventually regular language. This

Unit basically discusses various definitions, various properties of

regular language with examples in easy language. Finite automaton

recognizes regular language, so this unit covers the way of designing

DFA for its regular language. Regular language has some theorems like

other languages, so for proving that we have used easy mathematical

ways. Whenever we are studying different definitions and properties of

different languages, those mathematical terms are very important in this

subject. Only using mathematical terms, pumping lemma concept is

introduced and it is very crucial to determine the type of the language.

So, basically Regular language is nothing but regular sets which are

generated from regular expressions using mathematical operations and

this language can be recognized by finite automata.

3.2 UNIT OBJECTIVES

This unit covers all about regular expressions, sets and language and

their operations. After going through this unit you will be able to –

 Get full concept on regular expressions with examples.

 Create any regular expressions, then language and eventually a

DFA for it.

 What is the relation between NFA, DFA and regular

expressions?

 How easily we can proof certain theorems using mathematical

notations?

 Explain closure properties of regular language.

 Question about membership for any string in a regular language.

 Get to know about different algebraic laws of languages.

355 | P a g e

Space for learners:  Explain decision problems of regular language.

 Find a given language is regular or not, using Pumping Lemma.

3.3 REGULAR SETS AND REGULAR EXPRESSIONS

Regular Expressions are an effective way to represent a language. These

are nothing but string-like simple expressions which can be used to

define any finite automata language. These expressions are generally a

sequence of patterns. Any set which can be represented by regular

expression is called a regular set.

Regular Expressions over an input alphabet Σ are-

 ɸ is a regular expression denoting ɸ.

 ɛ is a regular expression denoting {ɛ}.

 For each a ∈ Σ, a is a regular expression denoting {a}.

 If a is regular expression, a* (0 or more times a) is also regular.

 If E and F are regular expressions denoting languages L(E) and

L(F), then (E+F) is a regular expression denoting L(E) ∪ L(F)

 If E and F are regular expressions denoting languages L(E) and

L(F),then (EF) is a regular expression denoting L(E) L(F)

 If E and F are regular expressions denoting languages L(E) and

L(F),then (E*) is a regular expression denoting L(E)*.

Example: Some regular expressions with their meanings are given

below:

Regular Expression Meaning

01 A zero followed by a one(concatenation)

0+1 Either a zero or a one

0* Any number of zeroes

356 | P a g e

Space for learners: 1+ One or more number of ones.

(0+1)* All strings over {0,1}

0*10*10* Strings containing exactly two ones

(0+1)*11 strings which end with two ones

If a language can be expressed and described by regular expressions

then it is known as regular language. And obviously, grammar of that

language is called regular grammar.

3.3.1 Precedence Rules

Precedence rules of regular expression are similar to the rules of general

arithmetic expression. We will consider exponentiation first, then

multiplication, then addition. We will take Kleene closure as

exponentiation, concatenation as multiplication, and union as addition

and the precedence rules are identical.

3.3.2 Finite Automata and Regular Expressions

Regular expressions can define the same class of languages as finite

automata. DFA, NFA, Epsilon-NFA all can express regular languages.

Figure 1: Relation of Finite automaton and regular expression

357 | P a g e

Space for learners:

3.3.3 Inductive Definition of Regular Language

Base Case Definition: Let our input alphabet Σ, then {} is a regular

language; {ɛ} is a regular language; {a} is a regular language for any

character a in Σ.

Inductive Case Definition: If L1 and L2 are regular languages, then L1∪

L2, L1L2, L1* are also regular languages.

Completeness: Regular languages are those languages which can be

generated using the above rules.

3.4 CLOSURE PROPERTIES OF REGULAR

LANGUAGES

Regular expressions are defined through union, concatenation, and

closure.

Union: L1∪ L2 = {x | x in L1 or x in L2}.

Concatenation: L1L2 = {xy | x in L1 and y in L2}.

(Kleene) Closure: L* = ∪i=0,1,..∞ Li, where L0 = {ɛ}, Li =LLi-1

Example: {01, 10}* = {ɛ, 01, 10, 0110, 0101, 1010 …}

Since we knew that regular languages are closed under union,

concatenation and star operation. So we will try to prove that regular

CHECK YOUR PROGRESS

Question 1: What is a regular expression?

Question 2: How regular languages behave in case of union and

concatenation operation?

Question 3: What is the difference between regular expression 0*

and 0+.

Question 4: Discuss the relation between regular expressions and

Finite automata.

358 | P a g e

Space for learners: languages are closed under intersection and complement operation as

well.

3.4.1 Complement

If L1 is a regular language, then ̅L1is also a regular language.

Suppose we take a finite automata, let’s say a DFA D that accepts L1,

and modifies every non-final states as final states and final states as non

final. That means we are just complementing our DFA D. So, our new

DFA ̅D is nothing but the compliment of D, it will accept some strings

because it has final and non final sates just like other DFAs. So, DFA ̅D

will accepts some new set of strings, eventually a language. By

definition, we know that a language a DFA can recognize its nothing

but a regular language. So, ̅L1 is the regular language which will be

recognized by our new DFA ̅D. Hence, if L1 is a regular language, then

̅L1is also a regular language.

3.4.2 Intersection

For regular languages L1 and L2, their ̅L1 ∩̅L2is also a regular language.

It is given that L1 and L2 are both regular languages, then -

By definition, ̅L1 and ̅L2 are also regular languages.

By definition, ̅L1∪ ̅L2 is a regular language.

By definition, complement of ̅L1∪ ̅L2 is also a regular language.

So, by applying de-Morgan’s law, we can say ̅L1 ∩̅L2 is also a regular

language.

Hence, regular languages are closed under union, intersection,

concatenation, complement and star operation.

359 | P a g e

Space for learners:

3.4.3 Algebraic Laws of Languages

Here are some important algebraic laws of Languages we need to know.

If L, M and N are three regular languages, then -

 Union is commutative: L∪M = M∪L

 Union is associative: (L∪M)∪N = L∪(M∪N)

 Concatenation is associative: (LM)N = L(MN)

 ɸ is identity for union: ɸ ∪L =L∪ ɸ = L

 ɛ is left and right identity for concatenation: {ɛ }L=L{ɛ}=L

 ɸ is left and right annihilator for concatenation: ɸ L=L ɸ =L

 Concatenation is left distributive over union : L (M∪N) =LM ∪

LN

 Concatenation is right distributive over union: (M∪N)L = ML ∪

NL

 Union is idempotent: L∪L=L

 Star is idempotent: (L*)* = L*

 ɸ*= {ɛ}, {ɛ}*= {ɛ}

 L+ = LL* = L*L, L* = L+
∪ {ɛ}

3.5 DECISION ALGORITHMS FOR REGULAR SETS

Decision Algorithms for a class of languages are properties which try to

provide description of a language and discuss whether or not some

properties hold. Decision problems can be solved very quickly, very

computationally demanding, or unsolvable. Some decision properties of

regular class of languages are given below-

 Emptiness Problem: Suppose we have given a regular language

CHECK YOUR PROGRESS

Question 5: Discuss Closure properties of regular language.

Question 6: How regular languages are closed under Complement

and Intersection operation?

Question 7: What is Kleene Closure or Star Closure?

360 | P a g e

Space for learners: L, how to check L is empty or not.

For this, we have to take the DFA for that regular language; we

can easily draw the corresponding DFA for L. Now, we will

check if there exists a path from initial state to final state. If

there is a path, then it is not empty, otherwise it is empty one.

 Finiteness Problem: Suppose we have given a regular language

L, how to check L is finite or not.

For this, again we have to draw the DFA for that regular

language. Now, we will check if there is a walk with cycle from

initial state to final state. If there is at least one cycle in the path,

then it is infinite and if there is no cycle present in the DFA, then

L is finite.

 Equivalence Problem: Suppose we have given two regular

languages L1 and L2, how to check if L1 = L2.

We have to show the symmetric difference of L1 and L2 is empty

that is, there is no string belonging to one but not both of the

languages. So, symmetric difference of L1 and L2 can be

expressed as: (L1 ∩ ̅L2) ∪ (L2 ∩ ̅L1)

Now we need to show (L1 ∩ ̅L2) ∪ (L2 ∩ ̅L1) = ɸ

For getting ɸ, we have to show (L1 ∩ ̅L2) and (L2 ∩ ̅L1) = ɸ

By looking at the languages, (L1 ∩ ̅L2), if we can write L1⊆L2

and

By looking at the languages, (L2 ∩ ̅L1), if we can write L2⊆L1,

then we can conclude L1=L2, or if any of these two L1⊆L2

,L2⊆L1 is false, then we can conclude L1≠L2

 Membership Problem: Given a regular language L, we need to

check a string suppose x is belongs to that L or not. Simplest

solution for this problem is just to draw a DFA for regular

language L and then check string x is accepted or not.

For example, L= {a3n | n ≥ 0}, which means the language contains

strings of a’s where count of numbers of a in the string is divisible by

3. Let’s draw a DFA for it:

361 | P a g e

Space for learners:

Figure 2: DFA for the Language L= {a3n | n ≥ 0}

From the above diagram, we can easily find out the acceptance status of

different strings for this language. Suppose a string is ‘aaaaaa’, so, our

initial state and final state is q0, we will start moving from q0, and the

string is ending at q0. Hence, this string belongs to the language. Now,

take another example ‘aaaaa’, & from the diagram we can see that the

string is ending at the state q2. Hence, this string ‘aaaaa’ does not belong

to the language. Since, we have learnt many topics about regular

language, now we need to learn how to check a given language is

regular or not. For this we will study Pumping Lemma in the next

section.

3.6 PUMPING LEMMA FOR REGULAR LANGUAGES

Pumping lemma is used as a proof that the language is not regular. We

used pumping lemma as a contradictory measure to proof a language is

not regular, but if the language satisfies pumping lemma then it can be

regular.

3.6.1 Pumping Lemma

Pumping lemma for Regular Language is -

For any regular language L, there exists an integer n, such that for all

w ∈ L with |w| ≥ n, and x,y,z∈Σ, such that w = xyz,

(1) |xy| ≤ n

(2)y≠ɛ

(3) for all i ≥ 0: xyiz∈ L

q0 q1 q2

a

a

a

362 | P a g e

Space for learners: In the last condition, we are pumping the string ‘y’. So whatever the

value of i, i.e. string y can be inserted any number of times, but the

resultant string should belongs to the language L.If there exists at least

one string made from pumping which is not in L, then L is not regular.

3.6.2 Examples

Let us discuss some pumping lemma examples-

Approach to solve: Try to find a contradiction to prove that the

language is not regular, if we able to do so, then the language is not

regular, otherwise it is regular. That’s why; we will first assume that

the language is a regular one.

Example 1: Checking irregularity of the language L= {anbn : n>=0}

So, Let’s say our language L= {anbn: n>=0} is regular.

Let m be an integer, we will choose a string w such that w ∈ L and

length |w|≥m

Suppose w= ambm, According to pumping lemma, w=xyz, so we will

divide ambm into three parts and the middile part i.e. y we will pump.

Conditions should be fulfilled i.e. |xy| ≤ m, |y|≥1.

So, let’s divide it like - x=am-k , y=ak , z=bm , where |k|≥1

From the pumping lemma xyiz∈L , i=0,1,2,3,……..

For i=2, xy2z = am-ka2kbm = am+kbm

CHECK YOUR PROGRESS

Question 8: What are the decision problems or algorithms for

regular language?

Question 9: State pumping lemma for regular language?

Question 10: Check ‘001100’ string is accepted or rejected by the

language L= {x | x ends with at least one zero}.

363 | P a g e

Space for learners: BUT, am+kbm
∉ L, because our language is L= {anbn: n>=0}, that means

equal number of a’s followed by equal number of b’s. So, It’s a

contradiction and hence, the language is not regular.

Example 2: Checking irregularity of the language L= {ww | w ∈Σ*}

So, let’s say our language L= {ww | w ∈Σ*} is regular. Here, from the

L, we can easily understand that a string w is repeating twice, and the

string w is taken from the input alphabet. Assuming our input alphabet

Σ ={a,b}, we can take our string as anbanb, where n is an integer.

So, According to pumping lemma, w = anbanb.

So, let’s divide it like - x=an/2, y= an/2 , z=banb

We know to be a regular language, xyiz∈L , i=0,1,2,3,…….., this rule

must be satisfied.

BUT, if we take xy0z = an/2banb ∉ L.

For xy0z, the same string is not repeating twice. It’s a simple

contradiction and hence, the language is not regular.

Example 3: Checking irregularity of the language L = { 0i1j | i > j}

So, let’s say our language L = {0i1j |i > j} is regular. By looking at the

language definition, we can find out this language has strings which

have number of zeroes followed by number of ones, but number of

zeroes should be greater than the number of ones. We can take our

string as 0n+11n, where n is apositive integer number.

Like earlier example, lets divide our w = xyz, in such a way that |xy| ≤

n, |y|≥1.

x= 0 , y=0n-1 , z=01n , from the pumping lemma xyiz∈ L ,

i=0,1,2,3,……..

If we check, xy2z = 0(0n-1)2 01n = 002n-201n = 02n1n
∈ L

BUT, if we pump down it, xy0z = 0(0n-1)0 01n = 00001n = 021n
∉ L,

when n>1 and n can be any integer. So, it’s contradicting the

definition of given language and hence, the language is not regular.

3.7 SUMMING UP

364 | P a g e

Space for learners:  Regular Expressions are nothing but strings, which can be used

to express and describe a language, regular language.

 Finite automata recognized this regular class of languages.

 While generating regular sets from regular expressions,

precedence rules are important to consider.

 Regular languages are closed under union, intersection,

concatenation, star and complement operation. Using these

mathematical properties we can proof many algorithms on

regular languages.

 Like every class of languages, regular languages have also

decision problems or algorithms.

 We use pumping lemma to prove that a language is not regular.

3.8 ANSWERS TO CHECK YOUR PROGRESS

1. A regular expression is a string that describes the whole set of strings

according to certain rules. Regular Expressions over an input alphabet Σ

are-

 ɸ is a regular expression denoting ɸ.

 ɛ is a regular expression denoting {ɛ}.

 For each a ∈ Σ, a is a regular expression denoting {a}.

 If a is regular expression, a* (0 or more times a) is also regular.

2. If E and F are regular expressions denoting languages L(E) and L(F),

then (E+F) is a regular expression denoting L(E) ∪ L(F) and (EF) is a

regular expression denoting L(E) L(F).

3. 0* indicates the sets of any number of zeroes and 0+ indicates the

sets of one or more number of zeroes.

4. Regular expressions can define the same class of languages as finite

automata. DFA, NFA, Epsilon-NFA all can express regular languages.

For any regular expressions, we can design corresponding finite

automata.

365 | P a g e

Space for learners: 5. Closure Properties of Regular languages are-

 Union: L1∪ L2 = {x | x in L1 or x in L2}.

 Concatenation: L1L2 = {xy | x in L1 and y in L2}.

 (Kleene) Closure: L* = ∪i=0,1,..∞ Li, where L0 = {ɛ}, Li =LLi-1

Besides from that, Regular languages are also closed under intersection

and complement.

6. Regular language is closed under Complement because If L1 is a

regular language, then ̅L1is also a regular language. Regular language is

closed under Intersection because for any two regular languages L1 and

L2, their ̅L1 ∩̅L2is also a regular language.

7. Kleene or star Closure: If L1 is a regular langauge, then L1* (the

Kleene closure of L1) is also a regular language.

8. The decision problems for regular languages are-

a) Emptiness Problem

b) Finiteness Problem

c) Equivalence Problem

d) Membership Problem

9.Pumping lemma for Regular Language is -

For any regular language L, there exists an integer n, such that for all

w ∈ L with |w| ≥ n, and x,y,z∈ Σ, such that w = xyz,

(1) |xy| ≤ n

(2) y ≠ ɛ

(3) xyiz∈ L, for all i ≥ 0;

10. We have given a language L= {x | x ends with at least one zero}, i.e

a language which accepts strings which are ending with two zeroes. We

need to check the string ‘001100’ is either accepted or rejected. Let’s

design a DFA for this language:

366 | P a g e

Space for learners:

From the above diagram, we can easily find out the acceptance status of

different strings for this language. From our Finite Automata, we can

see, our initial state is q0 and final state is q1. We have given our string

‘001100’, so we will start from q0. It is moving like q0→q1→q1

→q0→q0 →q1→q1, finally it is ending at q1, which is our DFA’s final

state, so the string is accepted by the language.

3.9 POSSIBLE QUESTIONS

Question 1: Which one of the following languages over the alphabet

{0,1} is described by the regular expression?

(0+1)*0(0+1)*0(0+1)*

a) The set of all strings containing the substring 00.

b) The set of all strings containing at most two 0’s.

c) The set of all strings containing at least two 0’s.

d) The set of all strings that begin and end with either 0 or 1.

Question 2: Regular expressions are closed under

a) Union

b) Intersection

c) Kleen star

d) All of the mentioned

Question 3: Which of the following is true?

a) (01)*0 = 0(10)*

b) (0+1)*0(0+1)*1(0+1) = (0+1)*01(0+1)*

c) (0+1)*01(0+1)*+1*0* = (0+1)*

d) All of the mentioned

q0 q1

0

1
0

1

367 | P a g e

Space for learners: Question 4: Write the regular expression for the language accepting all

the string containing any number of a's and b's, over the input alphabet

∑ = {a,b}.

Question 5: Check the language L= { 0n | n is a prime number} is

regular or not.

Question 6: We have studied that two regular languages are equal if

they have the same regular expression representation or DFAs. Let L1

and L2 denote two regular languages, one of them is given to you as a

regular expression while the other is represented as a DFA. How would

you verify that they are equal?

Question 7: Discuss the closure properties of regular languages.

Question 8: Discuss the decision properties of regular languages.

Question 9: What will be the regular sets of the following?

 (a) (0+1)* (b)(01)* (c)(0+1)

 (d)(0+1)+

Question 10: What are the applications of Regular expressions and

Finite automata?

3.10 REFERENCES AND SUGGESTED READINGS

 Introduction to Automata Theory, Languages and Computation,

John E Hopcroft, Matwani & Jeffery D. Ullman

 Introduction to Languages and the Theory of Computation, John

C. Martin

 Elements of the Theory of Computation, Lewis & Papadimitriou

 Sanfoundry - https://www.sanfoundry.com/

 GeeksforGeeks- https://www.geeksforgeeks.org/

367 | P a g e

Space for learners: UNIT 4: CONTEXT FREE LANGUAGE

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Context Free Language

 4.3.1 Contexts free Grammar

 4.3.2 CFG Notation

 4.3.3 Closure properties

 4.3.4 Examples

4.4 Derivations

4.4.1 Leftmost and Rightmost derivations

 4.4.2 Parse Tree

 4.4.3 Ambiguous Grammar

4.5 Simplifying Context Free Grammar

4.5.1 Types of redundant productions

4.5.2Elimination of useless productions

4.5.3 Elimination of null productions

4.5.4 Elimination of unit productions

4.6 Summing Up

4.7 References and Reading Suggestions

4.8 Model Questions

4.9 Answers to Check your Progresses

368 | P a g e

Space for learners: 4.1 INTRODUCTION

There are certain languages that cannot be described or expressed by

finite automata, so we need more powerful mechanism which can

recognize complex languages. The recursive structure of CFG is useful

for recognizing some set of complex languages. CFG are used for basis

of compiler design and implementation, computer vision, linguistics,

specification mechanisms for programming languages. We can easily

derive any string which belongs to the language of the grammar using

derivation techniques. A context free grammar is very flexible because

it can be simplified if there are any useless productions or symbols.

4.2 UNIT OBJECTIVES

This unit covers about context free languages, context free grammar and

its derivation techniques. After going through this unit you will be able

to:

 Explain about context free languages with examples.

 Create context free grammar for a language.

 Discuss the closure properties of context free languages.

 Find leftmost and rightmost derivation of strings.

 Draw parse tree of a string for a given grammar.

 Check a context free grammar is ambiguous or not.

 Find out useless productions, null productions and unit

productions of any context free grammar.

 Simplify any context free grammar.

4.3 CONTEXT FREE LANGUAGE

Context free language (CFL) is a type of language which is generated

by a context free grammar (or Type 2 grammar) i.e., a language L is

context free if there is a context free grammar (CFG) G, such that L is

generated from G. Regular languages are subset of context free

369 | P a g e

Space for learners: languages. Just like finite automata, which can recognize the set of

regular languages, Pushdown automata (PDA) can recognize context

free languages. E.g. Arithmetic operations can be generated by context

free grammars, so these are context free languages. Simply, Languages

which are specified by context free grammars are called context free

languages.

4.3.1 Contexts Free Grammar

It is a formal grammar used to generate possible patterns of strings for a

given language. A context free grammar (CFG) is a 4-tuple (V, Σ , R,

S), where –

V is a set of non-terminals (NT) are also called variables, which are

generally denoted by capital letters.

Σ is an alphabet, characters in the alphabet are known as terminals,

which are generally denoted by lowercase letters.

R is a set of production or substitution rules that represents the recursive

definition of the language. R is a subset of NT×(Σ∪NT)*. If (α , β) ∈ R,

if we can write α → β, then α → β is a production rule, where α

contains non-terminal symbols and β may contains terminals or non-

terminal symbols or combination of terminal and non-terminal symbols.

S is the starting variable, which is used to derive the string and is one of

the variables from the set of V.

4.3.2 CFG Notation

While defining CFG, we used some notations, these are-

 Uppercase letters are non-terminals (NT) and everything else is

a terminal symbols.

 Start symbol is always from non-terminals set, it will be on the

left hand side of the first production rule.

 Left hand side of the production rule only contains non-

terminals, using which we derive strings.

 Right hand side of the production rule can be anything from

370 | P a g e

Space for learners: terminals and non-terminals set and ε together.

 Rules with common left hand sides are combined with right-

hand sides separated by "|"

As an example consider the grammar:

S ⇾xSy | ε

The implication is start symbols is S and the rules are:

S ⇾xSy

S ⇾ ε

4.3.3 Closure Properties of Context Free Language

Closure properties discuss about various operations on Context Free

Language is closed. If we are doing an operation on a set and it always

produces a member which of the same set type, then we can say the set

is closed under that operation. Context free languages have the

following closure properties –

Union: Context-free languages are closed under union operation i.e. that

if X and Y are both context-free languages, then X∪Y is also a context-

free language.

Concatenation: Context-free languages are closed under concatenation

operation i.e. that if X and Y are both context-free languages,

then XY is also a context-free language.

Kleene Star: Context-free languages are closed under concatenation

operation i.e. that if L is a context free language then L* is also a

context free language.

Unlike regular languages, Context free languages are not closed under

intersection or complement operation.

For the decision properties of context free languages, emptiness

problem, finiteness problem and membership problem all are decidable.

4.3.4 Examples

371 | P a g e

Space for learners: Let’s try to construct the CFG for the language having any number of

a's over the set ∑= {a}.

We know the regular expression for above language a*.

Let’s try to construct the production rules for this-

S → aS

S → ε

Where S is the starting variable i.e. a non terminal and a is the input

symbol from set ∑ and ε is just a empty string. So, if we want to derive

any number of a’s then we will start from the starting variable –

S

aS

aaS S is replaced by aS because of first production rule

aaaS S is replaced by aS because of first production rule

aaaaS S is replaced by aS because of first production rule

aaaaaS S is replaced by aS because of first production rule

aaaaaaS S is replaced by aS because of first production rule

aaaaaaε S is replaced by ε because of second production rule

aaaaaa

So, from the derivation we can easily understand that we can get any

number of a’s. If we want to get zero number of a’s, that means just a

empty string, we will first choose second production rule, because S is

our starting variable.

Now let’s try to construct one intermediate CFG language L = { wxwR |

where w € (a, b)*}, where, wR is a reverse string of w.

The string that can be generated for a given language is {aaxaa, bxb,

abxba, baxab, abbxbba,….}

Production rules for the grammer can be –

S → aSa

S → bSb

S → x

372 | P a g e

Space for learners:

From these production rules, we can derive any string of {aaxaa, bxb,

abxba, baxab, abbxbba,….}. Suppose for example, String ‘abbxbba’ can

be derived as-

S → aSa

S → abSba S is replaced by bSb using second

production rule

S → abbSbba S is replaced by bSb using second

production rule

S → abbxbba S is replaced by x using third production rule

Since, at the last line, no non-terminals (in our example, only one NT is

given, which is S) are there, hence this is our derived required string.

4.4 DERIVATION

A derivation is a sequence of steps which begins with the start symbol,

uses the production rules to do replacements, and ends with a terminal

string.

In one step derivation, u yields v in one-step, written like u ⇒v, if for

some u,v in (V ∪∑)*, u = xαzand v = xβzwhereα⇾βis a rule.

In multistep derivation, u derives v, written like u ⇒*v, if there is a

chain of one step derivations in the form:

 u⇒ u1⇒ u2⇒ u3⇒ u4⇒ u5……⇒ v

4.4.1 Leftmost and Rightmost Derivations

CHECK YOUR PROGRESS

Question 1: What is Context Free Grammar?

Question 2: Construct a CFG for the language L = {0n1n | n>1}

Question 3: Explain closure properties of Context Free language.

373 | P a g e

Space for learners: A leftmost derivation of a sentential form is one in which rules

transforming the leftmost non terminal are always applied. Simply, in

leftmost derivations, we will always replace the leftmost non-terminals.

A rightmost derivation of a sentential form is one in which rules

transforming the rightmost non terminal are always applied. Simply, in

rightmost derivations, we will always replace the rightmost non-

terminals.

As for example, let’s take a simple grammar, consider our earlier

example of language a*. For that we have productions rules like-

S → aS

S → ε

Let us consider a string w =aaa

Leftmost Derivation-

S →aS

→ aaS (Using first production rule)

→ aaaS (Using first production rule)

→ aaaε (Using second production rule)

→ aaa

 Rightmost Derivation-

S → aS

→ aaS (Using first production rule)

→ aaaS (Using first production rule)

→ aaaε (Using second production rule)

→ aaa

Hence, leftmost derivation = rightmost derivation

Leftmost and rightmost derivations are just two techniques to derive our

strings. So, whatever the strings, if it belongs to the language, we can

get it easily either by leftmost or rightmost derivations. These two

derivations techniques will become very easy once we study the concept

of parse tree.

374 | P a g e

Space for learners:

4.4.2 Parse Tree

Parse tree or derivation tree is a geometrical representation of

derivations. There always exist a parse tree corresponding to each

leftmost derivation and rightmost derivation. A parse tree of a

derivation u⇒ u1⇒ u2⇒ u3 ……⇒ v is a tree in which:

 Each internal node is labeled with a non-terminal symbol.

 Root node of a parse tree is the start symbol of the grammar.

 Each leaf node is labeled with a terminal symbol.

 If a rule T→ T1T2…Tn occurs in the derivation then T is a

parent node of nodes labeled T1, T2, …, Tn

As for example, consider the following grammar-

S → aB |bA

 S → aS | bAA | a

 B → bS | aBB | b

 Let us consider a string w = aaabbabbba

Now, let us derive the string w using leftmost derivation.

 Derivation-

 S → aB

 → aaBB (Using B → aBB)

 → aaaBBB (Using B → aBB)

 → aaabBB (Using B → b)

 → aaabbB (Using B → b)

 → aaabbaBB (Using B → aBB)

 → aaabbabB (Using B → b)

 → aaabbabbS (Using B → bS)

375 | P a g e

Space for learners: → aaabbabbbA (Using S → bA)

 → aaabbabbba (Using A → a)

So, by looking at the required derived string, we will use our production

rules. Let’s draw a parse tree for this derivation. Our root node will be

S, because S is a starting variable-

Figure: A Typical Parse Tree

From the figure, if we consider all leaf nodes from leftmost side, we get

our string ‘aaabbabbba’. So, we can derive strings from any language

easily using parse tree that is why it is known as derivation tree.

CHECK YOUR PROGRESS

Question 4: What do you mean by leftmost and rightmost

derivations?

Question 5: What is multiple steps derivation?

Question 6: What is parse tree? Draw parse tree for the string ‘aaaa’

for the following CFG:

S → aS

S → ε∈

376 | P a g e

Space for learners: 4.4.3 Ambiguous Grammar

A grammar G is ambiguous if there is a word w ∈L (G) having are least

two different leftmost or rightmost derivations. Simply, for a string in a

Context Free Grammar (CFG), more than one leftmost derivation and

more than one rightmost derivation exist. For ambiguous grammar,

there will be two or more sparse trees for a string. Let’s figure this out

with an example:

Suppose our grammar is:

E → E + E | E * E | (E) | N

N → 1N | 2N | 1 | 2

This is one of arithmetic operation type grammar, where we are using

terminals like +, |, * etc. symbols. Let’s try to draw parse tree for the

string 1 + 2 * 2

Figure 2: Two different parse tree for same string

Since for a string, the grammar has more than one parse tree, hence this

grammar is an ambiguous grammar. Additionally, from the figure 2, if

we calculate parse tree derivations from arithmetic point of view, then

left parse tree value and right parse tree value will be 5 and 6

respectively. That is why ambiguity in grammar increases difficulties

for parser exponentially.

Let us discuss another example -

Check whether the given grammar is ambiguous or not-

377 | P a g e

Space for learners: S → A | B

 A → aAb | ab

 B → abB |ε

Now, let us draw parse trees for this string ab –

Given grammar is ambiguous because two different parse trees exist for

string ab.

4.5 SIMPLIFYING CONTEXT FREE GRAMMARS

While preparing context free grammar, we tend to write some

unnecessary redundant productions because CFG allows us to develop

a wide variety of grammars. That is why all the grammars are not

always optimized i.e. grammar may consists of some useless symbols

or productions. Simplification of CFG means reduction of grammar by

removing unnecessary productions, while keeping the transformed

grammar equivalent to the original grammar. Two grammars are called

equivalent if they produce the same language.

4.5.1 Types of Redundant Productions

Useless productions: Productions which do not take part in the

derivation of any string. Same is applicable for symbol or variable in

context free grammar. Consider the following grammar –

S → aaB| aaS

378 | P a g e

Space for learners: B → ab | b

E → ad

Production E → ad will never come in the derivation of any string

because it is not reachable from the starting variable S.

Null Productions: The productions of type P → ε are called null

productions or ε productions (also called lambda productions). Null

productions or ε productions are frequently used to develop context free

grammar.

S →ABCd

A → BC

B →bB | ε

C →cC | ε

Productions B → ε and C → ε are both null productions and ε

productions.

Unit Productions: The productions of type P → Q are called unit

productions. Simply, the production where a non terminal implies

another non terminal is known as unit productions. Consider the

following grammar –

S → 0A | 11 | C

A → 0S | 00

C → 01

Production S → C is a unit production in the above grammar.

4.5.2 Elimination of Useless Productions

We have studied about useless productions. Let’s try to understand how

to eliminate useless productions from a context free grammar with a

proper example -

T → aaB | abA | aaT

A → aA

B → ab | b

C → ad

379 | P a g e

Space for learners:

In the example, the production C → ad is useless, because C is not

reachable from S, so it will never occur in the derivation of any string.

So we will eliminate it.

Production A → aA is also useless because we don’t have any way to

terminate it. If a production never terminates, then it can never produce

a string. To remove this useless production A → aA, we will first find

all the variables which will never lead to a terminal string such as

variable 'A'. Then we will remove all the productions in which the

variable 'A' occurs. So, after removing useless symbols and productions,

grammar will be –

T → aaB | aaT

B → ab | b

4.5.3 Elimination of Null Or Ε Productions

We have studied about null or ε productions. For removing null

productions from the grammar, we need to do -

Step 1: Find out all non-terminal variables which derives ε, those non

terminals are also known as nullable variables.

Step 2: For each production, which contains nullable variables,

construct new productions by replacing nullable variables.

Step 3: Combine productions of step 2 with the original productions and

remove ε productions.

Consider the following grammar:

S → XYX

X → 0X | ε

Y → 1Y | ε

We need to remove the production rules X → ε and Y → ε. To preserve

the meaning of CFG we are actually placing ε at the right-hand side

whenever X and Y have appeared, so we need to check every possibility

while removing ε.

380 | P a g e

Space for learners: S → XYX

If the first X at right-hand side is ε and the last X at right-hand side is ε,

then we can write

S → YX

S → XY

If Y = ε then

S → XX

If Y and X are ε then,

S → X

If both X are replaced by ε

S → Y

Now,

S → XY | YX | XX | X | Y

Let’s take another production rule,

X → 0X

If we place ε at right-hand side for X then,

X → 0

X → 0X | 0

Similarly in case of last production rule,

Y → 1Y | 1

So, after removing null productions, our CFG will look like –

S → XY | YX | XX | X | Y

X → 0X | 0

Y → 1Y | 1

CHECK YOUR PROGRESS

Question 7: What is ambiguous grammar?

Question 8: Why we need to simplify context free grammar?

Explain.

Question 9: What are the different types of redundant productions?

Question 10: Check the following CFG is ambiguous or not?

 S → aSb | SS , S → ε

381 | P a g e

Space for learners: 4.5.4 Elimination of Unit Productions

For removing unit productions i.e. productions of type X → Y, we need

to follow -

Step 1: To remove X → Y, add production X → a to the grammar rule

whenever Y → a occurs in the grammar.

Step 2: Now delete X → Y from the grammar.

Step 3: Repeat step 1 and step 2 until all unit productions are removed.

Considering the following grammar:

S → 0A | 1B | C

A → 0S | 00

B → 1 | A

C → 01

In the above example, S → C is a unit production, while removing S →

C we have to consider what C implies. Depending on that, we can add a

rule to S.

S → 0A | 1B | 01

In the above example, B → A is also a unit production-

B → 1 | 0S | 00

Thus finally our CFG without unit production is –

S → 0A | 1B | 01

A → 0S | 00

B → 1 | 0S | 00

C → 01

4.6 SUMMING UP

 Context free languages are the languages which are specified by

context free grammars.

 Context free grammar is developed to address a complex set of

languages, as we have studied it’s a 4-tuple grammar.

 For obtaining a string from a CFG, derivations techniques we need

such as leftmost derivations, rightmost derivations etc...

382 | P a g e

Space for learners:  Parse tree is a geometrical representation of derivation of a string, if

for a particular string, there is more than one parse tree then the

corresponding grammar is ambiguous.

 We have to eliminate the ambiguity nature of the grammar.

 Sometimes parser faces problem because of the unnecessary

productions present in context free grammar that is why we need to

check for unnecessary productions in a grammar and if present we

have to remove those productions.

4.7 ANSWERS TO CHECK YOUR PROGRESSES

1. A context free grammar (CFG) is a 4-tuple (V, Σ , R, S) grammar,

whereV is a set of non-terminals (NT) are also called variables, Σ is an

alphabet, characters in the alphabet are known as terminals and S is the

starting variable. R is a set of production or substitution rules that

represents the recursive definition of the language.

2.Given CFG language is L = {0n1n | n≥1}.

The string that can be generated for a given language is {01, 0011,

000111, 00001111,….}

Production rules for the grammar can be –

S → 0S1

S → 01

From these production rules, we can derive any string of {01, 0011,

000111, 00001111…}. Suppose for example, String ‘000111’ can be

derived as-

S → 0S1

S → 00S11 Usingfirst production rule

S → 000111 Using second production rule

3. Closure properties of Context free languages are –

383 | P a g e

Space for learners: Union: Context-free languages are closed under union operation i.e. that

if X and Y are both context-free languages, then X∪Y is also a context-

free language.

Concatenation: Context-free languages are closed under concatenation

operation i.e. that if X and Y are both context-free languages,

then XY is also a context-free language.

Kleene Star: Context-free languages are closed under concatenation

operation i.e. that if L is a context free language then L* is also a

context free language.

Unlike regular languages, Context free languages are not closed under

intersection or complement operation.

4.A leftmost derivationof a sentential form is one in which rules

transforming the leftmost non terminal are always applied. A rightmost

derivationof a sentential form is one in which rules transforming the

rightmost non terminal are always applied.

5.In multiple steps derivation, u derivesv, i.e.u ⇒*v, if there is a chain of

one step derivations in the form:u⇒ u1⇒ u2⇒ u3⇒ u4⇒ u5……⇒ v

6.A parse tree is a geometrical representation of derivations in which:

 Each internal node is labeled with a non terminal symbol.

 Root node of a parse tree is the start symbol of the grammar.

 Each leaf node is labeled with a terminal symbol.

 If a rule T→ T1T2…Tn occurs in the derivation then T is a

parent node of nodes labeled T1, T2, …, Tn

We need to draw a parse tree for a string ‘aaaa’ for a given grammar:

S → aS

S → ε

So, parse tree is -

384 | P a g e

Space for learners:

7. For a string x in a Context Free Grammar (CFG), if there exist more

than one leftmost derivation or rightmost derivations, then it is a

ambiguous grammar.

8. Simplification of CFG means reduction of grammar by removing

unnecessary productions, while keeping the transformed grammar

equivalent to the original grammar. Simplification is required because

all the grammars are not always optimized i.e. grammar may consists

of some redundant symbols or productions.

9. Redundant productions are –

Useless productions: Productions or symbols which do not take part in

the derivation of any string.

Null Productions: The productions of type P → ε are called null

productions or ε productions (also called lambda productions). Null

productions or ε productions are frequently used to develop context free

grammar.

Unit Productions: The productions of type P → Q are called unit

productions.

385 | P a g e

Space for learners: 10. We have given following grammar:

S → aSb | SS

S → ε

So, for the string ‘aabb’, there are two parse trees, hence given CFG is

an ambiguous grammar.

4.8 POSSIBLE QUESTIONS

1. What is Context Free Language?

2. Define Context free grammar. Write some applications of it.

3. Explain the concept of parse tree with suitable example.

4. Explain Closure properties of context free languages.

5. Discuss various derivation techniques of CFG.

6. What are the three ways to simplify a context free grammar?

7. Discuss the simplification ways of Context free grammar with

examples.

8. Eliminate useless productions from the following grammar:

T → abA | aaT

A → aA

C → ad

9. Check the following grammar is ambiguous or not:

386 | P a g e

Space for learners: E → E + E | E ∗ E | (E) | id

10. Construct CFG without Є production from the grammar:

 S →a | Ab | aBa , A →b | Є , B →b | A.

4.9 REFERENCES AND SUGGESTED READINGS

 Introduction to Automata Theory, Languages and Computation,

John E Hopcroft, Matwani & Jeffery D. Ullman

 Introduction to Languages and the Theory of Computation, John C.

Martin

 Elements of the Theory of Computation, Lewis & Papadimitriou

 http://infolab.stanford.edu/

 https://www.geeksforgeeks.org/

 https://www.gatevidyalay.com/

 https://www.cs.wcupa.edu/

 https://www.javatpoint.com/

387 | P a g e

Space for learners: UNIT 5: PDA AND CHOMSKY NORMAL

FORMS

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Pushdown Automata

4.3.1 PDA as a State Diagram

4.3.2 Instantaneous Description

4.3.3 Examples of PDA

4.4 Normal Forms

4.4.1 Chomsky Normal form (CNF)

 4.4.2 Greibach Normal Form (GNF)

4.5 Pumping Lemma for Context Free Languages

4.6 Summing Up

4.7 Answers to Check your Progresses

4.8 Possible Questions

4.9 References and Suggested Readings

4.1 INTRODUCTION

In this unit we will study thoroughly about pushdown automata, normal

forms of context free grammar and lastly the pumping lemma for

context free languages. Finite automata cannot able to implement

complex problems, that is why pushdown automata comes with an

additional element called stack. Pushdown automata can implement a

context free languages and stack is used for different mechanisms and

memorizing purpose. We can design pushdown automata for any

context free languages. In last chapter, we have studied about

simplification of CFG, we will study another advanced related topic in

this chapter, which is Normal forms of CFG. Normal forms deals with

certain rules or forms of writing productions in the grammar. Lastly, we

388 | P a g e

Space for learners: will study the pumping lemma for context free languages, applying

which we can find out a language is context free or not.

4.2 UNIT OBJECTIVES

This unit covers Pushdown automata, Normal forms of context free

grammar and pumping lemma of Context free languages. After going

through this unit you will be able to:

 How Pushdown automata work?

 Designing Pushdown automata for any context free languages.

 Explain about normal forms of context free grammar.

 Convert a context free grammar into its Chomsky’s Normal

Form (CNF).

 Discuss about Chomsky’s Normal Form(CNF) and Greibach

Normal Form (GNF)

 Convert a context free grammar into its Greibach Normal Form

(CNF).

 Discuss the pumping lemma for context free languages.

 Check a language is context free language or not.

4.3 PUSHDOWN AUTOMATA (PDA)

Just as we design DFA for a regular grammar, pushdown automata

(PDA) is a way to implement a context free grammar. Pushdown

Automata are new type of computational model, which is like finite

automata but have an extra memory component called stack. Stack

allows PDA to recognize some complex languages that is why A PDA

is more powerful than finite automata (FA). A language which can be

acceptable by finite automata (FA) can also be acceptable by pushdown

automata (PDA). We can visualize a PDA like-

389 | P a g e

Space for learners:

PDA reads input symbol from alphabet and it can read/write to stack. It

makes transitions based on input symbol and top of stack.

Formally, a PDA can be defined by 7-tuple (Q, ∑, Γ, δ, q0 ,Z0, F),

where:

 Q is the finite number of states

 ∑ is the finite set of input symbols, the alphabet

 Γ is the finite set of stack symbols, symbols which are allowed to

push/pop into the stack

 q0 is the initial state of PDA

 Z0 is the initial stack symbol

 F is the set of final states

 δ is a transition function: Q x {Σ ∪∈} x Γ → Q x Γ* , i.e. PDA

will read input symbol and stack symbol (top of the stack) and

move to a new state and change the symbol of stack.

4.3.1 PDA as a State Diagram

390 | P a g e

Space for learners:

4.3.2 Instantaneous Description

An instantaneous description of PDA is described by a triple (q, w, α)

where:

q is the current state.

w is the unconsumed input.

α is the stack contents.

For transition purpose, we use turnstile notation (⊢ sign), which

represents one move of PDA. And for multiple moves, we use ⊢* sign.

For example,

(q, aw, Xβ) ⊢ (p, w, αβ)

In the above example, we took a transition such that we went from state

q to p, we consumed input symbol a, and we replaced the top of the

stack X with some new string α.

4.3.3 Examples of PDA

Example 1: Design a PDA for the language L = {w#wR : w ∈ {0,1}*}

Solution: From the given language, we can say our strings will look like

#, 0#0, 01#10, 0110#0110 etc.

391 | P a g e

Space for learners: We can design the PDA using state diagrams only. For better

understanding of PDA, we will use state diagrams for constructing

PDA, because state diagrams are best mathematical tools for designing

PDA.

For constructing PDA for a language, we need to think different

mathematical mechanisms. There can be numerous numbers of

mechanisms for designing a particular PDA. Here we designed this

PDA with the mechanism – ‘write w on stack and read wR from the

stack’ . In this PDA, we are assuming our stack alphabet is {0, 1} and

initial stack symbol is Z. So, from q0 to q1, we just push a Z into the

stack and then at the state q1, we are pushing 1’s and 0’s for input

symbol 1’s and 0’s, that means we are writing ‘w’ at q1, then by

consuming input symbol #, we reached at q2, here we are popping 1’s

and 0’s for input symbol 1’s and 0’s. Since our language is of type

w#wR, that is why first we pushed one part and secondly, we popped the

other part. If any string is not in type of w#wR, then machine will never

go to the final sate. Hence, we designed our PDA for the given

language.

Example 2: Design a PDA for the language L = {w :w has same

number of 0’s and 1’s}

Solution: From the given language, we can say our strings will look

like 01, 0110, 011100, 001110 etc., so our input alphabet will be Σ =

{0,1}.

As we have seen in the earlier example, we need to develop a

mechanism for constructing PDA. Suppose, our stack is keeping track

of number of 0’s and 1’s in the string and if we pop 1 for consuming

input symbol 0 and vice versa and finally at the end, if we find our stack

392 | P a g e

Space for learners: is empty, then we can easily say number of 0’s and 1’s are equal. So,

let’s construct it using state diagram -

For the above PDA, let’s check membership of a string for the given

language. Suppose our string is w= 001110, now for each consumed

input symbol, our stack contents will be –

Input symbol Stack contents

0 $0

0 $00

1 $0

1 $

1 $1

0 $

So, finally PDA’s stack is empty, it will move to the state q3 and which

is a final state. Hence, this string is accepted.

CHECK YOUR PROGRESS

Question 1: What are Pushdown automata?

Question 2: What is the transition function of PDA?

Question 3: Can we construct a PDA without its state diagram?

Question 4: Construct a PDA for the language L = {w#wR : w ∈

{0,1}*}

393 | P a g e

Space for learners: 4.4 NORMAL FORMS

Generally, it’s easier to work with context free grammar when it is in

normal forms. While parsing in computer, sometimes CFG causes lots

of problem such as redundant loops, infinite loops etc. that is why

normal forms are often convenient to simplify CFG. There are mainly

two normal forms, these are:

4.4.1 Chomsky Normal form (CNF)

A Context free Grammar G is in Chomsky Normal Form where every

production is either of the form:

 A→BC

 A→a

Where a is a terminal and A,B,C are non terminals.

E.g. consider the following grammar G

 S → AB

S → c

A → a

B → b

Production rules of Grammar G are in the forms of CNF, so grammar G

is in CNF.

When a CFG is not in the form of Chomsky’s Normal Form (CNF),

then we need to convert it. The conversion requires some easy steps,

which are –

Step 1: Remove the start symbol from RHS of production. If the start

symbol S is at the right-hand side of any production, create a new

production as:

S1 → S, where S1 is the new start symbol.

Step 2: Remove null, useless and unit productions if needed.

394 | P a g e

Space for learners: Step 3:Replace terminals from the RHS of the production if they exist

with other non-terminals or terminals. For example, the production X →

aP can be written as:

X → QP

Q → a

Step 4: Productions which are having more than two non terminals,

change it in the form A→BC.

For example, S → ASB can be decomposed as:

S → QS

Q → AS

Example: Consider the following grammar:

S → ASB

A → aAS|a|ε

B → SbS|A|bb

We need to convert this grammar to its CNF form.

So according to step 1, this grammar has start symbol in the RHS, we

need to remove them.

S1 → S

S → ASB

A → aAS|a|ε

B → SbS|A|bb

Now, from step 2, we need to simplify our CFG by removing null, unit

and useless productions, and this grammar has null productions –

S1 → S

S → ASB|SB

A → aAS|aS|a

B → SbS| A|ε|bb

So, it creates a new null production B → ε, we need to remove it –

S1 → S

395 | P a g e

Space for learners: S → AS|ASB| SB| S

A → aAS|aS|a

B → SbS| A|bb

Now, it creates unit production B->A

S1 → S

S → AS|ASB| SB| S

A → aAS|aS|a

B → SbS|bb|aAS|aS|a

Now, another unit production is S1 → S is there –

S1 → AS|ASB| SB| S

S → AS|ASB| SB| S

A → aAS|aS|a

B → SbS|bb|aAS|aS|a

Again, S1 → S and S → S exists, after removing them –

S1 → AS|ASB| SB

S → AS|ASB| SB

A → aAS|aS|a

B → SbS|bb|aAS|aS|a

Now, applying rule of step 3 in the production rule A->aAS |aS and B-

>SbS|aAS|aS

S1-> AS|ASB| SB

S → AS|ASB| SB

A → XAS|XS|a

B → SYS|bb|XAS|XS|a

X →a

Y→b

In the fourth production, B->bb can’t be part of CNF

S1-> AS|ASB| SB

396 | P a g e

Space for learners: S → AS|ASB| SB

A → XAS|XS|a

B → SYS|VV|XAS|XS|a

X → a

Y → b

V → b

Now, according to step 4, in the production rule S1->ASB, we will get

–

S1-> AS|PB| SB

S → AS|ASB| SB

A → XAS|XS|a

B → SYS|VV|XAS|XS|a

X → a

Y → b

V → b

P → AS

Similarly, we will do the needful for the productionS->ASB,

S1-> AS|PB| SB

S → AS|QB| SB

A → XAS|XS|a

B → SYS|VV|XAS|XS|a

X → a

Y → b

V → b

P → AS

Q → AS

Again for the production A->XAS,

S1-> AS|PB| SB

397 | P a g e

Space for learners: S → AS|QB| SB

A → RS|XS|a

B → SYS|VV|XAS|XS|a

X → a

Y → b

V → b

P → AS

Q → AS

R → XA

Again for B->SYS,

S1 -> AS|PB| SB

S → AS|QB| SB

A → RS|XS|a

B → TS|VV|XAS|XS|a

X → a

Y → b

V → b

P → AS

Q → AS

R → XA

T → SY

Lastly for B->XAX, Now the grammar will look like –

S1-> AS|PB| SB

S → AS|QB| SB

A → RS|XS|a

B → TS|VV|US|XS|a

X → a

Y → b

398 | P a g e

Space for learners: V → b

P → AS

Q → AS

R → XA

T → SY

U → XA

So, this grammar satisfies the conditions of Chomsky’s Normal

form(CNF), Hence the grammar is in CNF.

4.4.2 Greibach Normal Form (GNF)

Context free Grammar G is in Greibach Normal Form(GNF) where

every production is of the form:

A → aα

Where a is a terminal and α consists of any number of non terminals

and If ε is in the language, then we will allow the rule S → ε.

 For example, consider a grammar G –

S → aAB | aB

A → aA| a

B → bB | b

In the grammar G, every productions are in the form of A → aα, hence

grammar G is in GNF.

If we need to convert any context free grammar into its Greibach

normal form(GNF), then –

Step 1: Convert given context free grammar into CNF. (Since we have

studied this part earlier, so we will use this approach. There are some

alternative approaches are available for GNF conversion)

Step 2: If CFG contain left recursions, then remove them. (A

production of context free grammar is said to have left recursion if the

leftmost variable of its RHS is same as variable of its LHS. E.g. S → Sa

)

399 | P a g e

Space for learners:

Step 3: Finally convert the production rules into GNF.

Example: Consider the following grammar –

S → XA|BB

B → b|SB

X → b

A → a

Step 1: We need to convert the grammar into CNF but every

productions of the grammar are in CNF. So, lets move to step 2

Step 2: There is no left recursion in the grammar, so we can convert

this grammar to GNF.

Step 3: We need to check for the productions that are not in GNF, then

we will convert it one by one.

The production rule B->SB is not in GNF-

S → XA|BB

B → b|XAB|BBB

X → b

A → a

So, we substituted S -> XA|BB in production rule B->SB.

The production rules S->XA and B->XAB is not in GNF -

S → bA|BB

B → b|bAB|BBB

X → b

A → a

So, we substituted X->b in production rules S->XA and B->XAB.

Now, B->BBB production is a left recursive production, we need to

remove that-

S → bA|BB

B → bC|bABC

400 | P a g e

Space for learners: C → BBC| ε

X → b

A → a

We got another problem, because C-> ε is a null production, after

removing this -

S → bA|BB

B → bC|bABC|b|bAB

C → BBC|BB

X → b

A → a

The production rules S->BB is not in GNF -

S → bA| bCB|bABCB|bB|bABB

B → bC|bABC|b|bAB

C → BBC|BB

X → b

A → a

So, we substituted B → bC|bABC|b|bAB in production rules S->BB.

The production rules C->BB is not in GNF-

S → bA| bCB|bABCB|bB|bABB

B → bC|bABC|b|bAB

C → BBC

C → bCB|bABCB|bB|bABB

X → b

A → a

So, we substituted B → bC|bABC|b|bAB in production rules C->BB.

The production rules C->BBC is not in GNF -

S → bA| bCB|bABCB|bB|bABB

B → bC|bABC|b|bAB

401 | P a g e

Space for learners: C → bCBC|bABCBC|bBC|bABBC

C → bCB|bABCB|bB|bABB

X → b

A → a

So, we substituted B → bC|bABC|b|bAB in production rules C->BBC.

Now, finally every productions of this grammar are in greibach normal

form (GNF).

4.5 Pumping Lemma of Context Free Languages

Just like regular language’s pumping lemma, We can use pumping

lemma for Context free languages to check a language is context free

or not. Unlike regular languages, in the case of CFL pumping lemma,

we break its strings into five parts and pump second and fourth

substring. Pumping lemma for Context free languages is -

For every context free languages L, there exists a number n such that

for every string z in L, we can write z = uvwxy, where-

1. |vwx| ≤ n

2. |vx| ≥ 1

3. For every i ≥ 0, the string uviwxiy is in L.

For example, suppose a language L = {anbncn | n ≥ 0}, we need to

check the language is CFL or not.

We have studied in the regular languages, whenever we are applying

pumping lemmas, we try to show a contradiction which implies this

language is not belongs to this class.

Lets there exists a positive integer number n, lets our string is anbncn.

Lets divide it into five parts such that z = uvwxy, considering pumping

lemma’s conditions |vwx| ≤ n and |vx| ≥ 1

u=an, v=bn/3, w=bn/3, x=bn/3,y= cn

Now, for i=0,

uviwxiy = uv0wx0y = an(bn/3)0bn/3(bn/3)0cn

 = an bn/3cn
∉ L

402 | P a g e

Space for learners: So, it’s a simple contradiction, Hence the language is not a

context free language.

4.6 SUMMING UP

 Pushdown Automata (PDA) is a way of constructing context free

grammar just like finite automata for regular grammar. Only

difference is extra memory element stack here, stack allows PDA to

recognize some complex languages that is why A PDA is more

powerful than finite automata (FA).

 By using PDA state diagram or instantaneous description we can

construct PDA for any context free language.

 A Context free Grammar G is in Chomsky Normal Form where

every productions are like --- A→BC, A→a, where a is a terminal

and A,B,C are non-terminals.

 If the productions are like - A→ aα, where a is a terminal and α

consists of any number of non-terminals, then it is said to be is in

Greibach Normal Form.

 There are steps to convert a grammar into its CNF, GNF.

 Pumping lemma for context free languges, which is quite similar to

the regular language’s pumping lemma and it’s an easy way to

check whether a language is context free or not.

4.7 ANSWERS TO CHECK YOUR PROGRESSES

CHECK YOUR PROGRESS

Question 5: What is CNF?

Question 6: What is GNF?

Question 7: State the pumping lemma of context free languages?

403 | P a g e

Space for learners: 1. Just as we design DFA for a regular grammar, pushdown automata

(PDA) is a way to implement a context free grammar. Pushdown

Automata are new type of computational model, which is like finite

automata but have an extra memory component called stack. Formally,

a PDA can be defined by 7-tuple (Q, ∑, Γ, δ, q0 ,Z0, F), where –

 Q is the finite number of states

 ∑ is the finite set of input symbols, the alphabet

 Γ is the finite set of stack symbols, symbols which are allowed to

push/pop into the stack

 q0 is the initial state of PDA

 Z0 is the initial stack symbol

 F is the set of final states

 δ is a transition function: Q x {Σ ∪∈} x Γ → Q x Γ* .

2. Transition function of PDA defines the mappings of state to state,

which is denoted by δ that implies a PDA will read input symbol and

stack symbol (top of the stack) and move to a new state and change the

symbol of stack and mathematically written as Q x {Σ ∪∈} x Γ → Q x

Γ*, where Q is the finite number of states, ∑ is the input alphabet and

Γ is the finite set of stack symbols of PDA.

3.Yes, we constructed PDA using state diagrams because it’s an easy way to

construct a PDA. We can construct PDA by using instantaneous description

and turnstile symbol as well, where we need to write each and every moves

of your PDA. By seeing these moves, one can easily understand the working

principle of designed PDA.

4.Refer section no. 4.3.3.

5.A Context free Grammar G is in Chomsky Normal Form where every

production is either of the form:A→BC, A→a

Where a is a terminal and A,B,C are non terminalsand If ε is in the

language, then we will allow the rule S → ε.

404 | P a g e

Space for learners: 6. Context free Grammar G is in Greibach Normal Form(GNF) where

every production is of the form:A → aα

Where a is a terminal and α consists of any number of non terminals

and If ε is in the language, then we will allow the rule S → ε.

7.Pumping lemma of Context free language is –

 For every context free languages L, there exists a number n

such that for every string z in L, we can write z = uvwxy, where-

1. |vwx| ≤ n

2. |vx| ≥ 1

For every i ≥ 0, the string uviwxiy is in L.

4.8 POSSIBLE QUESTIONS

1. Define Pushdown Automata (PDA).

2. Why Pushdown Automata is more powerful as compared to

finite automata?

3. What are the normal forms in CFG?

4. State the pumping lemma for context free languages?

5. Design a PDA for the language L = {w: w has same number of

0’s and 1’s}.

6. Design a PDA for accepting a language {0n1m0n | m, n>=1}.

7. Convert the following context free grammar into its CNF:

S->a

S->aZ

Z->a

8. Convert the following context free grammar into its CNF:

S → aXbX

X → aY | bY | ε

Y → X | c

9. Convert the following context free grammar into its GNF:

S -> BA

405 | P a g e

Space for learners: B -> b | SB

A -> a

10. Using Pumping lemma, check L = {ww | w∈{0,1}*} is context

free or not.

4.9 REFERENCES AND READING SUGGESTIONS

 Introduction to Automata Theory,Languages and Computation, John

E Hopcroft ,Matwani& Jeffery D. Ullman

 Introduction to Languages and the Theory of Computation, John C.

Martin

 Elements of the Theory of Computation, Lewis & Papadimitriou

 Examples- https://www.geeksforgeeks.org/

 Javatpoint - https://www.javatpoint.com/

